JPH08211401A - Thermocompression bonding method for terminal part of liquid crystal cell - Google Patents

Thermocompression bonding method for terminal part of liquid crystal cell

Info

Publication number
JPH08211401A
JPH08211401A JP1787495A JP1787495A JPH08211401A JP H08211401 A JPH08211401 A JP H08211401A JP 1787495 A JP1787495 A JP 1787495A JP 1787495 A JP1787495 A JP 1787495A JP H08211401 A JPH08211401 A JP H08211401A
Authority
JP
Japan
Prior art keywords
liquid crystal
thermocompression bonding
crystal cell
terminal
acf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1787495A
Other languages
Japanese (ja)
Inventor
Kunio Fujii
邦夫 藤井
Yuichi Kondo
雄一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1787495A priority Critical patent/JPH08211401A/en
Publication of JPH08211401A publication Critical patent/JPH08211401A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Abstract

PURPOSE: To provide a thermocompression bonding method for the terminal parts of liquid crystal cells which executed thermocompression bonding of the terminal parts of the liquid crystal cells and the terminal parts of a TCP(tape carrier package) in the state of cooling at least the liquid crystal parts existing near the terminal parts of liquid crystal. CONSTITUTION: The extended plate part 21a of a transparent substrate 21, the terminal parts 22a of respective transparent electrodes 22, an ACF (anisotropic conductive adhesive film) 50 and the flexible tape 1 of the TCP 10 temporally press welded to the ACF 50 are arranged on a terminal receiving table 64. The gaseous nitrogen from a cooling gas supply source is supplied from a supply pipe 65 toward respective pixel parts P existing near the terminal parts 22a and respective pixel parts P is laid under a cooling state. The ACF 50 is thereafter heated by a heating head 63a via the flexible tape 11. The heating head 63a is moved upward after the thermocompression bonding of the flexible tape 11 and the respective terminal parts 22a is ended by thermal curing of the ACF 50.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置や液晶シ
ャッタ等に採用するに適した液晶セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal cell suitable for use in liquid crystal display devices, liquid crystal shutters and the like.

【0002】[0002]

【従来の技術】従来、例えば、TN型液晶セルに対しテ
ープキャリアパッケージ(以下、TCPという)により
ドライバICを実装する方法としては、異方性導電接着
フイルム(以下、ACFという)を用いた熱圧着方法が
一般的に用いられている。
2. Description of the Related Art Conventionally, as a method of mounting a driver IC in a TN type liquid crystal cell using a tape carrier package (hereinafter referred to as TCP), heat using an anisotropic conductive adhesive film (hereinafter referred to as ACF) is used. The crimping method is generally used.

【0003】[0003]

【発明が解決しようとする課題】ところで、液晶とし
て、例えば、反強誘電性液晶を採用する液晶セルに対し
て、TCPによりドライバICを実装するにあたり、上
述のような熱圧着方法を採用すると、次のような不具合
が生ずる。即ち、液晶セルの端子部にTCPのテープ端
子部をACFにより熱圧着する過程において、TCPの
テープ端子部近傍に位置する液晶セルの画素部が、反強
誘電性液晶に相転移を生ずる温度以上の温度まで加熱さ
れた場合、この画素部の液晶部分に上記相転移が生ず
る。そして、その後、その画素部の温度を相転移温度以
下に低下させても、当該画素部の液晶部分の層構造が、
原状態に復帰せず、他の画素部の液晶部分の層構造とは
異なった相転移したままの状態に維持される。このた
め、液晶セルの表示コントラストに、局部的に、液晶の
相の乱れによる差が生じ、表示品位の悪化を招く。
By the way, when a driver IC is mounted by TCP to a liquid crystal cell that employs, for example, an antiferroelectric liquid crystal as the liquid crystal, if the above thermocompression bonding method is employed, The following problems occur. That is, in the process of thermocompression bonding the TCP tape terminal portion to the liquid crystal cell terminal portion by ACF, the pixel portion of the liquid crystal cell located in the vicinity of the TCP tape terminal portion has a temperature higher than the temperature at which the antiferroelectric liquid crystal undergoes a phase transition. When heated to the temperature of, the phase transition occurs in the liquid crystal portion of the pixel portion. After that, even if the temperature of the pixel portion is lowered to the phase transition temperature or lower, the layer structure of the liquid crystal portion of the pixel portion is
It does not return to the original state, and is maintained in a state of phase transition different from the layer structure of the liquid crystal portion of the other pixel portion. For this reason, the display contrast of the liquid crystal cell locally has a difference due to the disorder of the phase of the liquid crystal, which causes deterioration of the display quality.

【0004】これに対し、従来は、液晶セルの端子部と
画素部との間の間隔を、上記相転移が生じない程度に広
く設定した上で、上記熱圧着を行うようにしている。し
かし、この場合には、画素部の液晶部分に相転移は生じ
ないものの、液晶セルの端子部と画素部との間隔が広い
ために、液晶セルの外形寸法が大きくなる。このため、
液晶セルの製品としての軽薄短小化の要請に反する結果
となる。また、この軽薄短小化を確保しようとすると、
液晶セルの画素領域以外の領域、即ち、いわゆる額縁領
域が不必要に狭くなるという不具合を招く。
On the other hand, conventionally, the thermocompression bonding is performed after the distance between the terminal portion of the liquid crystal cell and the pixel portion is set wide enough to prevent the phase transition. However, in this case, although the phase transition does not occur in the liquid crystal portion of the pixel portion, the outer dimension of the liquid crystal cell becomes large because the distance between the terminal portion of the liquid crystal cell and the pixel portion is wide. For this reason,
This is contrary to the demand for light, thin, short and small products as liquid crystal cell products. Also, when trying to secure this lightness, thinness and shortness,
A region other than the pixel region of the liquid crystal cell, that is, a so-called frame region is unnecessarily narrowed.

【0005】そこで、本発明は、以上のようなことに対
処するため、液晶セルの端子部とTCPの端子部との熱
圧着を、液晶のうち少なくとも端子部近傍に位置する液
晶部分を冷却状態において行うようにした液晶セルの端
子部熱圧着方法を提供することを目的とする。
Therefore, in order to deal with the above, the present invention uses thermocompression bonding between the terminal portion of the liquid crystal cell and the terminal portion of the TCP to cool at least the liquid crystal portion of the liquid crystal located near the terminal portion. It is an object of the present invention to provide a method for thermocompression-bonding a terminal portion of a liquid crystal cell, which is carried out in 1.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明においては、液晶を密封して
なる液晶セル(S)の端子部(22a)にテープキャリ
アパッケージ(10)の端子部(11)を熱圧着する端
子部熱圧着方法において、前記熱圧着時に、前記液晶の
うち少なくとも端子部(22a)の近傍に位置する液晶
部分を冷却することを特徴とする液晶セルの端子部熱圧
着方法が提供される。
In order to achieve the above object, in the invention according to claim 1, a tape carrier package (10) is provided in a terminal portion (22a) of a liquid crystal cell (S) formed by sealing liquid crystal. In the terminal thermocompression bonding method of thermocompressing the terminal portion (11), at least a liquid crystal portion of the liquid crystal located near the terminal portion (22a) is cooled during the thermocompression bonding. A terminal thermocompression bonding method is provided.

【0007】また、請求項2に記載の発明では、請求項
1に記載の液晶セルの熱圧着方法において、前記液晶部
分の冷却が、液晶セル(S)の少なくとも一表面側への
冷却流体の供給によりなされることを特徴とする。ま
た、請求項3に記載の発明では、請求項2に記載の液晶
セルの熱圧着方法において、前記冷却流体が冷却気体で
あることを特徴とする。
According to the second aspect of the invention, in the thermocompression bonding method for the liquid crystal cell according to the first aspect, the liquid crystal portion is cooled by cooling fluid to at least one surface side of the liquid crystal cell (S). It is characterized by being supplied. Further, in the invention described in claim 3, in the thermocompression bonding method for the liquid crystal cell according to claim 2, the cooling fluid is a cooling gas.

【0008】なお、上記各構成要素のカッコ内の符号
は、後述する実施例記載の具体的構成要素との対応関係
を示すものである。
Incidentally, the reference numerals in parentheses of the above-mentioned respective constituent elements show the corresponding relationship with the concrete constituent elements described in the embodiments described later.

【0009】[0009]

【発明の作用効果】上記請求項1乃至3に記載の発明に
よれば、液晶セルの端子部にテープキャリアパッケージ
の端子部を熱圧着するとき、液晶のうち少なくとも端子
部の近傍に位置する液晶部分を冷却する。これにより、
液晶セルの端子部と液晶部分との間の間隔を狭くして
も、上記熱圧着時において、液晶部分が、その温度上昇
を伴うことなく、他の液晶部分と同様の特性を維持でき
る。従って、液晶が、例えば反強誘電性液晶や強誘電性
液晶であっても、端子部の近傍に位置する液晶部分が、
その相転移温度以上の温度になることなく、他の液晶部
分と同様の層構造に維持される。その結果、上記熱圧着
後の液晶セルにおいて、額縁領域を適正に確保できるの
は勿論のこと、表示コントラストの差が局部的に生ずる
ことがなく、良好な表示品位を確保できる。
According to the invention described in claims 1 to 3, when the terminal portion of the tape carrier package is thermocompression-bonded to the terminal portion of the liquid crystal cell, the liquid crystal is located at least in the vicinity of the terminal portion. Cool part. This allows
Even if the distance between the terminal portion of the liquid crystal cell and the liquid crystal portion is narrowed, the liquid crystal portion can maintain the same characteristics as the other liquid crystal portions during the thermocompression bonding without the temperature increase thereof. Therefore, even if the liquid crystal is, for example, an antiferroelectric liquid crystal or a ferroelectric liquid crystal, the liquid crystal portion located near the terminal portion is
It does not reach a temperature higher than the phase transition temperature and maintains the same layer structure as other liquid crystal parts. As a result, in the liquid crystal cell after the thermocompression bonding, the frame area can be properly ensured, and the difference in display contrast is not locally generated, and good display quality can be ensured.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面により説明す
る。液晶セルS(図2参照)のテープキャリアパッケー
ジ10(以下、TCP10という)に対する熱圧着方法
を図1に示す工程図を参照して説明すると、まず、液晶
セル形成工程S1において、液晶セルSを形成する。
An embodiment of the present invention will be described below with reference to the drawings. A thermocompression bonding method of the liquid crystal cell S (see FIG. 2) to the tape carrier package 10 (hereinafter referred to as TCP 10) will be described with reference to the process chart shown in FIG. 1. First, in the liquid crystal cell forming step S1, the liquid crystal cell S is Form.

【0011】ここで、TCP10は、両フレキシブルテ
ープ11間に、液晶セルSを駆動するためのドライバI
C12をボンディング(図2にて符号B参照)により接
続して構成されている。また、液晶セルSは、コモン基
板20と対向基板30との間にシール40により反強誘
電性液晶を密封して構成されている。
Here, the TCP 10 is a driver I for driving the liquid crystal cell S between both flexible tapes 11.
It is configured by connecting C12 by bonding (see symbol B in FIG. 2). The liquid crystal cell S is formed by sealing the antiferroelectric liquid crystal with the seal 40 between the common substrate 20 and the counter substrate 30.

【0012】コモン基板20は、透明基板21を備えて
おり、この透明基板21には、延出板部21aが、対向
基板30の図2に図示左端よりも左方に延出して形成さ
れている。複数条の透明電極22は、透明基板21の内
表面に図2にて図示左右方向に形成されており、これら
各透明電極22は、延出板部21a上の延出端部にてそ
れぞれ端子部22aを構成する。また、透明基板21の
内表面には、配向膜23が各透明電極22を介して形成
されている。
The common substrate 20 is provided with a transparent substrate 21, and an extending plate portion 21a is formed on the transparent substrate 21 so as to extend to the left of the left end of the counter substrate 30 shown in FIG. There is. A plurality of transparent electrodes 22 are formed on the inner surface of the transparent substrate 21 in the left-right direction shown in FIG. 2, and each of these transparent electrodes 22 is provided with a terminal at an extended end portion on the extended plate portion 21a. It constitutes the section 22a. An alignment film 23 is formed on the inner surface of the transparent substrate 21 via each transparent electrode 22.

【0013】対向基板30は、透明基板31を備えてお
り、この透明基板31の内表面には、複数条の透明電極
32が、各透明電極22及び上記反強誘電性液晶と共に
格子状画素部(図2にて符号Pにより例示する)を構成
して形成されている。次に、ACF貼付工程S2におい
て、各透明電極22の端子部22a上に異方性導電接着
フイルム50(以下、ACF50という)をそれぞれ貼
付する(図3(a)参照)。ついで、TCP仮圧着工程
S3において、図3(b)にて示すごとく、TCP10
の両フレキシブルテープ11の一方を、各ACF50上
に位置合わせして仮圧着する。
The counter substrate 30 is provided with a transparent substrate 31, and a plurality of transparent electrodes 32 are provided on the inner surface of the transparent substrate 31, together with the transparent electrodes 22 and the antiferroelectric liquid crystal, in a grid-like pixel portion. (Illustrated by reference numeral P in FIG. 2). Next, in the ACF attaching step S2, the anisotropic conductive adhesive film 50 (hereinafter, referred to as ACF50) is attached on the terminal portions 22a of each transparent electrode 22 (see FIG. 3A). Next, in the TCP temporary pressure bonding step S3, as shown in FIG.
One of the two flexible tapes 11 is positioned on each ACF 50 and temporarily pressure-bonded.

【0014】然る後、TCP本圧着工程S4において、
次のようにして、液晶セルS及びTCP10を熱圧着装
置60にセットして熱圧着処理を行う。まず、液晶セル
Sを、熱圧着装置60のテーブル61上に載置する。こ
のとき、液晶セルSの各端子部22a及びACF50近
傍の各画素部Pが、テーブル61の図2にて図示左端よ
りも左方に位置するように、液晶セルSをテーブル61
上に載置固定する。
Then, in the TCP main pressure bonding step S4,
The liquid crystal cell S and TCP 10 are set in the thermocompression bonding apparatus 60 and thermocompression bonding processing is performed as follows. First, the liquid crystal cell S is placed on the table 61 of the thermocompression bonding apparatus 60. At this time, the liquid crystal cell S is placed in the table 61 so that the terminal portions 22a of the liquid crystal cell S and the pixel portions P near the ACF 50 are located on the left side of the left end of the table 61 in FIG.
Place and fix on top.

【0015】なお、テーブル61は、支持台61a上に
て回動可能にかつ図示左右方向に移動可能に支持されて
いる。また、支持台61aは、基台62上に設置した両
レール61b(図2では、一方のレール61bのみを示
す)上に沿い、テーブル61の移動方向に直角に移動可
能となっている。上述のような載置固定後、テーブル6
1を図2にて示す位置まで移動させて、基台62上に設
けた端子受け台64上に、透明基板21の延出板部21
a、各透明電極22の端子部22a、ACF50及びこ
のACF50に仮圧着してあるTCP10のフレキシブ
ルテープ11を配置する。
The table 61 is rotatably supported on the support base 61a and is movable in the left-right direction in the drawing. Further, the support base 61a is movable along both rails 61b (only one rail 61b is shown in FIG. 2) installed on the base 62 at right angles to the moving direction of the table 61. After placing and fixing as described above, the table 6
1 is moved to the position shown in FIG. 2, and the extension plate portion 21 of the transparent substrate 21 is placed on the terminal receiving base 64 provided on the base 62.
a, the terminal portion 22a of each transparent electrode 22, the ACF 50, and the flexible tape 11 of the TCP 10 that is temporarily pressure-bonded to the ACF 50.

【0016】ここで、端子受け台64は、図2にて示す
ごとく、液晶セルSの各画素部に後述するヒータヘッド
63aからの熱を伝達しないように、透明電極31の図
示左端よりも左方に位置している。なお、端子受け台6
4の直上には、基台62のL字状アームの水平部62a
から垂下してなるエアシリンダ63の上記ヒータヘッド
63aが位置している。このヒータヘッド63aは、エ
アシリンダ63の空圧制御により上下動し、また電源
(図示しない)からの電力により熱エネルギーを出すよ
うになっている。
Here, as shown in FIG. 2, the terminal pedestal 64 is located to the left of the left end of the transparent electrode 31 in the drawing so that heat from a heater head 63a, which will be described later, is not transferred to each pixel portion of the liquid crystal cell S. It is located towards In addition, the terminal cradle 6
Directly above 4 is the horizontal portion 62a of the L-shaped arm of the base 62.
The heater head 63a of the air cylinder 63 that is hung down from is located. The heater head 63a is moved up and down by controlling the air pressure of the air cylinder 63, and heat energy is generated by electric power from a power source (not shown).

【0017】また、冷却気体供給源(図示しない)から
の窒素ガスを冷却気体として供給する供給パイプ65
が、透明基板21の上記各画素部Pに対応する部分(即
ち、反強誘電性液晶のうち端子部22a近傍に位置する
液晶部分)の直下に配置されている。但し、供給パイプ
65の供給口と透明基板21の下面との距離は5mm程
度であり、供給パイプ65の窒素ガスの供給量は、50
リットル/minである。
A supply pipe 65 for supplying nitrogen gas as a cooling gas from a cooling gas supply source (not shown).
Are arranged immediately below the portion of the transparent substrate 21 corresponding to each pixel portion P (that is, the liquid crystal portion of the antiferroelectric liquid crystal located near the terminal portion 22a). However, the distance between the supply port of the supply pipe 65 and the lower surface of the transparent substrate 21 is about 5 mm, and the supply amount of nitrogen gas in the supply pipe 65 is 50 mm.
It is liter / min.

【0018】このようにしてACF50を介する液晶セ
ルSとTCP10の熱圧着に要する状態をセットした
後、供給パイプ65から透明基板21の上記各画素部P
に対応する部分に向けて窒素ガスを供給して当該各画素
部Pを冷却状態におく。然る後、加熱ヘッド63aをエ
アシリンダ63により下動させて、フレキシブルテープ
11を介し、各端子部22a上のACF50に圧力を加
える。これと同時に、加熱ヘッド63aにより、フレキ
シブルテープ11を介しACF50を加熱する。そし
て、ACF50が熱硬化してフレキシブルテープ11と
各端子部22aの加熱圧着が終了した後、加熱ヘッド6
3aを上動させる。
After the state required for thermocompression bonding of the liquid crystal cell S and the TCP 10 via the ACF 50 is set in this way, the supply pipe 65 is used to set each pixel portion P of the transparent substrate 21.
The nitrogen gas is supplied to the portion corresponding to the above to keep each pixel portion P in the cooled state. After that, the heating head 63a is moved downward by the air cylinder 63, and pressure is applied to the ACF 50 on each terminal portion 22a via the flexible tape 11. At the same time, the heating head 63a heats the ACF 50 via the flexible tape 11. Then, after the ACF 50 is thermoset and the thermocompression bonding of the flexible tape 11 and each terminal portion 22a is completed, the heating head 6
Move 3a upward.

【0019】このように、各端子部22a近傍の各画素
部Pに対する窒素ガスによる冷却状態において、上述の
ような加熱ヘッド63aによる加熱圧着を行う。従っ
て、液晶セルSの各端子部22aと各画素部Pとの間の
間隔を狭くしても、ACF50によるTCP10のテー
プ端子部と液晶セルSの端子部との加熱圧着の過程にお
いて、液晶セルSの反強誘電性液晶のうち各端子部22
a近傍に位置する各画素部Pの液晶部分が、その相転移
温度以上の温度になることなく、他の液晶部分と同様の
層構造に維持される。
As described above, in the cooling state with nitrogen gas for each pixel portion P in the vicinity of each terminal portion 22a, thermocompression bonding with the heating head 63a as described above is performed. Therefore, even if the distance between each terminal portion 22a of the liquid crystal cell S and each pixel portion P is narrowed, in the process of thermocompression bonding between the tape terminal portion of the TCP 10 and the terminal portion of the liquid crystal cell S by the ACF 50, the liquid crystal cell Each terminal portion 22 of the S anti-ferroelectric liquid crystal
The liquid crystal portion of each pixel portion P located in the vicinity of “a” is maintained at the same layer structure as the other liquid crystal portions without reaching a temperature equal to or higher than its phase transition temperature.

【0020】このため、上記熱圧着後の液晶セルSにお
いて、額縁領域を適正に確保し得るのは勿論のこと、表
示コントラストのバラツキが局部的に生ずることがな
く、良好な表示品位を確保できる。また、上述のような
加熱圧着にあたり、端子受け台64が、透明基板31の
図2にて図示左端よりも左側に位置しているので、加熱
ヘッド63aの熱エネルギーが端子受け台64を通して
各画素部Pに伝わることがない。このため、窒素ガスに
よる各画素部Pの冷却が効率よく行える。
Therefore, in the liquid crystal cell S after the thermocompression bonding, the frame region can be properly secured, and the display contrast is not locally varied, and the good display quality can be secured. . In addition, since the terminal pedestal 64 is located on the left side of the left end of the transparent substrate 31 in FIG. 2 in the above-described thermocompression bonding, the thermal energy of the heating head 63a passes through the terminal pedestal 64 to each pixel. It is not transmitted to department P. Therefore, the respective pixel portions P can be efficiently cooled by the nitrogen gas.

【0021】なお、TCP本圧着工程S4における処理
の終了後、回路基板半田付工程S5において、TCP1
0のドライバIC12に回路基板を接続する。ちなみ
に、上記実施例による熱圧着方法により熱圧着した場合
の効果を、窒素ガス(25℃)により冷却しない場合の
効果と実験により比較してみたところ、図4にて示す結
果が得られた。この結果において、冷却気体による冷却
がある場合の特性が曲線Laにより示され、一方、冷却
気体による冷却がない場合の特性が曲線Lbにより示さ
れる。
After the completion of the TCP main pressure bonding step S4, the TCP1 is bonded in the circuit board soldering step S5.
The circuit board is connected to the driver IC 12 of 0. By the way, when the effect of thermocompression bonding by the thermocompression bonding method according to the above example was compared with the effect of not cooling with nitrogen gas (25 ° C.) by experiment, the results shown in FIG. 4 were obtained. In this result, the characteristic when there is cooling by the cooling gas is shown by the curve La, while the characteristic when there is no cooling by the cooling gas is shown by the curve Lb.

【0022】ここで、間隔xは、図2にて示すごとく、
各端子部22a近傍の画素部Pとヒータヘッド63aと
の間隔を表す。また、この実験により用いた液晶セルの
反強誘電性液晶の相転移温度は、アンチフェロ相(SCA
*相)とスメクチック相(S A 相)との間で70℃であ
り、また、SA 相と等方性液体(ISO)との間で98
℃である。
Here, the interval x is as shown in FIG.
The pixel portion P and the heater head 63a near each terminal portion 22a,
Represents the interval of. In addition, the liquid crystal cell used in this experiment
The phase transition temperature of the antiferroelectric liquid crystal is the antiferro phase (SCA
* Phase) and smectic phase (S APhase) at 70 ° C
Again, SABetween the phase and the isotropic liquid (ISO) 98
℃.

【0023】しかして、曲線Laによれば、各端子部2
2a近傍の画素部Pの液晶部分は、間隔x=4mm以上
にて、SCA*相のままに維持されることが分かる。一
方、曲線Lbによれば、各端子部22a近傍の画素部P
の液晶部分は、間隔x=8mm以上でしか、SCA*相の
ままに維持できないことが分かる。また、各端子部22
a近傍の画素部Pを冷却する場合、間隔x=4mmで
も、液晶セルの表示品位の低下はみられなかったのに対
し、当該画素部Pを冷却しない場合には、間隔x=7m
mで、表示品位の低下がみられた。
Therefore, according to the curve La, each terminal portion 2
It can be seen that the liquid crystal portion of the pixel portion P near 2a is maintained in the S CA * phase at the interval x = 4 mm or more. On the other hand, according to the curve Lb, the pixel portion P near each terminal portion 22a
It can be seen that the liquid crystal portion of can be maintained in the S CA * phase only when the interval x is 8 mm or more. In addition, each terminal portion 22
When the pixel portion P in the vicinity of a was cooled, the display quality of the liquid crystal cell was not degraded even at the interval x = 4 mm, whereas when the pixel portion P was not cooled, the interval x = 7 m.
At m, the display quality was deteriorated.

【0024】なお、上記実施例においては、液晶セルS
の下方からのみ各端子部22a近傍の画素部Pを冷却す
るようにしたが、これに代えて、例えば、図1にて二点
鎖線にて示すように、上記実施例における供給パイプ6
5と同様の供給パイプ66を、液晶セルSを介し供給パ
イプ65と対向するように配置して、上記冷却気体供給
源からの窒素ガスを供給パイプ66によっても、透明基
板31の端子部22a近傍部分に向けて供給し、端子部
22a近傍の各画素部Pをその上下から冷却状態におく
ようにしてもよい。また、供給パイプ66からの窒素ガ
スのみにより端子部22a近傍の各画素部Pを冷却状態
におくようにしてもよい。
In the above embodiment, the liquid crystal cell S
Although the pixel portion P in the vicinity of each terminal portion 22a is cooled only from below, instead of this, for example, as shown by the chain double-dashed line in FIG.
A supply pipe 66 similar to that of No. 5 is arranged so as to face the supply pipe 65 via the liquid crystal cell S, and the nitrogen gas from the cooling gas supply source is also supplied by the supply pipe 66 in the vicinity of the terminal portion 22a of the transparent substrate 31. Alternatively, each pixel portion P in the vicinity of the terminal portion 22a may be placed in a cooling state from above and below. Further, each pixel portion P in the vicinity of the terminal portion 22a may be kept in a cooled state only with the nitrogen gas from the supply pipe 66.

【0025】また、供給パイプ66からの窒素ガスの供
給に際し、図1にて二点鎖線にて示すごとく、テフロン
(登録商標)クッションシート67をヒータヘッド63
aを介し配置して、供給パイプ66からの窒素ガスの冷
却作用のためにヒータヘッド63aの加熱温度が低下す
るのを防止するようにしてもよい。なお、テフロンクッ
ションシート67は、AFC50の潰れを均一にするた
めのものである。
When supplying the nitrogen gas from the supply pipe 66, the Teflon (registered trademark) cushion sheet 67 is attached to the heater head 63, as shown by the chain double-dashed line in FIG.
The heating temperature of the heater head 63a may be prevented from lowering due to the cooling action of the nitrogen gas from the supply pipe 66. The Teflon cushion sheet 67 is for making the crush of the AFC 50 uniform.

【0026】また、上記実施例においては、液晶セルS
の端子部22aとTCP10のフレキシブルテープ11
との熱圧着をACF50により行うようにしたが、これ
に限らず、当該熱圧着を、例えば、等方性導電接着テー
プにより行うようにしてもよい。また、本発明の実施に
あたり、冷却気体としては、窒素ガスに限ることなく、
例えば、工場内で使用される圧縮空気のように冷却能力
のあるものであればよい。かかる場合、気体に限らず、
冷却液体等の各種流体や冷却固体等でもよい。
Further, in the above embodiment, the liquid crystal cell S
Terminal part 22a of TCP and flexible tape 11 of TCP10
Although the thermocompression bonding is performed by the ACF 50, the thermocompression bonding is not limited to this, and the thermocompression bonding may be performed by an isotropic conductive adhesive tape, for example. Further, in carrying out the present invention, the cooling gas is not limited to nitrogen gas,
For example, compressed air used in a factory may be used as long as it has a cooling capacity. In this case, not only gas,
Various fluids such as a cooling liquid or a cooling solid may be used.

【0027】また、本発明の実施にあたっては、冷却対
象は、液晶セルSの各端子部22a近傍の画素部Pに限
らず、全画素部を冷却対象してもよい。また、上記実施
例においては、液晶セルSの液晶として反強誘電性液晶
を採用した例について説明したが、これに限らず、例え
ば、強誘電性液晶を採用して実施してもよい。
Further, in implementing the present invention, the cooling target is not limited to the pixel portion P in the vicinity of each terminal portion 22a of the liquid crystal cell S, but all pixel portions may be cooled. Further, in the above embodiment, an example in which the antiferroelectric liquid crystal is adopted as the liquid crystal of the liquid crystal cell S has been described, but the invention is not limited to this, and for example, a ferroelectric liquid crystal may be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】液晶セルの端子部熱圧着方法を示す工程図であ
る。
FIG. 1 is a process drawing showing a thermocompression bonding method for a terminal portion of a liquid crystal cell.

【図2】液晶セルの端子部にACFを介しTCPのフレ
キシブルテープを仮圧着した状態で加熱圧着装置にセッ
トした状態を示す要部破断側面図である。
FIG. 2 is a fragmentary side view showing a state in which a TCP flexible tape is temporarily press-bonded to a terminal part of a liquid crystal cell via an ACF and set in a thermocompression bonding apparatus.

【図3】液晶セルの端子部にACFを貼付した状態及び
このACFにTCPのフレキシブルテープを仮圧着した
状態をそれぞれ示す部分破断側面図である。
FIG. 3 is a partially cutaway side view showing a state in which an ACF is attached to a terminal portion of a liquid crystal cell and a state in which a TCP flexible tape is temporarily pressure-bonded to the ACF.

【図4】画素部温度と間隔xとの関係を、画素部の液晶
部分の相転移との関係で示すグラフである。
FIG. 4 is a graph showing the relationship between the temperature of the pixel portion and the interval x in relation to the phase transition of the liquid crystal portion of the pixel portion.

【符号の説明】[Explanation of symbols]

S・・・液晶セル、10・・・TCP、11・・・フレ
キシブルテープ、22a・・・端子部、63a・・・ヒ
ータヘッド、65、66・・・供給パイプ。
S ... Liquid crystal cell, 10 ... TCP, 11 ... Flexible tape, 22a ... Terminal part, 63a ... Heater head, 65, 66 ... Supply pipe.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液晶を密封してなる液晶セルの端子部に
テープキャリアパッケージの端子部を熱圧着する端子部
熱圧着方法において、 前記熱圧着時に、前記液晶のうち少なくとも前記端子部
の近傍に位置する液晶部分を冷却することを特徴とする
液晶セルの端子部熱圧着方法。
1. A terminal thermocompression bonding method for thermocompression bonding a terminal of a tape carrier package to a terminal of a liquid crystal cell in which liquid crystal is sealed, wherein at least at least the vicinity of the terminal of the liquid crystal is adhered during the thermocompression bonding. A method for thermocompression-bonding a terminal portion of a liquid crystal cell, which comprises cooling a liquid crystal portion located.
【請求項2】 前記液晶部分の冷却が、前記液晶セルの
少なくとも一表面側への冷却流体の供給によりなされる
ことを特徴とする請求項1に記載の液晶セルの熱圧着方
法。
2. The thermocompression bonding method for a liquid crystal cell according to claim 1, wherein the liquid crystal portion is cooled by supplying a cooling fluid to at least one surface side of the liquid crystal cell.
【請求項3】 前記冷却流体が冷却気体であることを特
徴とする請求項2に記載の液晶セルの熱圧着方法。
3. The thermocompression bonding method for a liquid crystal cell according to claim 2, wherein the cooling fluid is a cooling gas.
JP1787495A 1995-02-06 1995-02-06 Thermocompression bonding method for terminal part of liquid crystal cell Pending JPH08211401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1787495A JPH08211401A (en) 1995-02-06 1995-02-06 Thermocompression bonding method for terminal part of liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1787495A JPH08211401A (en) 1995-02-06 1995-02-06 Thermocompression bonding method for terminal part of liquid crystal cell

Publications (1)

Publication Number Publication Date
JPH08211401A true JPH08211401A (en) 1996-08-20

Family

ID=11955839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1787495A Pending JPH08211401A (en) 1995-02-06 1995-02-06 Thermocompression bonding method for terminal part of liquid crystal cell

Country Status (1)

Country Link
JP (1) JPH08211401A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151835A (en) * 2000-11-07 2002-05-24 Matsushita Electric Ind Co Ltd Crimping head and component-crimping device
JP2006100134A (en) * 2004-09-29 2006-04-13 Fuji Electric Holdings Co Ltd Manufacturing method of color conversion filter substrate and organic el element using the same
CN1307470C (en) * 2002-03-19 2007-03-28 富士通株式会社 Device and method for manufacturing joint substrate
JP2008032876A (en) * 2006-07-27 2008-02-14 Seiko Epson Corp Manufacturing method and device of electrooptical device
CN109616589A (en) * 2018-12-19 2019-04-12 武汉华星光电半导体显示技术有限公司 For the engagement device of display panel and the joint method of display panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151835A (en) * 2000-11-07 2002-05-24 Matsushita Electric Ind Co Ltd Crimping head and component-crimping device
JP4534342B2 (en) * 2000-11-07 2010-09-01 パナソニック株式会社 Crimping head
CN1307470C (en) * 2002-03-19 2007-03-28 富士通株式会社 Device and method for manufacturing joint substrate
JP2006100134A (en) * 2004-09-29 2006-04-13 Fuji Electric Holdings Co Ltd Manufacturing method of color conversion filter substrate and organic el element using the same
JP2008032876A (en) * 2006-07-27 2008-02-14 Seiko Epson Corp Manufacturing method and device of electrooptical device
CN109616589A (en) * 2018-12-19 2019-04-12 武汉华星光电半导体显示技术有限公司 For the engagement device of display panel and the joint method of display panel
WO2020124833A1 (en) * 2018-12-19 2020-06-25 武汉华星光电半导体显示技术有限公司 Bonding apparatus for display panel and method for bonding display panel

Similar Documents

Publication Publication Date Title
US7144471B2 (en) Bonding method and apparatus
JPH1195230A (en) Production of liquid crystal panel and apparatus for production
US7882997B2 (en) Method and device for mutual contacting of two wafers
JPH08211401A (en) Thermocompression bonding method for terminal part of liquid crystal cell
JP3303832B2 (en) Flip chip bonder
KR100962225B1 (en) Method for chip Bonding
JP2004145129A (en) Display device, method manufacturing the same, and apparatus for manufacture display device
JP4199424B2 (en) Manufacturing method of liquid crystal display device
JP2574704B2 (en) Bonding equipment
JP2004029576A (en) Method of manufacturing flat display device, and thermocompression bonding device for sticking anisotropic conductive film used for the same
JPH09186191A (en) Thermal pressure welding packaging method and apparatus
JPH07130795A (en) Semiconductor element connecting method and apparatus therefor
JP3216551B2 (en) Method and apparatus for manufacturing liquid crystal panel
JP2004178985A (en) Manufacturing method and equipment of organic electroluminescent device
JP3843517B2 (en) Manufacturing method of liquid crystal device
JP3352380B2 (en) Anisotropic conductive film sticking device
TWI298413B (en)
JP2004178984A (en) Manufacturing equipment of organic electroluminescent device and manufacturing method of organic electroluminescent device
JP3361583B2 (en) Semiconductor element connection method
JP2000330126A (en) Liquid crystal panel and method of mounting driving circuit
KR20090062062A (en) Bonding apparatus
JP3041559B2 (en) Manufacturing method of electro-optical device
JP2003029273A (en) Method of manufacturing liquid crystal device, apparatus for manufacturing liquid crystal device and method of baking adhesive for panel
JP2008091804A (en) Electronic component crimping method and apparatus
US20040239868A1 (en) Apparatus of assembling display panels and method of manufacturing display device using assembling apparatus