JP3843517B2 - Manufacturing method of liquid crystal device - Google Patents

Manufacturing method of liquid crystal device Download PDF

Info

Publication number
JP3843517B2
JP3843517B2 JP00500997A JP500997A JP3843517B2 JP 3843517 B2 JP3843517 B2 JP 3843517B2 JP 00500997 A JP00500997 A JP 00500997A JP 500997 A JP500997 A JP 500997A JP 3843517 B2 JP3843517 B2 JP 3843517B2
Authority
JP
Japan
Prior art keywords
liquid crystal
sealing material
pair
ultraviolet rays
crystal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00500997A
Other languages
Japanese (ja)
Other versions
JPH10197879A (en
Inventor
信行 下斗米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP00500997A priority Critical patent/JP3843517B2/en
Publication of JPH10197879A publication Critical patent/JPH10197879A/en
Application granted granted Critical
Publication of JP3843517B2 publication Critical patent/JP3843517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Description

【0001】
【発明の属する技術分野】
本発明は、液晶装置の製造方法に関する。さらに、詳しくは、紫外線硬化型樹脂をシール材に用いた液晶装置の製造方法に関する。
【0002】
【従来の技術】
従来の液晶装置の製造方法においては、一対の透明基板をシール材を介して貼り合わせた後に、所定のセル厚に押圧せしめ、圧着治具の駆動系がない透明基板側から紫外線を照射してシール材を硬化せしめていた。
【0003】
【発明が解決しようとする課題】
しかし、従来の技術においては、一方の透明基板側からのみ紫外線を照射していたため、配線の影になる部分のシール材に未硬化分が残ったり、結晶化ガラスなどの紫外線をほとんど透過させない透明基板を用いた場合に、照射光量が不足して、信頼性試験においてシール材が液晶と反応して表示画像が損なわれるといった課題を有する。
【0004】
そこで本発明は、このような課題を解決するもので、その目的とするところは、紫外線硬化型樹脂をシール材に用いた液晶装置において、高い信頼性を得るところにある。
【0005】
【課題を解決するための手段】
本発明は、上記した従来技術の問題点を解決するためになされたものであり、前記一対の基板間のシール材全面に、該一対の基板を保持する圧着治具の透明基板を介して紫外線を照射した後、紫外線を前記一対の透明基板の一方から照射する工程と、紫外線を前記一対の透明基板の他方から照射する工程と、前記透明基板の一方から照射する工程と前記透明基板の他方から照射する工程との間に基板を冷却する工程とを用いて、前記シール材を硬化せしめることを特徴とする。
【0006】
この構成によれば、シール材の未硬化を防止でき、一対の透明基板の温度が上昇して、一対の透明基板の熱膨張係数の違いにより、透明基板の位置合わせがずれることがない。
【0007】
また、本発明において、前記一対の透明基板は熱膨張係数が異なることを特徴とする。
【0008】
また、本発明は、前記シール材全面に紫外線を照射する工程は、照射温度は50℃以下で、照射時間は20秒以下であることを特徴とする。
【0009】
また、本発明の一対応として、ポリシリコン薄膜トランジスタ(TFT)の様に熱膨張係数が低くかつコストが安い結晶化ガラスを一方の基板に用いた液晶表示素子の場合には、結晶化ガラスがほとんど紫外線を透過させないため、両面から紫外線を照射することは、非常に効果が高い。
【0012】
【発明の実施の形態】
以下、本発明を図面に基づいて説明する。
【0013】
[本発明に関連した実施例]
図1は、本発明に関連した実施例にかかわる液晶装置の製造方法の主要工程図である。
【0014】
まず、石英ガラス等からなる透明基板1上にスイッチング素子としてポリシリコンTFT及び画素電極、データー線及び走査線等をマトリックス状に形成する。(a)
次に、結晶化ガラスからなる対向基板2とポリシリコンTFTが形成された透明基板1に配向膜としてポリイミド膜を形成し、ラビング法により配向処理したのちに、紫外線硬化型樹脂からなるシール材3が所定の形状で印刷し、シール材を介して位置合わせを行いながら貼り合わせる。(b)
次に、アライメントが完了した上下の基板1、2に対して圧着治具4にて所定の圧力(例えばシール剤の印刷されるシール材の面積に対して2〜20Kg/cm2)を所定時間加えて、所定のセル厚が得られる。次に、圧着治具の透明基板5側からシール材3全面に紫外線6を照射して、シール材3を硬化させる。(c)
次に、シール材3を完全硬化させるために、一対の基板の両側から同時に紫外線6照射する。(d)
次に、その間隙に液晶を封入し、所定の形状に切断して液晶装置を得た。
【0015】
ここで、(c)の工程で、紫外線の照射により一対の透明基板が温度上昇してしまうと、上下の透明基板の熱膨張係数の違いにより、透明基板の位置合わせがずれてしまうため、照射温度は、50℃以下で、照射時間は、20秒以下になるように設定して、20mW/cm2以上、好ましくは100mW/cm2程度の紫外線を照射することが望ましい。紫外線は、20mW/cm2以下の場合は、十分にシール材が硬化されない問題を有する。また100mW/cm2程度よりも高くしてもよいが、高くすると、温度が上昇してしまう問題が発生するため、一対の基板の転移温度以下となるように設定することが望ましい。
【0016】
また、(d)の工程で、結晶化ガラスからなる対向基板2側からのみ紫外線を照射した場合は、結晶化ガラスの紫外線の透過光量が少ないために、シール材が完全に硬化するまでに時間がかかり、一対の透明基板が温度上昇により位置ずれしてしまい、生産性と歩留りが大幅に低下してしまった。
【0017】
以上のように、紫外線の照射を複数回に分けて、一対の透明基板の両側から紫外線を照射したことにより、位置ずれのない液晶表示素子が高歩留りで得られ、かつ得られた液晶表示素子の信頼性も大幅に高めることができた。
【0018】
〔実施例〕
図2は、本実施例にかかわる液晶装置の製造方法の主要工程図である。
【0019】
まず、石英ガラス等からなる透明基板1上にスイッチング素子としてポリシリコンTFT及び画素電極、データー線及び走査線等をマトリックス状に形成する。(a)
次に、結晶化ガラスからなる対向基板2とポリシリコンTFTが形成された透明基板1に配向膜としてポリイミド膜を形成し、ラビング法により配向処理したのちに、紫外線硬化型樹脂からなるシール材3を介して位置合わせを行いながら貼り合わせる。(b)
次に、アライメントが完了した上下の基板1、2に対して圧着治具4にて所定の圧力(例えばシール剤の印刷されるシール材の面積に対して2〜20Kg/cm2)を所定時間加えて、所定のセル厚が得られる。次に、圧着治具の透明基板5側からシール材3全面に紫外線6を照射して、シール材3を硬化させる。
【0020】
この工程においても、本発明に関連した実施例と同様に、紫外線の照射により一対の透明基板が温度上昇してしまうと、上下の透明基板の熱膨張係数の違いにより、透明基板の位置合わせがずれてしまうため、照射温度は、50℃以下で、照射時間は、20秒以下になるように設定して、20mW/cm2以上、好ましくは100mW/cm2程度の紫外線を照射することが望ましい。紫外線は、20mW/cm2以下の場合は、十分紫外線が照射されないためシール材は硬化されなくなってしまう。また100mW/cm2程度よりも高くしてもよいが、高くすると、温度が上昇してしまう問題が発生するので、ガラス転移温度よりも低くするように設定することが好ましい。(c)
次に、シール材3を完全硬化させるために、まず石英ガラス等からなる透明基板1側から20mW/cm2以上、好ましくは100mW/cm2 の紫外線6を十数秒〜数分、好ましくは60秒程度照射する。(d)
次に水冷された冷却板7上に十数秒〜数分、好ましくは60秒程度放置して、一対の透明基板を常温まで冷却する。(e)
再び、次のステージで結晶化ガラスからなる対向基板2側から20mW/cm2以上、好ましくは100mW/cm2 の紫外線6を十数秒〜数分、好ましくは60秒程度照射する。(f)
ここで、完全硬化する際の温度は、低い方が望ましいが、シール材は(c)の工程でほぼ硬化しているため、100℃以下であればほとんど位置ずれすることがなく連続照射ができ、効率的に紫外線を照射することができる。
【0021】
次に、その間隙に液晶を封入し、所定の形状に切断して液晶表示素子を得た。
【0022】
ここで、(c)の工程の圧着治具の透明基板5は、紫外線の透過率が高い石英ガラス或いはパイレックスガラスが望ましく、さらには、熱線をカットするために少なくとも600nm以上の波長をカットする膜が形成されているものがよい。
【0023】
また、(c)工程、(d)工程、(f)工程の紫外線6の照射光量は、均一なほど良く、周辺照度比が悪い光源でシール材を硬化させるとシール材が部分的に劣化してしまい、信頼性が悪くなるため、70%以上の周辺照度比が好ましい。
【0024】
さらに、(e)工程の冷却板は水冷式に限るものではなく、低温のドライエアーで冷却しても良く、放熱が高い金属板等ならば、特別な冷却をしなくても同様の効果が得られる。また、外部から低温のドライエアーを吹きかけても良い。
【0025】
また、(e)工程、(f)工程を数回繰り返して、1回の紫外線の照射時間を短縮すれば、より位置ずれが少なくできる。
【0026】
以上のように、紫外線の照射を複数回に分けて、一対の透明基板の両側から紫外線を照射したことにより、位置ずれのない液晶表示素子が高歩留りで得られ、かつ得られた液晶表示素子の信頼性も大幅に高めることができた。
【0027】
さらに、ポリシリコンTFTを用いた液晶装置の対向基板を結晶化ガラスにすることが可能になり、1インチ以上の高精細な液晶表示素子を安価に製造することが可能になった。
【0028】
本実施例は、ポリシリコンTFTを用いた液晶装置について説明したが、それに限るものではなく、アモルファスシリコンTFTを用いた液晶装置、タンジュンマトリクスの液晶装置等であっても同様な効果を有する。
【0029】
【発明の効果】
以上説明してきたように、本発明の液晶表示素子の製造方法は、一対の透明基板の両側から紫外線を照射したことにより、配線の影になる部分のシール材も十分に硬化させることができ、また、結晶化ガラスなどの紫外線をほとんど透過させない透明基板を用いた場合でも、照射光量が不足することがなくなり、信頼性試験においてシール材が液晶と反応して表示画像が損なわれることが防止できた。
【0030】
また、紫外線の照射を複数回に分けて、一対の透明基板の温度上昇を抑えながら両面から紫外線を照射したことにより、位置ずれのない液晶表示素子が高い歩留りで得られた。
【0031】
【図面の簡単な説明】
【図1】本発明に関連した実施例の液晶表示素子の製造方法の主要工程図。
【図2】本発明の実施例の液晶表示素子の製造方法の主要工程図。
【符号の説明】
1.透明基板
2.対向基板
3.シール材
4.圧着治具
5.圧着治具の透明基板
6.紫外線
7.冷却板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a liquid crystal device. More specifically, the present invention relates to a method for manufacturing a liquid crystal device using an ultraviolet curable resin as a sealing material.
[0002]
[Prior art]
In a conventional method for manufacturing a liquid crystal device, after a pair of transparent substrates are bonded together via a sealing material, they are pressed to a predetermined cell thickness and irradiated with ultraviolet rays from the transparent substrate side where there is no drive system for a crimping jig. The sealing material was hardened.
[0003]
[Problems to be solved by the invention]
However, in the conventional technology, since ultraviolet rays are irradiated only from one transparent substrate side, the uncured portion remains in the seal material in the shadowed portion of the wiring, or transparent such as crystallized glass hardly transmits ultraviolet rays. When the substrate is used, there is a problem that the amount of irradiation light is insufficient, and the display image is damaged due to the sealant reacting with the liquid crystal in the reliability test.
[0004]
Therefore, the present invention solves such problems, and an object thereof is to obtain high reliability in a liquid crystal device using an ultraviolet curable resin as a sealing material.
[0005]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems of the prior art, and ultraviolet rays are passed through the transparent substrate of a pressure bonding jig that holds the pair of substrates on the entire surface of the sealing material between the pair of substrates. Irradiating ultraviolet rays from one of the pair of transparent substrates, irradiating ultraviolet rays from the other of the pair of transparent substrates, irradiating from one of the transparent substrates, and the other of the transparent substrates The sealing material is hardened by using a step of cooling the substrate between the step of irradiating and the step of irradiating the substrate.
[0006]
According to this configuration, the uncured sealing material can be prevented, the temperature of the pair of transparent substrates increases, and the alignment of the transparent substrates does not shift due to the difference in thermal expansion coefficient between the pair of transparent substrates.
[0007]
In the present invention, the pair of transparent substrates have different thermal expansion coefficients.
[0008]
Further, the present invention is characterized in that the step of irradiating the entire surface of the sealing material with ultraviolet rays has an irradiation temperature of 50 ° C. or less and an irradiation time of 20 seconds or less.
[0009]
Further, as one correspondence of the present invention, in the case of a liquid crystal display element using a crystallized glass having a low thermal expansion coefficient and low cost like a polysilicon thin film transistor (TFT) as one substrate, the crystallized glass is almost all. Irradiating ultraviolet rays from both sides is very effective because it does not transmit ultraviolet rays.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
[0013]
[Examples related to the present invention]
FIG. 1 is a main process diagram of a method of manufacturing a liquid crystal device according to an embodiment related to the present invention.
[0014]
First, polysilicon TFTs, pixel electrodes, data lines, scanning lines, and the like are formed in a matrix on the transparent substrate 1 made of quartz glass or the like as switching elements. (A)
Next, a polyimide film is formed as an alignment film on the counter substrate 2 made of crystallized glass and the transparent substrate 1 on which the polysilicon TFT is formed, and after an alignment treatment by a rubbing method, a sealing material 3 made of an ultraviolet curable resin. Are printed in a predetermined shape, and are bonded together with alignment through a sealing material. (B)
Next, a predetermined pressure (for example, 2 to 20 kg / cm 2 with respect to the area of the sealing material on which the sealant is printed) is applied to the upper and lower substrates 1 and 2 that have been aligned by the crimping jig 4 for a predetermined time. Thus, a predetermined cell thickness is obtained. Next, the sealing material 3 is cured by irradiating the entire surface of the sealing material 3 with ultraviolet rays 6 from the transparent substrate 5 side of the crimping jig. (C)
Next, in order to cure the sealing material 3 completely, ultraviolet rays 6 are simultaneously irradiated from both sides of the pair of substrates. (D)
Next, liquid crystal was sealed in the gap and cut into a predetermined shape to obtain a liquid crystal device.
[0015]
Here, in the step (c), when the temperature of the pair of transparent substrates rises due to the irradiation of ultraviolet rays, the alignment of the transparent substrates is shifted due to the difference in thermal expansion coefficient between the upper and lower transparent substrates. The temperature is set to 50 ° C. or less and the irradiation time is set to 20 seconds or less, and it is desirable to irradiate ultraviolet rays of 20 mW / cm 2 or more, preferably about 100 mW / cm 2 . When the ultraviolet ray is 20 mW / cm 2 or less, the sealing material is not sufficiently cured. The temperature may be higher than about 100 mW / cm 2 , but if it is increased, there is a problem that the temperature rises. Therefore, it is desirable to set the temperature to be equal to or lower than the transition temperature of the pair of substrates.
[0016]
Further, in the step (d), when ultraviolet rays are irradiated only from the side of the counter substrate 2 made of crystallized glass, the amount of ultraviolet light transmitted through the crystallized glass is small. As a result, the pair of transparent substrates are displaced due to a temperature rise, and the productivity and the yield are greatly reduced.
[0017]
As described above, the liquid crystal display element without misalignment can be obtained with high yield by dividing the ultraviolet irradiation into a plurality of times and irradiating the ultraviolet light from both sides of the pair of transparent substrates, and the obtained liquid crystal display element The reliability of the system was also greatly improved.
[0018]
〔Example〕
FIG. 2 is a main process diagram of the manufacturing method of the liquid crystal device according to the present embodiment.
[0019]
First, polysilicon TFTs, pixel electrodes, data lines, scanning lines, and the like are formed in a matrix on the transparent substrate 1 made of quartz glass or the like as switching elements. (A)
Next, a polyimide film is formed as an alignment film on the counter substrate 2 made of crystallized glass and the transparent substrate 1 on which the polysilicon TFT is formed, and after an alignment treatment by a rubbing method, a sealing material 3 made of an ultraviolet curable resin. Paste together while aligning via (B)
Next, a predetermined pressure (for example, 2 to 20 kg / cm 2 with respect to the area of the sealing material on which the sealant is printed) is applied to the upper and lower substrates 1 and 2 that have been aligned by the crimping jig 4 for a predetermined time. Thus, a predetermined cell thickness is obtained. Next, the sealing material 3 is cured by irradiating the entire surface of the sealing material 3 with ultraviolet rays 6 from the transparent substrate 5 side of the crimping jig.
[0020]
Also in this process, as in the embodiment related to the present invention, when the temperature of the pair of transparent substrates rises due to ultraviolet irradiation, the alignment of the transparent substrates is caused by the difference in thermal expansion coefficient between the upper and lower transparent substrates. Therefore, it is desirable to set the irradiation temperature to be 50 ° C. or less and the irradiation time to be 20 seconds or less, and to irradiate ultraviolet rays of 20 mW / cm 2 or more, preferably about 100 mW / cm 2. . When the ultraviolet ray is 20 mW / cm 2 or less, the sealing material is not cured because the ultraviolet ray is not sufficiently irradiated. The temperature may be higher than about 100 mW / cm 2 , but if it is increased, there is a problem that the temperature rises. Therefore, it is preferably set to be lower than the glass transition temperature. (C)
Next, in order to completely cure the sealing material 3, first from the side of the transparent substrate 1 made of quartz glass or the like 20 mW / cm 2 or more, preferably ultraviolet 6 of 100 mW / cm 2 ten seconds to several minutes, preferably 60 seconds Irradiate to the extent. (D)
Next, the substrate is left on the cooling plate 7 that has been cooled with water for several tens of seconds to several minutes, preferably about 60 seconds to cool the pair of transparent substrates to room temperature. (E)
Again, in the next stage, the ultraviolet ray 6 of 20 mW / cm 2 or more, preferably 100 mW / cm 2 is irradiated from the side of the counter substrate 2 made of crystallized glass for 10 to several minutes, preferably about 60 seconds. (F)
Here, it is desirable that the temperature at the time of complete curing is low, but since the sealing material is almost cured in the step (c), continuous irradiation can be performed with almost no displacement at 100 ° C. or less. , Can be irradiated with ultraviolet rays efficiently.
[0021]
Next, liquid crystal was sealed in the gap and cut into a predetermined shape to obtain a liquid crystal display element.
[0022]
Here, the transparent substrate 5 of the crimping jig in the step (c) is preferably quartz glass or pyrex glass having a high ultraviolet transmittance, and further a film that cuts at least a wavelength of 600 nm or more in order to cut heat rays. What is formed is good.
[0023]
In addition, the amount of irradiation with the ultraviolet rays 6 in the steps (c), (d), and (f) is better as it is uniform, and when the sealing material is cured with a light source having a poor peripheral illuminance ratio, the sealing material is partially degraded. Therefore, the ambient illuminance ratio of 70% or more is preferable because the reliability deteriorates.
[0024]
Furthermore, the cooling plate in step (e) is not limited to the water-cooled type, and may be cooled with low-temperature dry air. If the metal plate has high heat dissipation, the same effect can be obtained without special cooling. can get. Alternatively, low temperature dry air may be blown from the outside.
[0025]
Further, if the steps (e) and (f) are repeated several times to shorten the irradiation time of one ultraviolet ray, the positional deviation can be reduced.
[0026]
As described above, the liquid crystal display element without misalignment can be obtained with high yield by dividing the ultraviolet irradiation into a plurality of times and irradiating the ultraviolet light from both sides of the pair of transparent substrates, and the obtained liquid crystal display element The reliability of the system was also greatly improved.
[0027]
In addition, the counter substrate of the liquid crystal device using the polysilicon TFT can be made of crystallized glass, and a high-definition liquid crystal display element of 1 inch or more can be manufactured at low cost.
[0028]
In this embodiment, a liquid crystal device using a polysilicon TFT has been described. However, the present invention is not limited to this, and a liquid crystal device using an amorphous silicon TFT, a tanjung matrix liquid crystal device, or the like has the same effect.
[0029]
【The invention's effect】
As described above, the liquid crystal display element manufacturing method of the present invention can sufficiently cure the seal material in the shadow of the wiring by irradiating ultraviolet rays from both sides of the pair of transparent substrates, In addition, even when a transparent substrate that hardly transmits ultraviolet rays, such as crystallized glass, is used, there is no shortage of the amount of irradiation light, and it is possible to prevent the display image from being damaged by the reaction of the sealing material with the liquid crystal in the reliability test. It was.
[0030]
In addition, by irradiating ultraviolet rays from both sides while dividing the ultraviolet irradiation into a plurality of times and suppressing the temperature rise of the pair of transparent substrates, a liquid crystal display element free from misalignment was obtained with a high yield.
[0031]
[Brief description of the drawings]
FIG. 1 is a main process diagram of a manufacturing method of a liquid crystal display device according to an embodiment related to the present invention.
FIG. 2 is a main process diagram of a method for manufacturing a liquid crystal display element according to an embodiment of the present invention.
[Explanation of symbols]
1. 1. Transparent substrate 2. counter substrate 3. Seal material 4. Crimping jig 5. Transparent substrate for crimping jig UV 7 Cold plate

Claims (3)

シール材を介して接着された一対の基板間に、液晶を挟持してなる液晶装置の製造方法において、
前記一対の基板間のシール材全面に、該一対の基板を保持する圧着治具の透明基板を介して紫外線を照射した後、
紫外線を前記一対の透明基板の一方から照射する工程と、紫外線を前記一対の透明基板の他方から照射する工程と、前記透明基板の一方から照射する工程と前記透明基板の他方から照射する工程との間に基板を冷却する工程とを用いて、前記シール材を硬化せしめることを特徴とする液晶装置の製造方法。
In a method for manufacturing a liquid crystal device in which a liquid crystal is sandwiched between a pair of substrates bonded via a sealing material,
After irradiating the entire surface of the sealing material between the pair of substrates with ultraviolet rays through a transparent substrate of a crimping jig that holds the pair of substrates,
Irradiating ultraviolet rays from one of the pair of transparent substrates, irradiating ultraviolet rays from the other of the pair of transparent substrates, irradiating from one of the transparent substrates, and irradiating from the other of the transparent substrates; A method of manufacturing a liquid crystal device, wherein the sealing material is cured using a step of cooling the substrate.
請求項1記載の液晶装置の製造方法であって、
前記一対の透明基板は、熱膨張係数が異なることを特徴とする液晶装置の製造方法。
A method of manufacturing a liquid crystal device according to claim 1,
The method for manufacturing a liquid crystal device, wherein the pair of transparent substrates have different coefficients of thermal expansion.
請求項1又は2記載の液晶装置の製造方法であって、
前記シール材全面に紫外線を照射する工程は、照射温度は50℃以下で、照射時間は20秒以下であることを特徴とする液晶装置の製造方法。
A method of manufacturing a liquid crystal device according to claim 1 or 2,
The step of irradiating the entire surface of the sealing material with ultraviolet rays is performed at a temperature of 50 ° C. or less and a time of irradiation of 20 seconds or less.
JP00500997A 1997-01-14 1997-01-14 Manufacturing method of liquid crystal device Expired - Fee Related JP3843517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00500997A JP3843517B2 (en) 1997-01-14 1997-01-14 Manufacturing method of liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00500997A JP3843517B2 (en) 1997-01-14 1997-01-14 Manufacturing method of liquid crystal device

Publications (2)

Publication Number Publication Date
JPH10197879A JPH10197879A (en) 1998-07-31
JP3843517B2 true JP3843517B2 (en) 2006-11-08

Family

ID=11599560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00500997A Expired - Fee Related JP3843517B2 (en) 1997-01-14 1997-01-14 Manufacturing method of liquid crystal device

Country Status (1)

Country Link
JP (1) JP3843517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9827965D0 (en) * 1998-12-19 1999-02-10 Secr Defence Assembly of cells having spaced opposed substrates
KR100685912B1 (en) * 2000-07-28 2007-02-23 엘지.필립스 엘시디 주식회사 Method for fabricating liquid crystal display panel

Also Published As

Publication number Publication date
JPH10197879A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
US6246454B1 (en) Active matrix liquid crystal display and method of fabricating same
KR100425874B1 (en) Active matrix liquid crystal display and method of fabricating same
JP2002296568A (en) Reflection type liquid crystal display element and manufacturing method therefor
KR20020096359A (en) In-line system for manufacturing liquid crystal display and method of manufacturing liquid crystal display using the same
US20090316081A1 (en) Method for manufacturing a liquid crystal display device and mother substrate for manufacturing the same
JP3843517B2 (en) Manufacturing method of liquid crystal device
JP2000193986A (en) Method and device for manufacturing liquid crystal device
KR20090049869A (en) Method of fabricating liquid crystal display device
JPH05127174A (en) Production of liquid crystal display panel
JP2004029576A (en) Method of manufacturing flat display device, and thermocompression bonding device for sticking anisotropic conductive film used for the same
JP3680621B2 (en) ELECTRO-OPTICAL DEVICE, MANUFACTURING METHOD THEREOF, AND PROJECTION DISPLAY DEVICE EQUIPPED WITH THE ELECTRO-OPTICAL DEVICE
JP2004117526A (en) Liquid crystal display panel and method for manufacturing the same
JP4370788B2 (en) Manufacturing method of electro-optical device
JP2000019540A (en) Liquid crystal display device
JP3947273B2 (en) Liquid crystal display device manufacturing method
JP2005148523A (en) Manufacturing method of liquid crystal display device
JP2004086010A (en) Device and method for manufacturing display element
JP2609088B2 (en) Manufacturing method of liquid crystal display
JPH10104625A (en) Production of liquid crystal display device
JPH11174468A (en) Method of sticking liquid crystal display panel and device therefor
JP3888104B2 (en) Liquid crystal device and manufacturing method thereof
JP2006317669A (en) Method for manufacturing liquid crystal display apparatus
KR100720436B1 (en) Method For Fabricating Liquid Crystal Display Device
JP4492081B2 (en) Liquid crystal display
JP4444706B2 (en) Manufacturing method of liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees