JPH08209271A - Copper alloy for electronic equipment excellent in solder joining strength and its production - Google Patents
Copper alloy for electronic equipment excellent in solder joining strength and its productionInfo
- Publication number
- JPH08209271A JPH08209271A JP29920395A JP29920395A JPH08209271A JP H08209271 A JPH08209271 A JP H08209271A JP 29920395 A JP29920395 A JP 29920395A JP 29920395 A JP29920395 A JP 29920395A JP H08209271 A JPH08209271 A JP H08209271A
- Authority
- JP
- Japan
- Prior art keywords
- less
- copper alloy
- electronic equipment
- alloy
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明ははんだ接合強度に優
れた電子機器用銅合金、特に小型高密度の半導体リード
フレームに適した銅合金とその製造法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic equipment having excellent solder joint strength, and more particularly to a copper alloy suitable for a small and high-density semiconductor lead frame and a method for producing the same.
【0002】[0002]
【従来の技術】電子機器用銅合金としてはCu−Sn系
のリン青銅が用いられ、コネクターやスイッチ用ばね、
端子、半導体リードフレーム、リード線等に多量に使用
されている。この合金は強度及び加工性が優れている
が、導電率は10〜25%IACSと低いため、導電性や熱
伝導性が要求される用途には使用できない。このため導
電性や熱伝導性が要求される用途にはCu−Fe系、例
えばC194 (Cu− 2.4wt%Fe− 0.12wt %Zn−P
合金)(以下wt%を%と略記)、C195 (Cu−1.5%
Fe− 0.8%Co− 0.6%Sn−P合金)が用いられて
いる。この合金は強度45〜55kg/mm2 、導電率50〜65%
IACSの特性を示す。2. Description of the Related Art Cu-Sn based phosphor bronze is used as a copper alloy for electronic equipment, and a spring for a connector or a switch,
It is widely used for terminals, semiconductor lead frames, lead wires and the like. Although this alloy is excellent in strength and workability, its conductivity is as low as 10 to 25% IACS, so that it cannot be used for applications requiring conductivity and thermal conductivity. Therefore, for applications requiring electrical conductivity and thermal conductivity, a Cu-Fe system such as C194 (Cu-2.4wt% Fe-0.12wt% Zn-P
Alloy) (hereinafter wt% is abbreviated as%), C195 (Cu-1.5%
Fe-0.8% Co-0.6% Sn-P alloy) is used. This alloy has a strength of 45-55 kg / mm 2 , conductivity of 50-65%
4 shows the characteristics of IACS.
【0003】電子機器では小型高密度化が著しく、必要
とされる合金の特性も絶えず高性能化が要求され、特に
半導体において最も顕著であり、工業的にも最も重要な
地位を占めている。例えば量産型のプラスチックモール
ド半導体ではリードフレームとして、DIP型の100mil
ピッチの2方向リードを有するフレームとして上記銅合
金が大量に使用されている。最近より小型化が可能な面
実装型の新しい半導体パッケージとしてSOP、FP、
PLCCが開発され、特にPLCCは4方向に 50milピ
ッチのリードを出したフレームを使用するため、従来の
DIP型に比べて大巾な高密実装が可能である。またF
Pも類似であり、SOPも2方向リードであるが 50mil
ピッチの細いリードフレームを用いる面実装である。[0003] In electronic equipment, miniaturization and densification are remarkable, and the required properties of alloys are constantly required to be high performance. Particularly, semiconductors are most remarkable and occupy the most important industrial position. For example, in a mass-produced plastic mold semiconductor, a DIP type 100 mil
The copper alloy is used in large quantities as a frame having two-way leads at a pitch. Recently, SOP, FP, as new surface mount type semiconductor packages that can be made smaller
PLCC has been developed. In particular, since PLCC uses a frame with leads of 50 mil pitch in four directions, it can be mounted in a higher density than a conventional DIP type. Also F
P is similar, SOP is bidirectional lead but 50mil
This is a surface mounting method using a thin pitch lead frame.
【0004】[0004]
【発明が解決しようとする課題】上記の新規な電子機器
に用いるリードフレーム等には、導電率の一層の向上と
共に高い強度と加工性のバランスが要求され、更には機
械的特性の等方性が要求される。即ち板条体として圧延
方向と巾方向の特性、特に加工特性の差異は高精密を必
須とするPLCC等のリードフレームには致命的欠陥と
なる。しかしながら上記リン青銅やCu−Fe系合金は
これ等の要求特性を満足することができず、現状ではC
150 (Cu− 0.1%Zr合金)やCu−2%Sn− 0.1
%Cr合金が使用されているが、前者は90%IACS程
度の導電率を示すも強度は40kg/mm2 程度にすぎず、後
者は50〜55kg/mm2 程度の強度を示すも、導電率は30〜
40%IACS程度にすぎない。The lead frame and the like used in the above-mentioned new electronic equipment are required to have a higher balance of high strength and workability as well as further improvement in conductivity, and furthermore, to have an isotropic mechanical property. Is required. That is, the characteristics of the sheet strip in the rolling direction and the width direction, especially the difference in processing characteristics, are fatal defects in lead frames such as PLCC which require high precision. However, the above-mentioned phosphor bronze and Cu-Fe alloys cannot satisfy these required characteristics, and at present, C
150 (Cu-0.1% Zr alloy) and Cu-2% Sn-0.1
Percent Cr alloy is used, the strength former exhibits a conductivity of about 90% IACS is only about 40 kg / mm 2, the latter is intensity of about 50~55kg / mm 2 also conductivity Is 30 ~
Only 40% IACS.
【0005】このため電子機器用銅合金としては、導電
率と強度が共に優れ、かつ等方的な高度の加工性、即ち
プレス成型性を有し、更に面実装部品の信頼性に重要な
半田接合強度の向上が望まれている。例えばプリント基
板のスルホールを用いないで表面に半田付けする面実装
では接合強度の経時劣化が致命的となる。またメッキ性
や耐食性、例えばアンモニアによる応力腐食割れに対し
ても充分な耐性を有することが要求される。[0005] For this reason, copper alloys for electronic equipment are excellent in both conductivity and strength, have high isotropic workability, ie, press moldability, and are important for the reliability of surface mount components. Improvement in bonding strength is desired. For example, in surface mounting in which soldering is performed on the surface without using a through hole of a printed circuit board, the deterioration with time of the bonding strength is fatal. It is also required to have sufficient plating resistance and corrosion resistance, for example, stress corrosion cracking caused by ammonia.
【0006】[0006]
【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、電気及び熱伝導性、機械的強度、精密加工
性、半田接合強度等を向上した電子機器用銅合金とその
製造法を開発したものである。As a result of various studies in view of the above, the present invention has been made, and as a result, various improvements have been made to electrical and thermal conductivity, mechanical strength, precision workability, solder joint strength and the like, and a method for producing the same. Was developed.
【0007】即ち本発明電子機器用銅合金は、Ni又は
NiとCoを1%を越え4%以下、Cr: 1.0%を越え
2%以下、Si: 0.2〜 1.5%、Sn: 1.1〜3%を含
み、更にP: 0.3%以下、B: 0.3%以下、Zn:5%
以下、Mn:1%以下、Mg: 0.2%以下、Zr: 0.5
%以下の範囲内で何れか1種又は2種以上を合計5%以
下含み、残部Cuからなるものである。That is, the copper alloy for electronic equipment of the present invention contains Ni or Ni and Co in an amount of more than 1% and less than 4%, Cr: more than 1.0% and less than 2%, Si: 0.2-1.5%, Sn: 1.1-3%. In addition, P: 0.3% or less, B: 0.3% or less, Zn: 5%
Hereinafter, Mn: 1% or less, Mg: 0.2% or less, Zr: 0.5
% Or less, and one or two or more of them are contained in a total of 5% or less, with the balance being Cu.
【0008】また本発明製造法は、Ni又はNiとCo
を1%を越え4%以下、Cr: 1.0%を越え2%以下、
Si: 0.2〜 1.5%、Sn: 1.1〜3%を含み、更に
P:0.3%以下、B: 0.3%以下、Zn:5%以下、M
n:1%以下、Mg: 0.2%以下、Zr: 0.5%以下の
範囲内で何れか1種又は2種以上を合計5%以下含み、
残部Cuからなる合金を 650℃以上で熱間加工した後、
350℃以下まで10℃/sec 以上の速さで冷却し、続いて
70%以上の冷間加工を加えてから 400〜 600℃で熱処理
することを特徴とするものである。Further, the production method of the present invention is characterized in that Ni or Ni and Co are used.
More than 1% and less than 4%, Cr: more than 1.0% and less than 2%,
Si: 0.2 to 1.5%, Sn: 1.1 to 3%, P: 0.3% or less, B: 0.3% or less, Zn: 5% or less, M
n: 1% or less, Mg: 0.2% or less, Zr: 0.5% or less, including any one or more of 5% or less in total;
After hot working the alloy consisting of the remaining Cu at 650 ° C or higher,
Cool to 350 ° C or less at a rate of 10 ° C / sec or more, and then
The feature is that after 70% or more of cold working is applied, heat treatment is performed at 400 to 600 ° C.
【0009】上記の通り本発明はNi又はNiとCoを
1%を越え4%以下、Cr: 1.0%を越え2%以下、S
i: 0.2〜1.5 %、Sn: 1.1〜3%を含み、更にこれ
にP: 0.3%以下、B: 0.3%以下、Zn:5%以下、
Mn:1%以下、Mg: 0.2%以下、Zr: 0.5%以下
の範囲内で何れか1種又は2種以上を合計5%以下含
み、残部Cuからなり、この合金を溶解鋳造して 650℃
以上、望ましくは 700℃以上で熱間加工する。As described above, according to the present invention, Ni or Ni and Co is more than 1% and less than 4%, Cr: more than 1.0% and less than 2%, and S is S.
i: 0.2 to 1.5%, Sn: 1.1 to 3%, P: 0.3% or less, B: 0.3% or less, Zn: 5% or less,
Mn: 1% or less, Mg: 0.2% or less, Zr: 0.5% or less, containing any one or more kinds in total of 5% or less, with the balance being Cu.
Thus, hot working is desirably performed at 700 ° C. or more.
【0010】次に加工後直ちに冷風又は水シャワーを吹
き付けて10℃/sec 以上の速さで少なくとも 350℃まで
冷却する。これに冷間加工により70%以上の減面加工を
施してから 400〜 600℃で熱処理することにより造られ
る。熱処理時間は実際の諸条件にもよるが、10分から6
時間程度でよい。尚熱処理後必要に応じて加工や中間焼
鈍を施して所望寸法に仕上げたり、仕上げ加工後に 250
〜 350℃の低温で熱処理して加工歪の少なくとも一部を
解放することにより、機械的特性、特に伸びや加工性を
向上するのに有効である。[0010] Immediately after the processing, a cool air or a water shower is blown to cool at least 10 ° C / sec to at least 350 ° C. It is made by subjecting this to 70% or more surface reduction processing by cold working and then heat-treating at 400-600 ° C. The heat treatment time depends on the actual conditions, but it varies from 10 minutes to 6 minutes.
Time is enough. After heat treatment, if necessary, processing or intermediate annealing may be performed to finish to the desired dimensions.
It is effective to improve mechanical properties, especially elongation and workability, by releasing at least a part of work strain by heat treatment at a low temperature of ~ 350 ° C.
【0011】本発明合金はNi2 Si、Cr3 Si、C
r5 Si2 等の微粒子を均一に分散析出させ、更にC
r、NiP、NiB、CrP等の析出も付加し、Cuマ
トリックスの固溶Siを可及的に低減したCu−Sn合
金、又はこれにZn、Mn、B、Zr、Mg等の成分を
均一に含有せしめることにより、析出粒子の分散強化と
強化されたマトリックスとの併合によって引張強度50〜
70kg/mm2 又はこれ以上とし、導電率も20〜40%IAC
Sとしたものである。The alloy of the present invention is made of Ni 2 Si, Cr 3 Si, C
Fine particles such as r 5 Si 2 are uniformly dispersed and precipitated,
A precipitation of r, NiP, NiB, CrP, etc. is also added, and a Cu-Sn alloy in which the solid solution Si in the Cu matrix is reduced as much as possible, or components such as Zn, Mn, B, Zr, Mg, etc. are uniformly added thereto. By incorporating, the tensile strength of 50 ~
70 kg / mm and 2 or more, the conductivity also 20 to 40% IAC
It is S.
【0012】しかして強化成分としてのNi含有量を1
%を越え4%以下、Cr含有量を1.0%を越え2%以下
としたのは、何れも下限以下では十分な強化が得られ
ず、上限を越えると加工性を阻害するばかりか、導電性
を低下するためである。尚Niの一部をCoにより置換
しても同様の効果が得られる。ただしCoはNiに比べ
て著しく高価である。Thus, the content of Ni as a reinforcing component is 1
% And 4% or less, and the Cr content over 1.0% and 2% or less does not result in sufficient strengthening below the lower limit and above the upper limit, not only the workability is impaired, but also the conductivity is lowered. This is because the The same effect can be obtained even if a part of Ni is replaced by Co. However, Co is significantly more expensive than Ni.
【0013】上記化合物析出成分としてSi含有量を
0.2〜 1.5%としたのは、下限未満では十分な強化が得
られず、上限を越えると導電率を大きく低下させるため
である。即ち化学量論より過剰のSiは固溶元素となっ
て合金の導電率を低下させるばかりか、半田接合強度の
経時劣化の原因となるため、望ましくはSi含有量をN
i+Crの量論に近い量、特に化学量論量以下(Niに
対するSiの化学量論は約1/5.18、Crに対するSi
の化学量論は約1/5.5)とする。上記2種のSi化合物
は均一微細な析出が進行し易いばかりか、化学量論のN
iとCrのうち、NiはCrより親和性が大きくNi2
Siとなり、余分のCrは単体Crとして析出し、合金
の強度向上に副次的に働くと共に導電率の低下を起さな
い。Crを併用しない場合には過剰のSi又は未反応の
Siは固溶体としてCuマトリックに残り、導電率を大
きく低下させるばかりか、半田接合強度の経時劣化を招
く。The Si content as the above-mentioned compound precipitation component is
The reason for setting the content to 0.2 to 1.5% is that if the amount is less than the lower limit, sufficient strengthening cannot be obtained, and if the amount exceeds the upper limit, the conductivity is significantly reduced. That is, excess Si from the stoichiometry not only becomes a solid solution element and lowers the conductivity of the alloy but also causes a deterioration with time of the solder joint strength.
An amount close to the stoichiometric amount of i + Cr, especially below the stoichiometric amount (the stoichiometry of Si relative to Ni is about 1 / 5.18,
Is about 1 / 5.5). The above-mentioned two types of Si compounds not only facilitate uniform and fine precipitation, but also have a stoichiometric N content.
Among i and Cr, Ni has higher affinity than Cr and Ni 2
It becomes Si, and excess Cr precipitates as elemental Cr, which acts secondarily to improve the strength of the alloy and does not cause a decrease in conductivity. If Cr is not used together, the excess Si or unreacted Si remains in the Cu matrix as a solid solution, which not only greatly reduces the conductivity but also causes the temporal deterioration of the solder joint strength.
【0014】Sn含有量を 1.1〜3%と限定したのは、
Snは固溶体強化と前記析出物の均質析出分散を促進
し、前記分散強化効果と合せて合金の強度、伸び、加工
性等を向上するも、その含有量が 1.1%未満では十分な
強度が得られず、3%を越えると導電率が大巾に低下す
るためである。The reason why the Sn content is limited to 1.1 to 3% is as follows.
Sn promotes solid solution strengthening and promotes homogeneous precipitation and dispersion of the precipitates, and improves the strength, elongation, workability, etc. of the alloy in combination with the dispersion strengthening effect. However, when the content is less than 1.1%, sufficient strength is obtained. If it exceeds 3%, the conductivity is greatly reduced.
【0015】次に本発明合金の副成分をP: 0.3%以
下、B: 0.3%以下、Zn:5%以下、Mn:1%以
下、Mg: 0.2%以下、Zr: 0.5%以下の範囲内で何
れか1種又は2種以上を合計5%以下としたのは、合金
の強度を一層向上させるためである。Next, the subcomponents of the alloy of the present invention are within the ranges of P: 0.3% or less, B: 0.3% or less, Zn: 5% or less, Mn: 1% or less, Mg: 0.2% or less, Zr: 0.5% or less. The reason why the total amount of any one or more of them is 5% or less is to further improve the strength of the alloy.
【0016】特にP、Bは脱酸剤として働くと共に、不
可避的に遊離したNiやCrと化合物を形成し、合金を
強化するばかりか半田付け性を向上するも、含有量がそ
れぞれ3%を越えると導電率を低下する。Zn、Mnも
脱酸剤として働くと共に合金を強化し、半田付け性を向
上し、特にMnは熱間加工性を向上するも、何れも上限
を越えると導電率を低下する。Mg、Zrは結晶微細化
作用により強度や曲げ加工性を向上すると共にP等との
化合物を析出し、強度の向上に寄与するも、何れも上限
を越えると導電率及び伸びを低下する。しかしてこれら
副成分は合計で5%以下とするものであり、これを越え
て含有せしめると導電率の低下が著しい。In particular, P and B act as deoxidizers and form a compound with Ni and Cr inevitably liberated, not only strengthening the alloy but also improving the solderability, but their contents are 3% each. If it exceeds, the conductivity decreases. Zn and Mn also act as deoxidizing agents and strengthen the alloy to improve solderability. In particular, Mn improves hot workability, but when both exceed the upper limit, the electrical conductivity decreases. Mg and Zr improve the strength and bending workability by the crystal refining action, and also precipitate compounds with P and the like, and contribute to the improvement of the strength. However, when both exceed the upper limit, the conductivity and the elongation decrease. However, the total content of these subcomponents is 5% or less, and if the content exceeds this range, the conductivity is significantly reduced.
【0017】上記本発明合金の特性を実用上生産性良く
発揮させる製造法として、溶解鋳造した鋳塊を 650℃以
上で熱間加工し、直ちに10℃/sec 以上の速さで少なく
とも350℃以下まで冷却することにより、上記化合物の
析出を抑制し、低い負荷力で加工を可能にする。次に70
%以上の冷間加工を施してから 400〜 600℃で熱処理す
ることにより、加工歪みの作用によって均質微細な析出
を速かに行なわせる。即ち均質微細な化合物の析出を可
及的に完全に行なうことにより、強度、導電性、加工
性、半田付け性などの電子機器用途に不可欠の特性を最
大に発揮せしめたものである。As a production method for realizing the above-mentioned properties of the alloy of the present invention with high productivity in practical use, a melt-cast ingot is hot-worked at 650 ° C. or more and immediately at a speed of 10 ° C./sec or more and at least 350 ° C. or less. By cooling to below, precipitation of the above compound is suppressed, and processing can be performed with a low load force. Then 70
% Or more, and then heat-treating at 400 to 600 ° C., a uniform and fine precipitation is rapidly performed by the action of processing strain. In other words, by precipitating a homogeneous and fine compound as completely as possible, properties essential for electronic equipment applications such as strength, conductivity, workability, and solderability are exhibited to the maximum.
【0018】従来の析出型合金では、冷間加工の途中又
は最終で 800℃以上の高温で溶体化処理し水焼入れして
から析出時効処理しているが、溶体化焼入れは処理工程
が煩雑で酸化問題や特殊設備を必要とする。本発明は合
金組成を上記の如く制限して焼入れ感受性抑制の効果に
より、従来工程を要せずに特性の高い合金を得たもので
ある。In a conventional precipitation-type alloy, the solution aging treatment is performed at a high temperature of 800 ° C. or more during cold working or at the end, followed by water quenching and then precipitation aging treatment. However, solution quenching is a complicated process. Requires oxidation problems and special equipment. According to the present invention, an alloy having high properties is obtained without the need for a conventional process due to the effect of suppressing the quenching sensitivity by limiting the alloy composition as described above.
【0019】しかして熱間加工温度が 650℃未満でも、
冷却速度が10℃/sec 未満でも上記化合物の粗大析出を
生じ、その後に冷間加工と熱処理を施しても高い特性は
得られない。また熱間加工後の冷間加工が70%未満では
加工歪が不十分で、熱処理による析出化合物が粗大化す
る。更に熱処理温度が 400℃未満では化合物の析出に長
時間を要し、 600℃を越えると析出化合物が粗大とな
り、合金特性を劣化する。Thus, even if the hot working temperature is lower than 650 ° C.,
Even when the cooling rate is less than 10 ° C./sec, coarse precipitation of the above compound occurs, and high properties cannot be obtained even after cold working and heat treatment. On the other hand, if the cold working after the hot working is less than 70%, the working strain is insufficient, and the precipitated compound due to the heat treatment becomes coarse. Further, if the heat treatment temperature is lower than 400 ° C., it takes a long time to precipitate the compound, and if it exceeds 600 ° C., the precipitated compound becomes coarse and the alloy properties are deteriorated.
【0020】[0020]
【実施例】表1に示す組成の合金を溶解鋳造し、表面を
機械仕上げして厚さ50mm、巾 150mm、長さ 510mmの鋳塊
とした。これを熱間圧延により厚さ 5.5mmとしてから直
ちに水冷により冷却し、酸洗してから冷間圧延した。こ
れをAr雰囲気中で熱処理した。これ等の製造条件を表
2に示す。このようにして得た板材について引張強さ、
伸び、導電率、曲げ加工性、半田接合強度を調べた。こ
れ等の結果を従来合金(C510 、C195)と比較して表3
に示す。EXAMPLE Alloys having the compositions shown in Table 1 were melt-cast and the surface was machine-finished to form an ingot having a thickness of 50 mm, a width of 150 mm and a length of 510 mm. This was hot-rolled to a thickness of 5.5 mm, immediately cooled by water cooling, pickled, and then cold-rolled. This was heat-treated in an Ar atmosphere. The manufacturing conditions for these are shown in Table 2. Tensile strength of the sheet material thus obtained,
The elongation, conductivity, bending workability, and solder joint strength were examined. Table 3 compares these results with the conventional alloys (C510, C195).
Shown in
【0021】曲げ加工性は各種先端半径(R)の90°ダ
イとポンチの組合せ装置を用いてプレスで折り曲げ、曲
げ部の割れを調べ、割れの起らない最少のR/t(R:
曲げ半径、t:板厚)を求めた。また半田接合強度は共
晶半田付けしたリード付きジョイント部を 150℃で 300
時間エージングした後、引張試験して接合強度を求め
た。The bending workability is bent by a press using a combination device of a 90 ° die with various tip radii (R) and a punch, and the crack in the bent portion is examined, and the minimum R / t (R:
Bending radius, t: plate thickness). The solder joint strength of the eutectic soldered joint with lead at 150 ° C is 300
After aging for a time, the tensile strength was determined by a tensile test.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】表3から明らかなように表1の本発明合金
(A〜C)を表2の本発明法No.1〜3で製造したもの
は、何れも従来合金であるC510(No.6)及びC195(N
o.7)と比較し、機械的特性、電気特性、半田接合強
度、均質性の総合特性において優れていることが判る。
これに対し本発明合金の組成範囲より外れる比較合金を
本発明法で製造した比較例No.4、5は諸特性が劣るこ
とが判る。As apparent from Table 3, the alloys (A to C) of the present invention shown in Table 1 manufactured by the methods Nos. 1 to 3 of the present invention shown in Table 2 were all conventional alloys of C510 (No. 6). ) And C195 (N
Compared to o.7), it was found that the mechanical properties, electrical properties, solder joint strength, and overall properties of homogeneity were excellent.
On the other hand, it can be seen that Comparative Examples Nos. 4 and 5 in which comparative alloys outside the composition range of the alloy of the present invention were produced by the method of the present invention were inferior in various properties.
【0026】[0026]
【発明の効果】このように本発明によれば電気及び熱伝
導性、機械的強度、精密加工性、半田接合強度等が優れ
ており、半導体リードフレームはもとより、半田接合強
度が要求されるリード線、各種端子、コネクター等に適
し、電子機器の小型・高密度化に大きく寄与する等、工
業上顕著な効果を示すものである。As described above, according to the present invention, the electrical and thermal conductivity, mechanical strength, precision workability, solder joint strength and the like are excellent, and not only the semiconductor lead frame but also the solder joint strength required lead. It is suitable for wires, various terminals, connectors, etc., and contributes significantly to miniaturization and high density of electronic equipment, and it has remarkable industrial effects.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 真人 栃木県日光市清滝町500番地 古河電気工 業株式会社日光電気精銅所内 (72)発明者 篠崎 重雄 栃木県日光市清滝町500番地 古河電気工 業株式会社日光電気精銅所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Asai 500 Kiyotaki Town, Nikko City, Tochigi Prefecture Furukawa Electric Co., Ltd. Nikko Denki Copper Works (72) Inventor Shigeo Shinozaki 500 Kiyotaki Town, Nikko City, Tochigi Prefecture Furukawa Electric Kogyo Co., Ltd. Nikko Electric Copper Works
Claims (2)
%以下、Cr: 1.0wt%を越え2wt%以下、Si: 0.2
〜 1.5wt%、Sn: 1.1〜3wt%を含み、更にP: 0.3
wt%以下、B: 0.3wt%以下、Zn:5wt%以下、M
n:1wt%以下、Mg: 0.2wt%以下、Zr: 0.5wt%
以下の範囲内で何れか1種又は2種以上を合計5wt%以
下含み、残部Cuからなるはんだ接合強度に優れた電子
機器用銅合金。1. Ni or Ni and Co exceeding 1 wt% and 4 wt%
% Or less, Cr: more than 1.0 wt% and 2 wt% or less, Si: 0.2
~ 1.5wt%, Sn: 1.1 ~ 3wt%, and P: 0.3
wt% or less, B: 0.3 wt% or less, Zn: 5 wt% or less, M
n: 1 wt% or less, Mg: 0.2 wt% or less, Zr: 0.5 wt%
A copper alloy for electronic equipment which has one or more kinds in the following range and a total of 5 wt% or less, and the balance of Cu is excellent in solder joint strength.
%以下、Cr: 1.0wt%を越え2wt%以下、Si: 0.2
〜 1.5wt%、Sn: 1.1〜3wt%を含み、更にP: 0.3
wt%以下、B: 0.3wt%以下、Zn:5wt%以下、M
n:1wt%以下、Mg: 0.2wt%以下、Zr: 0.5wt%
以下の範囲内で何れか1種又は2種以上を合計5wt%以
下含み、残部Cuからなる合金を 650℃以上で熱間加工
した後、350℃以下まで10℃/sec 以上の速さで冷却
し、続いて70%以上の冷間加工を加えてから 400〜 600
℃で熱処理することを特徴とするはんだ接合強度に優れ
た電子機器用銅合金の製造法。2. Ni or Ni and Co in excess of 1 wt% to 4 wt
% Or less, Cr: more than 1.0 wt% and 2 wt% or less, Si: 0.2
~ 1.5wt%, Sn: 1.1 ~ 3wt%, and P: 0.3
wt% or less, B: 0.3 wt% or less, Zn: 5 wt% or less, M
n: 1 wt% or less, Mg: 0.2 wt% or less, Zr: 0.5 wt%
After hot working at 650 ° C or more, the alloy containing one or two or more kinds in total in the following range is contained at 5% by weight or less, and then cooled to 350 ° C or less at a rate of 10 ° C / sec or more. And then cold-work at least 70%, then 400-600
A method for producing a copper alloy for electronic equipment having excellent solder joint strength, characterized by heat-treating at a temperature of ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29920395A JP2576853B2 (en) | 1995-10-23 | 1995-10-23 | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29920395A JP2576853B2 (en) | 1995-10-23 | 1995-10-23 | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61022294A Division JP2514926B2 (en) | 1986-02-04 | 1986-02-04 | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209271A true JPH08209271A (en) | 1996-08-13 |
JP2576853B2 JP2576853B2 (en) | 1997-01-29 |
Family
ID=17869486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29920395A Expired - Fee Related JP2576853B2 (en) | 1995-10-23 | 1995-10-23 | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2576853B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302722A (en) * | 2001-04-09 | 2002-10-18 | Chuetsu Metal Works Co Ltd | High strength bronze alloy and production method therefor |
CN117051285A (en) * | 2023-10-12 | 2023-11-14 | 中铝科学技术研究院有限公司 | Copper-nickel-silicon alloy, preparation method and application thereof |
-
1995
- 1995-10-23 JP JP29920395A patent/JP2576853B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302722A (en) * | 2001-04-09 | 2002-10-18 | Chuetsu Metal Works Co Ltd | High strength bronze alloy and production method therefor |
CN117051285A (en) * | 2023-10-12 | 2023-11-14 | 中铝科学技术研究院有限公司 | Copper-nickel-silicon alloy, preparation method and application thereof |
CN117051285B (en) * | 2023-10-12 | 2023-12-15 | 中铝科学技术研究院有限公司 | Copper-nickel-silicon alloy, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2576853B2 (en) | 1997-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100787269B1 (en) | Method for manufacturing high-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics | |
JP3550233B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
KR950004935B1 (en) | Copper alloy for electronic instruments | |
JP2002266042A (en) | Copper alloy sheet having excellent bending workability | |
US4692192A (en) | Electroconductive spring material | |
JP2521880B2 (en) | Copper alloy for electronic and electrical equipment and its manufacturing method | |
JPH0830234B2 (en) | High strength and high conductivity copper alloy | |
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JP2514926B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JP2576853B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPH0440417B2 (en) | ||
JPH0788549B2 (en) | Copper alloy for semiconductor equipment and its manufacturing method | |
JPH0718355A (en) | Copper alloy for electronic appliance and its production | |
JP2733117B2 (en) | Copper alloy for electronic parts and method for producing the same | |
JPH0551674A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property | |
JPH034612B2 (en) | ||
JPH0830233B2 (en) | High strength and high conductivity copper alloy | |
JPH06172896A (en) | High-strength and high-conductivity copper alloy | |
JPS63109132A (en) | High-strength conductive copper alloy and its production | |
JPH0469217B2 (en) | ||
JP3391492B2 (en) | High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials | |
JPH09143597A (en) | Copper alloy for lead frame and its production | |
JPH0816255B2 (en) | Copper alloy for electronic devices | |
JPH06184666A (en) | High strength and high electric conductivity copper alloy | |
JPH06235035A (en) | High tensile strength and high conductivity copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |