JPH08200873A - Absorption refrigerating equipment - Google Patents

Absorption refrigerating equipment

Info

Publication number
JPH08200873A
JPH08200873A JP7034536A JP3453695A JPH08200873A JP H08200873 A JPH08200873 A JP H08200873A JP 7034536 A JP7034536 A JP 7034536A JP 3453695 A JP3453695 A JP 3453695A JP H08200873 A JPH08200873 A JP H08200873A
Authority
JP
Japan
Prior art keywords
liquid
absorption
flow rate
heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7034536A
Other languages
Japanese (ja)
Inventor
Kazuo Nomura
和雄 野村
Tomonori Tamura
智徳 田村
Shigeru Murayama
茂 村山
Kazuhiko Harima
和彦 播磨
Tomohiko Katou
具彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7034536A priority Critical patent/JPH08200873A/en
Publication of JPH08200873A publication Critical patent/JPH08200873A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/006Reversible sorption cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To provide an absorption refrigerating equipment of excellent coefficient of performance viewed from the whole aspects of the equipment by providing the heat exchanging function (GAX function) between an adsober/generator with small heat operation loss due to overheating/supercooling. CONSTITUTION: A dilute solution 2b at the bottom of a generator 5 is sucked from a spray tube 201D to an absorber 1 through an absorbed liquid heat exchanger 31, and the refrigerant vapor 7C is sucked to make the dense liquid 2a. The deuse solution 2a is shifted from a spray tube 205C to a generator 5. The deuse solution 2a receives the absorption heat by a heat exchanger 201X, and receives the dilute solution 2b by the heat exchanger 31. A flow rate adjusting valve V1 is provided on the pipe to bypass a heated side 31A of the heat exchanger 31. The flow rate of the valve V1 is adjusted to adjust the calorie received by the dilute solution 2b so that the temperature of the dilute solution 2b to be sprayed from the spray tube 201D may be appropriate. Similar adjustment can be achieved by a flow rate adjusting valve V2 of the piping to bypass the heating side of the heat exchanger 31. The temperature of the dilute solution 2b in an absorber 1 is optimized to eliminate the loss of the GAX function, and the coefficient of performance viewed from the whole aspects of the equipment is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷媒剤を混入した吸
収液を用いて、所要の熱交換動作を行うことにより、目
的とする熱操作流体を冷却・加温するようにした吸収冷
凍機・吸収冷温水機などの吸収式冷凍機(この発明にお
いて吸収式冷凍装置という)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine which cools and heats a target heat-operated fluid by performing a required heat exchange operation using an absorbing liquid mixed with a refrigerant agent. The present invention relates to an absorption refrigerating machine such as an absorption chiller / heater (referred to as an absorption refrigerating apparatus in the present invention).

【0002】[0002]

【従来の技術】この種の装置において、冷媒剤を比較的
低温を蒸発温度とする流体、例えば、NH3、つまり、
アンモニアとし、この冷媒に対して比較的高温を蒸発温
度とする安価で無害な流体、例えば、水を混入したもの
を吸収液として用いる吸収式冷凍機が周知である。
2. Description of the Related Art In a device of this type, a refrigerant, for example, a fluid whose evaporation temperature is relatively low, such as NH3,
BACKGROUND ART Absorption refrigerators are known in which ammonia is used as an absorbing liquid, which is an inexpensive and harmless fluid having a relatively high evaporation temperature with respect to this refrigerant, for example, water mixed therein.

【0003】また、上記の吸収液を加熱して上記の冷媒
を蒸発するための発生器と、上記の冷媒を上記の水に吸
収するための吸収器との間に、所要の熱交換を行わせる
機能を設ける機能、つまり、発生器吸収器間熱交換機能
(Generator−Absorber Heat
Exchanger)を設けて、熱操作効率を向上させ
る構成をもつ吸収式冷凍機が周知であり、この発生器吸
収器間熱交換機能をGAX機能と言っている。
Further, required heat exchange is carried out between a generator for heating the absorbing liquid to evaporate the refrigerant, and an absorber for absorbing the refrigerant in the water. The function of providing the function to make it possible, that is, the heat exchange function between the generator and the absorber (Generator-Absorber Heat)
An absorption refrigerator having a structure for improving heat operation efficiency by providing an Exchanger) is well known, and this heat exchange function between generator and absorber is called a GAX function.

【0004】そして、このGAX機能の動作と効果につ
いては、吸収器内に設けた管路と吸収器内に設けた管路
とを襷掛け状に接続した襷掛管路によりGAX機能を行
わせる構成が、例えば、ASME,AES,VOL.
8,1988,98頁におけるFig.2のGener
ator−Absorber Heat Exchan
ger Unit(以下、第1従来技術という)により
開示されている。
Regarding the operation and effect of this GAX function, the GAX function is performed by the trap line which connects the pipeline provided in the absorber and the pipeline provided in the absorber in a trapezoidal shape. The configuration is, for example, ASME, AES, VOL.
8, 1988, page 98. 2 Gener
attor-Absorber Heat Exchange
Ger Unit (hereinafter, referred to as the first related art).

【0005】さらに、こうしたGAX機能をもつ吸収式
冷凍機の具体的な構成、つまり、図5のような構成が、
本願出願人による先行出願特願平5−134162にも
とづく特開平6−323676(以下、第2従来技術と
いう)によって開示されている。
Further, the specific structure of the absorption refrigerator having the GAX function, that is, the structure shown in FIG.
It is disclosed by Japanese Patent Application Laid-Open No. 6-323676 (hereinafter referred to as the second prior art) based on the prior application Japanese Patent Application No. 5-134162 by the applicant of the present application.

【0006】まず、図5の構成において、吸収液の循環
系を、発生器5の底部に溜まっている冷媒濃度の低い稀
液2bを起点にして説明すると、稀液2bは、発生器5
内部と吸収器1内部との圧力差によって熱交換管205
A→管路16→吸収液熱交換器31→管路204→減圧
器9→管路18の経路を経て、散布管201Dから散布
され、熱交換管201X・熱交換管201B・冷却管2
01Aに沿って滴下しながら冷媒蒸気7cを吸収して濃
液2aになり、吸収器1の底部に溜まる。
First, in the configuration shown in FIG. 5, the circulation system for the absorbing liquid will be described with reference to the rare liquid 2b having a low refrigerant concentration accumulated at the bottom of the generator 5, as a starting point.
Due to the pressure difference between the inside and the inside of the absorber 1, the heat exchange tube 205
A → Pipe 16 → Absorbent heat exchanger 31 → Pipe 204 → Decompressor 9 → Pipe 18 and then sprayed from spray pipe 201D, heat exchange pipe 201X / heat exchange pipe 201B / cooling pipe 2
While dripping along 01A, the refrigerant vapor 7c is absorbed to become a concentrated liquid 2a, which is collected at the bottom of the absorber 1.

【0007】濃液2aは、管路4に設けたポンプ3によ
り加圧されて、熱交換管201B→管路17→熱交換管
205D→管路203→吸収液熱交換器31の被加熱側
31A→管路8→熱交換管201X→管路202の経路
を経て、散布管205Cから発生器5の内部に散布され
る。
The concentrated liquid 2a is pressurized by the pump 3 provided in the pipe line 4, and the heat exchange pipe 201B → the pipe line 17 → the heat exchange pipe 205D → the pipe line 203 → the heated side of the absorbing liquid heat exchanger 31. 31A → pipe 8 → heat exchange pipe 201X → pipe 202, and then sprayed from the spray pipe 205C to the inside of the generator 5.

【0008】そして、この経路の間に、熱交換管201
Bでは冷媒蒸気7cの熱と、散布管201Dから散布さ
れた稀液2bが冷媒蒸気7cを吸収する際に生ずる熱と
を奪った後に、熱交換管205Dでは冷媒蒸気7aの熱
を奪い、次いで、吸収液熱交換器31の被加熱側31A
を通ることにより、さらに予熱された後に、熱交換管2
01Xで、再び、冷媒蒸気7cの熱と、散布された稀液
2bが冷媒蒸気7cを吸収する際に生ずる熱とを奪って
加熱された後に散布管205Cから散布され、熱交換管
205Aに沿って滴下しながら、ある程度の冷媒蒸気7
aを蒸発させた後、発生器5の底部に稀液2bとして溜
まるように循環する。
During this path, the heat exchange tube 201
At B, the heat of the refrigerant vapor 7c and the heat generated when the rare liquid 2b sprayed from the spray pipe 201D absorbs the refrigerant vapor 7c are taken, and then at the heat exchange pipe 205D, the heat of the refrigerant vapor 7a is taken, and then , Heated side 31A of absorbing liquid heat exchanger 31
Heat exchange tube 2 after being preheated further by passing through
At 01X, again, the heat of the refrigerant vapor 7c and the heat generated when the dispersed rare liquid 2b is absorbed by the refrigerant vapor 7c are taken away and heated, and then sprayed from the spray pipe 205C and along the heat exchange pipe 205A. Refrigerant vapor 7
After evaporating a, it is circulated so as to collect as the dilute liquid 2b at the bottom of the generator 5.

【0009】したがって、熱交換管201Xは、吸収器
1に存在する熱を、発生器5側での冷媒蒸気発生に要す
る加熱を補助するように利用したGAX機能部分を構成
していることになる。
Therefore, the heat exchange tube 201X constitutes a GAX functional portion that utilizes the heat existing in the absorber 1 to assist the heating required for the refrigerant vapor generation on the generator 5 side. .

【0010】次に、冷媒の循環系を発生器5の冷媒蒸気
7aを起点として説明すると、稀液2bを加熱器6で加
熱することにより発生した冷媒蒸気7aは、水蒸気成分
を多分に含んでいるので、気液接触作用、つまり、吸収
液の表面に冷媒蒸気を接触させたときに生ずる熱交換、
分離および吸収の作用により冷媒蒸気7a中の冷媒濃
度、つまり、NH3の濃度を高めるとともに剰余熱を熱
交換管205Dで奪う精溜作用を行わせ、さらに、熱交
換管205Eで熱を奪うことにより、冷媒蒸気7aの一
部を凝縮、つまり、熱交換管に接している部分の冷媒蒸
気を凝縮して得られた濃度の高い吸収液と冷媒蒸気7a
との気液接触作用によって冷媒蒸気7a中の冷媒濃度を
次第に高める分溜作用を行わせる。
Next, the circulation system of the refrigerant will be described with the refrigerant vapor 7a of the generator 5 as a starting point. The refrigerant vapor 7a generated by heating the dilute liquid 2b by the heater 6 contains a large amount of water vapor component. Therefore, the gas-liquid contact action, that is, the heat exchange that occurs when the refrigerant vapor is brought into contact with the surface of the absorbing liquid,
By increasing the concentration of the refrigerant in the refrigerant vapor 7a by the action of separation and absorption, that is, the concentration of NH3, and performing the rectification action of removing the residual heat by the heat exchange pipe 205D, and further by taking the heat by the heat exchange pipe 205E. , A portion of the refrigerant vapor 7a is condensed, that is, the refrigerant vapor in the portion in contact with the heat exchange tube is condensed, and the high-concentration absorption liquid and the refrigerant vapor 7a are obtained.
The gas-liquid contacting action with the refrigerant causes a fractional action of gradually increasing the concentration of the refrigerant in the refrigerant vapor 7a.

【0011】そして、この分溜作用を経た冷媒蒸気7a
は、管路10から凝縮器11→管路12→減圧器13→
蒸発器14→管路15を経て吸収器1に送り込まれ、散
布管201Dから散布された稀液2bに吸収されて濃液
2aになり、上記の吸収液循環系と合流して散布管20
5Cから散布され、加熱器6により加熱されて、冷媒蒸
気7aになるように循環する。
Then, the refrigerant vapor 7a which has undergone this fractional distillation action
Is from line 10 to condenser 11 → line 12 → pressure reducer 13 →
It is sent to the absorber 1 via the evaporator 14 → pipe 15 and absorbed by the diluted liquid 2b sprayed from the spray pipe 201D to become a concentrated liquid 2a, which joins the above-mentioned absorbent circulation system and the spray pipe 20.
It is sprayed from 5C, heated by the heater 6, and circulated so as to become the refrigerant vapor 7a.

【0012】ここで、管路10を経て凝縮器11に入っ
た冷媒蒸気7aは、被加熱側11aを通る第1の熱操作
流体35a、例えば、水に熱を与えて放熱し、凝縮して
冷媒液7bになった後に、管路12を経て、減圧器13
に入る。なお、各減圧器9・13は、例えば、減圧弁で
構成してある。
Here, the refrigerant vapor 7a that has entered the condenser 11 via the conduit 10 gives heat to the first heat-operated fluid 35a, for example, water, which passes through the heated side 11a to radiate and condense. After becoming the refrigerant liquid 7b, the pressure reducing device 13 is passed through the pipe line 12.
to go into. The pressure reducers 9 and 13 are each composed of a pressure reducing valve.

【0013】そして、減圧器13で減圧した冷媒液7b
は、蒸発器14に入り、蒸発器14の被冷却側14aを
通る第2の熱操作流体35b、例えば、水から熱を奪っ
て蒸発し、冷媒蒸気7cになった後に、管路15を経
て、吸収器1に戻るという経路を経ることにより、管路
20・21・22・23を通る第1の熱操作流体35a
と、管路24・25を通る第2の熱操作流体35bと
に、所要の熱操作を与えるようにしてある。
The refrigerant liquid 7b decompressed by the decompressor 13
Enters the evaporator 14, takes heat from the second heat-operated fluid 35b passing through the cooled side 14a of the evaporator 14, for example, water to evaporate and become the refrigerant vapor 7c, and then via the pipe 15. , The first heat-operated fluid 35a passing through the conduits 20, 21, 22, 23 by passing through the route of returning to the absorber 1.
And the second heat operation fluid 35b passing through the pipelines 24 and 25 are given the necessary heat operation.

【0014】次に、管路20・21・22・23・24
・25に接続された上方の部分にある室外熱交換器61
と室内熱交換器62とによって循環される第1の熱操作
流体35aと第2の熱操作流体35bとの循環系につい
て説明すると、室外熱交換器61と室内熱交換器62と
は、管路接続切換器63によって、接続経路を変更でき
るようになっており、ポンプ64は凝縮器11の被加熱
側11aを通る第1の熱操作流体35a、例えば、水の
循環を促進するためのポンプ、ポンプ65は蒸発器14
の被冷却側14aを通る第2の熱操作流体35b、例え
ば、水の循環を促進するためのポンプである。
Next, the pipelines 20, 21, 22, 23, 24
The outdoor heat exchanger 61 in the upper part connected to 25
The circulation system of the first heat operation fluid 35a and the second heat operation fluid 35b, which are circulated by the indoor heat exchanger 62 and the indoor heat exchanger 62, will be described. The connection switching device 63 allows the connection path to be changed, and the pump 64 is a pump for promoting the circulation of the first thermally operated fluid 35a, for example, water, which passes through the heated side 11a of the condenser 11. The pump 65 is the evaporator 14
Is a pump for promoting the circulation of the second thermally operated fluid 35b, for example, water, which passes through the cooled side 14a.

【0015】そして、吸収器1の冷却管201Aに第1
の熱操作流体35aを与える管路20・21と、凝縮器
11の被加熱側11aに第1の熱操作流体35aを与え
る管路22・23と、蒸発器14の被冷却側14aに第
2の熱操作流体35bを与える管路24・25とに、目
的の加温・冷却を行う対象となる熱操作流体、例えば、
暖房用・冷房用の水と、吸熱・放熱のための流体、例え
ば、フィン付ラジエータなどを通って吸熱・放熱した水
などを与えるように構成してある。
The cooling pipe 201A of the absorber 1 has a first
Pipes 20 and 21 for supplying the heat operating fluid 35a, the pipes 22 and 23 for supplying the first heat operating fluid 35a to the heated side 11a of the condenser 11, and the second side to the cooled side 14a of the evaporator 14. To the conduits 24 and 25 for supplying the heat-operated fluid 35b, the heat-operated fluid to be subjected to desired heating / cooling, for example,
It is configured to give water for heating / cooling and water for absorbing / dissipating heat, for example, water absorbed / dissipated through a finned radiator.

【0016】管路接続切換器63は、8つの管路を図に
実線で示した接続経路と点線で示した接続経路とに切り
換える切換弁であり、8つの管路を切り換えるので、通
称、八方弁とも呼ばれており、CPU70からの制御信
号にもとづいて動作する電動アクチェータにより切換軸
を操作して切換動作するものである。
The pipeline connection switching device 63 is a switching valve that switches eight pipelines to a connection pathway shown by a solid line and a connection pathway shown by a dotted line in the figure. It is also called a valve, and is operated by operating a switching shaft by an electric actuator that operates based on a control signal from the CPU 70 to perform switching operation.

【0017】この実線で示す経路による切換接続によっ
て、管路20→冷却管201A→管路21→管路22→
凝縮器11の被加熱側11a→管路23→管路接続切換
器63→室外熱交換器61→管路接続切換器63→ポン
プ64を経て管路20に戻るという循環路により、第1
の熱操作流体35aを循環しながら、室外熱交換器61
の放熱側61Aに送風機61Bなどで室外の空気を強制
的に与えて放熱動作するようにした冷却放熱経路と、管
路24→蒸発器14の被冷却側14a→管路25→管路
接続切換器63→室内熱交換器62→管路接続切換器6
3→ポンプ65を経て管路24に戻るという循環路によ
り、第2の熱操作流体35bを循環しながら、室内熱交
換器62の被冷却側62Aに循環用の送風機62Bなど
で、室内の空気を強制的に与えて室内の空気を冷却動作
するようにした冷却放熱経路とを形成することにより、
熱操作流体による冷却操作、つまり、冷房運転の場合の
循環形態を構成する。
By the switching connection according to the route shown by the solid line, the conduit 20 → the cooling pipe 201A → the conduit 21 → the conduit 22 →
The heated side 11a of the condenser 11-> the pipeline 23-> the pipeline connection switch 63-> the outdoor heat exchanger 61-> the pipeline connection switch 63-> the circulation path of returning to the pipeline 20 via the pump 64
Of the outdoor heat exchanger 61 while circulating the heat operation fluid 35a of
Cooling heat radiation path which is configured to perform heat radiation operation by forcibly giving outdoor air to the heat radiation side 61A of the fan by a blower 61B and the like, and the pipe line 24 → the cooled side 14a of the evaporator 14 → the pipe line 25 → pipe line connection switching Device 63 → indoor heat exchanger 62 → pipe line switching device 6
3 → By the circulation path that returns to the pipeline 24 via the pump 65, while circulating the second heat operation fluid 35b, the indoor side of the indoor heat exchanger 62 is cooled by the blower 62B for circulation, etc. By forming a cooling heat radiation path that is forced to give a cooling operation to the air in the room,
The cooling operation by the heat operation fluid, that is, the circulation mode in the case of the cooling operation is configured.

【0018】また、点線で示す経路による切換接続によ
って、管路20→冷却管201A→管路21→管路22
→凝縮器11の被加熱側11a→管路接続切換器63→
室内熱交換器62→管路接続切換器63→ポンプ64を
経て管路20に戻るという循環路により、第1の熱操作
流体35aを循環しながら、室内熱交換器62の被加熱
側62Aに室内の空気を強制的に与えて室内の空気を加
温動作するようにした加温放熱経路と、管路24→蒸発
器14の被冷却側14a→管路25→管路接続切換器6
3→室外熱交換器61→管路接続切換器63→ポンプ6
5を経て管路24に戻るという循環路により、第2の熱
操作流体35bを循環しながら、室外熱交換器61の吸
熱側61Aに送風機61Bなどで室外の空気を強制的に
与えて吸熱動作するようにした吸熱経路とを形成するこ
とにより、熱操作流体の加温操作、つまり、暖房運転の
場合の循環形態を構成する。
Further, by the switching connection by the route shown by the dotted line, the pipe line 20 → the cooling pipe 201A → the pipe line 21 → the pipe line 22.
→ Heated side 11a of condenser 11 → Pipe line connection switch 63 →
The indoor heat exchanger 62 → the pipe connection switching device 63 → the circulation path of returning to the pipe 20 via the pump 64, while circulating the first heat operation fluid 35a, to the heated side 62A of the indoor heat exchanger 62. A heating / radiating path for forcibly giving indoor air to heat the indoor air, and a pipe line 24 → cooled side 14a of evaporator 14 → pipe line 25 → pipe line connection switch 6
3-> outdoor heat exchanger 61-> pipe connection switching device 63-> pump 6
By the circulation path that returns to the pipeline 24 via 5, while the second heat operation fluid 35b is circulated, outdoor air is forcibly given to the heat absorption side 61A of the outdoor heat exchanger 61 by the blower 61B or the like to perform the heat absorption operation. By forming the heat absorption path as described above, the heating operation of the heat operation fluid, that is, the circulation mode in the heating operation is configured.

【0019】こうした熱操作流体の冷却操作または加温
操作の制御はCPU70の各部制御信号によって行われ
る。そして、この制御は、所要の各部の動作状態、例え
ば、温度などを検出した各部検出信号と、動作条件など
を設定する設定操作部80からの設定信号とをCPU7
0に与え、CPU70で所要の制御処理を行って得られ
る各部制御信号により、加熱器6、管路接続切換器6
3、各ポンプ3・64・65などの動作を制御するよう
に構成してある。
The control of the cooling operation or the heating operation of the heat operation fluid is performed by the control signals of the respective parts of the CPU 70. Then, in this control, the CPU 7 outputs a detection signal of each part detecting a required operating state of each part, such as temperature, and a setting signal from the setting operation part 80 for setting an operating condition.
0, and the CPU 70 performs the required control processing to obtain the control signals of the respective parts, and the heater 6 and the line connection switching device 6
3, the operation of each pump 3, 64, 65, etc. is controlled.

【0020】また、上記の第1従来技術の襷掛け管路に
よるGAX機能部分を設ける場合には、図6の吸収式冷
凍装置100のような構成になっており、発生器吸収器
間熱交換部270がGAX機能部分の構成している。図
6において、図5の符号と同一符号で示す部分は、図5
で説明した同一符号の部分と同一機能をもつ部分であ
る。
Further, when the GAX function part by the above-mentioned first conventional technique is provided, the structure is like that of the absorption type refrigeration system 100 of FIG. 6, and the heat exchange between the generator and the absorber is performed. The part 270 constitutes the GAX function part. In FIG. 6, the parts designated by the same reference numerals as those in FIG.
This is a part having the same function as the part with the same reference numeral explained in.

【0021】図6において、発生器吸収器間熱交換部2
70は、冷媒蒸気7aに熱を与えて放熱する熱交換管2
05Bを発生器5内に設けるとともに、吸収器1内に散
布した稀液2bが冷媒蒸気7cを吸収するときの熱と稀
液2bの熱とを稀液2bから受けて吸熱する熱交換管2
01Cを吸収器1内に設けておき、各熱交換管205B
・201Cの上下関係を逆に接続した襷掛け管路271
内を通る第3の熱操作流体35c、例えば、水、シリコ
ン油、フェニルキシリルエタンなどの熱媒体をポンプ2
60で循環させるとともに、必要に応じて、この循環路
に液溜器272を設けて構成してある。
In FIG. 6, the heat exchange section 2 between the generator and the absorber.
Reference numeral 70 denotes a heat exchange tube 2 that gives heat to the refrigerant vapor 7a to radiate the heat.
05B is provided in the generator 5, and the heat exchange tube 2 receives the heat when the diluted liquid 2b dispersed in the absorber 1 absorbs the refrigerant vapor 7c and the heat of the diluted liquid 2b, and absorbs the heat from the diluted liquid 2b.
01C is provided in the absorber 1, and each heat exchange tube 205B
・ Covering pipe line 271 in which the vertical relationship of 201C is reversed
A third heat-operated fluid 35c passing through the inside is pumped with a heat medium such as water, silicon oil, phenylxylylethane, or the like 2
In addition to being circulated at 60, a liquid reservoir 272 is provided in this circulation path if necessary.

【0022】そして、図6のようなGAX機能部分を設
けた吸収式冷凍装置100によれば、図7のGAXサイ
クル線図のような温度:圧力特性をもつ動作を行わせる
ことができる。
According to the absorption type refrigerating apparatus 100 provided with the GAX function portion as shown in FIG. 6, the operation having the temperature: pressure characteristic as shown in the GAX cycle diagram of FIG. 7 can be performed.

【0023】図7のGAXサイクル線図は、理想的なG
AXサイクルを示すものであって、A点は凝縮器11の
冷媒凝縮液の動作点、B点は蒸発器14の冷媒蒸気の動
作点、C点は吸収器1の底部の濃液2aの動作点、D点
は散布管205Cの濃液の動作点、E点は発生器5の底
部の稀液2bの動作点、F点は散布管201Dの稀液の
動作点である。
The GAX cycle diagram of FIG. 7 shows an ideal G
In the AX cycle, point A is the operating point of the refrigerant condensate of the condenser 11, point B is the operating point of the refrigerant vapor of the evaporator 14, and point C is the operation of the concentrated liquid 2a at the bottom of the absorber 1. Points D and D are operating points of the concentrated liquid of the spray pipe 205C, point E is an operating point of the dilute liquid 2b at the bottom of the generator 5, and point F is an operating point of the dilute liquid of the spray pipe 201D.

【0024】そして、冷媒の循環系はA点→B点→C点
→D点→A点……の熱操作経路で循環し、吸収液の循環
系はD点→E点→F点→C点→D点……の熱操作経路で
循環していることになる。
The circulation system of the refrigerant circulates through the heat operation route of A point → B point → C point → D point → A point, and the circulation system of the absorbing liquid is D point → E point → F point → C. It circulates in the thermal operation route from point to point D ....

【0025】したがって、発生器5内の圧力は圧力値P
a、吸収器1内の圧力は圧力値Pb、発生器5の底部の
稀液2bの温度は温度値Ta、散布管201Dの稀液の
温度は温度値Tb、凝縮器11内の凝縮冷媒の温度は温
度値Tc、蒸発器14内の冷媒蒸気の温度は温度値T
d、吸収器1の底部の稀液2aの温度は温度値Te、散
布管205Cの濃液の温度は温度値Tf、加熱器6によ
る発生器5内での加熱量は温度範囲TG、冷却管201
Aによる吸収器1内での冷却量は温度範囲TAに相当す
ることになる。
Therefore, the pressure in the generator 5 is the pressure value P
a, the pressure in the absorber 1 is the pressure value Pb, the temperature of the diluted liquid 2b at the bottom of the generator 5 is the temperature value Ta, the temperature of the diluted liquid in the spray pipe 201D is the temperature value Tb, and the condensed refrigerant in the condenser 11 is The temperature is the temperature value Tc, and the temperature of the refrigerant vapor in the evaporator 14 is the temperature value Tc.
d, the temperature of the dilute liquid 2a at the bottom of the absorber 1 is a temperature value Te, the temperature of the concentrated liquid in the spray pipe 205C is a temperature value Tf, the heating amount in the generator 5 by the heater 6 is the temperature range TG, the cooling pipe 201
The amount of cooling in the absorber 1 by A corresponds to the temperature range TA.

【0026】また、斜辺L1は、例えば、NH3、つま
り、アンモニアが100%の動作線、斜辺L2は、例え
ば、アンモニアが5%、水が95%の動作線であり、G
AX機能部分によって、ハッチングを施した範囲の箇所
における熱移動操作が行われるものである。つまり、吸
収器1内のGAX用の熱交換管201Cを流れる第3の
熱操作流体35cは吸収器1内の熱を奪うように動作
し、この動作によって、吸収器1内の温度は温度値Tb
から温度値Thに冷却させられ、第3の熱操作流体35
cは温度値Thから温度値Tbに上昇することになる。
The hypotenuse L1 is, for example, an operation line of NH3, that is, 100% ammonia, and the hypotenuse L2 is, for example, an operation line of 5% ammonia and 95% water.
The heat transfer operation is performed in the hatched area by the AX function portion. That is, the third heat-operated fluid 35c flowing through the GAX heat exchange tube 201C in the absorber 1 operates so as to remove the heat in the absorber 1, and this operation causes the temperature in the absorber 1 to reach a temperature value. Tb
To the temperature value Th from the third heat operating fluid 35
c increases from the temperature value Th to the temperature value Tb.

【0027】一方、発生器5内のGAX用の熱交換管2
05Bを流れる温度の高い第3の熱操作流体35cは自
己のもつ熱を放出して発生器5を加熱するように動作
し、この動作によって、発生器5内の温度は温度値Tf
から温度値Tgに上昇させられ、第3の熱操作流体35
cの温度は温度値Tgから温度値Tfに下降することに
なる。
On the other hand, the heat exchange tube 2 for GAX in the generator 5
The third heat-operated fluid 35c having a high temperature flowing through 05B operates so as to release its own heat to heat the generator 5, and this operation causes the temperature in the generator 5 to rise to the temperature value Tf.
To the temperature value Tg from the third heat operating fluid 35
The temperature of c will fall from the temperature value Tg to the temperature value Tf.

【0028】したがって、GAX機能部分の動作は、冷
却管201Aによって吸収器1を冷却する熱量と、加熱
器6によって発生器5を加熱する熱量とを、ハッチング
を施した範囲の分だけ、節減し得ていることになるもの
である。
Therefore, in the operation of the GAX function part, the heat quantity for cooling the absorber 1 by the cooling pipe 201A and the heat quantity for heating the generator 5 by the heater 6 are reduced by the hatched range. That is what you are getting.

【0029】[0029]

【発明が解決しようとする課題】上記の図6の構成によ
る発生器吸収器間熱交換部270、つまり、GAX部で
は、襷掛け管路271内を通る第3の熱操作流体35c
を介した2次的な熱交換によっているため、第3の熱操
作流体35cを介在させる分だけ熱損失があり、また、
ポンプ260を運転するためのエネルギー消費が増加
し、さらには、液溜器272による放熱損失があるなど
のため、装置全体としての成績係数の向上に限度がある
などの不都合がある。
In the inter-generator-absorber heat exchange section 270 having the configuration shown in FIG. 6 described above, that is, in the GAX section, the third heat-operated fluid 35c passing through the suspension line 271 is used.
Since there is a secondary heat exchange through the third heat manipulation fluid 35c, there is a heat loss corresponding to the presence of the third heat operation fluid 35c.
Energy consumption for operating the pump 260 increases, and further, there is a heat radiation loss due to the liquid reservoir 272, so that there is a disadvantage that the coefficient of performance of the entire device is limited.

【0030】上記の図5の構成では、第3の熱操作流体
35cを介在させることなく、稀液と濃液とによる吸収
液間の直接的な熱交換を行わせているので、上記の不都
合を解消し得るが、散布管201Dから吸収器1に送り
込む稀液2bの温度Tbが、外気温度、室内温度、加熱
量などの影響を受けて変動し、図7のF点から、ずれて
しまうという不都合が生ずる。
In the configuration of FIG. 5 described above, direct heat exchange between the absorbing liquid by the dilute liquid and the concentrated liquid is performed without interposing the third heat operation fluid 35c, so that the above-mentioned inconvenience is caused. However, the temperature Tb of the dilute liquid 2b sent from the spray pipe 201D to the absorber 1 fluctuates under the influence of the outside air temperature, the room temperature, the heating amount, etc., and deviates from the point F in FIG. The inconvenience occurs.

【0031】そして、F点の温度値Tbが高い方に、ず
れた場合には、散布管201Dから散布される稀液2b
が沸騰してしまうため、吸収器1内での吸収動作が不良
になり、装置全体でみた成績係数が低下し、また、F点
の温度値Tbが低い方に、ずれた場合には、散布管20
1Dから散布される稀液2bがGAX動作を利用し得る
温度範囲、つまり、温度値Tb〜温度値Thの範囲が狭
くなり、装置全体でみた成績係数が低下するという不都
合が生ずるわけである。
When the temperature value Tb at the point F deviates to the higher side, the rare liquid 2b sprayed from the spray pipe 201D.
Because of boiling, the absorption operation in the absorber 1 becomes poor, the coefficient of performance seen in the entire apparatus decreases, and when the temperature value Tb at the point F deviates to the lower side, it is sprayed. Tube 20
The temperature range in which the rare liquid 2b sprayed from 1D can use the GAX operation, that is, the range of the temperature value Tb to the temperature value Th is narrowed, which causes a disadvantage that the coefficient of performance of the entire apparatus is lowered.

【0032】このため、こうした不都合のない吸収式冷
凍装置の提供が望まれているという課題がある。
Therefore, there is a problem that it is desired to provide an absorption type refrigerating apparatus which does not have such an inconvenience.

【0033】[0033]

【課題を解決するための手段】上記のような吸収機能部
分で冷媒蒸気を吸収させた吸収液を、この吸収液から冷
媒蒸気を蒸発させるための発生機能部分に与える第1の
経路と、上記の発生機能部分で冷媒蒸気を蒸発させた吸
収液を上記の吸収機能部分に与える第2の経路とにより
吸収液を循環する吸収液循環系と、上記の第1の経路と
上記の第2の経路との間の熱交換を行う吸収液熱交換機
能部分とを設けた吸収式冷凍装置において、
A first path for supplying the absorbing liquid, which has absorbed the refrigerant vapor in the absorbing function portion, to the generating function portion for evaporating the refrigerant vapor from the absorbing liquid; An absorption liquid circulation system that circulates the absorption liquid by the second path that gives the absorption liquid obtained by evaporating the refrigerant vapor to the absorption function part in the generation function part, the first path, and the second path. In an absorption type refrigeration system provided with an absorption liquid heat exchange function part for performing heat exchange with the path,

【0034】上記の吸収液熱交換機能部分の熱交換量を
調整することにより、上記の吸収機能部分に与える吸収
液の温度を所定値にする熱交換量調整手段を設ける第1
の構成と、
First, there is provided heat exchange amount adjusting means for adjusting the heat exchange amount of the absorbing liquid heat exchanging function portion so that the temperature of the absorbing liquid given to the absorbing function portion becomes a predetermined value.
And the configuration of

【0035】この第1の構成における熱交換量調整手段
に代えて、上記の第2の経路を分岐して上記の吸収液熱
交換機能部分を側路する第3の経路を設けるとともに、
この第3の経路に流量調整機能部分を設ける側路手段
と、
In place of the heat exchange amount adjusting means in the first structure, a third path is provided which branches the second path and bypasses the absorbed liquid heat exchange function portion.
Bypass means for providing a flow rate adjusting function portion in the third path;

【0036】上記の流量調整機能部分の流量を調整する
ことにより、上記の吸収機能部分に与える吸収液の温度
を所定値にする分岐流量調整手段とを設ける第2の構成
と、
A second structure is provided in which branch flow rate adjusting means is provided for adjusting the temperature of the absorbing liquid applied to the absorbing function section by adjusting the flow rate of the flow rate adjusting function section.

【0037】上記の第1の構成における熱交換量調整手
段に代えて、上記の第1の経路を分岐して上記の吸収液
熱交換機能部分を側路する第3の経路を設けるととも
に、この第3の経路に流量調整機能部分を設ける側路手
段と、
In place of the heat exchange amount adjusting means in the above-mentioned first structure, a third path is provided which branches the above-mentioned first path and bypasses the above-mentioned absorbed liquid heat exchange functional portion, and Bypass means for providing a flow rate adjusting function portion in the third path;

【0038】上記の流量調整機能部分の流量を調整する
ことにより、上記の吸収機能部分に与える吸収液の温度
を所定値にする分岐流量調整手段とを設ける第3の構成
などによって、上記の課題を解決し得るようにしたもの
である。
The above problem is solved by the third structure or the like which is provided with a branch flow rate adjusting means for adjusting the flow rate of the flow rate adjusting function section to adjust the temperature of the absorbing liquid applied to the absorbing function section to a predetermined value. To solve the problem.

【0039】[0039]

【作用】第1の構成によれば、吸収液熱交換機能部分の
熱交換量を調整することにより、発生機能部分から吸収
機能部分に入る吸収液、つまり、加熱側を通る稀液の温
度を変化することができるため、GAXサイクルのF点
の温度Tbを、上昇方向または下降方向に移動して、つ
まり、GAXサイクル線図の左右方向に移動して、斜辺
L2上の温度点に一致させるように調整し得るので、理
想的なGAXサイクルに近い状態で熱操作を行わせるこ
とができ、装置全体でみた成績係数が向上するように作
用する。
According to the first configuration, the temperature of the absorbing liquid entering the absorbing function portion from the generating function portion, that is, the temperature of the dilute liquid passing through the heating side is adjusted by adjusting the heat exchange amount of the absorbing liquid heat exchange function portion. Since it can be changed, the temperature Tb at the point F of the GAX cycle is moved in the ascending direction or the descending direction, that is, is moved in the left-right direction of the GAX cycle diagram to match the temperature point on the hypotenuse L2. Therefore, the thermal operation can be performed in a state close to the ideal GAX cycle, and the coefficient of performance of the entire apparatus is improved.

【0040】第2の構成によれば、発生機能部分からの
温度の高い吸収液、つまり、稀液が吸収液熱交換機能部
分を側路して通る流量を調整することにより、実質的に
熱交換機能部分を通る稀液の流量を変化させているの
で、吸収液熱交換機能部分の被加熱側を通る吸収液、つ
まり、吸収機能部分からの濃液に与える熱量が変化し、
結局、吸収機能部分に与える稀液の温度、つまり、GA
XサイクルのF点の温度Tbを、上昇方向または下降方
向に移動して、つまり、GAXサイクル線図の左右方向
に移動して、斜辺L2上の温度点に一致させるように調
整し得るため、理想的なGAXサイクルに近い状態で熱
操作を行わせることができ、装置全体でみた成績係数が
向上するように作用する。
According to the second configuration, the absorption liquid having a high temperature from the generating function part, that is, the dilute liquid is adjusted by adjusting the flow rate of the absorbing liquid passing through the absorption liquid heat exchanging function part, thereby substantially reducing the heat. Since the flow rate of the dilute liquid passing through the exchange function part is changed, the amount of heat given to the absorbing liquid passing through the heated side of the absorption liquid heat exchange function part, that is, the concentrated liquid from the absorption function part changes,
After all, the temperature of the dilute liquid given to the absorption function part, that is, GA
Since the temperature Tb at the point F of the X cycle can be moved in the ascending direction or the descending direction, that is, in the left-right direction of the GAX cycle diagram, and adjusted so as to match the temperature point on the hypotenuse L2, The thermal operation can be performed in a state close to an ideal GAX cycle, and the coefficient of performance of the entire apparatus is improved.

【0041】第3の構成によれば、吸収機能部分からの
冷却された吸収液、つまり、濃液が吸収液熱交換機能部
分を側路して通る流量を調整することにより、実質的に
吸収液熱交換機能部分を通る濃液の流量を変化させてい
るので、吸収液熱交換機能部分の加熱側を通る吸収液、
つまり、発生機能部分からの稀液から奪う熱量が変化
し、結局、吸収機能部分に与える稀液の温度、つまり、
GAXサイクルのF点の温度Tbを、上昇方向または下
降方向に移動して、つまり、GAXサイクル線図の左右
方向に移動して、斜辺L2上の温度点に一致させるよう
に調整し得るので、理想的なGAXサイクルに近い状態
で熱操作を行わせることができ、装置全体でみた成績係
数が向上するように作用する。
According to the third configuration, the cooled absorption liquid from the absorption function portion, that is, the concentrated liquid is substantially absorbed by adjusting the flow rate of the absorption liquid heat exchange function portion passing by-pass. Since the flow rate of the concentrated liquid passing through the liquid heat exchange function part is changed, the absorbing liquid passing through the heating side of the absorbing liquid heat exchange function part,
In other words, the amount of heat taken from the dilute solution from the generating function part changes, and in the end, the temperature of the dilute liquid given to the absorbing function part, that is,
Since the temperature Tb at the point F of the GAX cycle can be moved in the ascending direction or the descending direction, that is, in the left-right direction of the GAX cycle diagram, and adjusted to match the temperature point on the hypotenuse L2, The thermal operation can be performed in a state close to an ideal GAX cycle, and the coefficient of performance of the entire apparatus is improved.

【0042】[0042]

【実施例】以下、図1〜図4により実施例を説明する。
図1〜図4において図5〜図7の符号と同一符号で示す
部分は、図5〜図7によって説明した同一符号の部分と
同一機能をもつ部分であり、図1〜図4において同一符
号で示す部分は、これら図のうちのいずれかの図によっ
て説明する同一符号の部分と同一機能をもつ部分であ
る。
EXAMPLES Examples will be described below with reference to FIGS.
1 to 4, parts indicated by the same reference numerals as those in FIGS. 5 to 7 have the same functions as those of the same reference numerals explained in FIGS. 5 to 7, and the same reference numerals in FIGS. The part indicated by is a part having the same function as the part with the same reference numeral explained in any of these figures.

【0043】図4は、図7に対応するGAXサイクルで
あり、この発明の動作原理を説明するための図である。
吸収液熱交換機能部分、つまり、吸収液熱交換器31の
熱交換機能が吸収液循環系の理想的なGAXサイクルの
熱操作と対応しない場合には、吸収機能部分、つまり、
吸収器1に与える稀液の温度が、理想的な温度値Tbに
対して、高いときは、例えば、温度値Tb′のF′点に
移動し、低いときは、例えば、温度値Tb″のF″点に
移動していることになる。
FIG. 4 is a GAX cycle corresponding to FIG. 7, and is a diagram for explaining the operating principle of the present invention.
When the absorption liquid heat exchange function part, that is, the heat exchange function of the absorption liquid heat exchanger 31 does not correspond to the ideal GAX cycle heat operation of the absorption liquid circulation system, the absorption function part, that is,
When the temperature of the dilute liquid given to the absorber 1 is higher than the ideal temperature value Tb, for example, it moves to the point F'of the temperature value Tb ', and when it is low, for example, the temperature value Tb "of the temperature value Tb". You have moved to point F ″.

【0044】そして、Tb′の場合には、散布管201
Dから吸収器1内に散布する稀液2bが沸騰してしま
い、吸収作用の効率を低下させるとともに、発生器5内
における吸収液の加温作用と蒸発作用との効率を低下さ
せることになり、加熱量TGをGAX作用で低減し得る
量が少なくなる。
In the case of Tb ', the spray pipe 201
The diluted liquid 2b sprayed from D into the absorber 1 boils, which reduces the efficiency of the absorbing action and the efficiency of the heating action and the vaporizing action of the absorbing liquid in the generator 5. The amount by which the heating amount TG can be reduced by the GAX action becomes small.

【0045】また、Tb″の場合には、(Tb″−T
h)/(Tb−Th)に相当する熱量だけ、発生器内に
おける加温作用と蒸発作用を低下させることになり、加
熱量TGをGAX作用で低減し得る量が少なくなる。
In the case of Tb ", (Tb" -T
The amount of heat corresponding to (h) / (Tb-Th) reduces the heating action and the evaporation action in the generator, and the heating amount TG can be reduced by the GAX action.

【0046】そこで、この発明は、吸収液熱交換器31
による熱交換量を可変調整し得るように構成することに
より、F′点またはF″点を理想的な動作点とするF点
に移動させるように調整して動作させるものである。
Therefore, according to the present invention, the absorbing liquid heat exchanger 31 is used.
By arranging the amount of heat exchange by variably adjusted, the F'point or the F "point is adjusted and moved so as to move to the F point which is an ideal operating point.

【0047】ここで、F点の温度Tbの理想的な温度値
をTXとし、例えば、温度値Tb′をTX′、また、温
度値Tb″をTX″とすると、次式のように表すことが
できる。
Here, assuming that the ideal temperature value of the temperature Tb at the point F is TX, for example, the temperature value Tb ′ is TX ′ and the temperature value Tb ″ is TX ″, the following expression is obtained. You can

【0048】 TX′=TX+△T ………… (1) TX″=TX−△T ………… (2) この△Tは、理想的な温度値TXに対する偏差値である
が、一般に、過熱度とも言っている。また、−△Tを負
の過熱度、または、過冷却度と言っている。
TX ′ = TX + ΔT (1) TX ″ = TX−ΔT (2) This ΔT is a deviation value from the ideal temperature value TX, but in general, It is also called superheat degree, and -ΔT is called negative superheat degree or supercooling degree.

【0049】そして、温度値TXは、関数記号を
f〔〕、吸収液の冷媒濃度をJとし、冷媒蒸気中の冷媒
濃度、つまり、アンモニア濃度をKとし、K≒100す
ると、各部の圧力と温度との関係は、次式のようにな
る。
If the function symbol is f [], the refrigerant concentration of the absorbing liquid is J, and the refrigerant concentration in the refrigerant vapor, that is, the ammonia concentration is K, and K≈100, the temperature value TX becomes the pressure of each part. The relationship with temperature is as follows.

【0050】 Pa=f〔Tc,K〕 ………… (3) Pb=f〔Tb,K〕 ………… (4) J=f〔Pa,Ta〕 ………… (5) TX=f〔J,Pb〕 ………… (6)Pa = f [Tc, K] (3) Pb = f [Tb, K] (4) J = f [Pa, Ta] (5) TX = f [J, Pb] ………… (6)

【0051】しかしながら、各温度値と各圧力値とは、
上記各式の関数にかかる係数値が、製作された個々の装
置によって差異があるので、実際の試験運転により、こ
れら係数値を求めたものをCPU70の処理メモリに記
憶して算定する必要がある。
However, each temperature value and each pressure value are
Since the coefficient values related to the functions of the above equations differ depending on the manufactured individual devices, it is necessary to store the calculated coefficient values in the processing memory of the CPU 70 by the actual test operation. .

【0052】したがって、吸収液熱交換器31の熱交換
量の調整は、実際の試験運転により求めた各係数値をC
PU70の処理メモリに記憶しておき、上記(6)によ
り算出した理想的な温度値TXが得られるように、つま
り、△Tが最小になるように調整する制御を行えばよい
ことになる。
Therefore, in adjusting the heat exchange amount of the absorbing liquid heat exchanger 31, the coefficient values obtained by the actual test operation are set to C
It may be stored in the processing memory of the PU 70 and controlled so that the ideal temperature value TX calculated by the above (6) is obtained, that is, ΔT is minimized.

【0053】以下、図1により、具体的な実施例を説明
する。図1において、図5の構成と異なる箇所は、第1
には、吸収液の循環路における熱交換管201Bを無く
してGAX機能部分の構成を簡略化した箇所であり、第
2には、第1の熱操作流体35aの循環路における熱交
換管205Eを無くして発生器5内の分溜作用を行う構
成を設けずに簡略化した箇所である。
A concrete embodiment will be described below with reference to FIG. In FIG. 1, the difference from the configuration of FIG.
2 is a location where the heat exchange tube 201B in the circulation path of the absorbing liquid is eliminated to simplify the configuration of the GAX functional portion, and secondly, the heat exchange tube 205E in the circulation path of the first heat operation fluid 35a is provided. This is a simplified part without providing the structure for performing the fractionation operation in the generator 5 without it.

【0054】第3には、四方弁による管路接続切換器6
3Bによって、凝縮器11と蒸発器14とを構成する各
熱交換器を、冷房運転時と暖房運転時とでは、互いに逆
の動作を行うように冷媒循環系を構成して、凝縮器11
の部分を凝縮/蒸発熱交換器11Aとし、また、蒸発器
14の部分を蒸発/凝縮熱交換器14Aとして構成にし
た箇所である。
Thirdly, the line connection switching device 6 using a four-way valve
By 3B, the heat exchangers constituting the condenser 11 and the evaporator 14 are arranged in a refrigerant circulation system so as to perform operations opposite to each other during the cooling operation and the heating operation.
This is a portion in which the portion of is designated as the condensation / evaporation heat exchanger 11A, and the portion of the evaporator 14 is designated as the evaporation / condensation heat exchanger 14A.

【0055】また、第4には、凝縮/蒸発熱交換器11
Aを第1の熱操作流体35aを放熱するための室外熱交
換器61と並列に隣接して配置することにより、凝縮/
蒸発熱交換器11Aと室外熱交換器61との間で熱交換
を行うように構成した箇所である。
Fourthly, the condensation / evaporation heat exchanger 11
By arranging A in parallel with and adjacent to the outdoor heat exchanger 61 for radiating the first heat-operated fluid 35a, condensation /
This is a portion configured to perform heat exchange between the evaporation heat exchanger 11A and the outdoor heat exchanger 61.

【0056】第5には、第1の熱操作流体35aの流路
を、冷却操作時、つまり、冷房運転時に、開閉弁301
Cと開閉弁301Dとを開いて、室外熱交換器61に導
き、加温操作時、つまり、暖房運転時に、開閉弁301
Aと開閉弁301Bとを開いて、第2の熱操作流体35
bの流れに合流するように構成した箇所である。
Fifth, the opening / closing valve 301 is used to cool the flow path of the first heat operation fluid 35a during the cooling operation, that is, during the cooling operation.
Open C and the opening / closing valve 301D, guide them to the outdoor heat exchanger 61, and perform the opening / closing valve 301 during the heating operation, that is, during the heating operation.
A and the opening / closing valve 301B are opened, and the second heat operation fluid 35
This is a portion configured to join the flow of b.

【0057】第6には、吸収液熱交換器31の加熱側の
管路16・204の間に、吸収液熱交換器31の流路を
側路する流量調整弁V2を設け、また、吸収液熱交換器
31の被加熱側31Aの管路203・202の間に、吸
収液熱交換器31の流路を側路する流量調整弁V1を設
けて構成した箇所である。
Sixthly, a flow rate adjusting valve V2 for bypassing the flow path of the absorbing liquid heat exchanger 31 is provided between the heating side pipes 16 and 204 of the absorbing liquid heat exchanger 31, and the absorption This is a portion where a flow rate adjusting valve V1 that bypasses the flow path of the absorbing liquid heat exchanger 31 is provided between the pipes 203 and 202 on the heated side 31A of the liquid heat exchanger 31.

【0058】第7には、発生器5内の圧力Paと、吸収
器1内の圧力Pbとを検出する各検出器と、発生器5の
底部の稀液2aの温度Taと、管路18の散布管201
Dにごく近い箇所の管内の稀液2bの温度Tbと、凝縮
/蒸発熱交換器11Aの管路内の凝縮冷媒の温度Tc
と、蒸発/凝縮熱交換14の管路内の冷媒蒸気の温度T
dとを検出するための各検出器とを設けるとともに、こ
れらの各検出信号をCPU70に与えることにより、各
検出信号の検出値をCPU70の作業メモリに記憶し、
上記の数式(1)〜(6)の演算にもとづいて、所要の
値、例えば、TXを求め、検出した温度Tbの温度値を
TXに近付けるように、流量調整弁V1、または、流量
調整弁V2、もしくは、その両方の流量を調整する制御
行い、または、±△Tを求めて、±△Tにもとづいて、
上記の流量を、同様に、調整する制御を行うように構成
した箇所である。
Seventh, each detector for detecting the pressure Pa in the generator 5 and the pressure Pb in the absorber 1, the temperature Ta of the dilute liquid 2a at the bottom of the generator 5, and the conduit 18 Dispersion tube 201
The temperature Tb of the dilute liquid 2b in the pipe very close to D and the temperature Tc of the condensed refrigerant in the pipe of the condensation / evaporation heat exchanger 11A.
And the temperature T of the refrigerant vapor in the conduit of the evaporation / condensation heat exchange 14.
Each detector for detecting d and is provided, and the detection value of each detection signal is stored in the working memory of the CPU 70 by supplying each detection signal to the CPU 70.
Based on the calculation of the above formulas (1) to (6), a required value, for example, TX is obtained, and the flow rate adjusting valve V1 or the flow rate adjusting valve V1 is set so that the temperature value of the detected temperature Tb approaches TX. Control to adjust the flow rate of V2 or both of them, or obtain ± ΔT, and based on ± ΔT,
Similarly, it is a portion configured to control the above flow rate to be adjusted.

【0059】なお、ここで、留意すべきことは、図1の
構成では、凝縮/蒸発熱交換器11Aと蒸発/凝縮熱交
換器14Aとが、冷房運転時と暖房運転時とでは、それ
ぞれの機能が入れ替わった動作をするので、検出温度T
cと検出温度Tdとは、冷房運転時は、図4または図6
の温度値Tcと温度値Tdとに対応するが、暖房運転時
は、検出温度Tcが図4または図6の温度値Tdと対応
し、また、検出温度Tdが図4または図6の温度値Tc
と対応することであり、上記の数式(1)〜(6)の演
算においても、上記の対応に従う必要がある。
It should be noted here that, in the configuration of FIG. 1, the condensation / evaporation heat exchanger 11A and the evaporation / condensation heat exchanger 14A are different from each other in the cooling operation and the heating operation, respectively. Since the functions are switched, the detected temperature T
c and the detected temperature Td are as shown in FIG. 4 or FIG. 6 during the cooling operation.
Corresponding to the temperature value Tc and the temperature value Td, the detected temperature Tc corresponds to the temperature value Td shown in FIG. 4 or 6, and the detected temperature Td corresponds to the temperature value shown in FIG. 4 or 6. Tc
Therefore, it is necessary to comply with the above correspondence also in the calculation of the above formulas (1) to (6).

【0060】そして、開閉弁301Aと開閉弁301B
とは、冷房運転時は閉状態になり、暖房運転時は開状態
になり、開閉弁301Cと開閉弁301Dとは、冷房運
転時は開状態になり、暖房運転時は閉状態になる。
The on-off valve 301A and the on-off valve 301B
Is closed during the cooling operation, opened during the heating operation, and the open / close valves 301C and 301D are open during the cooling operation and closed during the heating operation.

【0061】ポンプ3とポンプ65とは、冷房運転時・
暖房運転時のいずれも運転状態になる。また、ポンプ6
4は、冷房運転時は運転状態になり、暖房運転時は停止
状態になる。
The pump 3 and the pump 65 are used during cooling operation.
During heating operation, both are in operation. Also, the pump 6
No. 4 is in the operating state during the cooling operation and is in the stopped state during the heating operation.

【0062】管路接続切換器63Bは、冷房運転時は実
線で示す経路状態になり、暖房運転時は点線で示す経路
状態になる。そして、これらの開閉弁301A・301
B・301C・301Dとポンプ3・64・65と管路
接続切換器63Bなどの動作状態の制御はCPU70に
よって制御しており、各循環系は次のように動作してい
る。
The pipe line connection switch 63B is in the route state shown by the solid line during the cooling operation, and is in the route state shown by the dotted line during the heating operation. And these on-off valves 301A, 301
The CPU 70 controls the operating states of the B, 301C, 301D, the pumps 3, 64, 65, the line connection switching device 63B, etc., and each circulation system operates as follows.

【0063】吸収液の循環系は、流量調整弁V1・V2
が閉路状態になっている場合には、発生器5の底部の稀
液2b→熱交換管205A→管路16→吸収液熱交換器
31→減圧器9→管路18→散布管201D→濃液2b
→管路4→ポンプ3→管路17→熱交換管205D→管
路8→熱交換管201X→管路202→吸収液熱交換器
31の被加熱側31A→散布管205Fを経て稀液2b
に戻る経路を循環する。
The absorption liquid circulation system is composed of flow rate adjusting valves V1 and V2.
Is closed, the dilute liquid 2b at the bottom of the generator 5 → heat exchange pipe 205A → pipe 16 → absorption liquid heat exchanger 31 → decompressor 9 → pipe 18 → spray pipe 201D → concentrate Liquid 2b
→ pipe 4 → pump 3 → pipe 17 → heat exchange pipe 205D → pipe 8 → heat exchange pipe 201X → pipe 202 → heated side 31A of absorbing liquid heat exchanger 31 → spray pipe 205F and diluted liquid 2b
Circulate the path back to.

【0064】冷媒の循環系は、冷却操作時、つまり、冷
房運転時は、発生器5内の冷媒蒸気7a→管路10→管
路接続切換器63B→凝縮/蒸発熱交換器11A→予熱
用熱交換器214→減圧器215→逆止弁216→蒸発
/凝縮熱交換器14A→予熱用熱交換器214の被加熱
側214a→管路接続切換器63B→管路15→吸収器
1内の冷媒蒸気7cを経て稀液2aに吸収され濃液2a
に入る経路を取る。
During the cooling operation, that is, during the cooling operation, the refrigerant circulation system is for the refrigerant vapor 7a in the generator 5 → the pipeline 10 → the pipeline connection switching unit 63B → the condensation / evaporation heat exchanger 11A → for preheating. Heat exchanger 214 → pressure reducer 215 → check valve 216 → evaporation / condensation heat exchanger 14A → heated side 214a of preheating heat exchanger 214 → pipe line connection switch 63B → pipe line 15 → in absorber 1 The concentrated liquid 2a is absorbed by the dilute liquid 2a through the refrigerant vapor 7c.
Take the route to enter.

【0065】そして、加温操作時、つまり、暖房運転時
は、発生器5内の冷媒蒸気7a→管路10→管路接続切
換器63B→逆止弁220→蒸発/凝縮熱交換器14A
→減圧器221→逆止弁222→凝縮/蒸発熱交換器1
1A→管路接続切換器63B→管路15→吸収器1内の
冷媒蒸気7cを経て稀液2aに吸収され濃液2aに入る
経路を取る。
Then, during the heating operation, that is, during the heating operation, the refrigerant vapor 7a in the generator 5 → the pipeline 10 → the pipeline connection switch 63B → the check valve 220 → the evaporation / condensation heat exchanger 14A.
→ pressure reducer 221 → check valve 222 → condensation / evaporation heat exchanger 1
1A → Pipe connection switching device 63B → Pipe 15 → Take a path through the refrigerant vapor 7c in the absorber 1 to be absorbed by the dilute liquid 2a and enter the concentrated liquid 2a.

【0066】第1の熱操作流体35aの循環系は、冷媒
運転時は、冷却管201A→管路21→開閉弁301C
→室外熱交換器61→管路20A→ポンプ64→開閉弁
301D→管路20を経て冷却管201Aに戻る。
The circulation system of the first heat operation fluid 35a is such that the cooling pipe 201A → the pipe line 21 → the on-off valve 301C during the refrigerant operation.
→ Outdoor heat exchanger 61 → Pipe 20A → Pump 64 → Open / close valve 301D → Return to the cooling pipe 201A via the pipe 20.

【0067】そして、暖房運転時は、冷却管201A→
管路21→開閉弁201B→管路25で第2の熱操作流
体35bに合流→室内熱交換器62→ポンプ65→管路
24→開閉弁301A→管路20を経て冷却管201A
に戻るが、途中の管路24から分岐した流れが熱交換器
14Aの被加熱側14Aaを経て管路25に合流する。
During the heating operation, the cooling pipe 201A →
Pipe line 21 → Open / close valve 201B → Join second heat operating fluid 35b in pipe line 25 → Indoor heat exchanger 62 → Pump 65 → Pipe line 24 → Open / close valve 301A → Pipe line 20 and cooling pipe 201A
However, the flow branched from the conduit 24 on the way merges into the conduit 25 via the heated side 14Aa of the heat exchanger 14A.

【0068】第2の熱操作流体35bの循環系は、冷房
運転時は、室内熱交換器61→ポンプ65→管路24→
熱交換器14Aの被冷却側14Aa→管路25を経て室
内熱交換器61に戻る。そして、暖房運転時は、上記の
第1の熱操作流体35aと合流して循環する。
The circulation system of the second heat operation fluid 35b is such that the indoor heat exchanger 61 → pump 65 → pipe line 24 →
The cooled side 14Aa of the heat exchanger 14A is returned to the indoor heat exchanger 61 via the conduit 25. Then, during the heating operation, the first heat operation fluid 35a is merged and circulated.

【0069】そして、吸収液熱交換器31と流量調整弁
V1・V2とによる熱交換量を可変する調整部分の動作
は、図3のように、発生器5からの稀液2bが管路16
を流れる流量Wdが、吸収液熱交換器31の加熱側の管
路を流れる流量Weと、流量調整弁V2による側路を流
れる流量Wfとの合計量、つまり、Wd=We+Wfの
関係になるように構成してある。
Then, the operation of the adjusting portion for varying the heat exchange amount by the absorbing liquid heat exchanger 31 and the flow rate adjusting valves V1 and V2 is as follows.
So that the flow rate Wd flowing through the flow path is a total amount of the flow rate We flowing through the pipe on the heating side of the absorption liquid heat exchanger 31 and the flow rate Wf flowing through the bypass by the flow rate adjusting valve V2, that is, Wd = We + Wf. Is configured.

【0070】また、吸収器1から稀液2aが管路203
を流れる流量Waは、吸収液熱交換器31の被加熱側3
1Aの管路を流れる流量Wbと、流量調整弁V1による
側路を流れる流量Wcとの合計量、つまり、Wa=Wb
+Wcの関係になるように構成してある。
In addition, the dilute liquid 2a is supplied from the absorber 1 to the conduit 203.
The flow rate Wa of the absorbed liquid heat exchanger 31 is 3
The total amount of the flow rate Wb flowing through the pipeline of 1A and the flow rate Wc flowing through the side passage by the flow rate adjusting valve V1, that is, Wa = Wb
It is configured to have a relationship of + Wc.

【0071】ここで、流量調整弁V1による側路構成
と、流量調整弁V2による側路構成とは、いずれか一方
を設けることで、目的とする熱交換量の調整を行い得る
ように構成できるものであるが、必要に応じて、これら
両方を設けて熱交換量の調整を行ってもよいものであ
る。
Here, by providing either one of the side passage structure of the flow rate adjusting valve V1 and the side passage structure of the flow rate adjusting valve V2, the target heat exchange amount can be adjusted. However, if necessary, both of them may be provided to adjust the heat exchange amount.

【0072】〔流量調整弁V1のみを設ける構成〕流量
調整弁V1による側路のみを設ける構成では、例えば、
検出した温度値TbがF′点であったときは、図4の理
想的な温度値TXに近付けるように制御するために、流
量調整弁V1の流量Wcを低減するように調整制御す
る。
[Configuration in which only the flow rate adjusting valve V1 is provided] In the configuration in which only the side passage by the flow rate adjusting valve V1 is provided, for example,
When the detected temperature value Tb is at the point F ', the control is performed so as to reduce the flow rate Wc of the flow rate adjusting valve V1 in order to control so as to approach the ideal temperature value TX in FIG.

【0073】この調整によって、図3の吸収液熱交換器
31の被加熱側31Aに流れる低温の濃液2aの流量W
bが増加するので、吸収液熱交換器31の加熱側を流れ
る発生器5からの高温の稀液2bから熱を奪う流量Wb
が増加するため、散布器201Dに送られる流量Wdの
稀液2bの温度Tbが下降して温度値TXに近付くよう
に制御されることになる。
By this adjustment, the flow rate W of the low temperature concentrated liquid 2a flowing to the heated side 31A of the absorbing liquid heat exchanger 31 of FIG.
Since b increases, the flow rate Wb that takes heat from the high-temperature diluted liquid 2b from the generator 5 flowing on the heating side of the absorption liquid heat exchanger 31.
Therefore, the temperature Tb of the dilute liquid 2b having the flow rate Wd sent to the sprayer 201D is controlled to decrease and approach the temperature value TX.

【0074】また、例えば、検出した温度値TbがF″
点であったときには、流量調整弁V1の流量Wcを増加
するように調整制御すると、図3の吸収液熱交換器31
の被加熱側31Aに流れる低温の濃液2aの流量Wbが
低減する。
Further, for example, the detected temperature value Tb is F ″.
If it is a point, if the flow rate Wc of the flow rate adjusting valve V1 is adjusted and controlled to increase, the absorption liquid heat exchanger 31 of FIG.
The flow rate Wb of the low temperature concentrated liquid 2a flowing to the heated side 31A is reduced.

【0075】したがって、吸収液熱交換器31の加熱側
を流れる発生器5からの高温の稀液2bから熱を奪う流
量Wbが低減するので、散布器201Dに送られる流量
Wdの稀液2bの温度Tbが上昇して温度値TXに近付
くように制御されることになる。
Therefore, the flow rate Wb of depriving heat from the high-temperature diluted liquid 2b from the generator 5 flowing on the heating side of the absorption liquid heat exchanger 31 is reduced, so that the diluted liquid 2b of the flow rate Wd sent to the sprayer 201D is reduced. The temperature Tb is controlled to rise and approach the temperature value TX.

【0076】〔流量調整弁V2のみ設ける構成〕流量調
整弁V2による側路のみを設ける構成では、例えば、検
出した温度値TbがF′点であったときは、図4の理想
的な温度値TXに近付けるように制御するために、流量
調整弁V2の流量Wfを低減するように調整制御する。
[Configuration in which only the flow rate adjusting valve V2 is provided] In the configuration in which only the side passage by the flow rate adjusting valve V2 is provided, for example, when the detected temperature value Tb is the point F ', the ideal temperature value in FIG. In order to control the flow rate to approach TX, the flow rate control valve V2 is adjusted and controlled to reduce the flow rate Wf.

【0077】この調整によって、図3の吸収液熱交換器
31の加熱側に流れる稀液2bの流量Weが増加するの
で、吸収液熱交換器31の被加熱側31Aを流れる吸収
器1からの低温の濃液2aに熱を奪われる流量Weが増
加するため、散布器201Dに送られる流量Wdの稀液
2bの温度Tbが下降して温度値TXに近付くように制
御されることになる。
By this adjustment, the flow rate We of the dilute liquid 2b flowing to the heating side of the absorption liquid heat exchanger 31 in FIG. 3 is increased, so that the absorption liquid from the absorber 1 flowing to the heated side 31A of the absorption liquid heat exchanger 31 is changed. Since the flow rate We of which heat is absorbed by the low-temperature concentrated liquid 2a increases, the temperature Tb of the rare liquid 2b having the flow rate Wd sent to the sprayer 201D is controlled to decrease and approach the temperature value TX.

【0078】また、例えば、検出した温度値TbがF″
点であったときには、流量調整弁V2の流量Wfを増加
するように調整制御すると、図3の吸収液熱交換器31
の加熱側に流れる高温の稀液2bの流量Wbが低減す
る。
Further, for example, the detected temperature value Tb is F ″.
If it is the point, if the flow rate Wf of the flow rate adjusting valve V2 is adjusted and controlled so as to increase, the absorption liquid heat exchanger 31 of FIG.
The flow rate Wb of the high temperature dilute liquid 2b flowing to the heating side of is reduced.

【0079】したがって、吸収液熱交換器31の被加熱
側31Aを流れる吸収器1からの低温の濃液2aに熱を
奪われる流量Weが低減するので、散布器201Dに送
られる流量Wdの稀液2bの温度Tbが上昇して温度値
TXに近付くように制御されることになる。
Therefore, the flow rate We taken by the low-temperature concentrated liquid 2a from the absorber 1 flowing through the heated side 31A of the absorption liquid heat exchanger 31 to remove heat is reduced, so that the flow rate Wd sent to the sprayer 201D is rare. The temperature Tb of the liquid 2b rises and is controlled to approach the temperature value TX.

【0080】〔流量調整弁V1と流量調整弁V2との両
方を設ける構成〕上記の流量調整弁V1のみ設ける構成
での動作と流量調整弁V2のみ設ける構成での動作とを
同時に並行して行う並行制御型の構成と、上記の流量調
整弁V1のみ設ける構成での動作を最大限まで行った後
に、引き続いて、流量調整弁V2のみ設ける構成での動
作を行うようにする直列制御型の構成との両方が可能で
ある。
[Structure in which both flow rate adjusting valve V1 and flow rate adjusting valve V2 are provided] The operation in the above-mentioned configuration in which only the flow rate adjusting valve V1 is provided and the operation in the configuration in which only the flow rate adjusting valve V2 is provided are simultaneously performed in parallel. A serial control type configuration in which after performing the operations in the parallel control type configuration and the configuration in which only the flow rate adjusting valve V1 is provided to the maximum, subsequently, the operation in the configuration in which only the flow rate adjusting valve V2 is provided is performed. Both are possible.

【0081】そして、これらの構成における具体的な動
作は、上記の流量調整弁V1のみ設ける構成での動作の
説明と、流量調整弁V2のみ設ける構成での動作の説明
とから容易に理解し得る動作であり、敢えて説明する必
要はないであろう。
The specific operation in these configurations can be easily understood from the description of the operation in the configuration in which only the flow rate adjusting valve V1 is provided and the operation in the configuration in which only the flow rate adjusting valve V2 is provided. It's a motion, and you probably don't need to explain it.

【0082】なお、上記の流量調整弁V1と流量調整弁
V2の流量の調整は、理想的には、上記の数式(1)〜
(6)による演算を行いながら、熱操作状態に見合うよ
うな最適値に、常に追従させるように調整制御すること
によって、最適制御を行わせることが好ましいが、制御
動作が頻繁になり過ぎて、装置の可動動作部分の寿命を
短してしまうので、実験結果では、△Tに±3°C程度
の不感帯を設けて制御する方がよい。
The flow rates of the flow rate adjusting valve V1 and the flow rate adjusting valve V2 are ideally adjusted by the above equations (1) to (1).
While performing the calculation according to (6), it is preferable to perform the optimum control by adjusting and controlling so as to always follow the optimum value suitable for the thermal operation state, but the control operation becomes too frequent, Since the life of the movable operation part of the device is shortened, it is better to control ΔT by providing a dead zone of about ± 3 ° C in the experimental results.

【0083】しかし、装置が比較的小規模で、上記の実
際の試験運転において、流量調整弁V1・流量調整弁V
2に対する調整を、手動調整した結果、その調整箇所に
固定した状態で、ほぼ目的を達し得る場合もあるので、
装置を安価に提供する場合には、こうした調整でも十分
である。
However, the apparatus is relatively small in scale, and in the above-mentioned actual test operation, the flow rate adjusting valve V1 and the flow rate adjusting valve V
As a result of the manual adjustment of the adjustment for 2, the target may be almost achieved in a state where it is fixed at the adjustment point.
Such adjustments are sufficient if the device is provided inexpensively.

【0084】上記の実施例の構成を要約すると、吸収機
能部分、例えば、吸収器1で冷媒蒸気7cを吸収させた
吸収液、例えば、濃液2aを、この吸収液2aから冷媒
蒸気7cを蒸発させるための発生機能部分、例えば、発
生器5に与える第1の経路、例えば、管路203・20
2と、上記の発生機能部分、つまり、発生器5で冷媒蒸
気7cを蒸発させた吸収液、例えば、稀液2bを上記の
吸収機能部分、つまり、吸収器1に与える第2の経路、
例えば、管路16・204とにより吸収液を循環する吸
収液循環系と、上記の第1の経路、つまり、管路203
・202と上記の第2の経路、つまり、管路16・20
4との間の熱交換を行う吸収液熱交換機能部分、例え
ば、吸収液熱交換器31とを設けた吸収式冷凍装置10
0において、
To summarize the configuration of the above-described embodiment, the absorbing function portion, for example, the absorbing liquid, for example, the concentrated liquid 2a in which the refrigerant vapor 7c is absorbed by the absorber 1, is evaporated from the absorbing liquid 2a. Generating function part for causing the generator 5, for example, a first path to be given to the generator 5, for example, the conduits 203 and 20.
2 and the above-mentioned generation function part, that is, the second path for supplying the absorption liquid obtained by evaporating the refrigerant vapor 7c in the generator 5, for example, the dilute liquid 2b, to the above-mentioned absorption function part, that is, the absorber 1.
For example, the absorption liquid circulation system that circulates the absorption liquid through the conduits 16 and 204, and the first path described above, that is, the conduit 203.
202 and the above-mentioned second path, that is, the conduits 16 and 20
4 is provided with an absorbing liquid heat exchange function part for exchanging heat with the absorbing liquid heat exchanger 31, for example.
At 0,

【0085】上記の吸収液熱交換機能部分、つまり、吸
収液熱交換機31の熱交換量を、例えば、吸収液熱交換
器31を側路する流路に設けた流量調整弁V1または流
量調整弁V2もしくはこれら両方の流量調整弁V1・V
2の流量を調整することによって、調整することによ
り、上記の吸収機能部分、つまり、吸収器1に与える吸
収液の温度Tbを所定値、例えば、理想的なF点の温度
値Txに調整する熱交換量調整手段を設ける第1の構成
を構成していることになるものである。
The heat exchange amount of the absorbing liquid heat exchange function portion, that is, the absorbing liquid heat exchanger 31, is set to, for example, the flow rate adjusting valve V1 or the flow rate adjusting valve provided in the flow path that bypasses the absorbing liquid heat exchanger 31. V2 or both flow control valves V1 and V
By adjusting the flow rate of 2, the temperature Tb of the absorbing liquid applied to the absorption function portion, that is, the absorber 1 is adjusted to a predetermined value, for example, an ideal temperature value Tx at the point F. This constitutes the first configuration in which the heat exchange amount adjusting means is provided.

【0086】また、上記の〔流量調整弁V1のみを設け
る構成〕を要約すると、この第1の構成における熱交換
量調整手段に代えて、上記の第2の経路、つまり、管路
16・204を分岐して上記の吸収液熱交換機能部分、
つまり、吸収液熱交換器31を側路する第3の経路、例
えば、管路16と管路204とを連絡する管路を設ける
とともに、この第3の経路に流量調整機能部分、例え
ば、流量調整弁V2を設ける側路手段と、
In addition, to summarize the above-mentioned [configuration in which only the flow rate adjusting valve V1 is provided], instead of the heat exchange amount adjusting means in the first configuration, the above-mentioned second path, that is, the conduits 16 and 204 are provided. Branch the above absorption liquid heat exchange function part,
That is, a third path that bypasses the absorbing liquid heat exchanger 31, for example, a conduit that connects the conduit 16 and the conduit 204 is provided, and a flow rate adjusting function portion, such as the flow rate, is provided in the third path. By-pass means for providing the regulating valve V2,

【0087】上記の流量調整機能部分、つまり、流量調
整弁V2の流量を調整して上記の吸収機能部分、つま
り、吸収器1に与える吸収液の温度Tbを所定値、例え
ば、理想的なF点の温度値Txに調整する分岐流量調整
手段とを設ける第2の構成を構成していることになるも
のである。
The above-mentioned absorption function part, that is, the temperature Tb of the absorbing liquid to be given to the absorber 1 by adjusting the flow rate of the flow rate adjusting valve V2 is set to a predetermined value, for example, the ideal F value. This constitutes a second configuration in which a branch flow rate adjusting means for adjusting the temperature value Tx at the point is provided.

【0088】また、上記の〔流量調整弁V2のみを設け
る構成〕を要約すると、上記の第1の構成における熱交
換量調整手段に代えて、上記の第1の経路、例えば、管
路203・202を分岐して上記の吸収液熱交換機能部
分、つまり、吸収液熱交換器31を側路する第3の経
路、例えば、管路203と管路202とを連絡する管路
を設けるとともに、この第3の経路に流量調整機能部
分、例えば、流量調整弁V1を設ける側路手段と、
To summarize the above-mentioned [configuration in which only the flow rate adjusting valve V2 is provided], instead of the heat exchange amount adjusting means in the above-mentioned first structure, the above-mentioned first path, for example, the conduit 203. 202 is branched to provide the above-mentioned absorption liquid heat exchange function portion, that is, a third path that bypasses the absorption liquid heat exchanger 31, for example, a pipe path that connects the pipe path 203 and the pipe path 202, A flow rate adjusting function portion, for example, a bypass means for providing a flow rate adjusting valve V1 in the third path,

【0089】上記の流量調整機能部分、つまり、流量調
整弁V1の流量を調整して上記の吸収機能部分、つま
り、吸収器1に与える吸収液の温度Tbを所定値、例え
ば、理想的なF点の温度値Txに調整する分岐流量調整
手段とを設ける第3の構成を構成していることになるも
のである。
The above flow rate adjusting function portion, that is, the flow rate of the flow rate adjusting valve V1 is adjusted to adjust the above absorption function portion, that is, the temperature Tb of the absorbing liquid applied to the absorber 1 to a predetermined value, for example, an ideal F. This constitutes the third configuration in which the branch flow rate adjusting means for adjusting the temperature value Tx at the point is provided.

【0090】O、室外熱交換器61の送風機61Bの風
量をFA、室内熱交換器62からの送出空気の温度をT
Rとして、また、暖房運転時には、室外熱交換器61の
冷却後の送出空気の温度をTC、室外熱交換器61の送
風機の風量をFB、室内熱交換器62からの送出空気の
温度をTH、関数記号をf〔〕、冷媒蒸気中の冷媒濃
度、つまり、アンモニア濃度をKとし、K≒100とし
て、それぞれの計測値から、次式によって演算により求
めることにより、代替使用することができる。
O, the air volume of the blower 61B of the outdoor heat exchanger 61 is FA, and the temperature of the air sent from the indoor heat exchanger 62 is T.
As R, and during heating operation, the temperature of the blown air after cooling the outdoor heat exchanger 61 is TC, the air volume of the blower of the outdoor heat exchanger 61 is FB, and the temperature of the blown air from the indoor heat exchanger 62 is TH. , The function symbol is f [], the refrigerant concentration in the refrigerant vapor, that is, the ammonia concentration is K, and K≈100, and the calculation can be performed from the respective measured values to obtain an alternative use.

【0091】〔冷房運転時〕 Pa=f〔TO,FA,K〕 ………… (7) Pb=f〔TR,K〕 ………… (8)[Cooling operation] Pa = f [TO, FA, K] (7) Pb = f [TR, K] (8)

【0092】〔暖房運転時〕 Pb=f〔TC,FB,K〕 ………… (7) Pa=f〔TH,K〕 ………… (8)[During heating operation] Pb = f [TC, FB, K] (7) Pa = f [TH, K] (8)

【0093】しかし、この場合にも、各圧力値は、上記
各式の関数にかかる係数値が、製作された個々の装置に
よって差異があるので、実際の試験運転により、これら
係数値を求めたものを、CPU70の作業メモリに記憶
した上で算定する必要がある。
However, also in this case, since the coefficient values applied to the functions of the above equations for each pressure value differ depending on the individual device manufactured, these coefficient values were obtained by the actual test operation. It is necessary to store things in the working memory of the CPU 70 and then calculate.

【0094】〔変形実施〕この発明は次のように変形し
て実施することを含むものである。
[Modified Implementation] The present invention includes the following modified implementation.

【0095】(1)図2のように、図5の構成に、上記
の第1〜第3の構成を適用して構成する。
(1) As shown in FIG. 2, the first to third configurations described above are applied to the configuration of FIG.

【0096】(2)図1の構成におけるポンプ64と開
閉弁301Dとを、図2のように、ポンプ64を管路2
1の分岐箇所より手前の箇所64Aに移設するととも
に、開閉弁301Dを除去して構成する。この構成の場
合、必要に応じて、ポンプ64を冷却操作時、つまり、
冷房運転時と、加温操作時、つまり、暖房運転時との両
方において運転状態する。
(2) As shown in FIG. 2, the pump 64 and the on-off valve 301D in the configuration of FIG.
It is relocated to a location 64A before the first branch location, and the on-off valve 301D is removed. In the case of this configuration, if necessary, during the cooling operation of the pump 64, that is,
The operation state is performed both during the cooling operation and during the heating operation, that is, during the heating operation.

【0097】(3)図1の構成における開閉弁301A
・301B・301C・301Dによる流路の開閉構成
を、三方弁または四方弁を用いた構成により同様の管路
接続動作または開閉動作が行えるように変更して構成
し、または、管路接続切換器63Bによる流路の切換構
成を、開閉弁または三方弁を用いた構成により同様の管
路接続動作が行えるように変更して構成する。
(3) Open / close valve 301A in the configuration of FIG.
-The open / closed structure of the flow path by 301B / 301C / 301D is modified by a structure using a three-way valve or a four-way valve so that the same pipe line connection operation or opening / closing operation can be performed, or a pipe line connection switching device The flow path switching structure by 63B is modified by a structure using an on-off valve or a three-way valve so that the same pipe connection operation can be performed.

【0098】(4)図1の構成における熱交換管201
X・205A・205Dのうちの任意のものを除去して
構成する。
(4) Heat exchange tube 201 in the configuration of FIG.
It is configured by removing any of X. 205A and 205D.

【0099】(5)上記(1)の構成において、熱交換
管201B・201X・205A・205D・205E
のうちの任意のものを除去して構成する。
(5) In the configuration of (1) above, the heat exchange tubes 201B, 201X, 205A, 205D, 205E.
Remove and configure any of the above.

【0100】[0100]

【発明の効果】この発明によれば、以上のように、吸収
液熱交換機能部分の熱交換量を調整することにより、発
生機能部分から吸収機能部分に入る稀液の温度を変化さ
せて理想的なGAXサイクルに近い状態で熱操作を行わ
せることができるので、装置全体でみた成績係数を向上
し得る。
As described above, according to the present invention, by adjusting the heat exchange amount of the absorbing liquid heat exchanging function portion, the temperature of the dilute liquid entering the absorbing function portion from the generating function portion can be changed to ideal. Since the thermal operation can be performed in a state close to a typical GAX cycle, the coefficient of performance of the entire apparatus can be improved.

【0101】また、吸収液熱交換機能部分の被加熱側を
側路して通る濃液の流量を調整することにより、吸収液
熱交換機能部分を加熱側を通る稀液の温度を変化させ、
または、吸収液熱交換機能部分の加熱側を側路して通る
稀液の流量を調整することにより、吸収液熱交換機能部
分の加熱側を通る稀液の温度を変化させて、理想的なG
AXサイクルに近い状態で熱操作を行わせることができ
るので、装置全体でみた成績係数を向上し得るなどの特
長がある。
Further, by adjusting the flow rate of the concentrated liquid passing through the heated side of the absorbing liquid heat exchanging function part, the temperature of the dilute liquid passing through the absorbing liquid heat exchanging function part on the heating side is changed,
Alternatively, by adjusting the flow rate of the dilute liquid passing through the heating side of the absorption liquid heat exchange function part by-passing, the temperature of the dilute liquid passing through the heating side of the absorption liquid heat exchange function part is changed to ideally G
Since the thermal operation can be performed in a state close to the AX cycle, there is a feature that the coefficient of performance of the entire apparatus can be improved.

【図面の簡単な説明】[Brief description of drawings]

図面中、図1〜図4はこの発明の実施例を、また、図5
・図6は従来技術を示し、各図の内容は次のとおりであ
る。
1 to 4 show an embodiment of the present invention, and FIG.
-Fig. 6 shows a conventional technique, and the contents of each diagram are as follows.

【図1】全体構成ブロック図FIG. 1 is an overall configuration block diagram.

【図2】全体構成ブロック図[Fig. 2] Overall configuration block diagram

【図3】要部構成ブロック図FIG. 3 is a block diagram of a main configuration

【図4】要部動作特性線図[Fig. 4] Main part operation characteristic diagram

【図5】全体構成ブロック図[FIG. 5] Overall configuration block diagram

【図6】全体構成ブロック図FIG. 6 is an overall configuration block diagram.

【図7】要部動作特性線図FIG. 7 is an operation characteristic diagram of main parts.

【符号の説明】[Explanation of symbols]

1 吸収器 1A 冷却管 2a 濃液 2b 稀液 3 ポンプ 4 管路 5 発生器 6 加熱器 7a 冷媒蒸気 7c 冷媒蒸気 8 管路 9 減圧器 10 管路 11 凝縮器 11a 被加熱側 11A 凝縮器 11Aa 被加熱側 12 管路 13 減圧器 14 蒸発器 14a 被冷却側 14A 蒸発器 14Aa 被冷却側 15 管路 17 管路 18 管路 20 管路 20A 管路 21 管路 22 管路 23 管路 24 管路 25 管路 31 吸収液熱交換器 31A 被加熱側 35a 第1の熱操作流体 35b 第2の熱操作流体 35c 第3の熱操作流体 61 室外熱交換器 61A 放熱側 61B 送風機 62 室内熱交換器 62A 冷房時/被冷却側・暖房時/被加熱側 63 管路接続切換器 63B 管路接続切換器 64 ポンプ 65 ポンプ 70 CPU 80 設定操作部 100 吸収式冷凍装置 201A 冷却管 201B 熱交換管 201C 熱交換管 201D 散布管 201X 熱交換管 202 管路 203 管路 205A 熱交換管 205C 散布管 205D 熱交換管 205E 熱交換管 206 精溜部 214 予冷用熱交換器 214A 被吸熱側 215 減圧器 216 逆止弁 220 逆止弁 221 減圧器 222 逆止弁 260 ポンプ 270 発生器吸収器間熱交換部 271 襷掛け管路 272 液溜器 301A 開閉弁 301B 開閉弁 301C 開閉弁 301D 開閉弁 1 Absorber 1A Cooling pipe 2a Concentrated liquid 2b Dilute liquid 3 Pump 4 Pipeline 5 Generator 6 Heater 7a Refrigerant vapor 7c Refrigerant vapor 8 Pipeline 9 Pressure reducer 10 Pipeline 11 Condenser 11a Heated side 11A Condenser 11Aa Covered Heating side 12 Pipe 13 Decompressor 14 Evaporator 14a Cooled side 14A Evaporator 14Aa Cooled side 15 Pipeline 17 Pipeline 18 Pipeline 20 Pipeline 20A Pipeline 21 Pipeline 22 Pipeline 23 Pipeline 24 Pipeline 25 Pipeline 31 Absorbing liquid heat exchanger 31A Heated side 35a First heat operating fluid 35b Second heat operating fluid 35c Third heat operating fluid 61 Outdoor heat exchanger 61A Radiating side 61B Blower 62 Indoor heat exchanger 62A Cooling Time / Cooled side / Heating / Heated side 63 Pipe line connection switcher 63B Pipe line connection switcher 64 Pump 65 Pump 70 CPU 80 Setting operation unit 100 Absorption Refrigerator 201A Cooling pipe 201B Heat exchange pipe 201C Heat exchange pipe 201D Dispersion pipe 201X Heat exchange pipe 202 Pipe line 203 Pipe line 205A Heat exchange pipe 205C Dispersion pipe 205D Heat exchange pipe 205E Heat exchange pipe 206 Fractionation unit 214 Heat exchange for pre-cooling Device 214A Heat-absorbed side 215 Pressure reducer 216 Check valve 220 Check valve 221 Pressure reducer 222 Check valve 260 Pump 270 Generator Heat exchanger between absorbers 271 Folding pipe line 272 Liquid reservoir 301A Open / close valve 301B Open / close valve 301C Open / close valve 301D Open / close valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 播磨 和彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 加藤 具彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuhiko Harima 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Tomohiko Kato 2-chome, Keihan-hondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸収機能部分で冷媒蒸気を吸収させた吸
収液を、前記吸収液から冷媒蒸気を蒸発させるための発
生機能部分に与える第1の経路と、前記発生機能部分で
前記冷媒蒸気を蒸発させた吸収液を前記吸収機能部分に
与える第2の経路とにより前記吸収液を循環する吸収液
循環系と、前記第1の経路と前記第2の経路との間の熱
交換を行う吸収液熱交換機能部分とを設けた吸収式冷凍
装置であって、 前記吸収液熱交換機能部分の熱交換量を調整することに
より、前記吸収機能部分に与える吸収液の温度を所定値
に調整する熱交換量調整手段を具備することを特徴とす
る吸収式冷凍装置。
1. A first path for supplying an absorbing liquid, which has absorbed a refrigerant vapor in an absorbing functional portion, to a generating functional portion for evaporating the refrigerant vapor from the absorbing liquid, and a refrigerant path in the generating functional portion. An absorption liquid circulation system that circulates the absorption liquid by a second path that gives the evaporated absorption liquid to the absorption function portion, and absorption that performs heat exchange between the first path and the second path. An absorption type refrigeration system provided with a liquid heat exchange function part, wherein the temperature of the absorption liquid given to the absorption function part is adjusted to a predetermined value by adjusting the heat exchange amount of the absorption liquid heat exchange function part. An absorption type refrigeration system comprising a heat exchange amount adjusting means.
【請求項2】 吸収機能部分で冷媒蒸気を吸収させた吸
収液を、前記吸収液から冷媒蒸気を蒸発させるための発
生機能部分に与える第1の経路と、前記発生機能部分で
前記冷媒蒸気を蒸発させた吸収液を前記吸収機能部分に
与える第2の経路とにより前記吸収液を循環する吸収液
循環系と、前記第1の経路と前記第2の経路との間の熱
交換を行う吸収液熱交換機能部分とを設けた吸収式冷凍
装置であって、 前記第2の経路を分岐して前記吸収液熱交換機能部分を
側路する第3の経路を設けるとともに、前記第3の経路
に流量調整機能部分を設ける側路手段と、 前記流量調整機能部分の流量を調整することにより、前
記吸収機能部分に与える吸収液の温度を所定値に調整す
る分岐流量調整手段とを具備することを特徴とする吸収
式冷凍装置。
2. A first path for supplying the absorbing liquid, which has absorbed the refrigerant vapor in the absorbing functional portion, to the generating functional portion for evaporating the refrigerant vapor from the absorbing liquid; and the refrigerant vapor in the generating functional portion. An absorption liquid circulation system that circulates the absorption liquid by a second path that gives the evaporated absorption liquid to the absorption function portion, and absorption that performs heat exchange between the first path and the second path. An absorption type refrigeration system provided with a liquid heat exchange function part, wherein a third route is provided to branch the second route to bypass the absorbed liquid heat exchange function part, and the third route. And a branch flow rate adjusting means for adjusting the flow rate of the flow rate adjusting function section to adjust the temperature of the absorbing liquid applied to the absorbing function section to a predetermined value. An absorption type refrigerating device.
【請求項3】 吸収機能部分で冷媒蒸気を吸収させた吸
収液を、前記吸収液から冷媒蒸気を蒸発させるための発
生機能部分に与える第1の経路と、前記発生機能部分で
前記冷媒蒸気を蒸発させた吸収液を前記吸収機能部分に
与える第2の経路とにより前記吸収液を循環する吸収液
循環系と、前記第1の経路と前記第2の経路との間の熱
交換を行う吸収液熱交換機能部分とを設けた吸収式冷凍
装置であって、 前記第1の経路を分岐して前記吸収液熱交換機能部分を
側路する第3の経路を設けるとともに、前記第3の経路
に流量調整機能部分を設ける側路手段と、 前記流量調整機能部分の流量を調整することにより、前
記吸収機能部分に与える吸収液の温度を所定値に調整す
る分岐流量調整手段とを具備することを特徴とする吸収
式冷凍装置。
3. A first path for supplying the absorbing liquid, which has absorbed the refrigerant vapor in the absorbing functional portion, to the generating functional portion for evaporating the refrigerant vapor from the absorbing liquid; and the refrigerant vapor in the generating functional portion. An absorption liquid circulation system that circulates the absorption liquid by a second path that gives the evaporated absorption liquid to the absorption function portion, and absorption that performs heat exchange between the first path and the second path. An absorption type refrigeration system provided with a liquid heat exchange function part, wherein a third route is provided to branch the first route to bypass the absorbed liquid heat exchange function part, and the third route. And a branch flow rate adjusting means for adjusting the temperature of the absorbing liquid applied to the absorbing function section to a predetermined value by adjusting the flow rate of the flow rate adjusting function section. An absorption type refrigerating device.
JP7034536A 1995-01-31 1995-01-31 Absorption refrigerating equipment Pending JPH08200873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7034536A JPH08200873A (en) 1995-01-31 1995-01-31 Absorption refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7034536A JPH08200873A (en) 1995-01-31 1995-01-31 Absorption refrigerating equipment

Publications (1)

Publication Number Publication Date
JPH08200873A true JPH08200873A (en) 1996-08-06

Family

ID=12417015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7034536A Pending JPH08200873A (en) 1995-01-31 1995-01-31 Absorption refrigerating equipment

Country Status (1)

Country Link
JP (1) JPH08200873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679614A (en) * 2011-12-22 2012-09-19 河南科技大学 Solution self-cooled rectified ammonia water absorption refrigerating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679614A (en) * 2011-12-22 2012-09-19 河南科技大学 Solution self-cooled rectified ammonia water absorption refrigerating system
CN102679614B (en) * 2011-12-22 2014-05-07 河南科技大学 Solution self-cooled rectified ammonia water absorption refrigerating system

Similar Documents

Publication Publication Date Title
KR20020091075A (en) Integrated aqua-ammonia chiller/heater
CA2426526A1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JPH08200873A (en) Absorption refrigerating equipment
JP4179799B2 (en) Absorption refrigerator
JPH08271080A (en) Absorption refrigeration apparatus
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP4330522B2 (en) Absorption refrigerator operation control method
JP3111205B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP3182308B2 (en) Absorption refrigeration equipment
JPH06323677A (en) Absorptive refrigerator
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPH0942796A (en) Absorption freezer device
JP2904659B2 (en) Absorption heat pump equipment
JPH0744917Y2 (en) Absorption chiller / heater device
JPH07248161A (en) Absorption type cooler/heater and hot water supplying apparatus
JP2001208443A (en) Absorption freezer
JPH10132421A (en) Absorption type refrigerating device
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2005106408A (en) Absorption type freezer
JPH0355741B2 (en)
JP3133538B2 (en) Absorption refrigerator
JP2005326089A (en) Absorption refrigerating machine
WO2004046622A1 (en) Absorption refrigerating machine
JPS6025708B2 (en) absorption refrigeration equipment
JPH0480312B2 (en)