JP3182308B2 - Absorption refrigeration equipment - Google Patents

Absorption refrigeration equipment

Info

Publication number
JP3182308B2
JP3182308B2 JP01431995A JP1431995A JP3182308B2 JP 3182308 B2 JP3182308 B2 JP 3182308B2 JP 01431995 A JP01431995 A JP 01431995A JP 1431995 A JP1431995 A JP 1431995A JP 3182308 B2 JP3182308 B2 JP 3182308B2
Authority
JP
Japan
Prior art keywords
heat exchange
function part
cooling
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01431995A
Other languages
Japanese (ja)
Other versions
JPH08200872A (en
Inventor
和雄 野村
智徳 田村
茂 村山
具彦 加藤
和彦 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01431995A priority Critical patent/JP3182308B2/en
Publication of JPH08200872A publication Critical patent/JPH08200872A/en
Application granted granted Critical
Publication of JP3182308B2 publication Critical patent/JP3182308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷媒剤を混入した吸
収液を用いる吸収ヒートポンプ作用によって、所要の熱
交換動作を行うことにより目的とする熱操作流体を冷却
・加温するようにした吸収冷凍機・吸収冷温水機などの
吸収式冷凍機(この発明において吸収式冷凍装置とい
う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption apparatus in which a desired heat exchange fluid is cooled and heated by performing a required heat exchange operation by an absorption heat pump operation using an absorption liquid mixed with a refrigerant. The present invention relates to an absorption refrigerator (such as an absorption refrigerator in the present invention) such as a refrigerator or an absorption chiller / heater.

【0002】[0002]

【従来の技術】この種の装置において、冷媒剤を比較的
低温を蒸発温度とする流体、例えば、NH3、つまり、
アンモニアとし、この冷媒に対して比較的高温を蒸発温
度とする安価で無害な流体、例えば、水を混入したもの
を吸収液として用いる吸収式冷凍機が周知である。
2. Description of the Related Art In an apparatus of this type, a fluid having a relatively low temperature as an evaporation temperature, such as NH3, is used.
2. Description of the Related Art Absorption refrigerators that use ammonia as an absorbent and a cheap and harmless fluid having a relatively high evaporation temperature with respect to the refrigerant, for example, a mixture of water are known.

【0003】また、上記の吸収液を加熱して上記の冷媒
を蒸発するための発生器と、上記の冷媒を上記の水に吸
収するための吸収器との間に、所要の熱交換を行わせる
機能を設ける機能、つまり、発生器吸収器間熱交換機能
(Generator−Absorber Heat
Exchanger)を設けて、熱操作効率を向上させ
る構成をもつ吸収式冷凍機が周知であり、この発生器吸
収器間熱交換機能をGAX機能と言っている。
[0003] Further, required heat exchange is performed between a generator for heating the absorbing liquid to evaporate the refrigerant and an absorber for absorbing the refrigerant in the water. Function, ie, a heat exchange function between generator and absorber (Generator-Absorber Heat)
An absorption refrigerator having a configuration for improving heat operation efficiency by providing an exchanger is well known, and the heat exchange function between the generator and the absorber is referred to as a GAX function.

【0004】そして、このGAX機能の動作と効果につ
いては、吸収器内に設けた管路と吸収器内に設けた管路
とを襷掛け状に接続した襷掛管路によりGAX機能を行
わせる構成が、例えば、ASME,AES,VOL.
8,1988,98頁におけるFig.2のGener
ator−Absorber Heat Exchan
ger Unit(以下、第1従来技術という)により
開示されている。
[0004] Regarding the operation and effect of the GAX function, the GAX function is performed by a crossed pipe in which a pipe provided in the absorber and a pipe provided in the absorber are connected in a crossed manner. If the configuration is, for example, ASME, AES, VOL.
8, 1988, p. 98. 2 Gener
ator-Absorber Heat Exchan
ger Unit (hereinafter, referred to as a first prior art).

【0005】さらに、こうしたGAX機能をもつ吸収式
冷凍機の具体的な構成、つまり、図4・図5のような構
成が、本願出願人による先行出願特願平5−13416
2にもとづく特開平6−323676(以下、第2従来
技術という)によって開示されている。
Further, a specific configuration of such an absorption refrigerator having a GAX function, that is, a configuration as shown in FIGS. 4 and 5 is disclosed in Japanese Patent Application No. Hei.
2 is disclosed in Japanese Patent Laid-Open No. 6-323676 (hereinafter, referred to as a second prior art).

【0006】まず、図4の構成において、吸収液の循環
系を、発生器5の底部に溜まっている冷媒濃度の低い稀
液2bを起点にして説明すると、稀液2bは、発生器5
内部と吸収器1内部との圧力差によって熱交換管205
A→吸収液熱交換器31→減圧器9の経路を経て、散布
管201Dから散布され、熱交換管201X・熱交換管
201B・冷却管201Aに沿って滴下しながら冷媒蒸
気7cを吸収して濃液2aになり、吸収器1の底部に溜
まる。
First, in the configuration of FIG. 4, the circulating system of the absorbing liquid will be described starting from the diluted liquid 2b having a low refrigerant concentration accumulated at the bottom of the generator 5.
Due to the pressure difference between the inside and the inside of the absorber 1, the heat exchange tube 205
A → Absorptive liquid heat exchanger 31 → Scattered from scatter pipe 201D via the path of pressure reducer 9, absorbs refrigerant vapor 7c while dripping along heat exchange pipe 201X / heat exchange pipe 201B / cooling pipe 201A. It becomes a concentrated liquid 2 a and accumulates at the bottom of the absorber 1.

【0007】濃液2aは、ポンプ3により加圧されて、
熱交換管201B→熱交換管205D→吸収液熱交換器
31→熱交換管201Xを通り、この間に、熱交換管2
01Bでは冷媒蒸気7cの熱と、散布管201Dから散
布された稀液2bが冷媒蒸気7cを吸収する際に生ずる
熱とを奪った後に、熱交換管205Dでは冷媒蒸気7a
の熱を奪い、次いで、吸収液熱交換器31の被加熱側を
経ることにより、さらに予熱された後に、熱交換管20
1Xでは、再び、冷媒蒸気7cの熱と、散布された稀液
2bが冷媒蒸気7cを吸収する際に生ずる熱とを奪って
加熱された後に散布管205Cから散布され、熱交換管
205Aに沿って滴下しながら、ある程度の冷媒蒸気7
aを蒸発させた後、発生器5の底部に稀液2bとして溜
まるように循環する。
The concentrated liquid 2a is pressurized by a pump 3,
The heat exchange tube 201B → the heat exchange tube 205D → the absorbent heat exchanger 31 → the heat exchange tube 201X, and the heat exchange tube 2
01B deprives the heat of the refrigerant vapor 7c and the heat generated when the diluted liquid 2b sprayed from the spray tube 201D absorbs the refrigerant vapor 7c, and then the refrigerant vapor 7a in the heat exchange tube 205D.
After being preheated by passing through the heated side of the absorbent heat exchanger 31,
In the 1X, the heat of the refrigerant vapor 7c and the heat generated when the sprayed diluted liquid 2b absorbs the refrigerant vapor 7c are heated again, and then sprayed from the spray pipe 205C, and then spread along the heat exchange pipe 205A. Some amount of refrigerant vapor 7
After evaporating a, the generator 5 is circulated so as to collect as a dilute solution 2b at the bottom.

【0008】したがって、熱交換管201Bと熱交換管
201Xとは、吸収器1側に存在する熱を、発生器5で
の冷媒蒸気発生に要する加熱を補助するように利用した
GAX機能部分を構成していることになる。
[0008] Therefore, the heat exchange pipe 201B and the heat exchange pipe 201X constitute a GAX function part that uses the heat existing on the absorber 1 side to assist the heating required for the generation of the refrigerant vapor in the generator 5. You are doing.

【0009】次に、冷媒の循環系を発生器5の冷媒蒸気
7aを起点として説明すると、稀液2bを加熱器6で加
熱することにより発生した冷媒蒸気7aは、水蒸気成分
を多分に含んでいるので、気液接触作用、つまり、吸収
液の表面に冷媒蒸気を接触させたときに生ずる熱交換、
分離および吸収の作用により冷媒蒸気7a中の冷媒濃
度、つまり、NH3の濃度を高めるとともに剰余熱を熱
交換管205Dで奪う精溜作用を行わせ、さらに、熱交
換管205Eで熱を奪うことにより、冷媒蒸気7aの一
部を凝縮、つまり、熱交換管に接している部分の冷媒蒸
気を凝縮して得られた濃度の高い吸収液と冷媒蒸気7a
との気液接触作用によって冷媒蒸気7a中の冷媒濃度を
次第に高める分溜作用を行わせた後に、凝縮器11・減
圧器13・蒸発器14を経て吸収器1に送り込まれ、散
布管201Dから散布された稀液2bに吸収されて濃液
2aになり、上記の吸収液循環系と合流して散布管20
5Cから散布され、加熱器6により加熱されて、冷媒蒸
気7aになるように循環する。
Next, the circulation system of the refrigerant will be described with the refrigerant vapor 7a of the generator 5 as a starting point. The refrigerant vapor 7a generated by heating the rare liquid 2b by the heater 6 contains a large amount of water vapor components. Gas-liquid contact action, that is, heat exchange that occurs when refrigerant vapor contacts the surface of the absorbent,
By increasing the concentration of the refrigerant in the refrigerant vapor 7a, that is, the concentration of NH3, by the action of separation and absorption, and performing a rectifying action of removing the residual heat by the heat exchange tube 205D, and further removing the heat by the heat exchange tube 205E. , A portion of the refrigerant vapor 7a is condensed, that is, a highly concentrated absorbent obtained by condensing a portion of the refrigerant vapor in contact with the heat exchange pipe and the refrigerant vapor 7a
After performing the fractionation effect of gradually increasing the refrigerant concentration in the refrigerant vapor 7a by the gas-liquid contact action with the liquid, the refrigerant is sent to the absorber 1 via the condenser 11, the decompressor 13, and the evaporator 14, and is discharged from the spray pipe 201D. The diluted liquid 2b is absorbed into the concentrated liquid 2a, and merges with the above-described absorbent circulating system to form the spray pipe 20.
Sprayed from 5C, heated by the heater 6 and circulated to become the refrigerant vapor 7a.

【0010】ここで、管路10を経て凝縮器11に入っ
た冷媒蒸気7aは、被加熱側11Aを通る第1の熱操作
流体35a、例えば、水に熱を与えて放熱し、凝縮して
冷媒液7bになった後に、管路12を経て、減圧器13
に入る。なお、各減圧器9・13は、例えば、減圧弁で
構成してある。
Here, the refrigerant vapor 7a that has entered the condenser 11 via the pipe 10 gives heat to a first heat-manipulating fluid 35a, for example, water, which passes through the heated side 11A, radiates heat, and condenses. After having become the refrigerant liquid 7b, a pressure reducer 13
to go into. Each of the decompressors 9 and 13 is configured by, for example, a pressure reducing valve.

【0011】そして、減圧器13で減圧した冷媒液7b
は、蒸発器14に入り、蒸発器14の被冷却側14Aを
通る第2の熱操作流体35b、例えば、水から熱を奪っ
て蒸発し、冷媒蒸気7cになった後に、管路15を経
て、吸収器1に戻るという経路を経ることにより、管路
20・21・22・23を通る第1の熱操作流体35a
と、管路24・25を通る第2の熱操作流体35bと
に、所要の熱操作を与えるようにしてある。
Then, the refrigerant liquid 7b depressurized by the decompressor 13
Enters the evaporator 14, passes through the cooled side 14A of the evaporator 14, evaporates by removing heat from water, for example, water, and evaporates to form the refrigerant vapor 7c. Return to the absorber 1, the first heat operation fluid 35a passing through the pipes 20, 21, 22, 23
And the second thermal operation fluid 35b passing through the conduits 24 and 25 is provided with a required thermal operation.

【0012】次に、管路20・21・22・23・24
・25に接続された上方の部分にある室外熱交換器61
と室内熱交換器62とによって循環される第1の熱操作
流体35aと第2の熱操作流体35bとの循環系につい
て説明すると、室外熱交換器61と室内熱交換器62と
は、管路接続切換器63によって、接続経路を変更でき
るようになっており、ポンプ64は凝縮器11の被加熱
側11Aを通る第1の熱操作流体35a、例えば、水の
循環を促進するためのポンプ、ポンプ65は蒸発器14
の被冷却側14Aを通る第2の熱操作流体35b、例え
ば、水の循環を促進するためのポンプである。
Next, pipes 20, 21, 22, 23, 24
The outdoor heat exchanger 61 in the upper part connected to 25
The circulation system of the first heat operation fluid 35a and the second heat operation fluid 35b circulated by the heat exchanger 62 and the indoor heat exchanger 62 will be described. The outdoor heat exchanger 61 and the indoor heat exchanger 62 The connection switch 63 allows the connection path to be changed, and the pump 64 includes a first heat operation fluid 35 a passing through the heated side 11 A of the condenser 11, for example, a pump for promoting circulation of water, Pump 65 is the evaporator 14
Is a pump for promoting the circulation of the second heat operation fluid 35b, for example, water passing through the cooled side 14A.

【0013】そして、吸収器1の冷却管201Aに第1
の熱操作流体35aを与える管路20・21と、凝縮器
11の被加熱側11Aに第1の熱操作流体35aを与え
る管路22・23と、蒸発器14の被冷却側14Aに第
2の熱操作流体35bを与える管路24・25とに、目
的の加温・冷却を行う対象となる熱操作流体、例えば、
暖房用・冷房用の水と、吸熱・放熱のための流体、例え
ば、フィン付ラジエータなどを通って吸熱・放熱した水
などを与えるように構成してある。
The first cooling pipe 201A of the absorber 1
Pipes 20 and 21 for supplying the first heat operation fluid 35a to the heated side 11A of the condenser 11, and second pipes 22 and 23 for the first heat operation fluid 35a of the evaporator 14. And the pipes 24 and 25 that supply the heat-manipulating fluid 35b to the heat-manipulating fluid to be subjected to the desired heating and cooling, for example,
It is configured to supply water for heating / cooling and a fluid for heat absorption / dissipation, for example, water absorbed / dissipated through a radiator with fins.

【0014】管路接続切換器63は、8つの管路を図に
実線で示した接続経路と点線で示した接続経路とに切り
換える切換弁であり、8つの管路を切り換えるので、通
称、八方弁とも呼ばれており、CPU70からの制御信
号にもとづいて動作する電動アクチェータにより切換軸
を操作して切換動作するものである。
The pipeline connection switch 63 is a switching valve for switching eight pipelines between a connection route shown by a solid line and a connection route shown by a dotted line, and switches eight pipelines. Also called a valve, the switching operation is performed by operating a switching axis by an electric actuator that operates based on a control signal from the CPU 70.

【0015】この実線で示す経路による切換接続によっ
て、管路20→冷却管201A→管路21→管路22→
凝縮器11の被加熱側11A→管路23→管路接続切換
器63→室外熱交換器61→管路接続切換器63→ポン
プ64を経て管路20に戻るという循環路により、第1
の熱操作流体35aを循環しながら、室外熱交換器61
の放熱側61Aに送風機61Bなどで室外の空気を強制
的に与えて放熱動作するようにした冷却放熱経路と、管
路24→蒸発器14の被冷却側14A→管路25→管路
接続切換器63→室内熱交換器62→管路接続切換器6
3→ポンプ65を経て管路24に戻るという循環路によ
り、第2の熱操作流体35bを循環しながら、室内熱交
換器62の被冷却側62Aに循環用の送風機62Bなど
で、室内の空気を強制的に与えて室内の空気を冷却動作
するようにした冷却放熱経路とを形成することにより、
熱操作流体による冷却操作、つまり、冷房運転の場合の
循環形態を構成する。
By the switching connection along the path shown by the solid line, the pipe 20 → the cooling pipe 201A → the pipe 21 → the pipe 22 →
By the circulation path of the heated side 11A of the condenser 11 → the pipe 23 → the pipe connection switch 63 → the outdoor heat exchanger 61 → the pipe connection switch 63 → the return to the pipe 20 via the pump 64, the first
While circulating the thermal operation fluid 35a of the outdoor heat exchanger 61
And a cooling heat radiation path forcibly supplying outdoor air to the heat radiation side 61A with a blower 61B or the like to perform a heat radiation operation, and a line 24 → a cooled side 14A of the evaporator 14 → a line 25 → a line connection switch. Unit 63 → indoor heat exchanger 62 → pipeline connection switch 6
3 → return to the pipeline 24 via the pump 65, while circulating the second heat-manipulating fluid 35b, and circulating air to the cooled side 62A of the indoor heat exchanger 62 by a circulating blower 62B or the like. To form a cooling heat radiation path that forcibly gives
The cooling operation by the heat operation fluid, that is, the circulation mode in the cooling operation is configured.

【0016】また、点線で示す経路による切換接続によ
って、管路20→冷却管201A→管路21→管路22
→凝縮器11の被加熱側11A→管路接続切換器63→
室内熱交換器62→管路接続切換器63→ポンプ64を
経て管路20に戻るという循環路により、第1の熱操作
流体35aを循環しながら、室内熱交換器62の被加熱
側62Aに室内の空気を強制的に与えて室内の空気を加
温動作するようにした加温放熱経路と、管路24→蒸発
器14の被冷却側14A→管路25→管路接続切換器6
3→室外熱交換器61→管路接続切換器63→ポンプ6
5を経て管路24に戻るという循環路により、第2の熱
操作流体35bを循環しながら、室外熱交換器61の吸
熱側61Aに送風機61Bなどで室外の空気を強制的に
与えて吸熱動作するようにした吸熱経路とを形成するこ
とにより、熱操作流体の加温操作、つまり、暖房運転の
場合の循環形態を構成する。
Further, by the switching connection along the path indicated by the dotted line, the pipe 20 → the cooling pipe 201A → the pipe 21 → the pipe 22
→ Heated side 11A of condenser 11 → Pipe line connection switch 63 →
By the circulation path of the indoor heat exchanger 62 → the pipeline connection switching device 63 → the return to the pipeline 20 via the pump 64, the first heat operation fluid 35a is circulated to the heated side 62A of the indoor heat exchanger 62. A heating radiating path for forcibly supplying room air to heat the room air, and a pipe line 24 → a cooled side 14A of the evaporator 14 → pipe 25 → pipe connection switch 6
3 → Outdoor heat exchanger 61 → Pipe connection switch 63 → Pump 6
5, the outdoor heat exchanger 35 is forcibly supplied with outdoor air by a blower 61B or the like to the heat absorption side 61A of the outdoor heat exchanger 61 while circulating the second heat operation fluid 35b by the circulation path returning to the pipe line 24. By forming the heat absorption path so as to perform the heating operation of the heat operation fluid, that is, a circulation form in a heating operation is configured.

【0017】こうした熱操作流体の冷却操作または加温
操作の制御はCPU70の各部制御信号によって行われ
る。そして、この制御は、所要の各部の動作状態、例え
ば、温度などを検出した各部検出信号と、動作条件など
を設定する設定操作部80からの設定信号とをCPU7
0に与え、CPU70で所要の制御処理を行って得られ
る各部制御信号により、加熱器6、管路接続切換器6
3、各ポンプ3・64・65などの動作を制御するよう
に構成してある。
The control of the cooling operation or the heating operation of the heat operation fluid is performed by control signals of the respective parts of the CPU 70. This control is performed by the CPU 7 by detecting the operation state of each required part, for example, a detection signal of each part detecting the temperature and the like, and a setting signal from the setting operation part 80 for setting the operation conditions and the like.
0, and a control signal obtained by performing necessary control processing in the CPU 70, the heater 6, the pipe connection switch 6
3. It is configured to control the operation of each of the pumps 3, 64, 65 and the like.

【0018】次に、図5の構成において、図4の構成に
対する主な相違点は、吸収器1の冷却管201Aに代え
て、吸収器1とは別個に設けた第2の吸収器207の熱
交換管207Aと第3の吸収器217とを設けるととも
に、冷却管201A内を通る第1の熱操作流体35aの
循環に代えて、管路10の冷媒蒸気7aから管路15の
冷媒蒸気7cを得るまでの間の冷媒の循環を用いるよう
に変更することにより、装置の冷却操作の操作時、例え
ば、冷房動作状態時には、外気によって冷却される空冷
の第3の吸収器217により管路15の冷媒蒸気7cと
管路4Aの吸収液2aとを冷却しながら吸収させて得た
濃液2cを熱交換管201Xに与え、また、装置の加温
操作の操作時、例えば、暖房動作状態時には、第2の熱
操作流体35bの液冷による第2の吸収器207により
管路15の冷媒蒸気7cと管路4Cの吸収液2aとを冷
却しながら吸収させて得た濃液2cを熱交換管201X
に与えるように構成しているものである。
Next, in the configuration of FIG. 5, a main difference from the configuration of FIG. 4 is that the cooling pipe 201A of the absorber 1 is replaced with a second absorber 207 provided separately from the absorber 1. A heat exchange pipe 207A and a third absorber 217 are provided, and instead of the circulation of the first heat operation fluid 35a passing through the cooling pipe 201A, the refrigerant vapor 7a in the pipe 10 to the refrigerant vapor 7c in the pipe 15 are replaced. In the operation of the cooling operation of the apparatus, for example, in a cooling operation state, the air-cooled third absorber 217 cooled by the outside air makes the line 15 The concentrated liquid 2c obtained by absorbing the refrigerant vapor 7c and the absorbent 2a in the pipe 4A while cooling is supplied to the heat exchange pipe 201X, and at the time of a heating operation of the apparatus, for example, at the time of a heating operation state. Of the second thermal operation fluid 35b Cold by the second absorber 207, via line 15 the refrigerant vapor 7c and the pipe 4C of the absorbent 2a and concentrated solution 2c heat exchange tubes 201X obtained by absorbing with cooling of
Is provided.

【0019】また、管路接続の切換には、管路接続切換
器63に代えて、2つの四方弁による管路接続切換器6
3Aと管路接続切換器63Bに分けた切換によって構成
してある。そして、各流体の順路は、図5の下方に示す
ように、白抜きの矢印で示す経路が冷却操作の操作時、
つまり、冷房動作状態時における順路であり、二重の矢
印で示す経路が加温操作の操作時、つまり、暖房房動作
状態時における順路であり、また、黒塗りの矢印で示す
経路が両方の操作時に共通する順路である。なお、CP
U70と設定操作部80は、図示を省略してある。
In switching the pipeline connection, instead of the pipeline connection switch 63, the pipeline connection switch 6 using two four-way valves is used.
3A and a pipeline connection switch 63B. Then, as shown in the lower part of FIG. 5, the route indicated by the white arrow indicates the route of each fluid when the cooling operation is performed.
In other words, the route is the route in the cooling operation state, the route indicated by the double arrow is the route in the heating operation, that is, the route in the heating operation state, and the route indicated by the black arrow is both routes. This is a common route during operation. Note that CP
The illustration of the U70 and the setting operation unit 80 is omitted.

【0020】まず、冷却操作の操作時、つまり、冷房動
作状態時における具体的な吸収液の循環系と冷媒の循環
系とを説明すると、管路接続切換器63A・63Bは、
各管路を実線で示す接続状態になっており、各ポンプ3
・65・210は運転状態、開閉弁208は閉路状態、
開閉弁209は開路状態にしてある。
First, a specific description will be given of the circulating system of the absorbent and the circulating system of the refrigerant in the cooling operation, that is, in the cooling operation state.
Each pipe line is connected by a solid line, and each pump 3
65/210 is operating state, on-off valve 208 is closed state,
The on-off valve 209 is open.

【0021】そして、発生器5の冷媒蒸気7aは管路1
0から管路接続切換器63B→逆止弁211→凝縮器6
1→逆止弁212→予冷用熱交換器214→液溜器26
0→減圧器215→逆止弁216→蒸発器14→逆止弁
218→管路切換接続器63B→予冷用熱交換器214
の被吸熱側→管路15の経路を通り、ここで、管路15
の冷媒蒸気7cは、管路15から第1の吸収器1に行く
管路15Aと、管路15から第2の吸収器207に行く
管路15Bと、管路15から開閉弁209を介して第3
の吸収器、つまり、吸収用熱交換器217に行く管路1
5Cとに分配される。
The refrigerant vapor 7a of the generator 5 is supplied to the pipe 1
0 to pipeline connection switch 63B → check valve 211 → condenser 6
1 → check valve 212 → precooling heat exchanger 214 → reservoir 26
0 → pressure reducer 215 → check valve 216 → evaporator 14 → check valve 218 → line switching connector 63B → pre-cooling heat exchanger 214
Heat-receiving side → the path of the pipe 15 where the pipe 15
The refrigerant vapor 7c flows from the pipe 15 to the first absorber 1 via the pipe 15A, the pipe 15 from the pipe 15 to the second absorber 207, and the pipe 15 via the on-off valve 209. Third
, The pipeline 1 going to the absorption heat exchanger 217
5C.

【0022】管路15Aの冷媒蒸気7cは、吸収器1内
で吸収されて濃液2aに入る。この濃液2aは、図5の
構成では図4の場合の冷却管201Aが無い分だけ濃度
が低い中程度のものになる。
The refrigerant vapor 7c in the pipe 15A is absorbed in the absorber 1 and enters the concentrated liquid 2a. In the configuration of FIG. 5, the concentration of the concentrated liquid 2a is low and the concentration is low because of the absence of the cooling pipe 201A in the case of FIG.

【0023】管路15Bの冷媒蒸気7cは、吸収器20
7が不動作状態におかれているので、この冷媒蒸気7c
の一部分が管路4dを経て調整用液溜器280に入って
冷媒蒸気7eになり、管路4Bから入る濃液2cに吸収
される。この管路15Bは、管路15Cの低い部分に吸
収液または冷媒液が溜まると、管路15Cから吸収用熱
交換器217へ通る冷媒蒸気7cの通路が吸収液または
冷媒液で閉塞されてしまうため、吸収液または冷媒液が
溜まらないように排出する役目をしている。
The refrigerant vapor 7c in the pipe 15B is supplied to the absorber 20
7 is in a non-operating state, the refrigerant vapor 7c
A part of the liquid enters the adjusting reservoir 280 via the pipe 4d, becomes the refrigerant vapor 7e, and is absorbed by the concentrated liquid 2c entering from the pipe 4B. In this line 15B, when the absorbing liquid or the refrigerant liquid accumulates in the lower part of the line 15C, the passage of the refrigerant vapor 7c passing from the line 15C to the absorption heat exchanger 217 is blocked by the absorbing liquid or the refrigerant liquid. Therefore, it serves to discharge the absorbing liquid or the refrigerant liquid so as not to accumulate.

【0024】管路15Cの冷媒蒸気7cは、吸収用熱交
換器217で管路4Aから入る中間濃液2aに吸収され
て濃液2cになり、管路4Bを経て調整用液溜器280
に入る。そして、濃液2cは、ポンプ210により熱交
換管201Bに送られ、以後は、図4の場合と同様の循
環を行う。
The refrigerant vapor 7c in the line 15C is absorbed by the intermediate concentrated liquid 2a entering from the line 4A into the concentrated liquid 2c in the absorption heat exchanger 217, and becomes the concentrated liquid 2c through the line 4B.
to go into. Then, the concentrated liquid 2c is sent to the heat exchange tube 201B by the pump 210, and thereafter performs the same circulation as in the case of FIG.

【0025】吸収用熱交換器217と室外用熱交換器6
1とは、外気の通る場所に配置されており、送風機61
Bで外気を送風して外気に放熱する。また、管路24・
25を循環する第2の熱操作流体35bの経路は、管路
接続が管路接続切換器63Aに代わっただけで、図4の
場合と全く同様に循環を行う。
The absorption heat exchanger 217 and the outdoor heat exchanger 6
1 is arranged in a place where outside air passes, and
B blows the outside air and radiates it to the outside air. In addition, pipe 24
The path of the second thermal operation fluid 35b circulating through the pipe 25 is circulated exactly in the same manner as in FIG. 4 except that the pipe connection is replaced by the pipe connection switch 63A.

【0026】したがって、図5の構成では、図4の場合
において管路20・21・22・23を通る冷却用の第
1の熱操作流体35a、例えば、水を介在させることな
く、冷媒蒸気と吸収液とを外気で直接的に空冷する構成
にしてあるので、外気の温度と第1の熱操作流体35a
の温度との間における熱交換効率が介在しないため、冷
却効率が良くなり、装置全体でみた成績係数が向上する
ことになる。
Therefore, in the configuration of FIG. 5, in the case of FIG. 4, the first heat operation fluid 35a for cooling passing through the pipes 20, 21, 22 and 23, for example, the refrigerant vapor and Since the absorption liquid is directly air-cooled with the outside air, the temperature of the outside air and the first heat operation fluid 35a
Since there is no heat exchange efficiency between the above temperatures, the cooling efficiency is improved, and the coefficient of performance of the entire apparatus is improved.

【0027】次に、熱操作流体に加温操作を行わせる操
作時の状態、つまり、暖房動作状態における具体的な吸
収液の循環系と冷媒の循環系とを説明すると、管路接続
切換器63A・63Bは、各管路を点線で示す接続状態
になっており、各ポンプ65・210は運転状態、ポン
プ3は停止状態、開閉弁208は開路状態、開閉弁20
9は閉路状態になっている。
Next, a description will be given of a state at the time of an operation of performing a heating operation on the heat operation fluid, that is, a concrete circulation system of the absorbent and a circulation system of the refrigerant in the heating operation state. 63A and 63B are in a connected state indicated by dotted lines, each pump 65 and 210 is in an operating state, the pump 3 is in a stopped state, the on-off valve 208 is in an open state, and the on-off valve 20
9 is in a closed state.

【0028】そして吸収液の循環経路と冷媒の循環経路
とが、冷却操作の操作時、つまり、冷房動作状態時にお
ける場合と異なる部分を説明すると、ポンプ3が停止状
態であり、開閉弁209が閉路しているで、吸収用熱交
換器217は吸収作用が停止し、また、開閉弁208が
開いているので、第2の吸収器207は吸収作用を行っ
ている。
The difference between the circulation path of the absorbing liquid and the circulation path of the refrigerant when the cooling operation is performed, that is, when the cooling operation is performed will be described. The pump 3 is stopped, and the on-off valve 209 is operated. Since the circuit is closed, the absorption heat exchanger 217 stops absorbing, and the on-off valve 208 is open, so that the second absorber 207 performs absorption.

【0029】発生器5の冷媒蒸気7aは管路10から管
路接続切換器63B→逆止弁219→蒸発器14→逆止
弁220→予冷用熱交換器214→液溜器260→減圧
器221→逆止弁222→室外用熱交換器61→逆止弁
213→管路切換接続器63B→予冷用熱交換器214
の被吸熱側→管路15の経路を通った後、ここで、管路
15Aを経て第1の吸収器1に入る経路と、管路15B
を経て第2の吸収器207に入る経路とに分かれる。
The refrigerant vapor 7a of the generator 5 is supplied from the pipe 10 to the pipe connection switch 63B → the check valve 219 → the evaporator 14 → the check valve 220 → the pre-cooling heat exchanger 214 → the liquid reservoir 260 → the pressure reducer. 221 → check valve 222 → outdoor heat exchanger 61 → check valve 213 → pipeline switching connector 63B → precooling heat exchanger 214
After passing through the path from the heat-absorbing side to the pipe 15, the path that enters the first absorber 1 via the pipe 15A and the pipe 15B
And into a path to enter the second absorber 207 via

【0030】第2の吸収器207の散布管207Bは、
開閉弁208を通って与えられる濃液2aを熱交換管2
07Aに沿って滴下するように散布するので、濃液2a
は冷媒蒸気7dを吸収して濃液2cになって調整用液溜
器280の底部に溜まる。
The spray tube 207B of the second absorber 207 is
The concentrated liquid 2a provided through the on-off valve 208 is
07A, so that concentrated solution 2a
Absorbs the refrigerant vapor 7d and becomes the concentrated liquid 2c, which accumulates at the bottom of the adjusting liquid reservoir 280.

【0031】調整用液溜器280と液溜器260とは、
装置が冷却操作の操作時、つまり、冷房動作状態にある
場合と、加温操作の操作時、つまり、暖房動作状態にあ
る場合とで、吸収液の吸収濃度の差異があるために生ず
る吸収液量の変化分を溜め込むことにより、つまり、調
整用液溜器280では濃液2cと冷媒蒸気7eとの容積
比率を変え、また、液溜器260では冷媒液2fと冷媒
蒸気7bとの容積比率を変えるように動作させて、ポン
プ210の空転を防止するとともに、冷媒循環量をほぼ
均一に保つ役目をする。
The adjusting reservoir 280 and the reservoir 260 are
Absorbent generated due to a difference in the absorption concentration of the absorbent between the operation of the cooling operation, that is, the operation of the cooling operation, and the operation of the heating operation, that is, the operation of the heating operation. By storing the amount of change, that is, the volume ratio between the concentrated liquid 2c and the refrigerant vapor 7e is changed in the adjusting liquid reservoir 280, and the volume ratio between the refrigerant liquid 2f and the refrigerant vapor 7b is changed in the liquid reservoir 260. Is changed to prevent idling of the pump 210, and serves to keep the refrigerant circulation amount substantially uniform.

【0032】管路24・25を循環する第2の熱操作流
体35bの経路は、管路接続切換器63Aを介して熱交
換管207Aを通るように循環する。つまり、図4の場
合の冷却管201Aの部分を熱交換管207Aに置き換
えた状態にして循環を行うことになる。したがって、第
2の吸収器207は、第2の熱操作流体35bで吸熱冷
却しているので、液冷していることになるわけである。
The path of the second heat operation fluid 35b circulating in the pipes 24 and 25 is circulated through the heat exchange pipe 207A via the pipe connection switch 63A. That is, the circulation is performed with the cooling pipe 201A in the case of FIG. 4 replaced with the heat exchange pipe 207A. Therefore, the second absorber 207 is liquid-cooled because it is absorbed and cooled by the second heat operation fluid 35b.

【0033】[0033]

【発明が解決しようとする課題】上記の第1従来技術・
第2従来技術の構成では、吸収器の冷却管を通る熱操作
流体の放熱のための熱交換と、冷媒蒸気の凝縮または蒸
発を行うための熱交換との両方に対して外気温度を直接
的に利用し得ないため、装置全体でみた成績係数を十分
に向上し得ないという不都合がある。
The first prior art described above
In the configuration of the second prior art, the outside air temperature is directly controlled for both heat exchange for heat radiation of the heat working fluid through the cooling pipe of the absorber and heat exchange for condensation or evaporation of the refrigerant vapor. Therefore, there is a disadvantage that the coefficient of performance of the entire apparatus cannot be sufficiently improved.

【0034】また、加温操作時、つまり、暖房運転時
に、外気と直接的に熱交換を行う熱交換機能部分に着霜
を生じたときには、一時的に、冷却操作時、つまり、冷
房運転時と同様の運転状態に切り換える除霜運転を行う
ようにしているため、室内空気の冷却用熱操作流体の循
環系と冷媒循環系とが同時に冷却されてしまうので、暖
房運転に戻したときに、定常の暖房運転状態に戻るまで
に比較的長い加温時間を要するなど、目的外の熱損失が
大きくなり、装置全体でみた成績係数が極度に低下する
という不都合がある。
When frost is formed on the heat exchange function part which directly exchanges heat with the outside air during the heating operation, that is, during the heating operation, temporarily during the cooling operation, that is, during the cooling operation. Since the defrosting operation that switches to the same operation state as that described above is performed, the circulation system and the refrigerant circulation system of the thermal operation fluid for cooling the indoor air are simultaneously cooled, so when returning to the heating operation, Undesirable heat loss increases, for example, a relatively long heating time is required to return to the normal heating operation state, and the coefficient of performance of the entire apparatus is extremely reduced.

【0035】このため、こうした不都合のない吸収式冷
凍装置の提供が望まれているという課題がある。
For this reason, there is a problem that it is desired to provide an absorption refrigeration apparatus free from such inconveniences.

【0036】[0036]

【課題を解決するための手段】上記のような冷媒蒸気を
吸収液に吸収する吸収機能部分などを介して吸収液を循
環する吸収液循環系と、吸収液から冷媒蒸気を蒸発させ
る発生機能部分とこの蒸発させた冷媒蒸気を凝縮して凝
縮冷媒を得る凝縮機能部分とこの凝縮冷媒を蒸発させて
冷媒蒸気を得る蒸発機能部分などを介して冷媒を循環す
る冷媒循環系とを設け、上記の冷媒循環系により室内空
気を冷却または加温する吸収式冷凍装置において、。
An absorbing liquid circulating system for circulating the absorbing liquid through the absorbing function for absorbing the refrigerant vapor into the absorbing liquid as described above, and a generating function for evaporating the refrigerant vapor from the absorbing liquid. And a refrigerant circulating system that circulates the refrigerant through a condensing function part that condenses the evaporated refrigerant vapor to obtain a condensed refrigerant and an evaporating function part that evaporates the condensed refrigerant and obtains a refrigerant vapor, In an absorption refrigeration system that cools or heats indoor air by a refrigerant circulation system.

【0037】上記の冷却の間には上記の凝縮機能部分と
して動作するとともに、上記の加温の間には上記の蒸発
機能部分として動作する熱交換機能部分の熱交換を外気
との直接的な熱交換によって行う冷媒外気間熱交換手段
と、。
During the above-mentioned cooling, it operates as the above-mentioned condensing function part, and during the above-mentioned heating, the heat exchange of the heat exchanging function part which operates as the above-mentioned evaporating function part is performed directly with the outside air. Means for heat exchange between the refrigerant and the outside air performed by heat exchange.

【0038】上記の冷却の間に上記の吸収機能部分を冷
却する熱操作流体を冷却するための熱交換を外気との直
接的な熱交換によって行う熱操作流体外気間熱交換手段
とを設ける第1の構成と、。
A heat-exchange fluid outside-air heat exchange means for performing heat exchange by direct heat exchange with the outside air for cooling the heat-operation fluid for cooling the absorption function portion during the above-mentioned cooling. And the configuration of 1.

【0039】この第1の構成に加えて、上記の冷却の間
に上記の蒸発機能部分として動作する熱交換機能部分の
熱交換にもとづいて上記の室内空気の冷却を行う室内冷
却手段を設ける第2の構成と、。
In addition to the first configuration, an indoor cooling means for cooling the indoor air based on heat exchange of the heat exchange function part operating as the evaporation function part during the cooling is provided. 2. The configuration of 2.

【0040】上記の第1の構成に加えて、上記の熱操作
流体と上記の室内空気との熱交換にもとづいて上記の室
内の加温を行う室内手段を設ける第3の構成と、。
In addition to the above-described first configuration, a third configuration in which indoor means for heating the interior based on heat exchange between the thermal operation fluid and the indoor air is provided.

【0041】上記の第1の構成と同様の吸収式冷凍装置
において、上記の冷却の間には上記の凝縮機能部分とし
て動作するとともに、上記の加温の間には上記の蒸発機
能部分として動作する第1の熱交換機能部分の熱交換を
外気との直接的な熱交換によって行う冷媒外気間熱交換
手段と、。
In the absorption refrigerating apparatus similar to the above-mentioned first configuration, the apparatus operates as the condensing function during the cooling, and operates as the evaporating function during the heating. Means for exchanging heat between the refrigerant and the outside air, wherein the heat exchange of the first heat exchange function portion is performed by direct heat exchange with the outside air.

【0042】上記の冷却の間に上記の吸収機能部分を冷
却する熱操作流体を冷却するための第2の熱交換機能部
分の熱交換を外気との直接的な熱交換によって行う冷却
流体外気間熱交換手段と、。
During the above-mentioned cooling, the heat exchange of the second heat exchange function part for cooling the thermal operation fluid for cooling the absorption function part is performed by direct heat exchange with the outside air. Heat exchange means;

【0043】上記の熱操作流体と上記の室内空気との熱
交換にもとづいて上記の室内の加温を行う室内手段
と、。
Indoor means for heating the interior of the room based on heat exchange between the thermal operation fluid and the indoor air;

【0044】上記の第1の熱交換機能部分と、上記の第
2の熱交換機能部分とを並列に隣接して配置する並列熱
交換配置手段と、。
Parallel heat exchange arranging means for arranging the first heat exchange function part and the second heat exchange function part adjacent to each other in parallel;

【0045】上記の加温の間に、上記の熱操作流体の一
部を上記の第2の熱交換機能部分に循環することによ
り、上記の第1の熱交換器の除霜を行う除霜手段とを設
ける第4の構成と、。
During the above-mentioned heating, a part of the above-mentioned heat operation fluid is circulated to the above-mentioned second heat exchange function part, so that the above-mentioned first heat exchanger is defrosted. A fourth configuration in which means are provided.

【0046】この第4の構成における除霜手段に代え
て、上記の冷却の間に上記の蒸発機能部分として動作す
る第3の熱交換機能部分の熱交換にもとづいて上記の室
内空気の冷却を行う室内冷却手段と、。
Instead of the defrosting means in the fourth configuration, the cooling of the room air is performed based on the heat exchange of the third heat exchange function part which operates as the evaporation function part during the cooling. Means for performing indoor cooling;

【0047】上記の加温の間に、上記の第3の熱交換機
能部分を上記の蒸発機能部分として動作させるととも
に、上記の第1の熱交換機能部分を上記の凝縮機能部分
として動作させることにより、上記の第1の熱交換機能
部分の除霜を行う除霜手段を設ける第5の構成と、。
[0047] During the heating, the third heat exchange function is operated as the evaporation function and the first heat exchange function is operated as the condensation function. Accordingly, a fifth configuration in which a defrosting unit for defrosting the first heat exchange function portion is provided.

【0048】上記の第4の構成における除霜手段に代え
て、上記の冷却の間に上記の蒸発機能部分として動作す
る第3の熱交換機能部分の熱交換にもとづいて上記の室
内空気の冷却を行う室内冷却手段と、。
In place of the defrosting means in the fourth configuration, the cooling of the room air is performed based on the heat exchange of the third heat exchange function portion which operates as the evaporation function portion during the cooling. And indoor cooling means for performing.

【0049】上記の加温の間に、上記の熱操作流体の一
部を上記の第2の熱交換機能部分に循環することによ
り、上記の第1の熱交換機能部分の除霜を行う第1の除
霜手段と、。
During the above-mentioned heating, a part of the above-mentioned heat-manipulating fluid is circulated to the above-mentioned second heat-exchange function part, whereby the first heat-exchange function part is defrosted. 1 defrosting means;

【0050】上記の加温の間に、上記の第3の熱交換機
能部分を上記の蒸発機能部分として動作させるととも
に、上記の第1の熱交換機能部分を上記の凝縮機能部分
として動作させることにより、上記の第1の熱交換機能
部分の除霜を行う第2の除霜手段と、。
During the heating, the third heat exchange function is operated as the evaporation function, and the first heat exchange function is operated as the condensation function. And a second defrosting means for defrosting the first heat exchange function portion.

【0051】上記の外気の状態にもとづいて、上記の第
1の除霜手段または上記の第2の除霜手段の一方を選択
する除霜選択手段とを設ける第6の構成とによって、上
記の課題を解決し得るようにしたものである。
According to a sixth aspect, there is provided a defrost selecting means for selecting one of the first defrost means and the second defrost means based on the state of the outside air. This is to solve the problem.

【0052】[0052]

【作用】第1の構成と第2の構成と第3の構成とによれ
ば、冷媒蒸気の凝縮用と、冷媒の蒸発用とに供する熱交
換を外気との直接的な熱交換によって行うとともに、吸
収機能部分の冷却用熱操作流体の冷却に供する熱交換を
外気との直接的な熱交換によって行うため、これら両方
の熱交換において外気温度を直接利用し得るので、装置
全体でみた成績係数を従来に比べて大きく向上し得るよ
うに作用する。
According to the first, second and third configurations, heat exchange for condensing refrigerant vapor and for evaporating refrigerant is performed by direct heat exchange with the outside air. Because the heat exchange for cooling the heat-operating fluid for cooling the absorption function part is performed by direct heat exchange with the outside air, the outside air temperature can be directly used in both of these heat exchanges, so the coefficient of performance of the entire system Acts so as to be greatly improved as compared with the related art.

【0053】また、第4の構成によれば、除霜操作、つ
まり、除霜運転の間に、吸収機能部分を冷却する際に加
温された第1の熱操作流体を一時的に第2の熱交換器に
循環するため、この加温が隣接した第1の熱交換器に伝
達されて第1の熱交換器の着霜が除去されるが、この間
においても、冷媒循環系は暖房運転状態を維持している
ため、加温操作、つまり、暖房運転に戻したとき、速や
かに完全な暖房運転状態に移行できるので、装置全体で
みた成績係数の低下を僅少に抑制し得るように作用す
る。
Further, according to the fourth configuration, during the defrosting operation, that is, during the defrosting operation, the first heat operation fluid heated when cooling the absorption function part is temporarily transferred to the second defrosting operation. This heat is transmitted to the adjacent first heat exchanger to remove frost from the first heat exchanger. During this time, the refrigerant circulation system performs the heating operation. Since the state is maintained, the heating operation, that is, when returning to the heating operation, it is possible to quickly shift to the complete heating operation state, so that the decrease in the coefficient of performance of the entire apparatus can be slightly suppressed. I do.

【0054】さらに、第5の構成によれば、除霜運転の
間に、冷媒循環系を冷却操作、つまり、冷房運転状態に
するため、第1の熱交換機能部分が加温されて着霜が除
去されるが、この間においても、室内空気を加温する熱
操作流体の循環系は暖房運転状態を維持しているため、
加温操作、つまり、暖房運転に戻したとき、比較的速や
かに完全な暖房運転状態に移行できるので、装置全体で
みた成績係数の低下を少く抑え得るように作用する。
Further, according to the fifth configuration, during the defrosting operation, the first heat exchange function part is heated to form a frost formation in order to perform a cooling operation of the refrigerant circulation system, that is, a cooling operation state. Is removed, but during this time, the circulating system of the thermal operation fluid for heating the indoor air maintains the heating operation state,
When the operation is returned to the heating operation, that is, the heating operation, the heating operation can be relatively quickly shifted to the complete heating operation state, so that a decrease in the coefficient of performance of the entire apparatus can be suppressed.

【0055】そして、第6の構成によれば、外気の状態
にもとづいて、上記の第4の構成による除霜または上記
の第5の構成による除霜の一方を選択して除霜できるた
め、例えば、外気温度が所定値、例えば、0°C以上の
ときには第4の構成による除霜を行い、所定値未満のと
きには第5の構成による除霜を行うように選択し得るの
で、装置全体でみた成績係数の低下を外気条件に対応し
て抑制し得るように作用する。
According to the sixth configuration, one of the defrosting according to the fourth configuration and the defrosting according to the fifth configuration can be selected and defrosted based on the state of the outside air. For example, when the outside air temperature is equal to or higher than a predetermined value, for example, 0 ° C., the defrosting by the fourth configuration can be performed, and when the outside air temperature is lower than the predetermined value, the defrosting by the fifth configuration can be selected. It acts so that the decrease in the observed coefficient of performance can be suppressed in accordance with the outside air condition.

【0056】[0056]

【実施例】以下、図1〜図3により実施例を説明する。
図1〜図3において図4・図5の符号と同一符号で示す
部分は、図4・図5によって説明した同一符号の部分と
同一機能をもつ部分であり、図2・図3において図1の
符号と同一符号で示す部分は、図1によって説明する同
一符号の部分と同一機能をもつ部分である。
An embodiment will be described below with reference to FIGS.
In FIGS. 1 to 3, portions denoted by the same reference numerals as those in FIGS. 4 and 5 are portions having the same functions as the portions denoted by the same reference numerals described with reference to FIGS. 4 and 5, and in FIGS. The portions indicated by the same reference numerals as those in FIG. 1 have the same functions as the portions denoted by the same reference numerals described with reference to FIG.

【0057】図1の構成が図5の構成と異なる箇所は、
第1には、循環路における熱交換管201Bを無くして
GAX機能部分の構成を簡略化した箇所であり、第2に
は、第1の熱操作流体35aの循環路における熱交換管
205Eを無くして発生器5内の分溜作用を行う構成を
設けずに簡略化した箇所である。
The difference between the configuration of FIG. 1 and the configuration of FIG.
The first is a point where the configuration of the GAX functional portion is simplified by eliminating the heat exchange tube 201B in the circulation path, and the second is the absence of the heat exchange pipe 205E in the circulation path of the first heat operation fluid 35a. This is a simplified part without providing a structure for performing the fractionation function in the generator 5.

【0058】そして、第3には、四方弁による管路接続
切換器63Bによって、凝縮器11と蒸発器14とを構
成する各熱交換器を、冷却操作時、つまり、暖房運転時
と、加温操作時、つまり、暖房運転時とでは、互いに逆
の動作を行うように冷媒循環系を構成して、凝縮器11
の部分を凝縮/蒸発熱交換器11′とし、また、蒸発器
14の部分を蒸発/凝縮熱交換器14′として、図5の
場合の構成と類似する構成にした箇所である。
Third, the heat exchangers constituting the condenser 11 and the evaporator 14 are cooled by the pipe connection switch 63B by the four-way valve during the cooling operation, that is, during the heating operation. At the time of the temperature operation, that is, at the time of the heating operation, the refrigerant circulation system is configured to perform operations opposite to each other.
Is a condensing / evaporating heat exchanger 11 ', and a part of the evaporator 14 is an evaporating / condensing heat exchanger 14', which has a configuration similar to the configuration in FIG.

【0059】さらに、第4には、凝縮/蒸発熱交換器1
1′を第1の熱操作流体35aを放熱するための室外熱
交換器61と並列に隣接して配置することにより、凝縮
/蒸発熱交換器11′と室外熱交換器61との間で熱交
換を行うように構成した箇所である。
Fourth, the condensation / evaporation heat exchanger 1
By arranging 1 ′ in parallel with and adjacent to the outdoor heat exchanger 61 for radiating the first heat operation fluid 35a, heat is generated between the condensation / evaporation heat exchanger 11 ′ and the outdoor heat exchanger 61. It is a part configured to be replaced.

【0060】また、第5には、第1の熱操作流体35a
の流路を、冷却操作時、つまり、冷房運転時に、開閉弁
301Cと開閉弁301Dとを開いて、室外熱交換器6
1に導き、加温操作時、つまり、暖房運転時に、開閉弁
301Aと開閉弁301Bとを開いて、第2の熱操作流
体35bの流れに合流するように構成した箇所である。
Fifth, the first heat operation fluid 35a
During the cooling operation, that is, during the cooling operation, the on-off valve 301C and the on-off valve 301D are opened, and the outdoor heat exchanger 6 is opened.
1, the opening / closing valve 301A and the opening / closing valve 301B are opened at the time of the heating operation, that is, at the time of the heating operation, so as to join the flow of the second heat operation fluid 35b.

【0061】そして、第6には、発生器5の内部に、棚
状の張出部材205F・205G・205Hを設けて冷
媒蒸気7aの上昇経路を蛇行させることにより、蒸発と
精溜との機能部分の経路が長くなるように構成した箇所
である。
Sixth, a shelf-like overhanging member 205F, 205G, 205H is provided inside the generator 5 to meander the rising path of the refrigerant vapor 7a, thereby providing the functions of evaporation and rectification. This is a portion where the path of the portion is configured to be long.

【0062】〔第1実施例〕以下、第1実施例の構成を
図1により説明する。図1において、 開閉弁301A
と開閉弁301Bとは、冷房運転時は閉状態になり、暖
房運転時は開状態になる。
[First Embodiment] The configuration of the first embodiment will be described below with reference to FIG. In FIG. 1, on-off valve 301A
The on-off valve 301B is closed during the cooling operation, and is opened during the heating operation.

【0063】開閉弁301Cと開閉弁301Dとは、冷
房運転時は開状態になり、暖房運転時は閉状態になる。
ポンプ3とポンプ65とは、冷房運転時・暖房運転時の
いずれも運転状態になる。また、ポンプ64は、冷房運
転時は運転状態になり、暖房運転時は停止状態になる。
The on-off valve 301C and the on-off valve 301D are open during the cooling operation and closed during the heating operation.
The pump 3 and the pump 65 are in an operating state during both the cooling operation and the heating operation. The pump 64 is in the operating state during the cooling operation, and is in the stopped state during the heating operation.

【0064】管路接続切換器63Bは、冷房運転時は実
線で示す経路状態になり、暖房運転時は点線で示す経路
状態になる。そして、これらの開閉弁301A・301
B・301C・301Dとポンプ3・64・65と管路
接続切換器63Bなどの動作状態の制御はCPU70に
よって制御しており、各循環系は次のように動作してい
る。
The pipeline connection switch 63B is in the path state indicated by the solid line during the cooling operation, and is in the path state indicated by the dotted line during the heating operation. These on-off valves 301A and 301A
The control of the operation states of the pumps B, 301C, 301D, the pumps 3, 64, 65, and the line connection switch 63B are controlled by the CPU 70, and the respective circulation systems operate as follows.

【0065】吸収液の循環系は、発生器5の底部の稀液
2b→熱交換管205A→管路16→熱交換器31→減
圧器9→管路18→散布管201D→濃液2b→管路4
→ポンプ3→管路17→熱交換管205D→管路8→熱
交換管201X→管路202→熱交換器31の被加熱側
31A→散布管205Fを経て稀液2bに戻る経路を循
環する。
The circulating system of the absorbing solution is as follows: the dilute solution 2b at the bottom of the generator 5 → the heat exchange tube 205A → the line 16 → the heat exchanger 31 → the decompressor 9 → the line 18 → the spraying tube 201D → the concentrated solution 2b → Pipe line 4
→ Pump 3 → Pipe 17 → Heat exchange pipe 205D → Pipe 8 → Heat exchange pipe 201X → Pipe 202 → Heat side 31A of heat exchanger 31 → Circulate the path returning to dilute solution 2b via spray pipe 205F. .

【0066】冷媒の循環系は、冷却操作時、つまり、冷
房運転時は、発生器5内の冷媒蒸気7a→管路10→管
路接続切換器63B→凝縮/蒸発熱交換器11′→予熱
用熱交換器214→減圧器215→逆止弁216→蒸発
/凝縮熱交換器14′→予熱用熱交換器214の被加熱
側214A→管路接続切換器63B→管路15→吸収器
1内の冷媒蒸気7cを経て稀液2aに吸収され濃液2a
に入る経路を取る。
During the cooling operation, that is, during the cooling operation, the refrigerant circulation system is configured such that the refrigerant vapor 7a in the generator 5 → the line 10 → the line connection switch 63B → the condensing / evaporating heat exchanger 11 ′ → the preheating. Heat exchanger 214 → decompressor 215 → check valve 216 → evaporation / condensation heat exchanger 14 ′ → heated side 214A of preheat heat exchanger 214 → line connection switch 63B → line 15 → absorber 1 Concentrated liquid 2a absorbed by the dilute liquid 2a through the refrigerant vapor 7c
Take the route to enter.

【0067】そして、加温操作時、つまり、暖房運転時
は、発生器5内の冷媒蒸気7a→管路10→管路接続切
換器63B→逆止弁220→蒸発/凝縮熱交換器14′
→減圧器221→逆止弁222→凝縮/蒸発熱交換器1
1′→管路接続切換器63B→管路15→吸収器1内の
冷媒蒸気7cを経て稀液2aに吸収され濃液2aに入る
経路を取る。
Then, during the heating operation, that is, during the heating operation, the refrigerant vapor 7a in the generator 5 → the line 10 → the line connection switching device 63B → the check valve 220 → the evaporating / condensing heat exchanger 14 ′.
→ pressure reducer 221 → check valve 222 → condensation / evaporation heat exchanger 1
1 ′ → pipe connection switch 63B → pipe 15 → takes a path that is absorbed by the dilute liquid 2a via the refrigerant vapor 7c in the absorber 1 and enters the concentrated liquid 2a.

【0068】第1の熱操作流体35aの循環系は、冷媒
運転時は、冷却管201A→管路21→開閉弁301C
→室外熱交換器61→管路20A→ポンプ64→開閉弁
301D→管路20を経て冷却管201Aに戻る。
During the operation of the refrigerant, the circulating system of the first heat-manipulating fluid 35a includes a cooling pipe 201A, a pipe 21 and an on-off valve 301C.
→ Outdoor heat exchanger 61 → Pipe line 20A → Pump 64 → Open / close valve 301D → Return to cooling pipe 201A via Pipe line 20.

【0069】そして、暖房運転時は、冷却管201A→
管路21→開閉弁301B→管路25で第2の熱操作流
体35bに合流→室内熱交換器62→ポンプ65→管路
24→開閉弁301A→管路20を経て冷却管201A
に戻るが、途中の管路24から分岐した流れが熱交換器
14′の被加熱側14A′を経て管路25に合流する。
During the heating operation, the cooling pipe 201A →
Pipe 21 → on-off valve 301B → merges with second thermal operation fluid 35b in pipe 25 → indoor heat exchanger 62 → pump 65 → pipe 24 → on-off valve 301A → cooling pipe 201A via pipe 20
However, the flow branched from the pipe 24 on the way joins the pipe 25 via the heated side 14A 'of the heat exchanger 14'.

【0070】第2の熱操作流体35bの循環系は、冷房
運転時は、室内熱交換器61→ポンプ65→管路24→
熱交換器14′の被冷却側14A′→管路25を経て室
内熱交換器61に戻る。そして、暖房運転時は、上記の
第1の熱操作流体35aと合流して循環する。
During the cooling operation, the circulation system of the second heat-manipulating fluid 35b is arranged such that the indoor heat exchanger 61 → the pump 65 → the line 24 →
The cooled side 14A 'of the heat exchanger 14' returns to the indoor heat exchanger 61 via the pipe 25. Then, at the time of the heating operation, it circulates together with the first heat operation fluid 35a.

【0071】上記の第1実施例の構成を要約すると、冷
媒蒸気7cを吸収液2aに吸収する吸収機能部分、例え
ば、吸収器1などを介して吸収液2a・2bを循環する
吸収液循環系と、吸収液2aから冷媒蒸気7aを蒸発さ
せる発生機能部分、例えば、発生器5とこの蒸発させた
冷媒蒸気7aを凝縮して凝縮冷媒を得る凝縮機能部分、
例えば、凝縮器11とこの凝縮冷媒を蒸発させて冷媒蒸
気を得る蒸発機能部分、例えば、蒸発器14などを介し
て冷媒を循環する冷媒循環系とを設け、上記の冷媒循環
系により室内空気を、例えば、室内熱交換器62を介し
て、冷却または加温する吸収式冷凍装置100におい
て、
The structure of the first embodiment can be summarized as follows: an absorption function part for absorbing the refrigerant vapor 7c into the absorption liquid 2a, for example, an absorption liquid circulating system for circulating the absorption liquids 2a and 2b through the absorber 1 or the like. A generating function part for evaporating the refrigerant vapor 7a from the absorbing liquid 2a, for example, a condensing function part for condensing the generator 5 and the evaporated refrigerant vapor 7a to obtain a condensed refrigerant;
For example, a condenser 11 and an evaporating function part that evaporates the condensed refrigerant to obtain refrigerant vapor, for example, a refrigerant circulation system that circulates the refrigerant through the evaporator 14 and the like are provided. For example, in the absorption refrigeration apparatus 100 that cools or heats via the indoor heat exchanger 62,

【0072】上記の冷却の間には上記の凝縮機能部分と
して動作するとともに、上記の加温の間には上記の蒸発
機能部分として動作する熱交換機能部分、例えば、凝縮
/蒸発熱交換器11′の熱交換を外気との直接的な熱交
換によって行う冷媒外気間熱交換手段と、
During the above-mentioned cooling, it operates as the above-mentioned condensing function, and during the above-mentioned heating, it operates as the above-mentioned evaporating function, for example, the condensing / evaporating heat exchanger 11. ′ Means for performing a heat exchange between the refrigerant and the outside air by direct heat exchange with the outside air;

【0073】上記の冷却の間に上記の吸収機能部分、つ
まり、吸収器1を冷却する熱操作流体35aを冷却する
ための熱交換、例えば、室外熱交換器61による熱交換
を外気との直接的な熱交換によって行う熱操作流体外気
間熱交換手段とを設ける第1の構成と、
During the above-mentioned cooling, heat exchange for cooling the above-mentioned absorption function part, that is, the heat-manipulating fluid 35a for cooling the absorber 1, for example, heat exchange by the outdoor heat exchanger 61 is performed directly with the outside air. A first configuration in which a heat-exchange fluid external air-to-air heat exchange unit that performs a thermal exchange is provided;

【0074】この第1の構成に加えて、上記の冷却の間
に上記の蒸発機能部分として動作する熱交換機能部分、
例えば、蒸発/凝縮熱交換器14′の熱交換にもとづい
て、例えば、室内熱交換器62により、上記の室内空気
の冷却を行う室内冷却手段を設ける第2の構成と、
In addition to the first configuration, a heat exchange function part which operates as the above-mentioned evaporation function part during the above-mentioned cooling,
For example, based on the heat exchange of the evaporating / condensing heat exchanger 14 ', for example, a second configuration in which the indoor heat exchanger 62 is provided with the indoor cooling means for cooling the indoor air,

【0075】上記の第1の構成に加えて、上記の熱操作
流体35aと上記の室内空気との熱交換、例えば、室内
熱交換器62による熱交換にもとづいて上記の室内の加
温を行う室内手段を設ける第3の構成とを構成している
ことになるものである。
In addition to the first configuration, the interior of the room is heated based on the heat exchange between the thermally operated fluid 35a and the indoor air, for example, the heat exchange by the indoor heat exchanger 62. This constitutes the third configuration in which the indoor means is provided.

【0076】〔第2実施例〕以下、第2実施例を図1に
より説明する。第2実施例の構成において、第1実施例
の構成と異なる箇所は、次のような制御を行うための制
御プログラムをCPU70の処理メモリ(図示せず)に
記憶して、この制御プログラムの処理フローにより、除
霜操作、つまり、除霜運転を行うように構成した箇所で
ある。
[Second Embodiment] A second embodiment will be described below with reference to FIG. In the configuration of the second embodiment, a different point from the configuration of the first embodiment is that a control program for performing the following control is stored in a processing memory (not shown) of the CPU 70, and the processing of the control program is performed. It is a portion configured to perform a defrosting operation, that is, a defrosting operation by a flow.

【0077】除霜運転は、暖房運転時における凝縮/蒸
発熱交換器11′と外気の状態との対応条件にもとづい
て制御され、第1の方法としては、外気温度が所定値以
下、例えば、3°C以下で、所定時間経過、例えば、2
時間経過毎に、第2の方法としては、凝縮/蒸発熱交換
器11′内の管路の温度が所定値以下、例えば、−1°
C以下で、所定時間経過、例えば、30分経過毎に、第
3の方法としては、凝縮/蒸発熱交換器11′に対して
送り込まれる外気の温度と、送り込まれた外気が凝縮/
蒸発熱交換器11′を経て吐出される温度との温度差が
所定値以下、例えば、1°C以下のとき、その他、これ
らの条件と同様の条件を検出した毎に、所定時間、例え
ば、5分間にわたって、または、上記の所定諸条件が解
消するまで除霜運転に移行する制御処理プログラムを処
理メモリに記憶してあり、除霜運転時にのみ、暖房運転
の状態に加えて、一時的に、開閉弁301Cと開閉弁3
01Dとを開状態にするとともにポンプ64を運転状態
にするように第1の熱操作流体35aの循環系を制御す
る箇所である。
The defrosting operation is controlled based on the conditions corresponding to the condensation / evaporation heat exchanger 11 'and the state of the outside air during the heating operation. As a first method, the outside air temperature is equal to or lower than a predetermined value, for example, After a predetermined time elapses at 3 ° C or less, for example,
Each time, as a second method, the temperature of the pipeline in the condensation / evaporation heat exchanger 11 'is equal to or lower than a predetermined value, for example, -1 °.
C or less, every time a predetermined time elapses, for example, every 30 minutes, as a third method, the temperature of the outside air sent to the condensation / evaporation heat exchanger 11 ′ and the temperature of the outside air condensed /
When the temperature difference from the temperature discharged through the evaporating heat exchanger 11 ′ is equal to or less than a predetermined value, for example, 1 ° C. or less, and every time a condition similar to these conditions is detected, a predetermined time, for example, A control processing program for shifting to the defrosting operation for 5 minutes or until the above-mentioned predetermined conditions are resolved is stored in the processing memory, and only during the defrosting operation, in addition to the state of the heating operation, temporarily , On-off valve 301C and on-off valve 3
01D and the circulating system of the first thermal operation fluid 35a is controlled so that the pump 64 is operated.

【0078】したがって、除霜運転状態では、第1の熱
操作流体35aの循環系が室外熱交換器61側にも分岐
して流れるため、吸収機能部分、つまり、吸収器1内を
冷却する際に加温された第1の熱操作流体35aによっ
て室外熱交換器61が加温される。
Therefore, in the defrosting operation state, the circulating system of the first heat operation fluid 35a branches and flows also to the outdoor heat exchanger 61 side, so that the absorption function part, that is, the inside of the absorber 1 is cooled. The outdoor heat exchanger 61 is heated by the first heat operation fluid 35a that has been heated.

【0079】そして、室外熱交換器61と凝縮/蒸発熱
交換器11′とは、並列に隣接して配置してあるので、
室外熱交換器61の放熱によって加温された外気の熱が
凝縮/蒸発熱交換器11′に熱伝導して伝達されため、
凝縮/蒸発熱交換器11′の着霜が除去されることにな
る。
Since the outdoor heat exchanger 61 and the condensation / evaporation heat exchanger 11 'are arranged adjacent to each other in parallel,
Since the heat of the outside air heated by the heat radiation of the outdoor heat exchanger 61 is transferred to the condensation / evaporation heat exchanger 11 ′ by heat conduction,
Defrosting of the condensation / evaporation heat exchanger 11 'will be removed.

【0080】なお、室外熱交換器61と凝縮/蒸発熱交
換器11′との放熱フインを一体に形成して構成するこ
とにより、外気による熱伝導に加えて放熱フインによる
熱伝導が付加されるので、除霜を更に効果的に行うこと
ができる。
In addition, since the heat fins of the outdoor heat exchanger 61 and the condensation / evaporation heat exchanger 11 'are integrally formed, heat conduction by the heat fins is added in addition to heat conduction by the outside air. Therefore, defrosting can be performed more effectively.

【0081】一方、室内熱交換器62には、この除霜運
転の間においても、加温された第1の熱操作流体35a
が循環しているので、室内空気に対する加温は中断され
ることなく続行されていることになる。
On the other hand, even during this defrosting operation, the heated first heat operation fluid 35a is supplied to the indoor heat exchanger 62.
Is circulating, so that the heating of the room air is continued without interruption.

【0082】〔第3実施例〕以下、第3実施例を図1に
より説明する。第3実施例の構成において、第2実施例
と異なる箇所は、第2実施例において行う除霜運転時に
のみ制御する循環系の制御を設けずに、これに代えて、
除霜運転時にのみ、一時的に、管路接続切換器63Bの
みを管路接続を実線で示す経路の状態、つまり、冷房運
転時の経路と同様の経路状態に切り換えて冷媒循環を行
うように冷媒循環系を制御する箇所である。
[Third Embodiment] A third embodiment will be described below with reference to FIG. In the configuration of the third embodiment, the different points from the second embodiment are not provided with the control of the circulation system which is controlled only at the time of the defrosting operation performed in the second embodiment.
Only at the time of the defrosting operation, only the pipeline connection switch 63B is temporarily switched to the state of the path showing the pipeline connection by the solid line, that is, the refrigerant is circulated by switching to the same path state as the path at the time of the cooling operation. This is where the refrigerant circulation system is controlled.

【0083】したがって、除霜運転状態では、……凝縮
/蒸発熱交換器11′が冷媒蒸気を凝縮する際の放熱で
加温されるので、凝縮/蒸発熱交換器11′の着霜が除
去されることになる。
Therefore, in the defrosting operation state, the condensing / evaporating heat exchanger 11 'is heated by the heat radiation when condensing the refrigerant vapor, so that the frost on the condensing / evaporating heat exchanger 11' is removed. Will be done.

【0084】なお、室外熱交換器61と凝縮/蒸発熱交
換器11′との放熱フインを一体に形成して構成するこ
とにより、外気による熱伝導に加えて放熱フインによる
熱伝導が付加されるので、第2実施例の場合よりも、除
霜を更に効果的に行うことができる。
In addition, since the heat fins of the outdoor heat exchanger 61 and the condensation / evaporation heat exchanger 11 'are integrally formed, heat conduction by the heat fins is added in addition to heat conduction by the outside air. Therefore, defrosting can be performed more effectively than in the case of the second embodiment.

【0085】一方、室内熱交換器62には、この除霜運
転の間においても、加温された第1の熱操作流体35a
が循環しているので、室内空気に対する加温は中断され
ることなく続行されていることになるが、冷媒循環系の
循環が逆方向になり、蒸発/凝縮熱交換器14′の被冷
却側14A′によって、第1の熱操作流体35aと第2
の熱操作流体35bとの合流が冷却されるため、この冷
却の量だけ第1の熱操作流体35aの温度が低下するの
で、結局、その低下分だけ室内空気に対する加温が低減
されることになる。
On the other hand, even during this defrosting operation, the heated first heat operation fluid 35a is supplied to the indoor heat exchanger 62.
Circulates, so that the heating of the indoor air is continued without interruption, but the circulation of the refrigerant circulation system is reversed, and the cooling / condensing heat exchanger 14 'is cooled. 14A ', the first thermal operation fluid 35a and the second
Is cooled, and the temperature of the first heat operation fluid 35a is reduced by the amount of the cooling. As a result, the heating of the indoor air is reduced by the reduced amount. Become.

【0086】〔第4実施例〕以下、第4実施例を図1に
より説明する。第4実施例の構成と、第2実施例・第3
実施例と異なる箇所は、次の箇所である。
[Fourth Embodiment] A fourth embodiment will be described below with reference to FIG. The configuration of the fourth embodiment, and the second and third embodiments
The different points from the embodiment are the following.

【0087】第1には、第1の熱操作流体35aの循環
系を除霜運転時に第2実施例の場合と同様に制御する第
1の除霜運転構成と、冷媒循環系の循環経路を第3実施
例の場合と同様に制御する第2の除霜運転構成との両方
を設けるとともに、これらのうちの一方を選択する構成
をCPU70に設けている箇所である。
First, a first defrosting operation configuration for controlling the circulating system of the first heat operated fluid 35a during the defrosting operation in the same manner as in the second embodiment, and a circulation path of the refrigerant circulating system are described. This is the point where both the second defrosting operation configuration that controls in the same manner as in the third embodiment and the configuration for selecting one of them are provided in the CPU 70.

【0088】第2には、第2実施例・第3実施例におけ
る除霜運転時間を制御する構成を設けずに、これに代え
て、凝縮/蒸発熱交換器11′の着霜状態と外気温度と
を検出するための着霜センサを、例えば、外気箇所と着
霜箇所とに設けた2つの温度検出用サーミスタによる検
出温度と、これら2つの検出温度の変化状態とにより外
気温度と放熱フイン温度とを検出するとともに、外気温
度が第1の所定温度T1以上、例えば、0°C以上の場
合には上記の第1の除霜運転構成を選択し、外気温度が
第1の所定温度T1未満、例えば、0°C未満の場合に
は上記の第2の除霜運転構成を選択するように、除霜動
作の選択切換を行うとともに、放熱フイン温度が第2の
所定温度T2以下、例えば、−3°C以下になった場合
には除霜運転を開始し、放熱フイン温度が第3の所定温
度T3以上、例えば、5°C以上になった場合には除霜
運転を停止して暖房運転に切り換えるように切換制御す
る構成をCPU70に設けている箇所である。
Secondly, the structure for controlling the defrosting operation time in the second and third embodiments is not provided. Instead, the defrosting state of the condensation / evaporation heat exchanger 11 'and the outside air A frost sensor for detecting the temperature is provided, for example, by the temperature detected by two temperature detecting thermistors provided at the outside air location and the frost formation location, and the change state of these two detected temperatures, and the outside air temperature and the heat radiation fin. Temperature, and when the outside air temperature is equal to or higher than the first predetermined temperature T1, for example, 0 ° C. or higher, the first defrosting operation configuration is selected, and the outside air temperature is set to the first predetermined temperature T1. If the temperature is less than 0 ° C., for example, the defrosting operation is selectively switched so that the second defrosting operation configuration is selected, and the radiation fin temperature is equal to or lower than a second predetermined temperature T2, for example, If the temperature drops below -3 ° C, start defrosting operation When the heat release fin temperature is equal to or higher than the third predetermined temperature T3, for example, 5 ° C. or higher, the CPU 70 is provided with a switching control to stop the defrosting operation and switch to the heating operation. is there.

【0089】したがって、外気温度が第1の所定温度T
1以上の場合には、上記の第2実施例の場合と同様の除
霜運転を行い、外気温度が第1の所定温度T1未満の場
合には、上記の第3実施例の場合と同様の除霜運転を行
うように動作することになる。
Therefore, when the outside air temperature reaches the first predetermined temperature T
In the case of 1 or more, the same defrosting operation as in the above-described second embodiment is performed, and when the outside air temperature is lower than the first predetermined temperature T1, the same defrosting operation as in the above-described third embodiment is performed. The operation will be performed to perform the defrosting operation.

【0090】上記の第2実施例の構成を要約すると、上
記の第1の構成と同様の吸収式冷凍装置100におい
て、
To summarize the structure of the second embodiment, in the absorption refrigeration apparatus 100 similar to the first structure,

【0091】上記の冷却の間には上記の凝縮機能部分と
して動作するとともに、上記の加温の間には上記の蒸発
機能部分として動作する第1の熱交換機能部分、例え
ば、凝縮/蒸発熱交換器11′の熱交換を外気との直接
的な熱交換によって行う冷媒外気間熱交換手段と、
A first heat exchange function part which operates as the condensing function during the cooling and operates as the evaporating function during the heating, for example, a condensing / evaporating heat A refrigerant-external air heat exchange means for performing heat exchange of the exchanger 11 ′ by direct heat exchange with external air;

【0092】上記の冷却の間に上記の吸収機能部分、例
えば、吸収器1を冷却する熱操作流体35aを冷却する
ための第2の熱交換機能部分、例えば、室外熱交換器6
1の熱交換を外気との直接的な熱交換によって行う冷却
流体外気間熱交換手段と、。上記の熱操作流体35aと
上記の室内空気との熱交換、例えば、室内熱交換器62
の熱交換にもとづいて上記の室内の加温を行う室内手段
と、
During the above-mentioned cooling, the above-mentioned absorption function part, for example, the second heat exchange function part for cooling the thermal operation fluid 35a for cooling the absorber 1, for example, the outdoor heat exchanger 6
(1) a cooling fluid outside air heat exchange means for performing the heat exchange by direct heat exchange with the outside air; The heat exchange between the above-mentioned thermal operation fluid 35a and the above-mentioned indoor air, for example, the indoor heat exchanger 62
Indoor means for heating the room based on the heat exchange of

【0093】上記の第1の交換機能部分、つまり、凝縮
/蒸発熱交換器11′と、上記の第2の熱交換機能部
分、つまり、室外熱交換器61とを並列に隣接して配置
する並列熱交換配置手段と、
The first exchange function part, that is, the condensation / evaporation heat exchanger 11 ′, and the second heat exchange function part, that is, the outdoor heat exchanger 61, are arranged adjacent to each other in parallel. Parallel heat exchange arrangement means;

【0094】上記の加温の間に、上記の熱操作流体35
aの一部を上記の第2の熱交換機能部分、つまり、室外
熱交換器61に循環することにより、上記の第1の熱交
換器、つまり、凝縮/蒸発熱交換器11′の除霜を行う
除霜手段とを設ける第4の構成を構成していることにな
るものである。
During the above-mentioned heating, the above-mentioned thermally operated fluid 35
a is circulated to the second heat exchange function part, that is, the outdoor heat exchanger 61, thereby defrosting the first heat exchanger, that is, the condensation / evaporation heat exchanger 11 '. And a defrosting means for performing the defrosting.

【0095】また、上記の第3実施例の構成を要約する
と、この第4の構成における除霜手段に代えて、上記の
冷却の間に上記の蒸発機能部分として動作する第3の熱
交換機能部分、例えば、蒸発/凝縮熱交換器14′の熱
交換にもとづいて、例えば、室内熱交換器62により上
記の室内空気の冷却を行う室内冷却手段と、
To summarize the structure of the third embodiment, the third heat exchange function which operates as the evaporating function during the cooling, instead of the defrosting means in the fourth structure. A room cooling means for cooling the room air by means of, for example, the indoor heat exchanger 62 based on heat exchange of a part, for example, the evaporation / condensation heat exchanger 14 ';

【0096】上記の加温の間に、上記の第3の熱交換機
能部分、つまり、蒸発/凝縮熱交換器14′を上記の蒸
発機能部分として動作させるとともに、上記の第1の熱
交換機能部分、つまり、凝縮/蒸発熱交換器11′を上
記の凝縮機能部分として動作させることにより、上記の
第1の熱交換機能部分、つまり、凝縮/蒸発熱交換器1
1′の除霜を行う除霜手段を設ける第5の構成を構成し
ていることになるものである。
During the heating, the third heat exchange function part, that is, the evaporating / condensing heat exchanger 14 'is operated as the evaporation function part and the first heat exchange function is operated. By operating the part, ie, the condensation / evaporation heat exchanger 11 ′, as the above-mentioned condensation function part, the first heat exchange function part, ie, the condensation / evaporation heat exchanger 1
This constitutes a fifth configuration in which defrosting means for defrosting 1 'is provided.

【0097】さらに、上記の第4実施例の構成を要約す
ると、上記の第4の構成における除霜手段に代えて、上
記の冷却の間に上記の蒸発機能部分として動作する第3
の熱交換機能部分、例えば、蒸発/凝縮熱交換器14′
の熱交換にもとづいて、例えば、室内熱交換器62によ
り上記の室内空気の冷却を行う室内冷却手段と、
Further, the configuration of the fourth embodiment can be summarized as follows. Instead of the defrosting means in the fourth configuration, the third functioning as the evaporating function part during the cooling is provided.
Heat exchange function part, for example, evaporating / condensing heat exchanger 14 '
Indoor cooling means for cooling the indoor air by the indoor heat exchanger 62 based on the heat exchange of, for example,

【0098】上記の加温の間に、上記の熱操作流体35
aの一部を上記の第2の熱交換機能部分、つまり、室外
熱交換器61に循環することにより、上記の第1の熱交
換機能部分、つまり、凝縮/蒸発熱交換器11′の除霜
を行う第1の除霜手段と、
During the above-mentioned heating, the above-mentioned heat-operated fluid 35
a is circulated to the second heat exchange function part, that is, the outdoor heat exchanger 61, thereby removing the first heat exchange function part, that is, the condensation / evaporation heat exchanger 11 '. First defrosting means for performing frost;

【0099】上記の加温の間に、上記の第3の熱交換機
能部分、つまり、蒸発/凝縮熱交換器14′を上記の蒸
発機能部分として動作させるとともに、上記の第1の熱
交換機能部分、つまり、凝縮/蒸発熱交換器11′を上
記の凝縮機能部分として動作させることにより、上記の
第1の熱交換機能部分、つまり、凝縮/蒸発熱交換器1
1′の除霜を行う第2の除霜手段と、
During the heating, the third heat exchange function part, that is, the evaporating / condensing heat exchanger 14 'is operated as the evaporating function part and the first heat exchange function is performed. By operating the part, ie, the condensation / evaporation heat exchanger 11 ′, as the above-mentioned condensation function part, the first heat exchange function part, ie, the condensation / evaporation heat exchanger 1
Second defrosting means for performing 1 'defrosting,

【0100】上記の外気の状態にもとづいて、例えば、
外気温度が第1の所定温度T1以上の場合には上記の第
1の除霜手段による除霜運転を選択し、外気温度が第1
の所定温度T1未満の場合には上記の第2の除霜手段に
よる除霜運転を選択するように、例えば、CPU70に
よって選択切換することにより、上記の第1の除霜手段
または上記の第2の除霜手段の一方を選択する除霜選択
手段とを設ける第6の構成を構成していることになるも
のである。
On the basis of the state of the outside air, for example,
If the outside air temperature is equal to or higher than the first predetermined temperature T1, the defrosting operation by the first defrosting means is selected, and the outside air temperature is set to the first temperature.
When the temperature is lower than the predetermined temperature T1, for example, the selection is switched by the CPU 70 so as to select the defrosting operation by the second defrosting means, so that the first defrosting means or the second defrosting means is selected. And a defrosting selecting means for selecting one of the defrosting means.

【0101】〔変形実施〕この発明は次のように変形し
て実施することを含むものである。
[Modification] The present invention includes the following modifications.

【0102】(1)図1の構成におけるポンプ64と開
閉弁301Dとを、図2のように、ポンプ64を管路2
1の分岐箇所より手前の箇所に移設するとともに、開閉
弁301Dを除去して構成する。この構成の場合、必要
に応じて、ポンプ64を冷却操作時、つまり、冷房運転
時と、加温操作時、つまり、暖房運転時との両方におい
て運転状態する。
(1) The pump 64 and the on-off valve 301D in the configuration of FIG.
It is relocated to a location before the first branch location, and the on-off valve 301D is removed. In the case of this configuration, the pump 64 is operated, as necessary, during both the cooling operation, that is, the cooling operation, and the heating operation, that is, the heating operation.

【0103】(2)図3のように、GAX機能部分、つ
まり、吸収器1と発生器5との間の熱交換を行う機能部
分を設けない吸収式冷凍装置100に第1〜第6の構成
を適用して構成する。
(2) As shown in FIG. 3, the first to sixth GAX function parts, that is, the absorption refrigeration apparatus 100 having no function part for exchanging heat between the absorber 1 and the generator 5 are provided. Configure by applying the configuration.

【0104】(3)GAX機能部分を図4のように構成
した吸収式冷凍装置100に第1〜第6の構成を適用し
て構成する。
(3) The GAX function is configured by applying the first to sixth configurations to the absorption refrigeration system 100 configured as shown in FIG.

【0105】(4)上記(2)(3)の構成において、
上記(1)の構成と同様に、ポンプ64を管路21の分
岐箇所より手前の箇所に移設するとともに、開閉弁30
1Dを除去して構成する。この構成の場合、必要に応じ
て、ポンプ64を冷却操作時、つまり、冷房運転時と、
加温操作時、つまり、暖房運転時との両方において運転
状態する。
(4) In the configuration of (2) or (3),
Similarly to the above configuration (1), the pump 64 is moved to a position before the branch point of the pipe line 21 and the on-off valve 30 is opened.
It is configured by removing 1D. In the case of this configuration, if necessary, the pump 64 is in a cooling operation, that is, in a cooling operation,
The operation state is set during both the heating operation, that is, the heating operation.

【0106】(5)第4実施例の構成において、所定温
度T2以下と所定温度T3とによる除霜運転の制御を行
う部分の構成を、第3実施例における暖房運転の所定時
間TAの経過毎に除霜運転を所定の短時間TBだけ行う
構成に変更して構成する。
(5) In the configuration of the fourth embodiment, the configuration of the portion for controlling the defrosting operation at a predetermined temperature T2 or lower and the predetermined temperature T3 is changed to the case where the predetermined time TA of the heating operation in the third embodiment elapses. The defrosting operation is changed to a configuration in which the defrosting operation is performed for a predetermined short time TB.

【0107】(6)図1・図2・図3の構成における開
閉弁301A・301B・301C・301Dによる流
路の開閉構成を、三方弁または四方弁を用いた構成によ
り同様の管路接続動作または開閉動作が行えるように変
更して構成し、または、管路接続切換器63Bによる流
路の切換構成を、開閉弁または三方弁を用いた構成によ
り同様の管路接続動作が行えるように変更して構成す
る。
(6) The channel opening / closing operation by the on-off valves 301A, 301B, 301C, and 301D in the configuration shown in FIGS. 1, 2, and 3 is similar to that of the three-way or four-way valve. Alternatively, the configuration is changed so that the opening / closing operation can be performed, or the switching configuration of the flow path by the pipeline connection switching device 63B is changed so that the same pipeline connection operation can be performed by the configuration using the opening / closing valve or the three-way valve. And configure.

【0108】[0108]

【発明の効果】この発明によれば、以上のように、冷房
運転時には冷媒蒸気の凝縮し、暖房運転時には冷媒の蒸
発を行う熱交換機能部分と、吸収機能部分の冷却用熱操
作流体の冷却を行う熱交換機能部分との両方を外気との
直接的な熱交換によって行うようにしているため、これ
ら両熱交換において外気温度をそのまま直接利用し得る
ので、装置全体でみた成績係数を従来に比べて大きく向
上し得る。
According to the present invention, as described above, the heat exchange function for condensing the refrigerant vapor during the cooling operation and evaporating the refrigerant during the heating operation, and the cooling of the heat-operating fluid for cooling the absorption function. Since both the heat exchange function part and the heat exchange function part are performed by direct heat exchange with the outside air, the outside air temperature can be used directly as it is in both heat exchanges. It can be greatly improved.

【0109】また、第1の除霜運転構成では、除霜運転
の間に、吸収機能部分を冷却する際に加温された冷却用
の熱操作流体を一時的に循環する熱交換器の加温を、暖
房運転時に冷媒の蒸発を行う熱交換機能部分に伝達して
着霜が除去しているので、除霜運転の間にも、冷媒循環
系が暖房運転状態を維持することができ、暖房運転に戻
したときに、速やかに完全な暖房運転状態に移行できる
ため、装置全体でみた成績係数の低下を僅少に抑制し得
る。
Further, in the first defrosting operation configuration, during the defrosting operation, a heat exchanger for temporarily circulating the heated heat-operating fluid for cooling when cooling the absorption function portion is used. Since the frost is removed by transmitting the temperature to the heat exchange function portion that evaporates the refrigerant during the heating operation, the refrigerant circulation system can maintain the heating operation state even during the defrost operation, When the operation is returned to the heating operation, the state can be immediately shifted to the complete heating operation state, so that a decrease in the coefficient of performance as a whole of the apparatus can be slightly suppressed.

【0110】さらに、第2の除霜運転構成では、除霜運
転の間に、冷媒循環系を一時的に冷房運転状態にしてい
るため、暖房運転時に冷媒の蒸発を行う熱交換機能部分
が一時的に加温されて着霜が除去するので、除霜運転の
間にも、室内空気を加温する熱操作流体の循環系を暖房
運転状態を維持でき、暖房運転に戻したとき、比較的速
やかに完全な暖房運転状態に移行できるため、装置全体
でみた成績係数の低下を少く抑え得る。
Further, in the second defrosting operation configuration, since the refrigerant circulation system is temporarily set in the cooling operation state during the defrosting operation, the heat exchange function for evaporating the refrigerant during the heating operation is temporarily stopped. Since the frost is removed by the heating, the circulating system of the heat operation fluid for heating the indoor air can be maintained in the heating operation state even during the defrosting operation. Since it is possible to promptly shift to the complete heating operation state, a decrease in the coefficient of performance of the entire apparatus can be suppressed to a small extent.

【0111】そして、上記の第1と第2の除霜運転構成
のうちの一方を、外気の状態に対応して選択動作してい
るので、外気条件に見合った除霜運転を行うことがで
き、装置全体でみた成績係数の低下を外気条件に対応し
て抑制し得るなどの特長がある。
Since one of the first and second defrosting operation configurations is selectively operated in accordance with the state of the outside air, a defrosting operation suitable for the outside air condition can be performed. Another advantage is that a decrease in the coefficient of performance of the entire apparatus can be suppressed in accordance with the outside air condition.

【図面の簡単な説明】[Brief description of the drawings]

図面中、図1〜図3はこの発明の実施例を、また、図4
・図5は従来技術を示し、各図の内容は次のとおりであ
る。
1 to 3 show an embodiment of the present invention, and FIGS.
FIG. 5 shows the prior art, and the contents of each figure are as follows.

【図1】全体構成ブロック図FIG. 1 is a block diagram showing the overall configuration.

【図2】全体構成ブロック図FIG. 2 is a block diagram showing the overall configuration.

【図3】全体構成ブロック図FIG. 3 is a block diagram showing the overall configuration;

【図4】全体構成ブロック図FIG. 4 is a block diagram showing the overall configuration;

【図5】全体構成ブロック図FIG. 5 is a block diagram showing the overall configuration;

【符号の説明】[Explanation of symbols]

1 吸収器 1A 冷却管 2a 濃液 2b 稀液 2c 濃液 2f 冷媒液 3 ポンプ 4 管路 4A 管路 4B 管路 4C 管路 4D 管路 4d 管路 5 発生器 6 加熱器 7a 冷媒蒸気 7b 冷媒蒸気 7c 冷媒蒸気 7d 冷媒蒸気 7e 冷媒蒸気 8 管路 9 減圧器 10 管路 11 凝縮器 11A 被加熱側 12 管路 13 減圧器 14 蒸発器 14A 被冷却側 15 管路 15A 管路 15B 管路 15C 管路 17 管路 18 管路 20 管路 20A 管路 21 管路 22 管路 23 管路 24 管路 25 管路 31 吸収液熱交換器 31A 被加熱側 35a 第1の熱操作流体 35b 第2の熱操作流体 61 室外熱交換器 61A 放熱側 61B 送風機 62 室内熱交換器 62A 冷房時/被冷却側・暖房時/被加熱側 63 管路接続切換器 63A 管路接続切換器 63B 管路接続切換器 64 ポンプ 65 ポンプ 70 CPU 80 設定操作部 100 吸収式冷凍装置 201A 冷却管 201B 熱交換管 201D 散布管 201X 補助発生熱交換管 202 管路 205A 熱交換管 205C 散布管 205D 熱交換管 205E 熱交換管 205F 棚状の仕切 205G 棚状の仕切 205H 棚状の仕切 206 精溜部 207 第2の吸収器 207A 熱交換管 207B 散布管 208 開閉弁 209 開閉弁 210 ポンプ 211 逆止弁 212 逆止弁 213 逆止弁 214 予冷用熱交換器 214A 被吸熱側 215 減圧器 216 逆止弁 217 吸収用熱交換器・第3の吸収器 218 逆止弁 219 逆止弁 220 逆止弁 221 減圧器 222 逆止弁 260 液溜器 280 調整用液溜器 301A 開閉弁 301B 開閉弁 301C 開閉弁 301D 開閉弁 DESCRIPTION OF SYMBOLS 1 Absorber 1A Cooling pipe 2a Concentrated liquid 2b Dilute liquid 2c Concentrated liquid 2f Refrigerant liquid 3 Pump 4 Pipe line 4A Pipe line 4B Pipe line 4C Pipe line 4D Pipe line 4d Pipe line 5 Generator 6 Heater 7a Refrigerant vapor 7b Refrigerant vapor 7c Refrigerant vapor 7d Refrigerant vapor 7e Refrigerant vapor 8 Pipe line 9 Pressure reducer 10 Pipe line 11 Condenser 11A Heated side 12 Pipe line 13 Pressure reducer 14 Evaporator 14A Cooled side 15 Pipe line 15A Pipe line 15B Pipe line 15C Pipe line 17 Pipeline 18 Pipeline 20 Pipeline 20A Pipeline 21 Pipeline 22 Pipeline 23 Pipeline 24 Pipeline 25 Pipeline 31 Absorbent Liquid Heat Exchanger 31A Heated Side 35a First Thermally Operated Fluid 35b Second Thermally Operated Fluid 61 Outdoor heat exchanger 61A Radiation side 61B Blower 62 Indoor heat exchanger 62A Cooling / cooled / heating / heated 63 Pipe connection switch 63A Pipe connection switch 63 B Pipe connection switch 64 Pump 65 Pump 70 CPU 80 Setting operation unit 100 Absorption refrigeration system 201A Cooling pipe 201B Heat exchange pipe 201D Spray pipe 201X Auxiliary heat exchange pipe 202 Pipe 205A Heat exchange pipe 205C Scatter pipe 205D Heat exchange Tube 205E heat exchange tube 205F shelf-like partition 205G shelf-like partition 205H shelf-like partition 206 rectification unit 207 second absorber 207A heat exchange tube 207B distribution tube 208 on-off valve 209 on-off valve 210 pump 211 check valve 212 Check valve 213 Check valve 214 Pre-cooling heat exchanger 214A Heat absorption side 215 Pressure reducer 216 Check valve 217 Absorption heat exchanger / third absorber 218 Check valve 219 Check valve 220 Check valve 221 Depressurization 222 222 Check valve 260 Liquid reservoir 280 Adjustment liquid reservoir 301A Open / close valve 301B On-off valve 301C On-off valve 301D On-off valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 具彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 播磨 和彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭57−104062(JP,A) 特開 平6−201212(JP,A) 特開 平6−94322(JP,A) 特開 昭57−166454(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 301 F25B 30/04 510 ──────────────────────────────────────────────────の Continued on the front page (72) Tomohiko Kato 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture Inside Sanyo Electric Co., Ltd. (72) Kazuhiko Harima 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (56) References JP-A-57-104062 (JP, A) JP-A-6-201212 (JP, A) JP-A-6-94322 (JP, A) JP-A Sho57 −166454 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 15/00 301 F25B 30/04 510

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒蒸気を吸収液に吸収する吸収機能部分
などを介して前記吸収液を循環する吸収液循環系と、前
記吸収液から冷媒蒸気を蒸発させる発生機能部分と前記
蒸発させた冷媒蒸気を凝縮して凝縮冷媒を得る凝縮機能
部分と前記凝縮冷媒を蒸発させて冷媒蒸気を得る蒸発機
能部分などを介して冷媒を循環する冷媒循環系とを設
け、前記冷媒循環系により室内空気を冷却または加温す
る吸収式冷凍装置であって、前記冷却の間には前記凝縮
機能部分として動作するとともに、前記加温の間には前
記蒸発機能部分として動作する第1の熱交換機能部分の
熱交換を外気との直接的な熱交換によって行う冷媒外気
間熱交換手段と、前記冷却の間に前記吸収機能部分を冷
却する熱操作流体を冷却するための第2の熱交換機能部
分の熱交換を外気との直接的な熱交換によって行う冷却
流体外気間熱交換手段と、前記熱操作流体と前記室内空
気との熱交換にもとづいて前記室内の加温を行う室内手
段と、前記第1の熱交換機能部分と、前記第2の熱交換
機能部分とを並列に隣接して配置する並列熱交換配置手
段と、前記冷却の間に前記蒸発機能部分として動作する
第3の熱交換機能部分の熱交換にもとづいて前記室内空
気の冷却を行う室内冷却手段と、前記加温の間に、前記
第3の熱交換機能部分を前記蒸発機能部分として動作さ
せるとともに、前記第1の熱交換機能部分を前記凝縮機
能部分として動作させることにより、前記第1の熱交換
機能部分の除霜を行う除霜手段とを具備することを特徴
とする吸収式冷凍装置。
An absorbing liquid circulating system for circulating the absorbing liquid through an absorbing function part for absorbing the refrigerant vapor into the absorbing liquid; a generating function part for evaporating the refrigerant vapor from the absorbing liquid; and the evaporated refrigerant. A refrigerant circulating system that circulates refrigerant through a condensing function part that obtains condensed refrigerant by condensing vapor and an evaporating function part that evaporates the condensed refrigerant and obtains refrigerant vapor is provided. An absorption refrigeration unit that cools or heats the first heat exchange function part, which operates as the condensation function part during the cooling and operates as the evaporation function part during the heating. Heat exchange means between the refrigerant and the outside air for performing heat exchange by direct heat exchange with the outside air, and heat of the second heat exchange function part for cooling the heat operation fluid for cooling the absorption function part during the cooling. Exchange with outside air A cooling fluid external air-to-air heat exchange unit that performs direct heat exchange, an indoor unit that heats the interior of the room based on heat exchange between the thermal operation fluid and the indoor air, and the first heat exchange function part And a parallel heat exchange arranging means for arranging the second heat exchange function part in parallel and adjacent to each other, and based on heat exchange of the third heat exchange function part operating as the evaporative function part during the cooling. An indoor cooling means for cooling the indoor air by using the third heat exchange function part as the evaporation function part and the first heat exchange function part as the condensation function during the heating. An absorptive refrigeration apparatus comprising: a defrosting unit that operates as a part to defrost the first heat exchange function part.
【請求項2】 冷媒蒸気を吸収液に吸収する吸収機能部
分などを介して前記吸収液を循環する吸収液循環系と、
前記吸収液から冷媒蒸気を蒸発させる発生機能部分と前
記蒸発させた冷媒蒸気を凝縮して凝縮冷媒を得る凝縮機
能部分と前記凝縮冷媒を蒸発させて冷媒蒸気を得る蒸発
機能部分などを介して冷媒を循環する冷媒循環系とを設
け、前記冷媒循環系により室内空気を冷却または加温す
る吸収式冷凍装置であって、前記冷却の間には前記凝縮
機能部分として動作するとともに、前記加温の間には前
記蒸発機能部分として動作する第1の熱交換機能部分の
熱交換を外気との直接的な熱交換によって行う冷媒外気
間熱交換手段と、前記冷却の間に前記吸収機能部分を冷
却する熱操作流体を冷却するための第2の熱交換機能部
分の熱交換を外気との直接的な熱交換によって行う冷却
流体外気間熱交換手段と、前記熱操作流体と前記室内空
気との熱交換にもとづいて前記室内の加温を行う室内手
段と、前記第1の熱交換機能部分と、前記第2の熱交換
機能部分とを並列に隣接して配置する並列熱交換配置手
段と、前記冷却の間に前記蒸発機能部分として動作する
第3の熱交換機能部分の熱交換にもとづいて前記室内空
気の冷却を行う室内冷却手段と、前記加温の間に、前記
熱操作流体の一部を前記第2の熱交換機能部分に循環す
ることにより、前記第1の熱交換機能部分の除霜を行う
第1の除霜手段と、前記加温の間に、前記第3の熱交換
機能部分を前記蒸発機能部分として動作させるととも
に、前記第1の熱交換機能部分を前記凝縮機能部分とし
て動作させることにより、前記第1の熱交換機能部分の
除霜を行う第2の除霜手段と、前記外気の状態にもとづ
いて、前記第1の除霜手段または前記第2の除霜手段の
一方を選択する除霜選択手段とを具備することを特徴と
する吸収式冷凍装置。
2. An absorbent circulating system that circulates the absorbent through an absorbing function part that absorbs refrigerant vapor into the absorbent.
Refrigerant via a generating function part for evaporating refrigerant vapor from the absorbing liquid, a condensing function part for condensing the vaporized refrigerant vapor to obtain a condensed refrigerant, and an evaporating function part for evaporating the condensed refrigerant to obtain refrigerant vapor. A refrigerant circulating system for circulating the refrigerant, wherein the refrigerant circulating system cools or heats room air, and operates as the condensing function part during the cooling. In between, a heat exchange means between the refrigerant and the outside air for performing heat exchange of the first heat exchange function part operating as the evaporation function part by direct heat exchange with the outside air, and cooling the absorption function part during the cooling A cooling fluid / air-to-air heat exchange means for performing heat exchange of the second heat exchange function part for cooling the heat operation fluid to be performed by direct heat exchange with the outside air, and heat exchange between the heat operation fluid and the room air. For exchange An indoor means for heating the interior of the room, a first heat exchange function part, a parallel heat exchange arrangement means for arranging the second heat exchange function part in parallel and adjacent to each other, An indoor cooling unit that cools the indoor air based on heat exchange of a third heat exchange function part that operates as the evaporating function part, and a part of the heat operation fluid during the heating. By circulating to the second heat exchange function part, a first defrost means for defrosting the first heat exchange function part, and the third heat exchange function part during the heating. A second defrosting unit that operates as the evaporating function part and operates the first heat exchange function part as the condensation function part to perform defrosting of the first heat exchange function part; The first defrosting means or the Absorption refrigerating apparatus characterized by comprising a defrosting selecting means for selecting one of the two defrosting means.
JP01431995A 1995-01-31 1995-01-31 Absorption refrigeration equipment Expired - Fee Related JP3182308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01431995A JP3182308B2 (en) 1995-01-31 1995-01-31 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01431995A JP3182308B2 (en) 1995-01-31 1995-01-31 Absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH08200872A JPH08200872A (en) 1996-08-06
JP3182308B2 true JP3182308B2 (en) 2001-07-03

Family

ID=11857772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01431995A Expired - Fee Related JP3182308B2 (en) 1995-01-31 1995-01-31 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3182308B2 (en)

Also Published As

Publication number Publication date
JPH08200872A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
JP3140333B2 (en) Heat pump equipment
KR100418993B1 (en) Absorption Chiller
JP2008116173A (en) Absorption type refrigerating machine
JP2000018762A (en) Absorption refrigerating machine
JP3182308B2 (en) Absorption refrigeration equipment
JP2004163092A (en) Indoor unit for air conditioner and air conditioner using this
JPH08271080A (en) Absorption refrigeration apparatus
JP2002286317A (en) Vapor compression heat pump
JP3143251B2 (en) Absorption refrigerator
JP2000146355A (en) Composite heat transfer system
JP3762217B2 (en) refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JPH062980A (en) Absorption type heat pump apparatus
JP3857955B2 (en) Absorption refrigerator
JPH0942796A (en) Absorption freezer device
JPH0744917Y2 (en) Absorption chiller / heater device
JP2957191B2 (en) Defrosting mechanism for absorption heat pump and absorption heat pump cooling / heating device provided with the defrosting mechanism
JP3133538B2 (en) Absorption refrigerator
JP2766951B2 (en) Absorption refrigerator
JP2000055505A (en) Combined heat transfer device
JP2001208443A (en) Absorption freezer
JPH11344268A (en) Absorption refrigerating device
JPH1038402A (en) Steam-heating absorption type water cooler/heater
JP2904659B2 (en) Absorption heat pump equipment
JPH0942795A (en) Absorption freezer device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees