JPH08199218A - Converter process recycling decarburized slag - Google Patents

Converter process recycling decarburized slag

Info

Publication number
JPH08199218A
JPH08199218A JP674495A JP674495A JPH08199218A JP H08199218 A JPH08199218 A JP H08199218A JP 674495 A JP674495 A JP 674495A JP 674495 A JP674495 A JP 674495A JP H08199218 A JPH08199218 A JP H08199218A
Authority
JP
Japan
Prior art keywords
slag
furnace
molten steel
gas
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP674495A
Other languages
Japanese (ja)
Other versions
JP3333339B2 (en
Inventor
Shinya Kitamura
信也 北村
Yuji Ogawa
雄司 小川
Takeo Imoto
健夫 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP674495A priority Critical patent/JP3333339B2/en
Publication of JPH08199218A publication Critical patent/JPH08199218A/en
Application granted granted Critical
Publication of JP3333339B2 publication Critical patent/JP3333339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To suppress sudden boiling of molten iron at next charge by scattering/solidifying while blowing top blowing gas to remaining slag under specific condition after the molten steel produced through dephosphorizing/decarburizing of molten iron in a converter is tapped. CONSTITUTION: A molten iron 4 is poured into a converter 1 without discharging the slag 6 produced at the preceding charge, an oxygen 7 is supplied from a top lance 2 at about 1200-1450 deg.C, and the slag produced through dephosphorization refining is discharged. Successively, after decarburizing is executed with supplying an oxygen 7 from the top blowing lance 2, a molten steel produced is tapped. Further, in such a state that a slag 6 remains in furnace, a gas 8 of one or more kinds of N, Ar, etc., is blown at a flow rate of 80-250Nm<3> /Hr.ton so that the ratio (Ls/Lso) between a dent depth (Ls) formed to the slag due to top blown gas and slag thickness (Lso) is turned to 2-15. By this method, scattering of the slag 6 to furnace wall and erosion of furnace bottom refractory is efficiently prevented in short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱炭滓をリサイクルする
転炉製鋼法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter steelmaking method for recycling decarburized slag.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低燐
鋼の安定溶製に関して、従来、溶銑の脱燐法として、
(1)トピードカー内の溶銑に対して脱燐用フラックス
(酸化鉄、生石灰等)をインジェクションして予備脱燐
を行う方法、(2)取鍋内の溶銑に対して脱燐用フラッ
クスをインジェクション、もしくは吹き付けを行い予備
脱燐を行う方法、あるいは、(3)2基の転炉を用い
て、一方で脱燐を行い、他方で脱炭を行う方法(例え
ば、特開昭63−195210号公報)が用いられてい
る。しかしながら、(1),(2)の方法は、(T・F
e)が低く(CaO/SiO2 )が高いスラグを用いる
ため脱燐と同時に脱硫反応が進行するという利点がある
ものの、酸化剤として鉄鉱石やスケール粉に代表される
酸化鉄を用いているため、処理中に温度が低下し、次工
程である転炉でのスクラップ消費量が低下し溶鋼生産量
が低減するという問題がある。一方、(3)の方法にお
いては、酸化剤としては酸素ガスを用い、脱燐処理時の
温度制御のためにスクラップを用いることができるた
め、スクラップ消費量の低下はないものの、溶銑脱燐処
理と脱炭とを別の反応容器で行うため、溶銑の移し変え
に伴う熱ロスが発生しスクラップの消費量を低減させて
いる。
2. Description of the Related Art Regarding the minimization of the total cost of steelmaking and the stable melting of low-phosphorus steel, the conventional method for dephosphorizing hot metal has been
(1) A method for performing preliminary dephosphorization by injecting a flux for dephosphorization (iron oxide, quick lime, etc.) on the hot metal in the tope car, (2) Injecting a flux for dephosphorization on the hot metal in a ladle, Alternatively, a method of performing preliminary dephosphorization by spraying, or (3) a method of performing dephosphorization on one side and decarburization on the other side using two converters (for example, JP-A-63-195210) ) Is used. However, the methods (1) and (2) are (TF
Although e) is low and (CaO / SiO 2 ) is high, there is an advantage that desulfurization reaction proceeds simultaneously with dephosphorization, but iron oxide represented by iron ore and scale powder is used as an oxidizing agent. However, there is a problem that the temperature decreases during processing, the scrap consumption in the converter, which is the next step, decreases, and the molten steel production decreases. On the other hand, in the method (3), since oxygen gas is used as the oxidant and scrap can be used for temperature control during the dephosphorization process, the scrap consumption does not decrease, but the hot metal dephosphorization process is performed. Since decarburization and decarburization are performed in separate reaction vessels, heat loss occurs due to hot metal transfer and scrap consumption is reduced.

【0003】さらに、特開平4−072007号公報に
おいては、溶銑の装入、脱燐脱硫精錬、排滓、脱炭精
錬、出鋼、脱炭スラグを残したまま次チャージの溶銑装
入、という工程を連続する溶鋼製造法が開示されてい
る。この方法では、溶銑の移し変えに伴う熱ロスは発生
しないが、脱炭スラグは(T・Fe)が高いため溶融状
態で次チャージの溶銑を装入すると、溶銑中の炭素と急
激に反応し溶銑とスラグが炉外に噴出する、いわゆる突
沸が起こるという問題がある。これを回避するために、
溶銑装入前に、石灰石やスクラップを冷材としてスラグ
に添加し、転炉を数回傾動させるという手法がとられて
いるが、長時間を有するため生産性を著しく阻害すると
いう問題がある。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 4-072007, charging of hot metal, dephosphorization desulfurization smelting, slag, decarburization smelting, tapping, and decarburization slag, the next charge of hot metal is called. A method for producing molten steel in which the steps are continuous is disclosed. In this method, heat loss due to hot metal transfer does not occur, but decarburization slag has a high (T · Fe), so when the next charge of hot metal is charged in the molten state, it rapidly reacts with the carbon in the hot metal. There is a problem that so-called bumping occurs, in which hot metal and slag are ejected outside the furnace. To avoid this,
A method of adding limestone or scrap as a cold material to the slag and tilting the converter several times before charging the hot metal is used, but there is a problem that productivity is significantly impaired because it takes a long time.

【0004】ところで、特開昭61−56223号公報
においては、転炉へのスラグコーティング方法として、
炉内に残留させた脱炭滓に上吹きランスから空気又は遅
反応性ガスを吹き付け、スラグを炉壁へはね上げる方法
が開示されている。しかし、この方法では短時間で効率
的にスラグを炉壁へはね上げる条件や炉底耐火物の溶損
を防止する条件や、その状態で次チャージ溶銑を受銑し
た時の突沸回避条件に関する記述がなく、そのままでは
適用できないという問題があった。
By the way, Japanese Patent Laid-Open No. 61-56223 discloses a method for coating a converter with slag.
A method is disclosed in which air or a slow-reactive gas is blown from a top blowing lance to the decarburizing slag remaining in the furnace to splash the slag onto the furnace wall. However, in this method, the conditions for splashing the slag onto the furnace wall in a short time and the conditions for preventing melting damage of the furnace bottom refractory, and the conditions for avoiding bumping when the next charge hot metal is received in that state are related. There is a problem that there is no description and it cannot be applied as it is.

【0005】[0005]

【発明が解決しようとする課題】本発明は、特開平4−
072007号公報に開示された技術における、溶銑装
入時の突沸を回避するために長時間を有するため生産性
を著しく阻害するという問題や、特開昭61−5622
3号公報に開示された技術における、短時間で効率的に
スラグを炉壁にはね上げる条件や炉底耐火物の溶損を防
止しつつ突沸を回避する条件に関する記述がなく、その
ままでは適用できないという問題を解決し、突沸の危険
がなく高い生産性をもって脱炭滓のリサイクルを可能に
することを目的とする。
The present invention is disclosed in Japanese Unexamined Patent Publication No.
In the technology disclosed in Japanese Patent Publication No. 072007, there is a problem that productivity is significantly impaired because it takes a long time to avoid bumping at the time of hot metal charging, and JP-A-61-5622.
There is no description in the technology disclosed in Japanese Patent No. 3 publication regarding the conditions for splashing the slag onto the furnace wall in a short time and the conditions for avoiding bumping while preventing melting loss of the furnace bottom refractory, and is applied as it is. The purpose is to solve the problem of not being able to do so and to enable recycling of decarburizing slag with high productivity without the risk of bumping.

【0006】[0006]

【課題を解決するための手段】本発明者らは、炉内に残
留させた脱炭滓に上吹きランスからガスを吹き付けスラ
グを炉壁へはね上げる方法において、適正な条件を選択
した場合、短時間で効率的にスラグを炉壁へはね上げる
条件と炉底耐火物の溶損を防止する条件とが両立できる
ことを明らかにした。本発明はこの知見に基づきなされ
たものである。
The inventors of the present invention selected a proper condition in a method of blowing gas from an upper blowing lance to a decarburizing slag remaining in a furnace to splash a slag onto a furnace wall. , It was clarified that the conditions for splashing slag efficiently on the furnace wall in a short time and the conditions for preventing melting damage of the furnace bottom refractory are compatible. The present invention is based on this finding.

【0007】その要旨とするところは、(1)上吹きラ
ンスから酸素を供給し、かつ、鋼浴をガス撹拌せしめる
上底吹き転炉型精錬装置を用いて、前チャージで生成し
たスラグを排出することなく溶銑を受銑する工程(工程
1)、温度を1200〜1450℃とした条件で上吹き
ランスから酸素を供給する溶銑の脱燐精錬工程(工程
2)、炉を傾動させ工程2で生成したスラグを排出する
工程(工程3)、炉を直立させ上吹きランスから酸素を
供給して脱炭せしめる工程(工程4)、生成した溶鋼を
出鋼する工程(工程5)を連続して実施する転炉製鋼法
において、工程5の後、スラグを炉内に残留させた状態
で炉を直立させ、工程4と同一、もしくは、他の上吹き
ランスから窒素,Ar,CO,CO2 の1種、もしく
は、2種以上を混合せしめたガスを80〜250Nm3
Hr・ton の流量で、上吹きガスによりスラグに形成させ
る計算上のへこみ深さ(LS )とスラグ厚(LSO)の比
(LS/LSO)が2〜15となるように吹き付けた後、
工程1を実施することを特徴とする脱炭滓をリサイクル
した転炉製鋼法にある。
The main points are: (1) Discharge of slag generated by pre-charging using an upper-bottom blowing converter type refining device that supplies oxygen from an upper-blowing lance and stirs a steel bath with gas. Without hot metal (step 1), a hot metal dephosphorization refining step (step 2) in which oxygen is supplied from an upper blowing lance at a temperature of 1200 to 1450 ° C., and the furnace is tilted in step 2 The step of discharging the generated slag (step 3), the step of standing the furnace upright to supply oxygen from the upper blowing lance to decarburize (step 4), and the step of tapping the generated molten steel (step 5) are successively performed. In the converter steelmaking method to be carried out, after the step 5, the furnace is erected with the slag remaining in the furnace, and the same as in the step 4 or nitrogen, Ar, CO, CO 2 from another upper blowing lance Mix one or two or more A meta-gas 80~250Nm 3 /
Spraying at a flow rate of Hr · ton so that the ratio (L S / L SO ) between the calculated dent depth (L S ) and the slag thickness (L SO ) formed in the slag by the top-blown gas is 2 to 15. After
It is a converter steelmaking method in which decarburizing slag is recycled, characterized in that step 1 is carried out.

【0008】また、(2)前記(1)記載の転炉製鋼法
において、工程5に際して溶鋼を出鋼する際に、溶鋼の
浴深(LMO)とスラグ厚(LSO)の比(LMO/LSO)が
1〜5の範囲で溶鋼を炉内に残留させることを特徴とす
る脱炭滓をリサイクルする転炉製鋼法にある。
(2) In the converter steel making method described in (1) above, when the molten steel is tapped in step 5, the ratio of the bath depth (L MO ) of the molten steel and the slag thickness (L SO ) (L It is a converter steelmaking method for recycling decarburizing slag, characterized in that molten steel is left in the furnace in the range of MO / L SO ) of 1 to 5.

【0009】さらに、(3)前記(2)記載の転炉製鋼
法において、工程5の後、スラグと溶鋼を炉内に残留さ
せた状態で炉を直立させた後、炭材を添加することを特
徴とする脱炭滓をリサイクルする転炉製鋼法にある。
(3) In the converter steel making method described in (3) above, after step 5, the furnace is erected with the slag and the molten steel left in the furnace, and then the carbonaceous material is added. Is a converter steelmaking method that recycles decarburizing slag.

【0010】ここで、上吹きガスによるキャビティー深
さLs (m)はノズル径d(mm)、ランスとスラグ面間
の距離h(mm)、ノズル個数nとすると次式で計算され
る。 Ls =(7/2)×{Lh ×exp(−0.78×h/
h )}/100 Lh =63×(F×W×60/(n×d))2/3 また、溶鋼の浴深LMO(m)、スラグ厚LSO(m)の計
算は、溶鋼密度を7(g/cm3 )、スラグ密度を2(g
/cm3 )として転炉の幾何学的形状から計算できる。
Here, the cavity depth L s (m) due to the top-blown gas is calculated by the following formula, where the nozzle diameter d (mm), the distance between the lance and the slag surface h (mm), and the number of nozzles n. . L s = (7/2) × {L h × exp (−0.78 × h /
L h )} / 100 L h = 63 × (F × W × 60 / (n × d)) 2/3 Further , the bath depth L MO (m) of molten steel and the slag thickness L SO (m) are calculated as follows. Molten steel density 7 (g / cm 3 ), slag density 2 (g
/ Cm 3 ) can be calculated from the geometrical shape of the converter.

【0011】[0011]

【作用】図1は、本発明の実施形態を模式的に示したも
のである。前チャージで生成したスラグ6を排出するこ
となく溶銑4を受銑する工程(工程1)、温度を120
0〜1450℃とした条件で上吹きランス2から酸素7
を供給して精錬する溶銑の脱燐精錬工程(工程2)、炉
を傾動させ工程2で生成したスラグ5を排出する工程
(工程3)、炉を直立させ上吹きランス2から酸素7を
供給して脱炭せしめる工程(工程4)、生成した溶鋼4
を出鋼する工程(工程5)、スラグ6を炉内に残留させ
た状態で炉を直立させ、工程4と同一、もしくは、他の
上吹きランス2から窒素,Ar,CO,CO2 の1種、
もしくは、2種以上を混合せしめたガス8を吹き付ける
工程(工程6)とからなっている。ここで、より効率を
上げるには、工程5で溶鋼4を完全に排出せずに、一部
を残留させ、さらに、炭材を添加した後にガスを吹き付
けることが望ましい。
FIG. 1 schematically shows an embodiment of the present invention. The step of receiving the hot metal 4 without discharging the slag 6 generated in the pre-charge (step 1), the temperature is 120
Oxygen 7 from top blowing lance 2 under the condition of 0 to 1450 ° C.
Dephosphorization refining process of molten pig iron for refining (step 2), tilting the furnace to discharge the slag 5 generated in step 2 (step 3), standing the furnace upright and supplying oxygen 7 from the upper blowing lance 2. And decarburization process (process 4), generated molten steel 4
In the step of tapping steel (step 5), the furnace is erected in a state where the slag 6 is left in the furnace, and the same as in step 4, or from another upper blowing lance 2 of nitrogen, Ar, CO, CO 2 seed,
Alternatively, it includes a step (step 6) of spraying the gas 8 in which two or more kinds are mixed. Here, in order to further improve the efficiency, it is desirable that the molten steel 4 is not completely discharged in step 5 but a part of the molten steel 4 is left behind, and further the gas is sprayed after adding the carbonaceous material.

【0012】まず、工程6の適正条件について以下に説
明する。本発明は、残留したスラグ6を短時間で効率的
に飛散させ凝固せしめることが重要である。これによ
り、次チャージの溶銑4を装入した際に溶銑とスラグの
急激な反応による突沸を抑制することが可能となる。本
技術においては、上吹きガスによる飛散は、スラグを微
細な粒子に分けて空間を飛散させることで抜熱を促進し
飛散中に凝固させることが目的である。これは、スラグ
コーティングが目的の場合には、スラグ粒子は飛散中に
凝固するのではなく、炉壁に到達した後に凝固せしめる
必要があるとの本質的に異なる点である。
First, the proper conditions for step 6 will be described below. In the present invention, it is important that the remaining slag 6 is efficiently scattered and solidified in a short time. This makes it possible to suppress bumping due to a rapid reaction between the hot metal and the slag when the next-charge hot metal 4 is charged. In the present technology, the purpose of the scattering by the top-blown gas is to separate the slag into fine particles and scatter in the space to promote heat removal and solidify during the scattering. This is a fundamental difference from the fact that when slag coating is intended, the slag particles need to be solidified after reaching the furnace wall rather than solidifying during splattering.

【0013】従って、上吹きガスとしては、スラグ中に
残留している粒鉄と反応し発熱しないものである、窒
素,Ar,CO,CO2 の1種、もしくは、2種以上を
混合せしめたガスに限定される。流量として80〜25
0Nm3 /Hr・ton の範囲が適正であり、これよりも少な
い場合にはガスの冷却能が小さく、スラグ粒子が飛散中
に凝固できず、多すぎる場合には転炉炉体からのガスに
よる抜熱が大きくなるため転炉耐火物温度が大きく低下
し炉寿命を悪化させる。
Therefore, as the top blowing gas, one or two or more of nitrogen, Ar, CO, and CO 2 , which react with the granular iron remaining in the slag and do not generate heat, are mixed. Limited to gas. 80 to 25 as flow rate
If the range of 0 Nm 3 / Hr · ton is appropriate, and if it is less than this, the cooling capacity of the gas is small, and the slag particles cannot be solidified during scattering. If it is too large, it depends on the gas from the converter furnace body. Since the heat removal becomes large, the temperature of the refractory material of the converter greatly decreases and the life of the furnace deteriorates.

【0014】一方、ガスの流速の最適範囲は、図2に示
すようにスラグに形成させる計算上のへこみ深さ
(LS )とスラグ厚(LSO)の比(LS /LSO)が2〜
15となる範囲である。これよりも小さい場合にはガス
の運動エネルギーが小さいためスラグ粒子が充分な量だ
け飛散できず未凝固スラグが炉底に残存し、次チャージ
の溶銑装入時に突沸を招き、これよりも大きい場合には
上吹きガスが炉底を激しくアタックし耐火物寿命に悪影
響を与える。
On the other hand, the optimum range of the gas flow velocity is that the ratio (L S / L SO ) between the calculated dent depth (L S ) and the slag thickness (L SO ) formed in the slag as shown in FIG. 2 to
The range is 15. If it is smaller than this, since the kinetic energy of the gas is small, sufficient amount of slag particles cannot be scattered and unsolidified slag remains at the bottom of the furnace, causing bumping at the time of charging the hot metal for the next charge. The top-blown gas violently attacks the bottom of the furnace and adversely affects the refractory life.

【0015】ここで、より効果的に実施するためには、
図3に示すように、工程5に際して溶鋼を、溶鋼の浴深
(LMO)とスラグ厚(LSO)の比(LMO/LSO)が1〜
5の範囲で炉内に残留させることが良い。これは、上吹
きガスのエネルギーにより液体を小さな粒子に引きちぎ
る場合、粘性の高いスラグのみに対するよりも、粘性の
低い溶鋼と共存させた方が容易であることと、密度が大
きい溶鋼が存在することにより、上吹きガスのエネルギ
ーの炉底耐火物に作用する割合が大きく低下し、炉底耐
火物損耗が軽減される上、底吹きノズルへのスラグの差
込みによる閉塞も回避されるためである。1よりも少な
い場合には、溶鋼量が少なすぎるために溶鋼を残留させ
た効果がなく、5よりも多い場合には出鋼歩留が悪化す
る上、残留溶鋼が次チャージでは冷材として作用するた
め熱的に損失が大きくなる。
Here, in order to carry out more effectively,
As shown in FIG. 3, the molten steel during step 5, the ratio of the bath depth of the molten steel (L MO) and slag thickness (L SO) (L MO / L SO) is 1
It is preferable to leave it within the range of 5 in the furnace. This is because when the liquid is torn into small particles by the energy of the top-blown gas, it is easier to coexist with molten steel with lower viscosity than with only highly viscous slag, and molten steel with high density is present. As a result, the ratio of the energy of the top-blown gas that acts on the furnace bottom refractory is greatly reduced, wear of the furnace bottom refractory is reduced, and blockage due to insertion of slag into the bottom-blown nozzle is also avoided. If it is less than 1, the effect of leaving the molten steel is too small because the amount of molten steel is too small, and if it is more than 5, the yield rate is deteriorated and the residual molten steel acts as a cold material in the next charge. Therefore, the heat loss becomes large.

【0016】さらに、溶鋼を残留させた場合には、スラ
グとともに酸素濃度が高い溶鋼粒子も飛散、凝固するた
め、2分以下という短時間の上吹きの後に次チャージの
溶銑を受銑した時の突沸を完全に回避する場合には、炭
材を添加し酸素をCOガスとして除去しておくとより良
い。
Further, when the molten steel is left, the molten steel particles having a high oxygen concentration are scattered and solidified together with the slag, so that when the hot metal of the next charge is received after the short-time blowing of 2 minutes or less. In the case of avoiding bumping completely, it is better to add carbonaceous material and remove oxygen as CO gas.

【0017】なお、工程2で温度を1200℃よりも低
くした場合には、工程4の吹き止め時に必要な温度まで
温度が充分に上昇せず、1450℃よりも高くした場合
には脱燐平衡上、脱燐反応が起こりにくく多量の生石灰
が必要となるため効率的ではない。
When the temperature is lower than 1200 ° C. in the step 2, the temperature does not rise sufficiently to the temperature required for stopping the blowing in the step 4, and when it is higher than 1450 ° C., the dephosphorization equilibrium is obtained. Moreover, the dephosphorization reaction is unlikely to occur and a large amount of quick lime is required, which is not efficient.

【0018】[0018]

【実施例】表1に示す実施例は175トン上底吹き転炉
を用いて図1に示した工程で行った。底吹きガスは窒素
ガス、もしくは、酸素ガスと羽口冷却用ガスを用い、上
吹きランスより酸素ガスを吹き付けた。工程2では、上
方より塊状の生石灰を蛍石とともに投入し、(CaO)
/(SiO2 )を1.6〜3.1に制御した。処理中温
度はスクラップや鉄鉱石を投入することで1200〜1
450℃とした。工程4では、上方より塊状の生石灰を
投入し、(CaO)/(SiO2 )を3.1〜4.8に
制御し、吹き止めの炭素濃度は0.25〜0.02%、
温度は1580〜1680℃とした。
EXAMPLES The examples shown in Table 1 were carried out in the process shown in FIG. 1 using a 175 ton top-bottom blowing converter. Nitrogen gas or oxygen gas and tuyere cooling gas was used as the bottom blowing gas, and oxygen gas was blown from the top blowing lance. In step 2, lumpy quicklime is added together with fluorspar from above, and (CaO)
/ Was controlled (SiO 2) to 1.6 to 3.1. The temperature during processing is 1200 to 1 by adding scrap or iron ore
It was set to 450 ° C. In step 4, lump-shaped quick lime is added from above, (CaO) / (SiO 2 ) is controlled to 3.1 to 4.8, and the carbon concentration of the blow stopper is 0.25 to 0.02%,
The temperature was 1580 to 1680 ° C.

【0019】工程6に際しては工程2,4と同一のラン
スからガスを供給した。上吹きランスは孔径、孔数を変
化させ、ランス先端からスラグ面までの距離を変化させ
Sを調整した。残留スラグ量は約50kg/tであり、厚
さ(LSO)は約30cmであった。表1の試験番号の1か
ら12は本発明の実施例であり、次チャージの溶銑を突
沸することなく受銑することができ、また、耐火物の損
耗もなかった。試験番号13,14はLS /LSOが小さ
すぎる場合で、試験番号15はLS /LSOは適正でもガ
ス流量が小さすぎる場合であるが、いずれも次チャージ
の溶銑装入時に突沸が発生している。試験番号16,1
7はガス流量が大きすぎる場合と、LS/LSOが大きす
ぎる場合であるが、いずれも耐火物の損耗が激しかっ
た。
In step 6, gas was supplied from the same lance as in steps 2 and 4. The top-blowing lance was changed in hole diameter and the number of holes, and the distance from the tip of the lance to the slag surface was changed to adjust L S. The residual slag amount was about 50 kg / t and the thickness (L SO ) was about 30 cm. Test Nos. 1 to 12 in Table 1 are examples of the present invention, and the hot metal of the next charge could be received without bumping, and the refractory was not worn. Test numbers 13 and 14 are when L S / L SO is too small, and test number 15 is when L S / L SO is proper but the gas flow rate is too small. In both cases, bumping occurs when the hot metal is charged for the next charge. It has occurred. Test number 16, 1
In No. 7, when the gas flow rate was too large and when L S / L SO was too large, the wear of the refractory was severe in both cases.

【0020】ここで、上記試験のいずれの場合も工程2
での脱燐率は70〜90%と高く、また、工程4で所定
の吹き止め温度を得ることに問題は生じなかった。尚、
試験番号18として、工程6は試験番号2と同一とし工
程2の温度を1490℃とした場合には脱燐率が67%
と悪化し、逆に、温度を1125℃とした場合(試験番
号19)には工程4での発熱量が不足し高価な無煙炭を
使用する必要が生じた。
Here, in any of the above tests, the step 2
The dephosphorization rate was as high as 70 to 90%, and there was no problem in obtaining the predetermined blowing stop temperature in step 4. still,
As test number 18, step 6 is the same as test number 2 and the dephosphorization rate is 67% when the temperature in step 2 is 1490 ° C.
On the contrary, when the temperature was set to 1125 ° C. (Test No. 19), the calorific value in Step 4 was insufficient and it was necessary to use expensive anthracite.

【0021】試験番号20以降として、工程6と工程2
は試験番号2と同一とし、ランスは35mm径の4孔ノズ
ルを用い窒素ガスをスラグ面から2.5m上方より吹き
付け、工程5に際して溶鋼を炉内に残留させた試験を実
施した。その結果を表2に示す。試験番号20〜22の
ように、溶鋼の浴深(LMO)とスラグ厚(LSO)の比
(LMO/LSO)が1〜5の範囲で炉内に残留させた場合
には、歩留も良い状態で耐火物損耗や底吹きノズルの閉
塞も全くなく、短時間処理が可能となった。また、試験
番号25として、試験番号20と同一条件で、工程5の
後、スラグと溶鋼を炉内に残留させた状態で炉を直立さ
せた後、炭材をスラグ量の約10重量パーセント添加し
た結果、ガス吹き付け時間を2.5分以下とすることが
可能となった。ここで、炭材添加量はスラグ量の5〜3
5重量パーセントが適当であった。
As test number 20 and thereafter, step 6 and step 2
Was the same as Test No. 2 and the lance was a four-hole nozzle with a diameter of 35 mm, and nitrogen gas was blown from 2.5 m above the slag surface, and the molten steel was left in the furnace during step 5. The results are shown in Table 2. When the molten steel bath depth (L MO ) and the slag thickness (L SO ) ratio (L MO / L SO ) is left within the range of 1 to 5 as in Test Nos. 20 to 22, The yield was good, and there was no refractory wear or blockage of the bottom blowing nozzle, and short-time processing was possible. As test number 25, under the same conditions as test number 20, after step 5, the furnace was erected while leaving the slag and molten steel in the furnace, and then carbon material was added in an amount of about 10 weight percent of the slag amount. As a result, it became possible to reduce the gas spraying time to 2.5 minutes or less. Here, the carbonaceous material addition amount is 5 to 3 of the slag amount.
5 weight percent was suitable.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明を用いることにより、溶銑装入時
に突沸を起こすことなく安全に脱炭滓をリサイクルする
ことが可能となり、少ない生石灰原単位で、かつ、生産
性の高い転炉製鋼法が可能となった。
EFFECTS OF THE INVENTION By using the present invention, it is possible to safely recycle decarburizing slag without causing bumping at the time of charging hot metal, and a converter steelmaking method with a small amount of quick lime basic unit and high productivity. Became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した場合の模式図である。FIG. 1 is a schematic diagram when the present invention is implemented.

【図2】LS /LSOと次チャージの溶銑装入時の突沸の
発生状況の関係を示す実験結果。
FIG. 2 is an experimental result showing the relationship between L S / L SO and the occurrence state of bumping at the time of hot metal charging of the next charge.

【図3】LMO/LSOと底吹きノズルの閉塞状況の関係を
示す実験結果。
FIG. 3 is an experimental result showing the relationship between L MO / L SO and the state of blockage of a bottom blowing nozzle.

【符号の説明】 1 転炉 2 上吹きランス 3 底吹き羽口 4 溶銑または溶鋼 5 脱燐スラグ 6 脱炭スラグ a 酸素ガス b 窒素,Ar,CO,CO2 の1種、もしくは、2種
以上を混合させたガス
[Explanation of symbols] 1 converter 2 top blowing lance 3 bottom blowing tuyere 4 hot metal or molten steel 5 dephosphorization slag 6 decarburization slag a oxygen gas b nitrogen, Ar, CO, CO 2 1 type, or 2 or more types Mixed gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上吹きランスから酸素を供給し、かつ、
鋼浴をガス撹拌せしめる上底吹き転炉型精錬装置を用い
て、前チャージで生成したスラグを排出することなく溶
銑を受銑する工程(工程1)、温度を1200〜145
0℃とした条件で上吹きランスから酸素を供給する溶銑
の脱燐精錬工程(工程2)、炉を傾動させ工程2で生成
したスラグを排出する工程(工程3)、炉を直立させ上
吹きランスから酸素を供給して脱炭せしめる工程(工程
4)、生成した溶鋼を出鋼する工程(工程5)を連続し
て実施する転炉製鋼法において、工程5の後、スラグを
炉内に残留させた状態で炉を直立させ、工程4と同一、
もしくは、他の上吹きランスから窒素,Ar,CO,C
2 の1種、もしくは、2種以上を混合せしめたガスを
80〜250Nm3 /Hr・ton の流量で、上吹きガスによ
りスラグに形成させる計算上のへこみ深さ(LS )とス
ラグ厚(LSO)の比(LS /LSO)が2〜15となるよ
うに吹き付けた後、工程1を実施することを特徴とする
脱炭滓をリサイクルする転炉製鋼法。
1. Supplying oxygen from a top blowing lance, and
A step (step 1) of receiving hot metal without discharging the slag generated by the precharge using a top-bottom blow converter-type refining device that stirs the steel bath with gas, and the temperature is 1200 to 145.
Dephosphorization refining process of hot metal that supplies oxygen from the top blowing lance under the condition of 0 ° C (step 2), step of tilting the furnace to discharge the slag generated in step 2 (step 3), upright blowing of the furnace In the converter steel making method in which the step of supplying oxygen from the lance to decarburize (step 4) and the step of tapping the produced molten steel (step 5) are continuously performed, slag is introduced into the furnace after step 5. The furnace is erected in the state of being left, and the same as step 4,
Or nitrogen, Ar, CO, C from other top blowing lances
One O 2, or of two or more was allowed to mixed gas at a flow rate of 80~250Nm 3 / Hr · ton, dent depths of computational to form slag by the top-blown gas (L S) slag thickness after (L sO) ratio (L S / L sO) is blown such that 2-15, converter steelmaking method for recycling decarburization slag which comprises carrying out the step 1.
【請求項2】 工程5に際して溶鋼を出鋼する際に、溶
鋼の浴深(LMO)とスラグ厚(LSO)の比(LMO
SO)が1〜5の範囲で溶鋼を炉内に残留させることを
特徴とする請求項1記載の脱炭滓をリサイクルする転炉
製鋼法。
2. When tapping the molten steel in step 5, the ratio of the bath depth (L MO ) of the molten steel to the slag thickness (L SO ) (L MO /
LSO ) makes a molten steel remain in a furnace in the range of 1-5, The converter steelmaking method which recycles the decarburizing slag of Claim 1 characterized by the above-mentioned.
【請求項3】 工程5の後、スラグと溶鋼を炉内に残留
させた状態で炉を直立させた後、炭材を添加することを
特徴とする請求項2記載の脱炭滓をリサイクルする転炉
製鋼法。
3. The decarburizing slag according to claim 2, wherein after step 5, the furnace is erected in a state where the slag and the molten steel are left in the furnace and then the carbonaceous material is added. Converter steelmaking.
JP674495A 1995-01-19 1995-01-19 Converter steelmaking method for recycling decarburized slag Expired - Fee Related JP3333339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP674495A JP3333339B2 (en) 1995-01-19 1995-01-19 Converter steelmaking method for recycling decarburized slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP674495A JP3333339B2 (en) 1995-01-19 1995-01-19 Converter steelmaking method for recycling decarburized slag

Publications (2)

Publication Number Publication Date
JPH08199218A true JPH08199218A (en) 1996-08-06
JP3333339B2 JP3333339B2 (en) 2002-10-15

Family

ID=11646722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP674495A Expired - Fee Related JP3333339B2 (en) 1995-01-19 1995-01-19 Converter steelmaking method for recycling decarburized slag

Country Status (1)

Country Link
JP (1) JP3333339B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544652B1 (en) * 2001-05-24 2006-01-23 주식회사 포스코 Method for recycling desulphurizing agent
KR101009008B1 (en) * 2003-07-31 2011-01-17 주식회사 포스코 Method for rising temperature of converter
JP2020105586A (en) * 2018-12-27 2020-07-09 日本製鉄株式会社 Hot slag recycling method
CN114574658A (en) * 2022-04-11 2022-06-03 甘肃酒钢集团宏兴钢铁股份有限公司 By using CO2Method for blowing ladle top slag modifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544652B1 (en) * 2001-05-24 2006-01-23 주식회사 포스코 Method for recycling desulphurizing agent
KR101009008B1 (en) * 2003-07-31 2011-01-17 주식회사 포스코 Method for rising temperature of converter
JP2020105586A (en) * 2018-12-27 2020-07-09 日本製鉄株式会社 Hot slag recycling method
CN114574658A (en) * 2022-04-11 2022-06-03 甘肃酒钢集团宏兴钢铁股份有限公司 By using CO2Method for blowing ladle top slag modifier

Also Published As

Publication number Publication date
JP3333339B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
WO1995001458A1 (en) Steel manufacturing method using converter
JP3239197B2 (en) Converter steelmaking method
JP6693536B2 (en) Converter steelmaking method
JP6421634B2 (en) Manufacturing method of molten steel
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
JP2020125541A (en) Converter refining method
JP6665884B2 (en) Converter steelmaking method
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP2003239009A (en) Dephosphorization refining method of hot metal
JP3885499B2 (en) Converter steelmaking method
JP2005015889A (en) Method for preventing effluence of slag in converter
JPH08311519A (en) Steelmaking method using converter
JPH0734113A (en) Converter refining method
JP3668172B2 (en) Hot metal refining method
JP2005139529A (en) Method for dephosphorization-refining molten pig iron
JP3339982B2 (en) Converter steelmaking method
JPH0860221A (en) Converter steelmaking method
JP3825733B2 (en) Hot metal refining method
JP2009052070A (en) Method for dephosphorizing molten iron
JP2005226127A (en) Method for refining molten pig iron
JP2004010935A (en) Method for manufacturing molten steel
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH09202912A (en) Method for dephosphorizing molten iron under condition excellent in scrap melting capacity

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

LAPS Cancellation because of no payment of annual fees