JPH0819455B2 - Refining of stainless steel - Google Patents

Refining of stainless steel

Info

Publication number
JPH0819455B2
JPH0819455B2 JP8974987A JP8974987A JPH0819455B2 JP H0819455 B2 JPH0819455 B2 JP H0819455B2 JP 8974987 A JP8974987 A JP 8974987A JP 8974987 A JP8974987 A JP 8974987A JP H0819455 B2 JPH0819455 B2 JP H0819455B2
Authority
JP
Japan
Prior art keywords
slag
molten steel
sio
treatment
vod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8974987A
Other languages
Japanese (ja)
Other versions
JPS63277708A (en
Inventor
直樹 平嶋
裕幸 青木
昭男 新飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8974987A priority Critical patent/JPH0819455B2/en
Publication of JPS63277708A publication Critical patent/JPS63277708A/en
Publication of JPH0819455B2 publication Critical patent/JPH0819455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ステンレス鋼の精錬法に関し、詳しくは清
浄度の優れたステンレス鋼の溶製法に関する。
TECHNICAL FIELD The present invention relates to a method for refining stainless steel, and more particularly to a method for melting stainless steel having excellent cleanliness.

[従来の技術] ステンレス鋼は製品段階で得ようとする目的によって
溶鋼段階でAlを添加するが、Alを添加することによって
Al2O3系の介在物、特にクラスター状介在物を生成し、
これらが連続鋳造中にタンディッシュノズルに付着、堆
積、剥離を繰返すことによってモールド内の湯面レベル
を不安定にし、オシレーションマークのみだれを誘発し
てスラブ表面性状を悪化させ、ひいては製品段階でこの
部分がヘゲなどの表面疵となっていた。
[Prior Art] Stainless steel is added with Al at the molten steel stage according to the purpose of obtaining it at the product stage.
Al 2 O 3 -based inclusions, especially cluster-shaped inclusions are generated,
During continuous casting, these deposits, deposits, and peel off on the tundish nozzle repeatedly, making the molten metal level in the mold unstable, inducing drooling of the oscillation marks and deteriorating the slab surface quality. This part was a surface defect such as a beard.

ところで、Alを添加するステンレス鋼においては、Al
2O3クラスターなどの介在物が製品段階で線状疵等の表
面疵となり、その対策として例えば特開昭58−16018号
公報に示すようにVOD処理中にAlを添加した後、CaO−Ca
F2系フラックスを溶鋼表面上に添加し、次いで溶鋼中を
上方より浸漬したランスからArガスにて減圧下で撹拌さ
せることによってAl2O3系介在物をCaO−Al2O3系の低融
点介在物に変化させて介在物の無害化を図る方法が提案
されている。
By the way, in stainless steel to which Al is added,
Inclusions such as 2 O 3 clusters cause surface flaws such as linear flaws at the product stage, and as a countermeasure, for example, after adding Al during VOD treatment as shown in JP-A-58-16018, CaO-Ca
By adding F 2 -based flux on the surface of molten steel and then stirring it under a reduced pressure with Ar gas from a lance soaked in the molten steel from above, Al 2 O 3 -based inclusions are reduced in CaO-Al 2 O 3 -based alloy. A method has been proposed in which the inclusions are rendered harmless by changing to melting point inclusions.

ところが、これらの方法はVOD処理中、特にAlを添加
した際に生成したAl2O3系介在物の無害化を図る方法で
あって、その後に成分調整時に生成するもの及びVOD処
理後から連続鋳造を完了するまでの間にスラグと溶鋼中
の[Al]とが反応して生成するAl2O3系介在物の無害化
または減少においては全く効果がない。この間に生成す
るAl2O3系介在物を生成させないこと、もしくは生成し
ても無害化または減少されることができないかぎり先に
述べた問題が生じ、スラブ表面の手入が必要で、製品段
階での疵はもちろん経済的にも非常に不利であった。
However, these methods are methods for detoxifying the Al 2 O 3 -based inclusions generated during the VOD treatment, especially when Al is added, and those that are generated after the component adjustment and after the VOD treatment are continuously performed. It has no effect on the detoxification or reduction of Al 2 O 3 -based inclusions generated by the reaction between slag and [Al] in the molten steel until the casting is completed. Unless the Al 2 O 3 -based inclusions that are formed during this period are generated, or even if they are generated, they cannot be detoxified or reduced, the above-mentioned problems occur, and the slab surface needs to be cared for. Of course, the flaw was very economically disadvantageous.

[発明が解決しようとする問題点] 本発明はかくのごとき背景に鑑みなされたものであっ
て、単に溶鋼とVOD処理後スラグを撹拌することによっ
てスラグ組成をコントロールし、VOD処理後から連続鋳
造完了までに生成するAl2O3系介在物を抑制するととも
に、処理方法も極めて簡単な方法で、且つ高清浄度を有
し、表面性状のきわめて優れたステンレス鋼を溶製する
精錬法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the background as described above, and the slag composition is controlled by simply stirring molten steel and slag after VOD treatment, and continuous casting is performed after VOD treatment. We provide a refining method that suppresses Al 2 O 3 inclusions that are generated by the completion of the process, that the treatment method is also extremely simple, that has a high degree of cleanliness, and that produces stainless steel that has an excellent surface property. To do.

[問題点を解決するための手段] 本発明を以下に詳しく説明する 転炉などの精錬炉で粗脱炭した含Cr溶湯を取鍋に受鋼
させ、ポーラスプラグからArガスによる撹拌を行いつつ
取鍋を真空状態にし、上方からのランスにて吹酸し目標
脱炭域まで脱炭させる。その後、5〜10分間真空状態の
ままAr撹拌を行い脱ガス処理を実施し、ひき続きAl,Fe
−Siなどを添加脱酸し、さらにCaO系フラッックスを添
加してスラグ精錬を行う。その後大気圧下において目標
成分値までAl,Fe−Si,その他合金を添加する。ここまで
は従来のVOD精錬法である。このVOD処理において脱炭、
脱ガス後、Al,Fe−Siなどによって脱酸した時点でAl2O3
系介在物が生成される。ところが、本発明者等はその後
のCaO系フラックス添加によるスラグ精錬とVOD処理始め
からのポーラスプラグによるAr撹拌によってAl2O3系介
在物はスラグに吸収されたり、CaO−Al2O3系の低融点介
在物となり得ることを知見した。しかし、目標成分値に
調整するためスラグ精錬後にもAl,Fe−Siその他合金な
どを添加するためこの時点でもAl2O3系介在物が再度生
成される。またCaO系フラックスを添加して形成するス
ラグ中にはCaO,SiO2,Al2O3の他にFeO,MnO,Cr2O3などの
金属酸化物が存在する。このスラグがVOD処理後にも常
に溶鋼表面上に存在するために、VOD処理後から連続鋳
造に至るまでの間に鍋内に対流で移動する溶鋼中の[A
l]によってSiO2,FeO,MnO,Cr2O3などが還元され、Al2O3
系介在物はVOD処理後にも生成される。
[Means for Solving Problems] The present invention will be described in detail below. While a Cr-containing molten metal that has been roughly decarburized in a refining furnace such as a converter is received in a ladle and stirred with Ar gas from a porous plug. The ladle is evacuated, and the lance is blown from above to decarburize to the target decarburization area. After that, degassing treatment is performed by stirring Ar for 5 to 10 minutes in a vacuum state.
-Si is added and deoxidized, and CaO-based flux is added to perform slag refining. Then, under atmospheric pressure, Al, Fe-Si, and other alloys are added up to the target component values. This is the conventional VOD refining method. Decarburization in this VOD treatment,
After degassing, Al 2 O 3 is added when deoxidized with Al, Fe-Si, etc.
System inclusions are generated. However, the present inventors have Al 2 O 3 inclusions by Ar stirred by porous plug from subsequent refining and VOD process started by the CaO-type flux is added or is absorbed in the slag, CaO-Al 2 O 3 system It has been found that it can be a low melting point inclusion. However, since Al, Fe—Si and other alloys are added even after slag refining to adjust to the target component value, Al 2 O 3 type inclusions are regenerated at this point as well. In addition, CaO, SiO 2 and Al 2 O 3 as well as metal oxides such as FeO, MnO and Cr 2 O 3 are present in the slag formed by adding the CaO-based flux. Since this slag is always present on the surface of the molten steel even after VOD treatment, [A
l] reduces SiO 2 , FeO, MnO, Cr 2 O 3, etc., resulting in Al 2 O 3
System inclusions are also formed after VOD treatment.

従って、VOD処理段階で生成したA2O3系介在物をその
時点でCaO−Al2O3系介在物にして無害化しても、その後
にスラグ−メタル反応により再度Al2O3系介在物が生成
されるため、連続鋳造時のタンディッシュノズル絞りを
引きおこしスラブ表面性状は全く改善されない。
Therefore, even if the A 2 O 3 -based inclusions generated in the VOD treatment stage are converted to CaO-Al 2 O 3 -based inclusions at that time to be harmless, the Al 2 O 3 -based inclusions are again regenerated by the slag-metal reaction. Therefore, the tundish nozzle is squeezed during continuous casting, and the slab surface quality is not improved at all.

そこで、従来のVOD処理を行った後、ひきつづいて大
気下でArランスを溶鋼中に浸漬するか、又はポーラスプ
ラグを用いたArガスの吸込みにより溶鋼とVOD処理後ス
ラグを混合撹拌して形成スラグを特定値内にする。即
ち、溶鋼中の[Al]とVOD処理後スラグ中SiO2,FeO,MnO,
Cr2O3などが強制的に撹拌されて、溶鋼中[Al]によりS
iO2,FeO,MnO,Cr2O3などが還元される。この処理によっ
て溶鋼中[Al]はスラグを還元しその値が低下するため
に事前に目標成分の上限値以上にしておくとより好まし
いが、微量の金属Al,若しくはAl合金を添加してもよ
い。撹拌は大気下で行うため操業が容易で、かつVOD処
理後のスラグ厚は100mm以上あるために、溶鋼が外気と
接触して酸化されることもない。
Therefore, after performing the conventional VOD treatment, continuously immerse the Ar lance in the molten steel under the atmosphere, or by mixing and stirring the molten steel and the VOD-treated slag by inhaling Ar gas using a porous plug, the slag is formed. Within a specific value. That is, [Al] in the molten steel and SiO 2 , FeO, MnO, in the slag after VOD treatment
Cr 2 O 3 etc. are forcibly stirred, and S in molten steel [Al]
iO 2 , FeO, MnO, Cr 2 O 3 etc. are reduced. By this treatment, [Al] in molten steel reduces slag and its value decreases, so it is more preferable to make it higher than the upper limit of the target component in advance, but a trace amount of metal Al or Al alloy may be added. . Since the stirring is performed in the atmosphere, the operation is easy, and since the slag thickness after VOD treatment is 100 mm or more, the molten steel does not contact with the outside air to be oxidized.

この撹拌によってスラグーメタル反応が促進され溶鋼
中[Al]によってSiO2,FeO,MnO,Cr2O3などが還元され、
溶鋼中にはSi,Mn,Fe,Crとして溶解し、[Al]はAl2O3
なる。この撹拌を行った時にAl2O3が大量に生成する
が、このAl2O3はスラグに吸収されて消滅し溶鋼中には
ほとんど存在しない。すなわち[Al]がスラグ中SiO2,F
eO,MnO,Cr2O3とスラグーメタル界面で接触し、[Al]に
よる還元反応が起るが、撹拌の強さによって[Al]のス
ラグーメタル界面への供給速度が決り、SiO2などとの反
応速度が決定される。その速度は、スラグからのSiO2
どの酸化物の供給速度以上の速さで[Al]を供給するこ
とが望ましい。これは[Al]の供給が遅いとSiO2などの
酸化物に対して[Al]が量的に少なくSiO2量に見合わず
にSiO2などの酸化物から反応にあずからなかった酸素が
溶鋼中へ供給されて他の溶鋼中の[Al]と反応してAl2O
3を生成することになる。従ってこの撹拌力の指標とし
てはArガス量を0.015〜0.025Nm3/min.tonが好ましい。
しかしArガス量が0.025Nm3/min.tonより多く、撹拌が強
すぎると大気下での撹拌のためにVOD処理後のスラグ厚
みが厚くても大気と溶鋼が接触して好ましくない。一方
Arガス量が0.015Nm3/min.ton以下では弱撹拌となり[A
l]の供給速度不足となる。またランスを浸漬して撹拌
するときは溶鋼とスラグの撹拌をさせるだけではなく、
溶鋼中の偏析をなくすためにも浸漬深さは溶鋼表面下20
00mm程度確保すると好ましい。これによってVOD処理後
スラグ中のSiO2などは10wt%以下になり、SiO2の活量が
極端に下り、この処理後から連続鋳造終了までの間にス
ラグ中のSiO2などからの酸素の供給はほとんどなく、
[Al]とスラグが接触しても[Al]によるSiO2などの還
元反応は進行し得ずAl2O3の発生は起らない。
This stirring promotes the slag metal reaction, and [Al] in the molten steel reduces SiO 2 , FeO, MnO, Cr 2 O 3, etc.,
It is dissolved as Si, Mn, Fe, Cr in the molten steel, and [Al] becomes Al 2 O 3 . A large amount of Al 2 O 3 is generated when this stirring is performed, but this Al 2 O 3 is absorbed by the slag and disappears, and it hardly exists in the molten steel. That is, [Al] is SiO 2 , F in the slag.
Contact with eO, MnO, Cr 2 O 3 at the slag metal interface and a reduction reaction with [Al] occurs, but the strength of stirring determines the supply rate of [Al] to the slag metal interface and reacts with SiO 2, etc. The speed is determined. It is desirable that [Al] is supplied at a speed higher than the supply speed of oxides such as SiO 2 from the slag. This is oxygen [Al] is not Azukara the reaction of an oxide such as SiO 2 without worth the quantitative small amount of SiO 2 supply slow the oxide such as SiO 2 of [Al] Al 2 O supplied to molten steel and reacts with [Al] in other molten steel
Will generate 3 . Therefore, as an index of this stirring force, 0.015 to 0.025 Nm 3 /min.ton of Ar gas is preferable.
However, if the amount of Ar gas is more than 0.025 Nm 3 /min.ton and the stirring is too strong, it is not preferable because the molten steel comes into contact with the atmosphere even if the slag thickness after VOD treatment is thick due to stirring under the atmosphere. on the other hand
When the amount of Ar gas is 0.015 Nm 3 /min.ton or less, weak agitation results.
l] supply speed is insufficient. When immersing and stirring the lance, not only stirring molten steel and slag,
In order to eliminate segregation in molten steel, the immersion depth should be 20 below the surface of molten steel.
It is preferable to secure about 00 mm. As a result, the amount of SiO 2 in the slag after VOD treatment becomes 10 wt% or less, the activity of SiO 2 drops extremely, and the supply of oxygen from the SiO 2 in the slag after this treatment until the end of continuous casting. Almost never
Even if [Al] and slag come into contact with each other, the reduction reaction of SiO 2 etc. by [Al] cannot proceed and generation of Al 2 O 3 does not occur.

従って、スラグ中SiO2は10wt%以下が必要である。ま
た、VOD処理中にはCaO系フラックスを添加するためにVO
D処理後のスラグはCaO−SiO2−Al2O3系スラグとなって
おり、このスラグの酸素供給能を表わすのには一般的に
塩基度が用いられている。上記のスラグ中SiO2を10wt%
以下にすることに加えて、酸素供給能を表わす塩基度を
4.5以上にすることで一層Al2O3の生成を抑制される。
Therefore, the SiO 2 content in the slag should be 10 wt% or less. Also, during the VOD process, VO is added to add CaO flux.
Slag after D treatment has a CaO-SiO 2 -Al 2 O 3 slag, it is generally basicity is used to represent the oxygen supply capacity of the slag. 10 wt% of SiO 2 in the above slag
In addition to the following,
When it is 4.5 or more, generation of Al 2 O 3 is further suppressed.

さらに、VOD処理中にSiO2以外の金属酸化物(MnO),
(FeO),(Cr2O3)がスラグ中に残っててるとSiO2より
も溶鋼中へ酸素を与える能力が強いためにSiO2以上にAl
2O3を発生しやすい。従って、VOD処理後の撹拌処理によ
ってSiO2を10wt%以下にすることに加えて、(FeO),
(MnO),(Cr2O3)などSiよりも酸素との親和力の小さ
い金属元素で形成される金属酸化物の総含有濃度を3wt
%以下にすることで、スラグからの酸素供給を完全に断
つことができる。この金属酸化物の総量が3%より多い
と結果としてAl2O3増を招く。また、VOD処理後にこのよ
うなスラグ組成を形成することで、スラグの粘性が変化
しAl2O3を吸収しやすいスラグになることも相まって本
発明の処理効果が一層向上することになる。
Furthermore, metal oxides (MnO) other than SiO 2 during VOD treatment,
(FeO), (Cr 2 O 3) Al on SiO 2 or more for a strong ability to provide oxygen to the molten steel than SiO 2 if and remain in the slag
2 O 3 easily generated. Therefore, in addition to reducing SiO 2 to 10 wt% or less by the stirring treatment after the VOD treatment, (FeO),
The total concentration of metal oxides formed of metal elements such as (MnO) and (Cr 2 O 3 ) that have a lower affinity for oxygen than Si is 3 wt.
The oxygen supply from the slag can be completely cut off by setting the content to not more than%. If the total amount of this metal oxide is more than 3%, Al 2 O 3 increases as a result. Further, by forming such a slag composition after the VOD treatment, the viscosity of the slag is changed and the slag easily absorbs Al 2 O 3, and the treatment effect of the present invention is further improved.

[実施例] 次に本発明の実施例について説明し、その効果を明ら
かにする。
[Examples] Next, examples of the present invention will be described to clarify the effects thereof.

175t酸素上底吹転炉で[C]0.30%とした16%Cr溶鋼
145tを真空下で酸素吹錬して、引き続き脱ガス処理を行
った後、Al 600kg,Fe−Si 754kgを投入し、その後CaO 2
300kgを投入して[C]0.023%,[Si]0.42%,[Mn]
0.10%,[Cr]16.27%,[Al]0.038%を得た。その後
大気圧下で、目標成分値にするために高炭FeCr 300kg,
高炭Mn 158kg,Al 300kg添加し、VOD処理を終了した。こ
の時点で、[C]0.054%,[Si]0.49%,[Mn]0.19
%,[Cr]16.20%,[Al]0.138%を得た。またVOD処
理後のスラグ組成は(CaO):52.46%,(SiO2):14.43
%,(Al2O3):23.02%,(T.Fe):0.24%,(Cr2O3):
0.04%,(MnO):0.16%であった。このVOD処理中に
は、ポーラスプラグからArを300〜500/min流した。こ
の後、大気圧下において、ランスを浸漬してArガスを0.
021Nm3/min/tonで5分間直接溶鋼とスラグを撹拌し鋼中
の[Al]によりスラグ還元を行った。これによってスラ
グ組成は次のように変化した。
16% Cr molten steel with [C] 0.30% in 175t oxygen top-bottom converter
145 t was blown with oxygen under vacuum, followed by degassing, then Al 600 kg, Fe-Si 754 kg were charged, and then CaO 2
Inputting 300kg, [C] 0.023%, [Si] 0.42%, [Mn]
0.10%, [Cr] 16.27% and [Al] 0.038% were obtained. Then, under atmospheric pressure, high-carbon FeCr 300 kg, to reach the target component value,
High carbon Mn (158 kg) and Al (300 kg) were added, and the VOD treatment was completed. At this point, [C] 0.054%, [Si] 0.49%, [Mn] 0.19
%, [Cr] 16.20%, and [Al] 0.138%. The slag composition after VOD treatment is (CaO): 52.46%, (SiO 2 ): 14.43
%, (Al 2 O 3 ): 23.02%, (T.Fe): 0.24%, (Cr 2 O 3 ):
It was 0.04% and (MnO): 0.16%. During this VOD treatment, Ar was flowed from the porous plug at 300 to 500 / min. After that, under atmospheric pressure, the lance is immersed and Ar gas is reduced to 0.
The molten steel and the slag were directly stirred for 5 minutes at 021 Nm 3 / min / ton, and the slag was reduced by [Al] in the steel. As a result, the slag composition changed as follows.

(CaO):56.05%,(SiO2):7.61%,(Al2O3):28.62
%,(T.Fe):0.23%,(Cr2O3):0.04%,(MnO):0.1
5%。この処理を実施した結果を従来法との比較で示
す。第1図に示すように明らかに本発明によるものはVO
D後の撹拌処理で、その後介在物が増加していないこと
がわかる。この理由はスラグ還元と相まって介在物の浮
上促進が行われ、且つAl2O3の再形成が抑制された結果
である。また第2図、第3図に示すように本発明法によ
ってタンディッシュノズル絞りが低減でき、製品表面疵
も大幅に減少しており本発明法がステンレス鋼の高清浄
度化に極めて優れた効果を実現できることがわかる。
(CaO): 56.05%, ( SiO 2): 7.61%, (Al 2 O 3): 28.62
%, (T.Fe): 0.23%, (Cr 2 O 3 ): 0.04%, (MnO): 0.1
Five%. The results of this treatment are shown in comparison with the conventional method. As shown in FIG. 1, the VO according to the present invention is obviously
It can be seen that the inclusions did not increase after the stirring treatment after D. The reason for this is that the floating of the inclusions was promoted together with the slag reduction, and the reformation of Al 2 O 3 was suppressed. Further, as shown in FIG. 2 and FIG. 3, the tundish nozzle aperture can be reduced by the method of the present invention, and the flaws on the surface of the product are significantly reduced, and the method of the present invention is extremely effective in improving the cleanliness of stainless steel. It can be seen that

[発明の効果] 以上述べた如く、本発明によるVOD処理後スラグと溶
鋼を撹拌することで、溶鋼中Al2O3系介在物を大幅に低
下でき、極めて清浄度の高いステンレス鋼が溶製でき
る。この精錬によって、製品性状の向上はもちろん、ス
ラブ手入れ不要による固定費の大幅削減、下工程での工
程省略など極めて優れた精錬法である。
[Advantages of the Invention] As described above, by stirring the slag and molten steel after the VOD treatment according to the present invention, Al 2 O 3 -based inclusions in the molten steel can be significantly reduced, and stainless steel with extremely high cleanliness can be produced. it can. This refining is an excellent refining method that not only improves product properties but also greatly reduces fixed costs by eliminating the need for slab maintenance and omits steps in the lower process.

【図面の簡単な説明】[Brief description of drawings]

第1図はVOD処理後又は、本発明後からの経過時間とAl2
O3介在物インデックスの関係を示す図、第2図は、タン
ディッシュノズル絞り発生回数の比較を示す図、第3図
は製品へゲ発生指数の比較を示す図である。
FIG. 1 shows the time elapsed after VOD treatment or after the present invention and Al 2
FIG. 2 is a diagram showing a relationship between O 3 inclusion indices, FIG. 2 is a diagram showing a comparison of the number of times of tundish nozzle aperture generation, and FIG. 3 is a diagram showing a comparison of product stagnation index.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】転炉で粗脱炭した含Cr溶鋼をAlを添加して
CODで処理した後、次いでこのAlを含有する溶鋼とVOD処
理後の溶鋼浴面上にあるスラグとを直接撹拌して溶鋼中
のAlにより該スラグ中のSiO2を還元し該スラグ中のSiO2
濃度を10wt%以下とし、且つ珪素よりも酸素との親和力
の小さい金属の金属酸化物の該スラグ中の総量を3%以
下とすることを特徴としたステンレス鋼の精錬法。
1. A molten Cr-containing steel that has been roughly decarburized in a converter by adding Al
After the treatment with COD, the molten steel containing Al and the slag on the molten steel bath surface after the VOD treatment are directly stirred to reduce the SiO 2 in the slag by the Al in the molten steel and the SiO in the slag. 2
A method for refining stainless steel, characterized in that the concentration is 10 wt% or less, and the total amount of metal oxides of metals having a smaller affinity for oxygen than silicon is 3% or less in the slag.
JP8974987A 1987-04-14 1987-04-14 Refining of stainless steel Expired - Lifetime JPH0819455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8974987A JPH0819455B2 (en) 1987-04-14 1987-04-14 Refining of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8974987A JPH0819455B2 (en) 1987-04-14 1987-04-14 Refining of stainless steel

Publications (2)

Publication Number Publication Date
JPS63277708A JPS63277708A (en) 1988-11-15
JPH0819455B2 true JPH0819455B2 (en) 1996-02-28

Family

ID=13979398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8974987A Expired - Lifetime JPH0819455B2 (en) 1987-04-14 1987-04-14 Refining of stainless steel

Country Status (1)

Country Link
JP (1) JPH0819455B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030552B1 (en) 2003-12-20 2011-04-21 주식회사 포스코 Method for refining molten steel of low core loss and isotropic electromagnetic steel sheet

Also Published As

Publication number Publication date
JPS63277708A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
JPS6159376B2 (en)
JP3473388B2 (en) Refining method of molten stainless steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JPH0819455B2 (en) Refining of stainless steel
JP3843589B2 (en) Melting method of high nitrogen stainless steel
JP2767674B2 (en) Refining method of high purity stainless steel
JPS63262412A (en) Method for cleaning molten steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JPH0153329B2 (en)
JPS5698415A (en) Steel making method
JPH05287358A (en) Method for melting extremely low carbon steel having high cleanliness
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP3820686B2 (en) Melting method of low nitrogen stainless steel
JP3260417B2 (en) Method for desulfurizing molten steel using RH vacuum degasser
JPH0841530A (en) Production of low aluminum and low sulfur stainless steel
JPH05247522A (en) Refining method of highly clean stainless steel
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
JPS6325047B2 (en)
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH05239537A (en) Method for melting cleanliness and extreme-low carbon steel
JPH03153816A (en) Smelting method for high purity steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JPH0225966B2 (en)
JPS5970710A (en) Production of highly clean steel