JPH081931B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JPH081931B2
JPH081931B2 JP3183716A JP18371691A JPH081931B2 JP H081931 B2 JPH081931 B2 JP H081931B2 JP 3183716 A JP3183716 A JP 3183716A JP 18371691 A JP18371691 A JP 18371691A JP H081931 B2 JPH081931 B2 JP H081931B2
Authority
JP
Japan
Prior art keywords
electrode
capacitor
groove
substrate
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3183716A
Other languages
Japanese (ja)
Other versions
JPH05267612A (en
Inventor
洋 岩井
義雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62125603A priority Critical patent/JPS6323351A/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3183716A priority patent/JPH081931B2/en
Publication of JPH05267612A publication Critical patent/JPH05267612A/en
Publication of JPH081931B2 publication Critical patent/JPH081931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関し、特にMOSキャパシタの構造を改良した
半導体装置及びMOSキャパシタの形成工程を改良した
半導体装置の製造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device having an improved structure of a MOS capacitor and a method of manufacturing a semiconductor device having an improved process of forming a MOS capacitor.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高集積化の要請
から素子の寸法を縮小させることが試みられている。例
えば、図9に示すように半導体基板1の主面に絶縁膜2
を介してキャパシタ電極を設けることにより記憶を蓄え
るためのMOSキャパシタを形成したMOSダイラミッ
クRAMにおいて、キャパシタ電極3の面積を縮小して
集積度を高めることが考えられる。しかしながら、かか
る構造のMOSキャパシタではキャパシタ電極3の面積
を小さくすると、キャパシタに蓄えられる電荷の量が少
なくなり、ノイズ等に対するマージンがとれなくなる問
題がある。
2. Description of the Related Art In recent years, attempts have been made to reduce the size of devices due to the demand for higher integration of semiconductor integrated circuits. For example, as shown in FIG. 9, the insulating film 2 is formed on the main surface of the semiconductor substrate 1.
It is conceivable to reduce the area of the capacitor electrode 3 and increase the degree of integration in a MOS dynamic RAM in which a MOS capacitor for storing memory is formed by providing a capacitor electrode via the. However, in the MOS capacitor having such a structure, if the area of the capacitor electrode 3 is reduced, the amount of electric charge stored in the capacitor decreases, and there is a problem that a margin for noise and the like cannot be secured.

【0003】このようなことから、(1)MOSキャパ
シタを構成する絶縁膜の厚さを薄くすること、(2)M
OSキャパシタを構成する絶縁膜として従来から用いら
れているSiO2 膜の代わりに誘電率の大きいSi3
4 膜等を使用すること、が知られている。しかしなが
ら、かかる構造のMOSキャパシタでは絶縁膜の耐圧や
膜質(ピンホール等)の点で問題があり、キャパシタ電
極の面積を縮小するのには限界があった。
From the above, (1) the thickness of the insulating film forming the MOS capacitor should be reduced, and (2) M
Si 3 N, which has a large dielectric constant, is used instead of the SiO 2 film that has been conventionally used as an insulating film that constitutes an OS capacitor.
It is known to use four membranes or the like. However, the MOS capacitor having such a structure has problems with respect to the withstand voltage of the insulating film and the film quality (pinhole, etc.), and there is a limit to reducing the area of the capacitor electrode.

【0004】また、所定の容量を維持しつつMOSキャ
パシタの面積を縮小する別の方法として、以下に述べる
凹形MOSキャパシタ(又はV形MOSキャパシタ)が
知られている。即ち、このキャパシタは図10に示すよ
うに半導体基板1にV型の凹部4を形成し、この凹部4
に絶縁膜2′を介してキャパシタ電極3′を設けた構造
になっている。かかる凹形キャパシタは、凹部4の深さ
や形状を変えることによってキャパシタ電極3′の実効
面積を任意に選ぶことができると共に、絶縁膜の耐圧、
膜質等も良好にできる。しかしながら、前記凹形MOS
キャパシタでは凹部4とキャパシタ電極3′とを自己整
合的に形成することが難しく、マスク合せずれを考慮し
て凹部4の両側に余裕(A)をとる必要があり、MOS
キャパシタの縮小化の妨げとなり、ひいてはMOSダイ
ナミックRAMの高集積化にとって大きな問題となって
いた。
A concave MOS capacitor (or V-type MOS capacitor) described below is known as another method for reducing the area of a MOS capacitor while maintaining a predetermined capacity. That is, this capacitor forms a V-shaped recess 4 in the semiconductor substrate 1 as shown in FIG.
In this structure, a capacitor electrode 3'is provided via an insulating film 2 '. In such a concave capacitor, the effective area of the capacitor electrode 3'can be arbitrarily selected by changing the depth and shape of the concave portion 4, and the breakdown voltage of the insulating film,
The film quality can be improved. However, the concave MOS
In a capacitor, it is difficult to form the recess 4 and the capacitor electrode 3'in a self-aligned manner, and it is necessary to provide a margin (A) on both sides of the recess 4 in consideration of mask misalignment.
This has hindered the reduction of the size of the capacitor, and has been a serious problem for the high integration of the MOS dynamic RAM.

【0005】[0005]

【発明が解決しようとする問題点】本発明は、上記従来
の問題点を解決するためになされたもので、容量の増大
化と面積の縮小化が図られたMOSキャパシタを有し、
かつ前記MOSキャパシタのキャパシタ電極への引き出
し配線の接続信頼性が格段に向上され、さらにMOSキ
ャパシタの溝部側でその蓄積層と不純物拡散層とを良好
に接続することが可能な半導体装置、並びにかかる半導
体装置を簡単な工程で製造し得る方法を提供しようとす
るものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has a MOS capacitor having an increased capacitance and a reduced area,
Further, the reliability of connection of the lead-out wiring to the capacitor electrode of the MOS capacitor is remarkably improved, and further, the storage device and the impurity diffusion layer can be satisfactorily connected on the groove side of the MOS capacitor, and It is intended to provide a method capable of manufacturing a semiconductor device by a simple process.

【0006】[0006]

【課題を解決するための手段】本発明に係わる半導体装
置は、一導電型の半導体基板; 前記基板の所望部分に設けられた溝部と、前記溝部内面
に形成された絶縁膜と、前記溝部内に上部側面が前記絶
縁膜の内側面と一致するように埋め込まれたキャパシタ
電極と、前記キャパシタ電極の上部に一体的に接続さ
れ、該電極から前記溝部の上部を横切って引き出された
配線とからなるMOSキャパシタ; 前記半導体基板上の前記配線の延出部を除く前記キャパ
シタ電極の端部と離れた部分に酸化膜を介して形成され
たゲート電極; 前記ゲート電極と前記キャパシタ電極の間に位置する前
記基板表面、及び前記キャパシタ電極側とは異なる側の
前記ゲート電極に隣接された前記基板表面にそれぞれ形
成された前記基板と逆導電型の不純物拡散層; を具備し 前記キャパシタの蓄積層と前記不純物拡散層
とは、前記MOSキャパシタの溝部側面で接続されてい
ことを特徴とするものである。
A semiconductor device according to the present invention is a semiconductor substrate of one conductivity type; a groove portion provided in a desired portion of the substrate, an insulating film formed on an inner surface of the groove portion, and an inside of the groove portion. A capacitor electrode embedded so that an upper side surface thereof coincides with the inner side surface of the insulating film, and a wiring integrally connected to the upper portion of the capacitor electrode and extending from the electrode across the upper portion of the groove. A MOS capacitor; a gate electrode formed on a part of the semiconductor substrate apart from the end of the capacitor electrode except an extension of the wiring via an oxide film; a position between the gate electrode and the capacitor electrode An impurity diffusion layer having a conductivity type opposite to that of the substrate formed on the substrate surface and on the substrate surface adjacent to the gate electrode on a side different from the capacitor electrode side, respectively; Comprising a said impurity diffusion layer and the storage layer of the capacitor
Are connected on the side surface of the groove of the MOS capacitor.
It is characterized in that that.

【0007】前記溝部は、一般的に前記半導体基板に複
数設けられる。また、異なる深さの溝部を前記半導体基
板に設けることも可能である。
A plurality of the groove portions are generally provided on the semiconductor substrate. It is also possible to provide the semiconductor substrate with grooves having different depths.

【0008】前記絶縁膜としては、例えばSiO2 膜や
Si3 4 膜等を挙げることができる。かかる絶縁膜
は、溝部内を全て埋込まずに溝部の側面及び底面に薄く
形成することが必要である。
Examples of the insulating film include a SiO 2 film and a Si 3 N 4 film. Such an insulating film needs to be thinly formed on the side surface and the bottom surface of the groove without filling the entire groove.

【0009】上記キャパシタ電極及びこれに一体的に接
続される配線の材料としては、例えば多結晶シリコン、
燐や砒素等の不純物がドープされた多結晶シリコン、或
いはモリブデン、タングステン、チタン、白金などの高
融点金属、又はモリブデンシリサイド、タングステンシ
リサイド、白金シリサイド等の高融点金属硅化物等を挙
げることができる。
The material of the capacitor electrode and the wiring integrally connected to it is, for example, polycrystalline silicon,
Examples thereof include polycrystalline silicon doped with impurities such as phosphorus and arsenic, refractory metals such as molybdenum, tungsten, titanium and platinum, refractory metal silicides such as molybdenum silicide, tungsten silicide and platinum silicide. .

【0010】本発明に係わる半導体装置の製造方法は、
半導体基板の所望部分に溝部を設ける工程; 前記溝部内面に絶縁膜を形成する工程; 電極材料を堆積して少なくとも前記溝部内に電極材料で
埋め込む工程; 前記溝部上の一部を含む電極材料の領域をマスク材で覆
った後、該マスク材及び前記溝部を除く領域上の電極材
料が除去されるまでエッチングすることにより前記溝部
内に上部側面が前記絶縁膜の内側面と自己整合となるキ
ャパシタ電極を形成すると共に、前記キャパシタ電極の
上部に一体的に接続され、該電極から前記溝部上部を横
切って引き出された配線を形成してMOSキャパシタを
作製する工程; 前記半導体基板表面に薄い酸化膜を形成した後、前記半
導体基板上の前記配線の延出部を除く前記キャパシタ電
極の端部と離れた前記酸化膜上部分にゲート電極を形成
する工程; 前記ゲート電極と前記キャパシタ電極の間に位置する前
記基板表面、及び前記キャパシタ電極側とは異なる側の
前記ゲート電極に隣接された前記基板表面に前記基板と
逆導電型の不純物拡散層をそれぞれ形成することにより
前記MOSキャパシタの溝部側面において前記キャパシ
タの蓄積層と前記不純物拡散層とを接続する工程; を具備したことを特徴とするものである。
A method of manufacturing a semiconductor device according to the present invention is
Providing a groove in a desired portion of the semiconductor substrate; forming an insulating film on the inner surface of the groove; depositing an electrode material and filling at least the groove with an electrode material; After covering the area with a mask material, etching is performed until the electrode material on the area excluding the mask material and the groove is removed, so that the upper side surface in the groove is self-aligned with the inner surface of the insulating film. Forming an electrode and forming a wiring integrally connected to the upper part of the capacitor electrode and extending from the electrode across the upper part of the groove to form a MOS capacitor; a thin oxide film on the surface of the semiconductor substrate. And then forming a gate electrode on the oxide film upper portion apart from the end portion of the capacitor electrode except for the extended portion of the wiring on the semiconductor substrate; An impurity diffusion layer having a conductivity type opposite to that of the substrate is formed on the substrate surface located between the gate electrode and the capacitor electrode and on the substrate surface adjacent to the gate electrode on a side different from the capacitor electrode side. By doing
The capacitance is formed on the side surface of the groove of the MOS capacitor.
A step of connecting the storage layer of the battery and the impurity diffusion layer ;

【0011】次に、本発明の半導体装置の製造方法を詳
細に説明する。
Next, the method of manufacturing the semiconductor device of the present invention will be described in detail.

【0012】まず、半導体基板上に溝部形成予定部が除
去されたマスク材、例えばレジストパターン、絶縁膜パ
ターンを形成した後、該マスク材から露出する基板部分
を所望深さ選択エッチングして溝部を形成する。この場
合、エッチング手段としては反応性イオンビームエッチ
ング又はリアクティブイオンエッチングを用いれば、側
面が略垂直な溝部を形成できる。但し、その他のエッチ
グ手段で逆テーパ状の側面を有する溝部を形成してもよ
い。溝部の数は、素子領域内に1つ又は2つ以上形成し
てもよく、特に溝部の深さを変えることにより容量の異
なるMOSキャパシタを形成できる。
First, after forming a mask material, for example, a resist pattern or an insulating film pattern, from which a groove portion is to be formed on a semiconductor substrate, the substrate portion exposed from the mask material is selectively etched to a desired depth to form the groove portion. Form. In this case, if reactive ion beam etching or reactive ion etching is used as the etching means, it is possible to form a groove portion whose side surface is substantially vertical. However, the groove having the reverse tapered side surface may be formed by other etching means. The number of grooves may be one or two or more in the element region, and in particular, MOS capacitors having different capacities can be formed by changing the depth of the grooves.

【0013】次いで、前記マスク材を除去した後、溝部
内面に絶縁膜を形成する。この場合、溝部の内部全体を
絶縁膜で埋込まずに、溝部の側面及び底面に薄い絶縁膜
を形成することが必要である。かかる絶縁膜の形成手段
としては、例えば熱酸化により熱酸化膜を形成する方
法、CVD法によりSiO2 膜やSi3 4 膜などを形
成する方法等を採用し得る。
After removing the mask material, an insulating film is formed on the inner surface of the groove. In this case, it is necessary to form a thin insulating film on the side surface and the bottom surface of the groove without filling the entire inside of the groove with the insulating film. As a method of forming such an insulating film, for example, a method of forming a thermal oxide film by thermal oxidation, a method of forming a SiO 2 film or a Si 3 N 4 film by a CVD method, and the like can be adopted.

【0014】次いで、電極材料(例えば多結晶シリコ
ン、燐や砒素等の不純物がドープされた多結晶シリコン
等)を堆積して少なくとも前記溝部内に前記電極材料を
埋め込む。この工程において、前記電極材料は前記溝部
の開口部幅の半分以上の厚さとなるように堆積すること
が望ましい。つづいて、前記溝部上の一部を含むを前記
電極材料の領域をマスク材(例えばレジストパターン)
で覆った後、前記マスク材及び前記溝部を除く領域上の
電極材料が除去されるまでエッチングすることにより前
記溝部内に上部側面が前記絶縁膜の内側面と自己整合と
なるキャパシタ電極を形成すると共に、前記キャパシタ
電極の上部に一体的に接続され、該電極から前記溝部上
部を横切って引き出された配線を形成してMOSキャパ
シタを作製する。
Next, an electrode material (for example, polycrystalline silicon, polycrystalline silicon doped with impurities such as phosphorus and arsenic) is deposited to fill at least the groove with the electrode material. In this step, it is desirable that the electrode material is deposited so as to have a thickness that is at least half the width of the opening of the groove. Subsequently, a region of the electrode material including a part on the groove is masked (for example, a resist pattern).
And then etching until the electrode material on the region excluding the mask material and the groove portion is removed to form a capacitor electrode in which the upper side surface is self-aligned with the inner side surface of the insulating film. At the same time, a wiring connected to the upper part of the capacitor electrode and extending from the electrode across the upper part of the groove is formed to manufacture a MOS capacitor.

【0015】次いで、熱酸化をして前記基板表面に薄い
酸化膜を形成する。つづいて、全面にゲート電極材料を
堆積し、パターンニングすることにより前記配線の延出
部を除く前記キャパシタ電極の端部と離れた前記酸化膜
上部分にゲート電極を形成する。この後、前記ゲート電
極と前記キャパシタ電極の間に位置する前記基板表面、
及び前記キャパシタ電極側とは異なる側の前記ゲート電
極に隣接された前記基板表面にイオン注入、熱拡散等を
行って前記基板と逆導電型の不純物拡散層をそれぞれ形
成して半導体装置を製造する。
Next, thermal oxidation is performed to form a thin oxide film on the surface of the substrate. Subsequently, a gate electrode material is deposited on the entire surface and patterned to form a gate electrode on the oxide film portion apart from the end portion of the capacitor electrode except the extended portion of the wiring. Then, the substrate surface located between the gate electrode and the capacitor electrode,
And a semiconductor device is manufactured by performing ion implantation, thermal diffusion, etc. on the surface of the substrate adjacent to the gate electrode on the side different from the capacitor electrode side to form an impurity diffusion layer having a conductivity type opposite to that of the substrate. .

【0016】[0016]

【作用】本発明に係わる半導体装置によれば、一導電型
の半導体基板の所望部分に設けられた溝部と、前記溝部
内面に形成された絶縁膜と、前記溝部内に上部側面が前
記絶縁膜の内側面と一致するように埋め込まれた、つま
り後述する配線の延出部を除く前記溝部内に自己整合的
に埋め込まれたキャパシタ電極と、前記キャパシタ電極
の上部に一体的に接続され、該電極から前記溝部の上部
を横切って引き出された配線とからMOSキャパシタを
構成することによって、前記キャパシタ電極の面積を前
記溝部の開口面積で決定できるため、前記MOSキャパ
シタのメモリセルに平面的に占める面積を縮小化でき
る。しかも、前記MOSキャパシタは溝部内に絶縁膜を
挟んでキャパシタ電極が埋め込まれた構造を有するた
め、平面的に占める面積を縮小化されているにもかかわ
らず、高容量化できる。その結果、メモリセル等の素子
の微細化、高集積化を達成できる。なお、溝部の深さを
変えることによって、目的とする容量を有するMOSキ
ャパシタを実現できる。
According to the semiconductor device of the present invention, the groove portion provided in a desired portion of the semiconductor substrate of one conductivity type, the insulating film formed on the inner surface of the groove portion, and the upper side surface in the groove portion are the insulating film. A capacitor electrode embedded so as to match the inner side surface of the capacitor, that is, embedded in a self-aligned manner in the groove portion excluding an extending portion of a wiring described later, and integrally connected to an upper portion of the capacitor electrode, Since the area of the capacitor electrode can be determined by the opening area of the groove by forming the MOS capacitor from the wiring extending from the electrode across the upper portion of the groove, the area of the capacitor electrode can be occupied in the memory cell of the MOS capacitor in a plane. The area can be reduced. Moreover, since the MOS capacitor has a structure in which the capacitor electrode is embedded in the groove with the insulating film interposed therebetween, the capacitance can be increased even though the area occupied in the plane is reduced. As a result, miniaturization and high integration of elements such as memory cells can be achieved. By changing the depth of the groove, a MOS capacitor having a desired capacitance can be realized.

【0017】また、前記キャパシタ電極上部に配線を一
体的に接続することにより、前記溝部内に埋め込まれた
面積の小さいキャパシタ電極に別の工程で配線を接続
(通常コンタクトホールを通して接続)する場合に比べ
て前記キャパシタ電極に対する前記配線の接続信頼性を
格段に向上できる。
Further, when the wiring is integrally connected to the upper part of the capacitor electrode to connect the wiring to the capacitor electrode having a small area buried in the groove portion in another step (usually through a contact hole). In comparison, the connection reliability of the wiring with respect to the capacitor electrode can be significantly improved.

【0018】さらに、前記ゲート電極側に位置するキャ
パシタ電極部分を前記溝部内に自己整合的に形成するこ
とによって、前記MOSキャパシタの溝部側面で前記キ
ャパシタの蓄積層と前記不純物拡散層とを良好に接続で
きる。つまり、前記キャパシタ電極が溝部に対して自己
整合的に形成されず、ゲート電極側の基板表面に延出す
ると、前記延出部の箇所でMOSキャパシタの蓄積層と
拡散層とが電気的に分離される。その結果、キャパシタ
電極の形成前に前記蓄積層と前記拡散層とを繋ぐための
別の拡散層を形成する必要が生じるため、工程の増大と
高集積化の妨げとなる。
Further, by forming the capacitor electrode portion located on the gate electrode side in the groove portion in a self-aligned manner, the storage layer of the capacitor and the impurity diffusion layer are favorably formed on the side surface of the groove portion of the MOS capacitor. Can be connected. That is, when the capacitor electrode is not formed in self-alignment with the groove and extends to the substrate surface on the gate electrode side, the storage layer and the diffusion layer of the MOS capacitor are electrically separated at the extended portion. To be done. As a result, it is necessary to form another diffusion layer for connecting the storage layer and the diffusion layer before forming the capacitor electrode, which hinders an increase in the number of steps and a high degree of integration.

【0019】また、本発明に係わる方法によれば既述し
た高信頼性で高集積度の半導体装置を極めて簡単な工程
により製造することができる。
Further, according to the method of the present invention, the highly reliable and highly integrated semiconductor device described above can be manufactured by an extremely simple process.

【0020】[0020]

【実施例】以下、本発明をMOSダイナミックRAMに
適用した例について第1図(a)〜(i)に示す製造方
法を併記して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a MOS dynamic RAM will be described below in detail with the manufacturing method shown in FIGS.

【0021】まず、図1)に示すようにp型シリコン基
板11に選択酸化法によって素子分離のためのフィール
ド酸化膜12を形成した。つづいて、スパッタエッチン
グを用いた写真蝕刻法によりシリコン基板11の素子領
域の一部に幅1μm、長さ3μm、深さ2.5μmの溝
部13を形成した(図2図示)。
First, as shown in FIG. 1), a field oxide film 12 for element isolation was formed on a p-type silicon substrate 11 by a selective oxidation method. Subsequently, a groove 13 having a width of 1 μm, a length of 3 μm and a depth of 2.5 μm was formed in a part of the element region of the silicon substrate 11 by a photo-etching method using sputter etching (see FIG. 2).

【0022】次いで、1000℃のドライ酸素雰囲気中
で熱酸化処理を施した。この時、図3に示すように溝部
13を含むシリコン基板11全面に厚さ300オングス
トローム(以下、Aと称す)の熱酸化膜14が成長され
た。つづいて、CVD法により厚さ6000Aの燐ドー
プ多結晶シリコン膜を堆積した。この時、図4に示すよ
うにシリコン基板11に燐ドープ多結晶シリコン膜15
が被着されると共に、幅が1μmの前記溝部13の開口
部まで同多結晶シリコンで埋め込まれた。
Next, thermal oxidation treatment was performed in a dry oxygen atmosphere at 1000.degree. At this time, as shown in FIG. 3, a thermal oxide film 14 having a thickness of 300 Å (hereinafter referred to as A) was grown on the entire surface of the silicon substrate 11 including the groove 13. Subsequently, a phosphorus-doped polycrystalline silicon film having a thickness of 6000 A was deposited by the CVD method. At this time, as shown in FIG. 4, a phosphorus-doped polycrystalline silicon film 15 is formed on the silicon substrate 11.
Was deposited, and the opening of the groove 13 having a width of 1 μm was filled with the same polycrystalline silicon.

【0023】次いで、溝部13の一部を含む燐ドープ多
結晶シリコン膜15の領域にレジストパターン16を形
成した(図5図示)。つづいて、このレジストパターン
16及び溝部13内の熱酸化膜14を除く熱酸化膜14
が露出するまで弗酸系のエッチング液で全面エッチング
して溝部13内に燐ドープ多結晶シリコンを残置させて
キャパシタ電極17を形成すると共に、前記キャパシタ
電極17の上部に一体的に接続され、該電極17から前
記溝部13上部を横切って引出された配線18を形成し
た(図6図示)。この時、前記キャパシタ電極17は前
記配線18の延出部を除く領域においてその上部側面が
前記熱酸化膜14内側面と一致して該溝部13内に埋め
込まれた状態となる。
Then, a resist pattern 16 was formed in the region of the phosphorus-doped polycrystalline silicon film 15 including a part of the groove portion 13 (shown in FIG. 5). Next, the thermal oxide film 14 excluding the thermal oxide film 14 in the resist pattern 16 and the groove portion 13
Is entirely exposed with a hydrofluoric acid-based etching solution until the exposed portions are exposed to leave phosphorus-doped polycrystalline silicon in the groove 13 to form a capacitor electrode 17, and the capacitor electrode 17 is integrally connected to the upper portion of the capacitor electrode 17. A wiring 18 was formed extending from the electrode 17 across the upper portion of the groove 13 (shown in FIG. 6). At this time, the capacitor electrode 17 is in a state where the upper side surface of the capacitor electrode 17 is flush with the inner side surface of the thermal oxide film 14 in a region other than the extending portion of the wiring 18 and is embedded in the groove portion 13.

【0024】次いで、前記シリコン基板11主面の熱酸
化膜14をエッチング除去した後、1000℃のドライ
酸素雰囲気で熱酸化処理を施した。この時、図7に示す
ように露出するシリコン基板11主面上に厚さ750A
の熱酸化膜19が、燐ドープ多結晶シリコンからなるキ
ャパシタ電極17及び配線18の露出表面には厚さ12
00A程度の厚い酸化膜20が夫々成長された。
Next, after removing the thermal oxide film 14 on the main surface of the silicon substrate 11 by etching, thermal oxidation treatment was performed in a dry oxygen atmosphere at 1000.degree. At this time, as shown in FIG. 7, a thickness of 750A is formed on the exposed main surface of the silicon substrate 11.
The thermal oxide film 19 is formed on the exposed surface of the capacitor electrode 17 and the wiring 18 made of phosphorus-doped polycrystalline silicon to a thickness of 12
A thick oxide film 20 of about 00 A was grown on each.

【0025】次いで、多結晶シリコン膜を堆積した後、
パターニングして前記配線18の延出部を除く前記キャ
パシタ電極17の端部と離れた前記酸化膜19上部分に
ゲート電極21を形成した。つづいて、前記ゲート電極
21をマスクとして露出する熱酸化膜19、20部分を
エッチング除去した後、ゲート電極21をマスクとして
砒素を前記シリコン基板11に拡散してn+ 拡散層2
2、23を形成することによりMOSダイナミックRA
Mを製造した(図8図示)。なお、かかるn+ 拡散層2
2、23の形成工程において前記熱酸化膜19、20部
分をエッチング除去せずに砒素イオンを前記熱酸化膜1
9を通して前記基板11に注入することによりn+ 拡散
層を形成してもよい。
Then, after depositing a polycrystalline silicon film,
A gate electrode 21 was formed on the oxide film 19 apart from the end of the capacitor electrode 17 except for the extension of the wiring 18 by patterning. Subsequently, the exposed portions of the thermal oxide films 19 and 20 exposed by using the gate electrode 21 as a mask are removed by etching, and then arsenic is diffused into the silicon substrate 11 by using the gate electrode 21 as a mask to form the n + diffusion layer 2
By forming 2 and 23, MOS dynamic RA
M was produced (shown in FIG. 8). In addition, the n + diffusion layer 2
2 and 23, arsenic ions are removed from the thermal oxide film 1 without etching away the thermal oxide films 19 and 20.
An n + diffusion layer may be formed by implanting 9 through 9 into the substrate 11.

【0026】しかして、本発明のMOSダイナミックR
AMは図8に示すようにシリコン基板11の所望部分に
設けられた溝部13と、この溝部13内面に形成された
熱酸化膜14(キャパシタの絶縁膜)と、この熱酸化膜
14が形成された溝部13内に上部側面が該熱酸化膜1
4の内側面と一致するように埋め込まれたキャパシタ電
極17と、このキャパシタ電極17の上部に一体的に接
続され、該電極17から前記溝部13上部を横切って引
出された配線18とからなるMOSキャパシタを備え、
かつ前記キャパシタ電極17の端部から離れた前記シリ
コン基板11表面の酸化膜19部分上にゲート電極21
を形成し、さらに前記ゲート電極21と前記キャパシタ
電極17の間に位置する前記基板11表面、及び前記キ
ャパシタ電極17側とは異なる側の前記ゲート電極21
に隣接された前記基板11表面にn+ 拡散層22、23
をそれぞれ形成した構造になっている。
Therefore, the MOS dynamic R of the present invention
As shown in FIG. 8, the AM has a groove portion 13 formed in a desired portion of the silicon substrate 11, a thermal oxide film 14 (insulating film of a capacitor) formed on the inner surface of the groove portion 13, and the thermal oxide film 14 formed therein. The upper side surface of the thermal oxide film 1 is formed in the groove 13.
4. A MOS comprising a capacitor electrode 17 embedded so as to match the inner surface of 4 and a wiring 18 integrally connected to the upper portion of the capacitor electrode 17 and extending from the electrode 17 across the upper portion of the groove 13. With a capacitor,
The gate electrode 21 is formed on the oxide film 19 on the surface of the silicon substrate 11 away from the end of the capacitor electrode 17.
And the surface of the substrate 11 located between the gate electrode 21 and the capacitor electrode 17, and the gate electrode 21 on a side different from the capacitor electrode 17 side.
N + diffusion layers 22 and 23 on the surface of the substrate 11 adjacent to
It has a structure in which each is formed.

【0027】このような構造によれば、前記キャパシタ
電極17はシリコン基板11に対して平面的に専有する
面積を縮小化できるため、メモリセルの素子の微細化、
高集積化を達成できる。また、MOSキャパシタは溝部
13の幅が1μm、深さが2.5μmでその周囲の面積
が23μm2 となり、かつ熱酸化膜14の厚さが300
Aであるから、約27fFと充分な大きさの容量にでき
る。更に、キャパシタ電極17上部に配線18を一体的
に接続しているため、該配線18の接続信頼性を格段に
向上できる。
According to this structure, the area occupied by the capacitor electrode 17 in a plane with respect to the silicon substrate 11 can be reduced, so that the element of the memory cell can be miniaturized,
High integration can be achieved. Further, in the MOS capacitor, the width of the groove 13 is 1 μm, the depth is 2.5 μm, the peripheral area is 23 μm 2 , and the thickness of the thermal oxide film 14 is 300 μm.
Since it is A, the capacity can be set to a sufficiently large capacity of about 27 fF. Further, since the wiring 18 is integrally connected to the upper portion of the capacitor electrode 17, the connection reliability of the wiring 18 can be significantly improved.

【0028】さらに、前記ゲート電極21側に位置する
キャパシタ電極17部分を前記溝部13内に自己整合的
に形成することによって、前記MOSキャパシタの溝部
13側面で前記キャパシタの蓄積層と前記n+ 拡散層2
2とを良好に接続できる。
Further, the capacitor electrode 17 portion located on the gate electrode 21 side is formed in the groove 13 in a self-aligned manner, so that the storage layer of the capacitor and the n + diffusion are formed on the side surface of the groove 13 of the MOS capacitor. Layer 2
2 can be connected well.

【0029】一方、本発明方法によれば溝部13上の一
部を含む砒素ドープ多結晶シリコン膜15の領域にレジ
ストパターン16を形成した後、該レジストパターン1
6及び溝部13以外の熱酸化膜14が露出するまで弗酸
系のエッチング液で全面エッチングして、溝部13内に
上部側面が該溝部13内の熱酸化膜14内側面と自己整
合となるキャパシタ電極17を形成すると共に、該キャ
パシタ電極17の上部に一体的に接続され、該電極17
から前記溝部13上部を横切って引出された配線18を
形成することによって、既述の如く容量の増大化と面積
の縮小化が図られたMOSキャパシタを備え、かつ該M
OSキャパシタのキャパシタ電極への引出し配線の接続
信頼性を著しく向上したMOSダイナミックRAMを簡
単に製造できる。
On the other hand, according to the method of the present invention, after forming the resist pattern 16 in the region of the arsenic-doped polycrystalline silicon film 15 including a part on the groove portion 13, the resist pattern 1 is formed.
6 and the entire surface of the thermal oxide film 14 other than the groove 13 are exposed with a hydrofluoric acid-based etching solution, and the upper side surface of the groove 13 is self-aligned with the inner surface of the thermal oxide film 14 of the groove 13. The electrode 17 is formed and is integrally connected to the upper portion of the capacitor electrode 17.
By forming a wiring 18 extending from above to the upper part of the groove portion 13, a MOS capacitor having an increased capacity and a reduced area as described above is provided, and
It is possible to easily manufacture the MOS dynamic RAM in which the connection reliability of the lead wiring to the capacitor electrode of the OS capacitor is remarkably improved.

【0030】また、多結晶シリコン膜を堆積した後、パ
ターニングして前記配線18の延出部を除く前記キャパ
シタ電極17の端部と離れた前記酸化膜19上部分にゲ
ート電極21を形成し、ゲート電極21をマスクとして
砒素を前記シリコン基板11に拡散してn+ 拡散層2
2、23を形成することによって、前記MOSキャパシ
タの溝部13側面で前記キャパシタの蓄積層と前記n+
拡散層22とを良好に接続できる。
After depositing a polycrystalline silicon film, patterning is performed to form a gate electrode 21 on the oxide film 19 apart from the end of the capacitor electrode 17 excluding the extending portion of the wiring 18. Using the gate electrode 21 as a mask, arsenic is diffused into the silicon substrate 11 to form the n + diffusion layer 2
2 and 23 are formed, the storage layer of the capacitor and the n +
The diffusion layer 22 can be satisfactorily connected.

【0031】[0031]

【発明の効果】以上詳述した如く、本発明によれば容量
の増大化と面積の縮小化が図られたMOSキャパシタを
有し、かつ前記MOSキャパシタのキャパシタ電極への
引き出し配線の接続信頼性が格段に向上され、さらにM
OSキャパシタの溝部側でその蓄積層と不純物拡散層と
を良好に接続することが可能でき、高信頼性で高集積度
のな半導体装置、並びにかかる半導体装置を簡単な工程
で製造し得る方法を提供できる。
As described above in detail, according to the present invention, there is provided a MOS capacitor having an increased capacity and a reduced area, and the connection reliability of the lead wiring to the capacitor electrode of the MOS capacitor. Is dramatically improved, and M
A semiconductor device having high reliability and a high degree of integration, in which the storage layer and the impurity diffusion layer can be satisfactorily connected on the groove side of the OS capacitor, and a method capable of manufacturing such a semiconductor device by a simple process. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 1 is a sectional view showing a manufacturing process of a semiconductor device according to an embodiment of the invention.

【図2】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図3】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図4】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図5】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図6】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図7】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図8】本発明の実施例における半導体装置の製造工程
を示す断面図。
FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the embodiment of the invention.

【図9】従来のMOSキャパシタを示す断面図。FIG. 9 is a cross-sectional view showing a conventional MOS capacitor.

【図10】凹形MOSキャパシタを示す断面図である。FIG. 10 is a sectional view showing a concave MOS capacitor.

【符号の説明】[Explanation of symbols]

11…p型シリコン基板、12…フィールド酸化膜、1
3…溝部、16…レジストパターン、17…キャパシタ
電極、18…引出し配線、21…ゲート電極、22、2
3…n拡散層。
11 ... p-type silicon substrate, 12 ... field oxide film, 1
3 ... Groove part, 16 ... Resist pattern, 17 ... Capacitor electrode, 18 ... Lead wiring, 21 ... Gate electrode, 22, 2
3 ... n + diffusion layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/108 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication H01L 27/108

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板; 前記基板の所望部分に設けられた溝部と、前記溝部内面
に形成された絶縁膜と、前記溝部内に上部側面が前記絶
縁膜の内側面と一致するように埋め込まれたキャパシタ
電極と、前記キャパシタ電極の上部に一体的に接続さ
れ、該電極から前記溝部の上部を横切って引き出された
配線とからなるMOSキャパシタ; 前記半導体基板上の前記配線の延出部を除く前記キャパ
シタ電極の端部と離れた部分に酸化膜を介して形成され
たゲート電極; 前記ゲート電極と前記キャパシタ電極の間に位置する前
記基板表面、及び前記キャパシタ電極側とは異なる側の
前記ゲート電極に隣接された前記基板表面にそれぞれ形
成された前記基板と逆導電型の不純物拡散層; を具備し 前記キャパシタの蓄積層と前記不純物拡散層とは、前記
MOSキャパシタの溝部側面で接続されている ことを特
徴とする半導体装置。
1. A semiconductor substrate of one conductivity type; a groove portion provided in a desired portion of the substrate; and an inner surface of the groove portion.
And the insulating film formed on the upper side surface inside the groove.
Capacitor embedded to match the inner surface of the border film
The electrode and the capacitor electrode integrally connected to the top.
From the electrode across the top of the groove
A MOS capacitor comprising a wiring; the cap excluding an extending portion of the wiring on the semiconductor substrate
Formed via an oxide film on the part apart from the end of the electrode
A gate electrode; before being located between the gate electrode and the capacitor electrode
The surface of the substrate and the side different from the side of the capacitor electrode.
Formed on the surface of the substrate adjacent to the gate electrode, respectively.
An impurity diffusion layer having a conductivity type opposite to that of the formed substrate;, The storage layer and the impurity diffusion layer of the capacitor are
Connected at the groove side surface of the MOS capacitor Special
Semiconductor device to collect.
【請求項2】 半導体基板の所望部分に溝部を設ける工
程; 前記溝部内面に絶縁膜を形成する工程; 電極材料を堆積して少なくとも前記溝部内に電極材料で
埋め込む工程; 前記溝部上の一部を含む電極材料の領域をマスク材で覆
った後、該マスク材及び前記溝部を除く領域上の電極材
料が除去されるまでエッチングすることにより前記溝部
内に上部側面が前記絶縁膜の内側面と自己整合となるキ
ャパシタ電極を形成すると共に、前記キャパシタ電極の
上部に一体的に接続され、該電極から前記溝部上部を横
切って引き出された配線を形成してMOSキャパシタを
作製する工程; 前記半導体基板表面に薄い酸化膜を形成した後、前記半
導体基板上の前記配線の延出部を除く前記キャパシタ電
極の端部と離れた前記酸化膜上部分にゲート電極を形成
する工程; 前記ゲート電極と前記キャパシタ電極の間に位置する前
記基板表面、及び前記キャパシタ電極側とは異なる側の
前記ゲート電極に隣接された前記基板表面に前記基板と
逆導電型の不純物拡散層をそれぞれ形成することにより
前記MOSキャ パシタの溝部側面において前記キャパシ
タの蓄積層と前記不純物拡散層とを接続する工程; を具備したことを特徴とする半導体装置の製造方法。
2. A step of providing a groove in a desired portion of a semiconductor substrate; a step of forming an insulating film on the inner surface of the groove; a step of depositing an electrode material and filling at least the groove with an electrode material; After covering a region of the electrode material including a mask material with a mask material, etching is performed until the electrode material on the region excluding the mask material and the groove portion is removed, so that the upper side surface in the groove portion is the inner surface of the insulating film. Forming a self-aligned capacitor electrode, forming a wiring integrally connected to the upper part of the capacitor electrode and extending from the electrode across the upper part of the groove to manufacture a MOS capacitor; the semiconductor substrate After forming a thin oxide film on the surface, a gate electrode is formed on the oxide film upper part apart from the end part of the capacitor electrode except for the extension part of the wiring on the semiconductor substrate. An impurity diffusion of a conductivity type opposite to that of the substrate on the surface of the substrate located between the gate electrode and the capacitor electrode, and on the surface of the substrate adjacent to the gate electrode on a side different from the side of the capacitor electrode. By forming each layer
Wherein the groove side surface of the MOS calibration Pashita Capacity
A step of connecting a storage layer of the semiconductor device and the impurity diffusion layer ;
JP3183716A 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH081931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62125603A JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device
JP3183716A JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62125603A JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device
JP3183716A JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62125603A Division JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH05267612A JPH05267612A (en) 1993-10-15
JPH081931B2 true JPH081931B2 (en) 1996-01-10

Family

ID=26461992

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62125603A Granted JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device
JP3183716A Expired - Lifetime JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62125603A Granted JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (2) JPS6323351A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323351A (en) * 1987-05-22 1988-01-30 Toshiba Corp Manufacture of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323351A (en) * 1987-05-22 1988-01-30 Toshiba Corp Manufacture of semiconductor device
JPH0441506A (en) * 1990-06-07 1992-02-12 Asahi Chem Ind Co Ltd Production of new copolymer latex

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812739B2 (en) * 1975-05-07 1983-03-10 株式会社日立製作所 semiconductor storage device
JPS5948547B2 (en) * 1976-06-18 1984-11-27 株式会社日立製作所 Manufacturing method for semiconductor devices
JPS5376686A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS5394191A (en) * 1977-01-28 1978-08-17 Toshiba Corp Semiconductor device
JPS54121080A (en) * 1978-03-13 1979-09-19 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323351A (en) * 1987-05-22 1988-01-30 Toshiba Corp Manufacture of semiconductor device
JPH0441506A (en) * 1990-06-07 1992-02-12 Asahi Chem Ind Co Ltd Production of new copolymer latex

Also Published As

Publication number Publication date
JPS6323351A (en) 1988-01-30
JPH0441506B2 (en) 1992-07-08
JPH05267612A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US4327476A (en) Method of manufacturing semiconductor devices
JP2633650B2 (en) Semiconductor memory device and method of manufacturing the same
US6849496B2 (en) DRAM with vertical transistor and trench capacitor memory cells and method of fabrication
US5940702A (en) Method for forming a cylindrical stacked capacitor in a semiconductor device
JP2798300B2 (en) Method for manufacturing IC capacitor, semiconductor IC device, and DRAM memory cell
JP3199717B2 (en) Semiconductor device and method of manufacturing the same
US5302541A (en) Manufacturing method of a semiconductor device with a trench capacitor
US6215187B1 (en) Semiconductor device and manufacturing method thereof
WO1981003241A1 (en) Silicon integrated circuits
JPH0682800B2 (en) Semiconductor memory device
US4897700A (en) Semiconductor memory device
US6097053A (en) Semiconductor device having a multi-wall cylindrical capacitor
US5677225A (en) Process for forming a semiconductor memory cell
JP2513287B2 (en) Method for manufacturing stacked memory cell
JPH0821685B2 (en) Method of manufacturing semiconductor memory
JP2519216B2 (en) Semiconductor memory device
US5272102A (en) Method of making semiconductor memory device and memory cells therefor
JPH081931B2 (en) Semiconductor device and manufacturing method thereof
JP3120462B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0575059A (en) Semiconductor storage device and its manufacture
JPS62193275A (en) Three-dimensional one transistor cell device and manufactureof the same
JP2731197B2 (en) Semiconductor memory device and method of manufacturing the same
JP2770343B2 (en) Method for manufacturing semiconductor memory device
JP2950550B2 (en) Method for manufacturing semiconductor memory device
JPH01119057A (en) Mis-type semiconductor memory device