JPH0441506B2 - - Google Patents

Info

Publication number
JPH0441506B2
JPH0441506B2 JP62125603A JP12560387A JPH0441506B2 JP H0441506 B2 JPH0441506 B2 JP H0441506B2 JP 62125603 A JP62125603 A JP 62125603A JP 12560387 A JP12560387 A JP 12560387A JP H0441506 B2 JPH0441506 B2 JP H0441506B2
Authority
JP
Japan
Prior art keywords
groove
electrode
oxide film
substrate
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125603A
Other languages
Japanese (ja)
Other versions
JPS6323351A (en
Inventor
Hiroshi Iwai
Yoshio Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62125603A priority Critical patent/JPS6323351A/en
Publication of JPS6323351A publication Critical patent/JPS6323351A/en
Priority to JP3183716A priority patent/JPH081931B2/en
Publication of JPH0441506B2 publication Critical patent/JPH0441506B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置及びその製造方法に関
し、特にMOSキヤパシタの構造を改良した半導
体装置及びMOSキヤパシタの形成工程を改良し
た半導体装置の製造方法に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular, a semiconductor device with an improved structure of a MOS capacitor and an improved process for forming the MOS capacitor. It relates to a method for manufacturing semiconductor devices.

(従来の技術) 近年、半導体集積回路の高集積化の要請から素
子の寸法を縮小させることが試みられている。例
えば第2図に示すように半導体基板1の主面に絶
縁膜2を介してキヤパシタ電極を設けることより
記憶を蓄えるためのMOSキヤパシタを形成した
MOSダイラミツクRAMにおいて、キヤパシタ電
極3の面積を縮小して集積度を高めることが考え
られる。しかしながら、かかる構造のMOSキヤ
パシタではキヤパシタ電極3の面積を小さくする
と、キヤパシタに蓄えられる電荷の量が少なくな
り、ノイズ等に対するマージンがとれなくなる問
題がある。
(Prior Art) In recent years, attempts have been made to reduce the dimensions of elements due to the demand for higher integration of semiconductor integrated circuits. For example, as shown in FIG. 2, a MOS capacitor for storing memory is formed by providing a capacitor electrode on the main surface of a semiconductor substrate 1 via an insulating film 2.
In the MOS dynamic RAM, it is conceivable to reduce the area of the capacitor electrode 3 to increase the degree of integration. However, in a MOS capacitor having such a structure, when the area of the capacitor electrode 3 is reduced, the amount of charge stored in the capacitor decreases, and there is a problem that a margin against noise and the like cannot be secured.

このようなことから、MOSキヤパシタを構
成する絶縁膜の厚さを薄くすること、MOSキ
ヤパシタを構成する絶縁膜として従来用いられて
いるSiO2膜の代わりに誘電率の大きいSi3N4膜等
を使用すること、が知られている。しかしなが
ら、かかる構造のMOSキヤバシタでは絶縁膜の
耐圧や膜質(ピンホール等)の点で問題があり、
キヤバシタ電極の面積を縮小するのには限界があ
つた。
For this reason, it is necessary to reduce the thickness of the insulating film that makes up the MOS capacitor, and to use a Si 3 N 4 film with a high dielectric constant instead of the SiO 2 film that is conventionally used as the insulating film that makes up the MOS capacitor. It is known to use. However, MOS capacitors with such a structure have problems with the withstand voltage and film quality (pinholes, etc.) of the insulating film.
There was a limit to reducing the area of the capacitor electrode.

また、所定の容量を維持しつつMOSキヤパシ
タの面積を縮小する別の方法として、以下に述べ
る凹形MOSキヤパシタ(又はV形MOSキヤパシ
タ)が知られている。即ち、このキヤパシタは第
3図に示すように半導体基板1にV型の凹部4を
形成し、この凹部4に絶縁膜2′を介してキヤパ
シタ電極3′を設けてた構造になつている。かか
る凹形キヤパシタは、凹部4の深さや形状を変え
ることによつてキヤパシタ電極3′の実効面積を
任意に選ぶことができると共に、絶縁膜の耐圧、
膜質等も良好にできる。しかしながら、前記凹形
MOSキヤパシタでは凹部4とキヤパシタ電極
3′とのセルフアランイが難しく、マスク合せず
れを考慮して凹部4の両側に余裕(A)をとる必要が
あり、MOSキヤパシタの縮小化の妨げとなり、
ひいてはMOSダイナミツクRAMの高集積化にと
つて大きな問題となつていた。
Furthermore, as another method for reducing the area of a MOS capacitor while maintaining a predetermined capacity, a concave MOS capacitor (or V-type MOS capacitor) described below is known. That is, as shown in FIG. 3, this capacitor has a structure in which a V-shaped recess 4 is formed in the semiconductor substrate 1, and a capacitor electrode 3' is provided in the recess 4 with an insulating film 2' interposed therebetween. In such a concave capacitor, by changing the depth and shape of the concave portion 4, the effective area of the capacitor electrode 3' can be arbitrarily selected, and the withstand voltage of the insulating film,
The film quality can also be improved. However, the concave
In a MOS capacitor, self-alignment between the recess 4 and the capacitor electrode 3' is difficult, and it is necessary to provide an allowance (A) on both sides of the recess 4 in consideration of mask misalignment, which hinders the miniaturization of the MOS capacitor.
In turn, this has become a major problem in increasing the integration density of MOS dynamic RAM.

(発明が解決しようとする問題点) 本発明は、上記従来の問題点を解決するために
なされたもので、容量の増大化と面積の縮小化が
図られたMOSキヤパシタを有し、かつ前記MOS
キヤパシタのキヤパシタ電極への引き出し配線の
接続信頼性が格段に向上され、さらに前記キヤパ
シタ電極とトランジスタのゲート電極間の絶縁耐
圧を向上し、しかも不必要なマージン取ることな
く設計寸法通りのチヤンネル長を有するカツトオ
フ特性の良好なゲート電極が形成された半導体装
置、並びにかかる半導体装置を簡単な工程で製造
し得る方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and includes a MOS capacitor with increased capacity and reduced area. M.O.S.
The connection reliability of the lead wiring to the capacitor electrode of the capacitor has been significantly improved, and the dielectric strength between the capacitor electrode and the gate electrode of the transistor has been improved, and the channel length according to the design dimensions can be achieved without taking unnecessary margins. It is an object of the present invention to provide a semiconductor device in which a gate electrode with good cut-off characteristics is formed, and a method for manufacturing such a semiconductor device through simple steps.

[発明の構成] (課題を解決するための手段) 本発明に係わる半導体装置は、 一導電型のシリコン基板; 前記基板の所望部分に設けられた溝部と、前記
溝部内面に形成された絶縁膜と、前記溝部内に上
部側面が前記絶縁膜の内側面と一致するように埋
め込まれた不純物を含む多結晶シリコンからなる
キヤパシタ電極と、前記キヤパシタ電極の上部に
一体的に接続され、該電極から前記溝部の上部を
横切つて引き出された配線とからなるMOSキヤ
パシタ; 前記シリコン基板の表面に形成された薄い酸化
膜; 前記溝部内の不純物を含む多結晶シリコンから
なるキヤパシタ電極表面に形成された厚い酸化
膜; 前記基板表面の薄い酸化膜上から前記厚い酸化
膜上に延出して形成されたゲート電極; 前記ゲート電極に隣接した前記基板表面に形成
された前記基板と逆導電型の不純物拡散層; を具備したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) A semiconductor device according to the present invention includes: a silicon substrate of one conductivity type; a groove provided in a desired portion of the substrate; and an insulating film formed on the inner surface of the groove. a capacitor electrode made of polycrystalline silicon containing impurities embedded in the groove so that its upper side surface coincides with the inner surface of the insulating film; a MOS capacitor consisting of a wiring drawn out across the top of the groove; a thin oxide film formed on the surface of the silicon substrate; a capacitor electrode formed on the surface of a capacitor electrode made of polycrystalline silicon containing impurities in the groove; a thick oxide film; a gate electrode formed extending from a thin oxide film on the substrate surface to the thick oxide film; an impurity diffusion of a conductivity type opposite to that of the substrate formed on the substrate surface adjacent to the gate electrode; It is characterized by comprising: a layer;

前記溝部は、一般的に前記半導体基板に複数設
けられる。また、異なる深さの溝部を前記半導体
基板に設けることも可能である。
A plurality of grooves are generally provided in the semiconductor substrate. It is also possible to provide grooves with different depths in the semiconductor substrate.

前記絶縁膜としては、例えばSiO2膜やSi3N4
等を挙げることができる。かかる絶縁膜は、前記
溝部内を全て埋め込まず溝部の内側面及び底面に
薄く形成することが必要である。
Examples of the insulating film include a SiO 2 film and a Si 3 N 4 film. Such an insulating film needs to be formed thinly on the inner surface and bottom surface of the trench, rather than filling the entire inside of the trench.

前記不純物を含む多結晶シリコンとしては、例
えば燐ドープ多結晶シリコン、砒素ドープ多結晶
シリコン等を挙げることができる。
Examples of the impurity-containing polycrystalline silicon include phosphorus-doped polycrystalline silicon, arsenic-doped polycrystalline silicon, and the like.

本発明に係わる半導体装置の製造方法は、 一導電型のシリコン基板の所望部分に溝部を設
ける工程; 前記溝部内面に絶縁膜を形成する工程; 不純物を含む多結晶シリコンからなる電極材料
を堆積して少なくとも前記溝部内に前記電極材料
を埋め込む工程; 前記溝部上の一部を含むを前記電極材料の領域
をマスク材で覆つた後、前記マスク材及び前記溝
部を除く領域上の電極材料が除去されるまでエツ
チングすることにより前記溝部内に上部側面が前
記絶縁膜の内側面と自己整合となるキヤパシタ電
極を形成すると共に、前記キヤパシタ電極の上部
に一体的に接続され、該電極から前記溝部上部を
横切つて引き出された配線を形成してMOSキヤ
パシタを作製する工程; 熱酸化を施して前記シリコン基板表面に薄い酸
化膜を、前記溝部内の不純物を含む多結晶シリコ
ンからなるキヤパシタ電極表面に厚い酸化膜をそ
れぞれ形成する工程; ゲート電極を前記基板表面の薄い酸化膜上から
前記キヤパシタ電極表面の厚い酸化膜上に延出さ
せて形成する工程; 前記ゲート電極に隣接した前記基板表面に前記
基板と逆導電型の不純物拡散層を形成する工程; を具備したことを特徴とするものである。
A method for manufacturing a semiconductor device according to the present invention includes: providing a groove in a desired portion of a silicon substrate of one conductivity type; forming an insulating film on the inner surface of the groove; depositing an electrode material made of polycrystalline silicon containing impurities; embedding the electrode material in at least the groove; after covering the region of the electrode material including a part above the groove with a mask material, the mask material and the electrode material on the region other than the groove are removed; By etching until the upper part of the groove is etched, a capacitor electrode whose upper side surface is self-aligned with the inner surface of the insulating film is formed in the groove, and the capacitor electrode is integrally connected to the upper part of the capacitor electrode and is connected to the upper part of the groove from the electrode. Step of fabricating a MOS capacitor by forming a wiring drawn out across the silicon substrate; applying thermal oxidation to form a thin oxide film on the surface of the silicon substrate, and forming a thin oxide film on the surface of the capacitor electrode made of polycrystalline silicon containing impurities in the groove. forming thick oxide films respectively; forming a gate electrode extending from the thin oxide film on the surface of the substrate to the thick oxide film on the surface of the capacitor electrode; forming the gate electrode on the surface of the substrate adjacent to the gate electrode; The method is characterized by comprising: a step of forming an impurity diffusion layer of a conductivity type opposite to that of the substrate.

次に、本発明の半導体装置の製造方法を詳細に
説明する。
Next, a method for manufacturing a semiconductor device according to the present invention will be explained in detail.

まず、半導体基板上に溝部形成予定部が除去さ
れたマスク材、例えばレジストパターン、絶縁膜
パターンを形成した後、該マスク材から露出する
基板部分を所望深さ選択エツチングして溝部を形
成する。この場合、エツチング手段としては反応
性イオンビームエツチング又はリアクテイブイオ
ンエツチングを用いれば、側面が略垂直な溝部を
形成できる。但し、その他のエツチング手段で逆
テーパ状の側面を有する溝部を形成してもよい。
溝部の数は、素子領域内に1つ又は2つ以上形成
してもよく、特に溝部の深さを変えることにより
容量の異なるMOSキヤパシタを形成できる。
First, a mask material, such as a resist pattern or an insulating film pattern, from which a portion where a groove is to be formed is removed is formed on a semiconductor substrate, and then a portion of the substrate exposed from the mask material is selectively etched to a desired depth to form a groove. In this case, if reactive ion beam etching or reactive ion etching is used as the etching means, a groove portion with substantially vertical side surfaces can be formed. However, the groove portion having reversely tapered side surfaces may be formed by other etching means.
One or more grooves may be formed in the element region, and MOS capacitors with different capacitances can be formed by changing the depth of the grooves.

次いで、前記マスク材を除去した後、溝部内面
に絶縁膜を形成する。この場合、溝部の内部全体
を絶縁膜で埋込まずに、溝部の側面及び底面に薄
い絶縁膜を形成することが必要である。かかる絶
縁膜の形成手段としては、例えば熱酸化により熱
酸化膜を形成する方法、CVD法によりSiO2膜や
Si3N4膜などを形成する方法等を採用し得る。
Next, after removing the mask material, an insulating film is formed on the inner surface of the groove. In this case, it is necessary to form a thin insulating film on the side and bottom surfaces of the trench, without filling the entire inside of the trench with an insulating film. Methods for forming such an insulating film include, for example, a method of forming a thermal oxide film by thermal oxidation, and a method of forming a SiO 2 film or a film by a CVD method.
A method of forming a Si 3 N 4 film or the like may be adopted.

次いで、不純物を含む多結晶シリコンからなる
電極材料を堆積して少なくとも前記溝部内に前記
電極材料を埋め込む。この工程において、前記電
極材料は前記溝部の開口部幅の半分以上の厚さと
なるように堆積することが望ましい。つづいて、
前記溝部上の一部を含むを前記電極材料の領域を
マスク材(例えばレジストパターン)で覆つた
後、前記マスク材及び前記溝部を除く領域上の電
極材料が除去されるまでエツチングすることによ
り前記溝部内に上部側面が前記絶縁膜の内側面と
自己整合となるキヤパシタ電極を形成すると共
に、前記キヤパシタ電極の上部に一体的に接続さ
れ、該電極から前記溝部上部を横切つて引き出さ
れた配線を形成してMOSキヤパシタを作製する。
Next, an electrode material made of polycrystalline silicon containing impurities is deposited to fill at least the groove. In this step, it is desirable that the electrode material be deposited to a thickness that is at least half the width of the opening of the groove. Continuing,
After covering a region of the electrode material including a portion above the groove with a mask material (for example, a resist pattern), etching is performed until the mask material and the electrode material on the region excluding the groove are removed. A capacitor electrode whose upper side surface is self-aligned with the inner surface of the insulating film is formed in the groove, and wiring is integrally connected to the upper part of the capacitor electrode and drawn out from the electrode across the upper part of the groove. A MOS capacitor is manufactured by forming a MOS capacitor.

次いで、熱酸化を施す。この工程において、前
記基板はシリコン(単結晶シリコン)からなるた
め前記基板表面に薄い酸化膜が形成され、かつ前
記溝部内のキヤパシタ電極は不純物を含む多結晶
シリコンからなるために前記電極表面に厚い酸化
膜が形成される。つづいて、全面にゲート電極材
料を堆積し、パターンニングすることによりゲー
ト電極を前記基板表面の薄い酸化膜上から前記キ
ヤパシタ電極表面の厚い酸化膜上に延出させて形
成する。この後、前記ゲート電極に隣接した前記
基板表面にイオン注入、熱拡散等により前記基板
と逆導電型の不純物拡散層を形成して半導体装置
を製造する。
Next, thermal oxidation is performed. In this step, since the substrate is made of silicon (single crystal silicon), a thin oxide film is formed on the surface of the substrate, and since the capacitor electrode in the groove is made of polycrystalline silicon containing impurities, a thick oxide film is formed on the surface of the electrode. An oxide film is formed. Subsequently, a gate electrode material is deposited on the entire surface and patterned to form a gate electrode extending from the thin oxide film on the surface of the substrate to the thick oxide film on the surface of the capacitor electrode. Thereafter, an impurity diffusion layer having a conductivity type opposite to that of the substrate is formed on the surface of the substrate adjacent to the gate electrode by ion implantation, thermal diffusion, etc., thereby manufacturing a semiconductor device.

(作用) 本発明に係わる半導体装置によれば、一導電型
のシリコン基板の所望部分に設けられた溝部と、
前記溝部内面に形成された絶縁膜と、前記溝部内
に上部側面が前記絶縁膜の内側面と一致するよう
に埋め込まれた、つまり前記溝部内に自己整合的
に埋め込まれた不純物を含む多結晶シリコンから
なるキヤパシタ電極と、前記キヤパシタ電極の上
部に一体的に接続され、該電極から前記溝部の上
部を横切つて引き出された配線とからMOSキヤ
パシタを構成することによつて、前記キヤパシタ
電極の面積を前記溝部の開口面積で決定できるた
め、前記MOSキヤパシタのメモリセルに平面的
に占める面積を縮小化できる。しかも、前記
MOSキヤパシタは溝部内に絶縁膜を挟んでキヤ
パシタ電極が埋め込まれた構造を有するため、平
面的に占める面積を縮小化されているにもかかわ
らず、高容量化できる。その結果、メモリセル等
の素子の微細化、高集積化を達成できる。なお、
溝部の深さを変えることによつて、目的とする容
量を有するMOSキヤパシタを実現できる。
(Function) According to the semiconductor device according to the present invention, a groove portion provided in a desired portion of a silicon substrate of one conductivity type;
an insulating film formed on the inner surface of the groove; and an impurity-containing polycrystal that is embedded in the groove so that its upper side surface coincides with the inner surface of the insulating film, that is, embedded in the groove in a self-aligned manner. By constructing a MOS capacitor from a capacitor electrode made of silicon and a wiring integrally connected to the upper part of the capacitor electrode and drawn out from the electrode across the upper part of the groove, the capacitor electrode Since the area can be determined by the opening area of the trench, the area occupied by the MOS capacitor in the memory cell can be reduced. Moreover, the above
Since a MOS capacitor has a structure in which a capacitor electrode is embedded in a trench with an insulating film in between, it is possible to increase the capacitance even though the area occupied in a plan view is reduced. As a result, miniaturization and high integration of elements such as memory cells can be achieved. In addition,
By changing the depth of the groove, a MOS capacitor having the desired capacity can be realized.

また、前記キヤパシタ電極上部に配線を一体的
に接続することにより、前記溝部内に埋め込まれ
た面積の小さいキヤパシタ電極に別の工程で配線
を接続(通常コンタクトホールを通して接続)す
る場合に比べて前記キヤパシタ電極に対する前記
配線の接続信頼性を格段に向上できる。
Furthermore, by integrally connecting the wiring to the upper part of the capacitor electrode, the wiring is connected to the small-area capacitor electrode embedded in the groove in a separate process (usually connected through a contact hole). The connection reliability of the wiring to the capacitor electrode can be significantly improved.

さらに、前記シリコン基板の表面に薄い酸化膜
形成し、前記溝部内の不純物を含む多結晶シリコ
ンからなるキヤパシタ電極表面に厚い酸化膜を形
成し、前記基板表面の薄い酸化膜上から前記キヤ
パシタ電極表面の厚い酸化膜上に延出してゲート
電極を設けることによつて、前記キヤパシタ電極
と前記ゲート電極の間の絶縁耐圧を著しく向上す
ることができる。
Further, a thin oxide film is formed on the surface of the silicon substrate, a thick oxide film is formed on the surface of the capacitor electrode made of polycrystalline silicon containing impurities in the groove, and the capacitor electrode surface is coated from above the thin oxide film on the substrate surface. By providing the gate electrode extending over the thick oxide film, the dielectric breakdown voltage between the capacitor electrode and the gate electrode can be significantly improved.

更にまた、前記キヤパシタ電極を前記溝部内に
自己整合的に形成することによつて、前記基板表
面の薄い酸化膜上から前記キヤパシタ電極表面の
厚い酸化膜上に延出させて設けたゲート電極のチ
ヤンネル長(前記基板表面の薄い酸化膜上の部分
に相当)が前記キヤパシタ電極の位置状態に依存
して設計寸法より変動する、特に設計寸法よりチ
ヤンネル長が短くなるのを回避できる。その結
果、前記ゲート電極のチヤンネル長を設計寸法に
するための余裕を取る必要がなくなるため、メモ
リセルに占めるゲート電極の面積を縮小でき、高
集積度の半導体装置を得ることができる。
Furthermore, by forming the capacitor electrode in the groove in a self-aligned manner, a gate electrode provided extending from a thin oxide film on the surface of the substrate to a thick oxide film on the surface of the capacitor electrode can be formed. It is possible to prevent the channel length (corresponding to the portion on the thin oxide film on the substrate surface) from varying from the designed dimension depending on the positional state of the capacitor electrode, and in particular, to prevent the channel length from becoming shorter than the designed dimension. As a result, it is no longer necessary to provide a margin for adjusting the channel length of the gate electrode to the designed dimension, so that the area occupied by the gate electrode in the memory cell can be reduced, and a highly integrated semiconductor device can be obtained.

また、本発明に係わる半導体装置の製造方法に
よれば一導電型のシリコン基板の所望部分に溝部
を設け、前記溝部内面に絶縁膜を形成し、不純物
を含む多結晶シリコンからなる電極材料を堆積し
て少なくとも前記溝部内に前記電極材料を埋め込
み、さらに前記溝部上の一部を含むを前記電極材
料の領域をマスク材で覆つた後、前記マスク材及
び前記溝部を除く領域上の電極材料が除去される
までエツチングすることによつて、前記溝部内に
上部側面が前記絶縁膜の内側面と自己整合となる
キヤパシタ電極を形成できると共に、前記キヤパ
シタ電極の上部に一体的に接続され、該電極から
前記溝部上部を横切つて引き出された配線を形成
できる。その結果、メモリセルに平面的に占める
キヤパシタ電極の面積を縮小化できると共に高容
量化でき、かつ前記キヤパシタ電極に対する前記
配線の接続信頼性が格段に向上されたMOSキヤ
パシタを作製できる。
Further, according to the method for manufacturing a semiconductor device according to the present invention, a groove is provided in a desired portion of a silicon substrate of one conductivity type, an insulating film is formed on the inner surface of the groove, and an electrode material made of polycrystalline silicon containing impurities is deposited. After embedding the electrode material in at least the groove and covering the electrode material region including a part above the groove with a mask material, the electrode material on the region excluding the mask material and the groove is By etching until it is removed, a capacitor electrode whose upper side surface is self-aligned with the inner surface of the insulating film can be formed in the groove, and the capacitor electrode is integrally connected to the upper part of the capacitor electrode. Wiring can be formed extending from the groove across the upper part of the groove. As a result, it is possible to manufacture a MOS capacitor in which the area of the capacitor electrode occupying a memory cell in plan view can be reduced, the capacity can be increased, and the connection reliability of the wiring to the capacitor electrode is significantly improved.

また、キヤパシタ電極を不純物を含む多結晶シ
リコンにより形成することによつて、MOSキヤ
パシタの形成後の熱酸化処理工程で前記シリコン
基板表面に薄い酸化膜を、前記溝部内の不純物を
含む多結晶シリコンからなるキヤパシタ電極表面
に厚い酸化膜をそれぞれ形成できる。その結果、
ゲート電極を前記基板表面の薄い酸化膜上から前
記キヤパシタ電極表面の厚い酸化膜上に延出させ
て形成することによつて、前記キヤパシタ電極と
前記ゲート電極の間には十分に厚い前記酸化膜を
介在させることができるため、それらの間の絶縁
耐圧を著しく向上できると共に、それらの間の容
量を低減してメモリセルの高速動作を達成するこ
とができる。
Furthermore, by forming the capacitor electrode from polycrystalline silicon containing impurities, a thin oxide film is formed on the surface of the silicon substrate in a thermal oxidation process after the formation of the MOS capacitor, and the polycrystalline silicon containing impurities is formed in the groove. A thick oxide film can be formed on the surface of each capacitor electrode. the result,
By forming the gate electrode extending from the thin oxide film on the surface of the substrate to the thick oxide film on the surface of the capacitor electrode, the oxide film is sufficiently thick between the capacitor electrode and the gate electrode. can be interposed, the dielectric breakdown voltage between them can be significantly improved, and the capacitance between them can be reduced to achieve high-speed operation of the memory cell.

更に、前記キヤパシタ電極を前記溝部内に自己
整合的に形成することによつて、ゲート電極を前
記基板表面の薄い酸化膜上から前記キヤパシタ電
極表面の厚い酸化膜上に延出させる工程に際し、
前記ゲート電極のチヤンネル長(前記基板表面の
薄い酸化膜上の部分に相当)が前記キヤパシタ電
極の位置状態に依存して設計寸法より変動する、
特に設計寸法よりチヤンネル長が短くなるのを回
避できる。その結果、ゲート電極の形成に際して
チヤンネル長を設計寸法にするための余裕を取る
必要がなくなるため、メモリセルに占めるゲート
電極の面積を縮小でき、高集積度の半導体装置を
製造できる。
Furthermore, in the step of extending the gate electrode from the thin oxide film on the surface of the substrate to the thick oxide film on the surface of the capacitor electrode by forming the capacitor electrode in the groove in a self-aligned manner,
The channel length of the gate electrode (corresponding to the portion on the thin oxide film on the surface of the substrate) varies from the design dimension depending on the positional state of the capacitor electrode.
In particular, it is possible to avoid the channel length becoming shorter than the design dimension. As a result, when forming the gate electrode, it is no longer necessary to take a margin for adjusting the channel length to the designed dimension, so the area occupied by the gate electrode in the memory cell can be reduced, and a highly integrated semiconductor device can be manufactured.

(発明の実施例) 以下、本発明をMOSダイナミツクRAMに適用
した例について第1図a〜iに示す製造方法を併
記して詳細に説明する。
(Embodiments of the Invention) Hereinafter, an example in which the present invention is applied to a MOS dynamic RAM will be described in detail with reference to the manufacturing method shown in FIGS. 1a to 1i.

まず、第1図aに示すようにp型シリコン基板
11に選択酸化法によつて素子分離のためのフイ
ールド酸化膜12を形成した。つづいて、スパツ
タエツチングを用いた写真蝕刻法によりシリコン
基板11の素子領域の一部に幅1μm、長さ3μm、
深さ2.5μmの溝部13を形成した(同図b図示)。
First, as shown in FIG. 1A, a field oxide film 12 for element isolation was formed on a p-type silicon substrate 11 by selective oxidation. Subsequently, a part of the element region of the silicon substrate 11 is etched by photolithography using sputter etching, with a width of 1 μm and a length of 3 μm.
A groove 13 with a depth of 2.5 μm was formed (as shown in FIG. 1B).

次いで、1000℃のドライ酸素雰囲気中で熱酸化
処理を施した。この時、同図cに示すように溝部
13を含むシリコン基板11全面に厚さ300〓の
熱酸化膜14が成長された。つづいて、CVD法
により厚さ6000〓の燐ドープ多結晶シリコン膜を
堆積した。この時、同図dに示すようにシリコン
基板11に燐ドープ多結晶シリコン膜15が被着
されると共に、幅が1μmの前記溝部13の開口部
まで同多結晶シリコンで埋め込まれた。
Next, thermal oxidation treatment was performed in a dry oxygen atmosphere at 1000°C. At this time, a thermal oxide film 14 having a thickness of 300 mm was grown on the entire surface of the silicon substrate 11 including the groove portion 13, as shown in FIG. Next, a 6000 mm thick phosphorus-doped polycrystalline silicon film was deposited using the CVD method. At this time, as shown in Figure d, a phosphorus-doped polycrystalline silicon film 15 was deposited on the silicon substrate 11, and the opening of the groove 13 having a width of 1 μm was filled with the same polycrystalline silicon.

次いで、溝部13の一部を含む燐ドープ多結晶
シリコン膜15の領域にレジストパターン16を
形成した(同図e図示)。つづいて、このレジス
トパターン16及び溝部13以外の熱酸化膜14
が露出するまで弗酸系のエツチング液で全面エツ
チングして溝部13内に燐ドープ多結晶シリコン
を残置させて溝部13内にキヤパシタ電極17を
形成すると共に、該キヤパシタ電極17の上部に
一体的に接続され、該電極17から前記溝部13
内面の熱酸化膜14の一部を横切つて引出された
配線18を形成した(同図f図示)。この時、キ
ヤパシタ電極17はその上部側面が溝部13内の
キヤパシタ絶縁膜となる熱酸化膜14内側面と一
致して該溝部13内に埋込まれた状態となる。
Next, a resist pattern 16 was formed in a region of the phosphorus-doped polycrystalline silicon film 15 including a part of the groove 13 (as shown in FIG. 3E). Subsequently, this resist pattern 16 and the thermal oxide film 14 other than the groove portion 13 are
The entire surface is etched with a hydrofluoric acid-based etching solution until the phosphorus-doped polycrystalline silicon is exposed, and the phosphorus-doped polycrystalline silicon is left in the groove 13 to form a capacitor electrode 17 in the groove 13. connected from the electrode 17 to the groove 13
A wiring 18 was formed extending across a part of the thermal oxide film 14 on the inner surface (as shown in FIG. 1F). At this time, the capacitor electrode 17 is buried in the trench 13 with its upper side surface aligned with the inner surface of the thermal oxide film 14 which is the capacitor insulating film in the trench 13 .

次いで、キヤパシタ電極17及び配線18をマ
スクとしてシリコン基板11主面上の熱酸化膜1
4部分を選択的にエツチング除去して溝部13内
に残置させた熱酸化膜によりキヤパシタの絶縁膜
19を形成した。つづいて、1000℃のドライ酸素
雰囲気で熱酸化処理を施した。この時、同図gに
示すように露出するシリコン基板11主面上に厚
さ750〓の熱酸化膜18が、燐ドープ多結晶シリ
コンからなるキヤパシタ電極17及び配線18の
露出表面には厚さ1200〓程度の厚い酸化膜21が
夫々成長された。
Next, the thermal oxide film 1 is formed on the main surface of the silicon substrate 11 using the capacitor electrode 17 and the wiring 18 as a mask.
An insulating film 19 of the capacitor was formed using a thermal oxide film that was left in the trench 13 by selectively etching away four portions. Subsequently, thermal oxidation treatment was performed in a dry oxygen atmosphere at 1000°C. At this time, as shown in FIG. A thick oxide film 21 of about 1200 mm was grown.

次いで、多結晶シリコン膜を堆積した後、パタ
ーニングしてゲート電極22を形成した(同図h
図示)。ひきつづき、ゲート電極22をマスクと
して熱酸化膜20を選択エツチングしてゲート絶
縁膜23を形成した後、砒素をシリコン基板11
に拡散してデジツトラインとなるn+拡散層24
を形成した。その後、全面にCVD法により低温
酸化膜25を堆積し、コンタクトホール26を開
孔した後、A配線27を形成してMOSダイナ
ミツクRAMを製造した(同図i図示)。
Next, a polycrystalline silicon film was deposited and patterned to form a gate electrode 22 (see h in the figure).
(Illustrated). Subsequently, the thermal oxide film 20 is selectively etched using the gate electrode 22 as a mask to form a gate insulating film 23, and then arsenic is etched onto the silicon substrate 11.
n + diffusion layer 24 which diffuses into the digital line and becomes a digital line.
was formed. Thereafter, a low-temperature oxide film 25 was deposited on the entire surface by the CVD method, a contact hole 26 was opened, and an A wiring 27 was formed to manufacture a MOS dynamic RAM (as shown in the figure i).

しかして、本発明のMOSダイナミツクRAMは
第1図iに示すようにp型シリコン基板11の所
望部分に設けられた溝部13と、この溝部13内
面に形成されたキヤパシタの絶縁膜19と、この
絶縁膜19の内側面と一致するように埋め込まれ
たキヤパシタ電極17と、このキヤパシタ電極1
7の上部に一体的に接続され、前記電極17から
前記溝部13上部を横切つて引き出された配線1
8とからなるMOSキヤパシタを備え、かつ前記
シリコン基板11の表面に薄い酸化膜20を、前
記燐ドープ多結晶シリコンからなるキヤパシタ電
極17の表面に厚い酸化膜21をそれぞれ形成
し、ゲート電極22を前記基板11表面の薄い酸
化膜20上から前記キヤパシタ電極17表面の厚
い酸化膜21上に延出して形成し、さらに前記ゲ
ート電極22に隣接した前記基板11表面に前記
基板12と逆導電型であるn+拡散層24を形成
した構造になつている。その結果、前記キヤパシ
タ電極17はシリコン基板11に対して平面的に
専有する面積を縮小化できるため、メモリセルの
素子の微細化、高集積化を達成できる。また、
MOSキヤパシタは溝部13の幅が1μm、深さが
2.5μmでその周囲の面積が23μm2となり、かつ絶
縁膜19の厚さが300〓であるから、約27fFと充
分な大きさの容量にできる。更に、キヤパシタ電
極17上部に配線18を一体的に接続しているた
め、該配線18の接続信頼性を格段に向上でき
る。
The MOS dynamic RAM of the present invention, as shown in FIG. A capacitor electrode 17 embedded so as to match the inner surface of the insulating film 19 and this capacitor electrode 1
The wiring 1 is integrally connected to the upper part of the groove 13 and is drawn out from the electrode 17 across the upper part of the groove 13.
8, a thin oxide film 20 is formed on the surface of the silicon substrate 11, a thick oxide film 21 is formed on the surface of the capacitor electrode 17 made of phosphorus-doped polycrystalline silicon, and a gate electrode 22 is formed. A layer is formed extending from the thin oxide film 20 on the surface of the substrate 11 to the thick oxide film 21 on the surface of the capacitor electrode 17, and is further formed on the surface of the substrate 11 adjacent to the gate electrode 22 with a conductivity type opposite to that of the substrate 12. It has a structure in which a certain n + diffusion layer 24 is formed. As a result, the area occupied by the capacitor electrode 17 in plan with respect to the silicon substrate 11 can be reduced, so that miniaturization and high integration of memory cell elements can be achieved. Also,
In the MOS capacitor, the groove portion 13 has a width of 1 μm and a depth.
Since the surrounding area of 2.5 μm is 23 μm 2 and the thickness of the insulating film 19 is 300 μm, a sufficiently large capacitance of about 27 fF can be obtained. Furthermore, since the wiring 18 is integrally connected to the upper part of the capacitor electrode 17, the connection reliability of the wiring 18 can be significantly improved.

また、前記シリコン基板11表面の薄い酸化膜
20上から前記キヤパシタ電極17表面の厚い酸
化膜21上に延出してゲート電極22を設けるこ
とによつて、前記キヤパシタ電極17と前記ゲー
ト電極22の間の絶縁耐圧を著しく向上すること
ができる。
Further, by providing the gate electrode 22 extending from the thin oxide film 20 on the surface of the silicon substrate 11 to the thick oxide film 21 on the surface of the capacitor electrode 17, the gap between the capacitor electrode 17 and the gate electrode 22 is increased. can significantly improve the dielectric strength of the

さらに、前記キヤパシタ電極17を前記溝部1
3内に自己整合的に形成することによつて、前記
基板11表面の薄い酸化膜20上から前記キヤパ
シタ電極17表面の厚い酸化膜21上に延出させ
て設けたゲート電極22のチヤンネル長(前記基
板11表面の薄い酸化膜20上の部分に相当)が
前記キヤパシタ電極17の位置状態に依存して設
計寸法より変動する、特に設計寸法よりチヤンネ
ル長が短くなるのを回避できる。その結果、前記
ゲート電極22のチヤンネル長を設計寸法にする
ための余裕を取る必要がなくなるため、メモリセ
ルに占めるゲート電極の面積を縮小でき、高集積
度のMOSダイナミツクRAMを得ることができ
る。
Further, the capacitor electrode 17 is connected to the groove portion 1.
The channel length of the gate electrode 22 extended from the thin oxide film 20 on the surface of the substrate 11 to the thick oxide film 21 on the surface of the capacitor electrode 17 is (corresponding to the portion on the thin oxide film 20 on the surface of the substrate 11) varies from the designed dimension depending on the positional state of the capacitor electrode 17. In particular, it is possible to avoid the channel length from becoming shorter than the designed dimension. As a result, it is no longer necessary to provide a margin for adjusting the channel length of the gate electrode 22 to the designed dimension, so that the area occupied by the gate electrode in the memory cell can be reduced, and a highly integrated MOS dynamic RAM can be obtained.

一方、本発明方法によれば溝部13上の一部を
含むひつとドープ多結晶シリコン膜15の領域に
レジストパターン16を形成した後、該レジシト
パターン16及び溝13以外の熱酸化膜14が露
出するまで弗酸系のエツチング液で全面エツチン
グして、溝部13内に上部側面が該溝部13内の
熱酸化膜14内側面と自己整合となるキヤパシタ
電極17を形成すると共に、該キヤパシタ電極1
7の上部に一体的に接続され、該電極17から前
記熱酸化膜14の一部を横切つて引出された配線
18を形成することによつて、既述の如く容量の
増大化と面積の縮小化が図られたMOSキヤパシ
タを備え、かつ該MOSキヤパシタのキヤパシタ
電極への引出し配線の接続信頼性を著しく向上し
たMOSダイナミツクRAMを簡単に製造できる。
On the other hand, according to the method of the present invention, after the resist pattern 16 is formed in the region of the doped polycrystalline silicon film 15 including a part above the groove 13, the thermal oxide film 14 other than the resist pattern 16 and the groove 13 is The entire surface is etched with a hydrofluoric acid-based etching solution until it is exposed, thereby forming a capacitor electrode 17 in the groove 13 whose upper side surface is self-aligned with the inner surface of the thermal oxide film 14 in the groove 13.
By forming the wiring 18 which is integrally connected to the upper part of the electrode 7 and drawn out from the electrode 17 across a part of the thermal oxide film 14, the capacitance can be increased and the area can be reduced as described above. It is possible to easily manufacture a MOS dynamic RAM which is equipped with a downsized MOS capacitor and which has significantly improved connection reliability of the lead wiring to the capacitor electrode of the MOS capacitor.

また、キヤパシタ電極17を燐ドープ多結晶シ
リコンにより形成することによつて、MOSキヤ
パシタの形成後の熱酸化処理工程で前記シリコン
基板11表面に薄い酸化膜20を、前記溝部13
内の燐ドープ多結晶シリコンからなるキヤパシタ
電極17表面に厚い酸化膜21をそれぞれ形成で
きる。その結果、ゲート電極22を前記基板11
表面の薄い酸化膜20上から前記キヤパシタ電極
17表面の厚い酸化膜21上に延出させて形成す
ることによつて、前記キヤパシタ電極17と前記
ゲート電極22の間には十分に厚い前記酸化膜2
1を介在させることができるため、それらの間の
絶縁耐圧を著しく向上できると共に、それらの間
の容量を低減してメモリセルの高速動作を達成す
ることができる。
Further, by forming the capacitor electrode 17 from phosphorus-doped polycrystalline silicon, a thin oxide film 20 is formed on the surface of the silicon substrate 11 in the thermal oxidation process after forming the MOS capacitor, and
A thick oxide film 21 can be formed on the surface of the capacitor electrode 17 made of phosphorus-doped polycrystalline silicon. As a result, the gate electrode 22 is connected to the substrate 11.
By forming the oxide film extending from the thin oxide film 20 on the surface to the thick oxide film 21 on the surface of the capacitor electrode 17, the oxide film is sufficiently thick between the capacitor electrode 17 and the gate electrode 22. 2
1 can be interposed, the dielectric strength between them can be significantly improved, and the capacitance between them can be reduced to achieve high-speed operation of the memory cell.

[発明の効果] 以上詳述したように、本発明によれば容量の増
大化と面積の縮小化が図られたMOSキヤパシタ
を有し、かつ前記MOSキヤパシタのキヤパシタ
電極への引き出し配線の接続信頼性が格段に向上
され、さらに前記キヤパシタ電極とトランジスタ
のゲート電極間の絶縁耐圧を向上し、しかも不必
要なマージン取ることなく設計寸法通りのチヤン
ネル長を有するカツトオフ特性が良好なゲート電
極を形成でき、ひいては高信頼性で高集積度の半
導体装置、並びにかかる半導体装置を簡単な工程
で製造し得る方法を提供できる。
[Effects of the Invention] As described in detail above, the present invention has a MOS capacitor with increased capacity and reduced area, and also provides reliable connection of the lead wiring to the capacitor electrode of the MOS capacitor. Furthermore, the dielectric strength between the capacitor electrode and the gate electrode of the transistor is improved, and it is possible to form a gate electrode with good cut-off characteristics and a channel length as designed without taking unnecessary margins. Furthermore, it is possible to provide a highly reliable and highly integrated semiconductor device, as well as a method for manufacturing such a semiconductor device through simple steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜iは本発明の実施例におけるMOS
ダイナミツクRAMの製造工程を示す断面図、第
2図は従来のMOSキヤパシタを示す断面図、第
3図は凹形MOSキヤパシタを示す断面図である。 11……p型シリコン基板、12……フイール
ド酸化膜、13……溝部、16……レジストパタ
ーン、17……キヤパシタ電極、18……引出し
配線、19……キヤパシタの絶縁膜、22……ゲ
ート電極、23……ゲート酸化膜、24……n+
拡散層(デジツトライン)、27……配線。
Fig. 1 a to i are MOS in the embodiment of the present invention.
2 is a sectional view showing the manufacturing process of a dynamic RAM, FIG. 2 is a sectional view showing a conventional MOS capacitor, and FIG. 3 is a sectional view showing a concave MOS capacitor. DESCRIPTION OF SYMBOLS 11...P-type silicon substrate, 12...Field oxide film, 13...Groove, 16...Resist pattern, 17...Capacitor electrode, 18...Outgoing wiring, 19...Capacitor insulating film, 22...Gate Electrode, 23...gate oxide film, 24...n +
Diffusion layer (digital line), 27...wiring.

Claims (1)

【特許請求の範囲】 1 一導電型のシリコン基板; 前記基板の所望部分に設けられた溝部と、前記
溝部内面に形成された絶縁膜と、前記溝部内に上
部側面が前記絶縁膜の内側面と一致するように埋
め込まれた不純物を含む多結晶シリコンからなる
キヤパシタ電極と、前記キヤパシタ電極の上部に
一体的に接続され、該電極から前記溝部の上部を
横切つて引き出された配線とからなるMOSキヤ
パシタ; 前記シリコン基板の表面に形成された薄い酸化
膜; 前記溝部内の不純物を含む多結晶シリコンから
なるキヤパシタ電極表面に形成された厚い酸化
膜; 前記基板表面の薄い酸化膜上から前記キヤパシ
タ電極表面の厚い酸化膜上に延出して形成された
ゲート電極; 前記ゲート電極に隣接した前記基板表面に形成
された前記基板と逆導電型の不純物拡散層; を具備したことを特徴とする半導体装置。 2 一導電型のシリコン基板の所望部分に溝部を
設ける工程; 前記溝部内面に絶縁膜を形成する工程; 不純物を含む多結晶シリコンからなる電極材料
を堆積して少なくとも前記溝部内に前記電極材料
を埋め込む工程; 前記溝部上の一部を含むを前記電極材料の領域
をマスク材で覆つた後、前記マスク材及び前記溝
部を除く領域上の電極材料が除去されるまでエツ
チングすることにより前記溝部内に上部側面が前
記絶縁膜の内側面と自己整合となるキヤパシタ電
極を形成すると共に、前記キヤパシタ電極の上部
に一体的に接続され、該電極から前記溝部上部を
横切つて引き出された配線を形成してMOSキヤ
パシタを作製する工程; 熱酸化を施して前記シリコン基板表面に薄い酸
化膜を、前記溝部内の不純物を含む多結晶シリコ
ンからなるキヤパシタ電極表面に厚い酸化膜をそ
れぞれ形成する工程; ゲート電極を前記基板表面の薄い酸化膜上から
前記キヤパシタ電極表面の厚い酸化膜上に延出さ
せて形成する工程; 前記ゲート電極に隣接した前記基板表面に前記
基板と逆導電型の不純物拡散層を形成する工程; を具備したことを特徴とする半導体装置の製造方
法。
[Claims] 1. A silicon substrate of one conductivity type; a groove provided in a desired portion of the substrate, an insulating film formed on the inner surface of the groove, and an upper side surface inside the groove formed on the inner surface of the insulating film. a capacitor electrode made of polycrystalline silicon containing impurities embedded in a manner consistent with the capacitor electrode, and a wiring integrally connected to the upper part of the capacitor electrode and drawn out from the electrode across the upper part of the groove part. MOS capacitor; a thin oxide film formed on the surface of the silicon substrate; a thick oxide film formed on the surface of the capacitor electrode made of polycrystalline silicon containing impurities in the groove; A semiconductor comprising: a gate electrode extending and formed on a thick oxide film on an electrode surface; an impurity diffusion layer of a conductivity type opposite to that of the substrate formed on a surface of the substrate adjacent to the gate electrode; Device. 2. Providing a groove in a desired portion of a silicon substrate of one conductivity type; Forming an insulating film on the inner surface of the groove; Depositing an electrode material made of polycrystalline silicon containing impurities so that the electrode material is at least inside the groove. Filling step: After covering the area of the electrode material including a part above the groove with a mask material, the inside of the groove is etched until the mask material and the electrode material on the area excluding the groove are removed. forming a capacitor electrode whose upper side surface is self-aligned with the inner surface of the insulating film, and forming a wiring integrally connected to the upper part of the capacitor electrode and drawn out from the electrode across the upper part of the groove. a step of forming a thin oxide film on the surface of the silicon substrate by thermal oxidation, and a thick oxide film on the surface of the capacitor electrode made of polycrystalline silicon containing impurities in the groove; forming an electrode extending from a thin oxide film on the surface of the substrate to a thick oxide film on the surface of the capacitor electrode; forming an impurity diffusion layer of a conductivity type opposite to that of the substrate on the surface of the substrate adjacent to the gate electrode; A method of manufacturing a semiconductor device, comprising: forming a semiconductor device.
JP62125603A 1987-05-22 1987-05-22 Manufacture of semiconductor device Granted JPS6323351A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62125603A JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device
JP3183716A JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62125603A JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device
JP3183716A JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15897879A Division JPS5681968A (en) 1979-12-07 1979-12-07 Manufacture of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3183716A Division JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6323351A JPS6323351A (en) 1988-01-30
JPH0441506B2 true JPH0441506B2 (en) 1992-07-08

Family

ID=26461992

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62125603A Granted JPS6323351A (en) 1987-05-22 1987-05-22 Manufacture of semiconductor device
JP3183716A Expired - Lifetime JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3183716A Expired - Lifetime JPH081931B2 (en) 1987-05-22 1991-06-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JPS6323351A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323351A (en) * 1987-05-22 1988-01-30 Toshiba Corp Manufacture of semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130178A (en) * 1975-05-07 1976-11-12 Hitachi Ltd Semiconductor memory
JPS52154390A (en) * 1976-06-18 1977-12-22 Hitachi Ltd Semiconductor device
JPS5376686A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS5394191A (en) * 1977-01-28 1978-08-17 Toshiba Corp Semiconductor device
JPS54121080A (en) * 1978-03-13 1979-09-19 Nec Corp Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323351A (en) * 1987-05-22 1988-01-30 Toshiba Corp Manufacture of semiconductor device
JP2846411B2 (en) * 1990-06-07 1999-01-13 旭化成工業株式会社 Production method of new copolymer latex

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130178A (en) * 1975-05-07 1976-11-12 Hitachi Ltd Semiconductor memory
JPS52154390A (en) * 1976-06-18 1977-12-22 Hitachi Ltd Semiconductor device
JPS5376686A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS5394191A (en) * 1977-01-28 1978-08-17 Toshiba Corp Semiconductor device
JPS54121080A (en) * 1978-03-13 1979-09-19 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS6323351A (en) 1988-01-30
JPH05267612A (en) 1993-10-15
JPH081931B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
KR950009890B1 (en) Semiconductor memory device
JPH0133945B2 (en)
KR910010167B1 (en) Stack capacitor dram cell and its manufacturing method
JPH0682800B2 (en) Semiconductor memory device
US5302541A (en) Manufacturing method of a semiconductor device with a trench capacitor
KR100673673B1 (en) Dram cell arrangement and method for fabricating it
US5156993A (en) Fabricating a memory cell with an improved capacitor
JPH03190162A (en) Semiconductor device and manufacture thereof
JP3633873B2 (en) Integrated circuit assembly and manufacturing method thereof
US4820652A (en) Manufacturing process and structure of semiconductor memory devices
JP2950392B2 (en) Semiconductor device and manufacturing method thereof
US4784969A (en) Method of manufacturing a semiconductor memory device
JP2513287B2 (en) Method for manufacturing stacked memory cell
US4980734A (en) Dynamic memory cell using silicon-on-insulator transistor with trench capacitor
JPS6324660A (en) Semiconductor memory and manufacture thereof
JPH0441506B2 (en)
JPH0575059A (en) Semiconductor storage device and its manufacture
JPH06120446A (en) Semiconductor storage device and manufacture thereof
JPS6317553A (en) Semiconductor memory storage and its manufacture
JPS6336142B2 (en)
JPH07112047B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0441507B2 (en)
JPH03198377A (en) Manufacture of floating gate type eprom device
JPS639965A (en) Manufacture of semiconductor storage device
JP2633577B2 (en) Dynamic memory cell and method of manufacturing the same