JPH08192256A - 連続鋳造方法 - Google Patents

連続鋳造方法

Info

Publication number
JPH08192256A
JPH08192256A JP1879095A JP1879095A JPH08192256A JP H08192256 A JPH08192256 A JP H08192256A JP 1879095 A JP1879095 A JP 1879095A JP 1879095 A JP1879095 A JP 1879095A JP H08192256 A JPH08192256 A JP H08192256A
Authority
JP
Japan
Prior art keywords
reduction
rolling
slab
rolling down
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1879095A
Other languages
English (en)
Inventor
Hideyuki Misumi
秀幸 三隅
Takeshi Seki
健 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1879095A priority Critical patent/JPH08192256A/ja
Publication of JPH08192256A publication Critical patent/JPH08192256A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

(57)【要約】 【目的】 鋳片の中心偏析やセンターポロシティーを防
止し、しかも圧下に伴う負偏析領域を実質皆無にする生
産性や経済性を損なわない連鋳鋳片を提供する。 【構成】 鋼材の品質劣化を生じる偏析やセンターポロ
シティーを効率的に皆無にするとともに、圧下によって
必然的に発生する負偏析領域を実質皆無にするために、
未凝固率が少なくとも40%以下の領域において、圧下
量δと未凝固厚の比が0.025〜0.25の範囲内で
未凝固溶鋼を圧下することを特徴とする連続鋳造方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、連続鋳造によって鋳
片を製造するに際して、未凝固溶鋼が残存する領域で圧
下を行って中心偏析やセンターポロシティーの無い鋳片
を製造するとともに、圧下によって生じる負偏析や正偏
析部の残存する領域、いわゆる非定常部の領域を極少に
する連続鋳造方法に関するものである。
【0002】
【従来の技術】従来、連続鋳造法を用いて製造した鋳片
は、凝固の最終部位である厚みの中心部には不可避的に
C、Mn、PやS及びその他の元素が濃化したり、セン
ターポロシティーと称される空隙を伴った欠陥が発生
し、これらの欠陥が存在する鋳片を熱間圧延して製品を
製造した場合には、鋼材の特性が著しく阻害される欠点
を有していた。
【0003】かかる欠陥を有する連続鋳造片から鋼材を
製造するに際しては、鋼材の材質を確保する上で影響の
大きい元素である燐、硫黄や水素等を軽減するために、
精錬工程で脱燐、脱硫に加えて脱水素処理を行ったり、
更には熱間圧延前に均熱拡散処理と称す鋳片厚み中心部
に集積した偏析元素や、最終凝固部に生成するセンター
ポロシティー部に集積した水素等の拡散処理を行った
り、センターポロシティーを圧着させるために高形状比
圧延を行う等の予備処理や、圧延および圧延後に複雑な
冷却制御を行うなど、該欠陥に起因する鋼材の品質劣化
を防止する手段が用いられていた。
【0004】従って、このような工程を経て製造された
鋼材は、必然的にコストが高く経済性の面で劣るもので
あった。
【0005】このような背景から、かかる鋳片の中心部
欠陥である中心偏析やセンターポロシティーを解消する
ために、例えば、クレーターエンド近傍に2対以上のロ
ールを配置し、鋳造方向の単位長さ当たりの圧下率をロ
ールピッチとクレーターエンド位置の関数として、ある
範囲に規定することにより該欠陥を防止する方法が、特
開昭52−56017号公報に開示されている。
【0006】また、凝固末端位置で面部材を用いて狭持
し、凝固率40%以上の領域を1回当たりの圧下率を
1.5%以下、全圧下率を0.5〜5.0%の範囲で断
続的に圧下しながら完全に凝固させる方法が、特開昭5
2−202145号公報に開示されている。
【0007】さらに、内部溶鋼が凝固完了するクレータ
ーエンド近傍で、1対以上の往復動式の鍛造型により圧
下勾配を0.1〜4.0mm/mとし、圧下サイクルを
5〜100回/分の条件で鍛圧を反復しつつ、連続的に
引き抜く技術が、例えば、特開昭60−121054号
公報に開示されている。
【0008】
【発明が解決しようとする課題】鋼材の特性で、中でも
厚み中心部の特性を改善し母材と同一の特性を確保する
ためには、前記した中心部の該欠陥を根本的に無くすこ
とが必要である。
【0009】しかし、前記した特開昭52−56017
号公報や特開昭52−202145号公報に開示された
方法は、凝固収縮や熱収縮に見合った程度の圧下率でし
か圧下していないために、このような方法で製造した鋳
片には凝固過程で不可避的に発生する中心偏析を完全に
防止するには至っていなかった。
【0010】また、センターポロシティーに関しても、
凝固末期は凝固率が高く、溶鋼が流動しうる固相率が少
なくなることから、凝固収縮を補償する程度の軽圧下で
は、デンドライトの樹間に残存した溶鋼が、完全に凝固
する際に生じる空隙には、新たな溶鋼を供給することが
できないために、かかる方法を用いても0.1mmを越
える径のセンターポロシティーまでをも、皆無に制御す
ることはできない等の欠点を有していた。
【0011】なかでも、ロールを用いて軽圧下を行う方
法では、複数のロールで圧下した場合、不可避的にロー
ル直下の圧下量が大きくなることから、鋳造方向全体に
亘って均一な勾配を付与することは困難であり、実際の
鋳造時にしばしば起こる凝固完了する位置が鋳造方向や
幅方向で異なる場合には、鋳造方向や幅方向で適正な圧
下量が異なるために、結果的に得られた鋳片中心部の偏
析やセンターポロシティーには、必然的に大きな変動が
存在することは避け得なかった。
【0012】従って、従来ほど長時間の均熱拡散処理は
必要なくなったものの、依然として精錬工程での脱燐、
脱硫や脱水素処理のほか高形状比圧延等の予備処理を余
儀なくされ、このため依然として製造コストが高く、し
かも得られた鋼材の品質はバラツキが大きいばかりでな
く、製品厚の拡大ができないといった難点があった。
【0013】一方、特開昭60−121054号公報に
開示された方法は、特に圧下勾配が40mm/mの如
き、大きな圧下勾配を選定した場合には、図4に示され
るように、圧下を受けたかかる鋳片の厚み中心部は未凝
固圧下する以前に凝固した部分の濃度に比し、濃度が低
いいわゆる負偏析を有した鋳片が得られることになる。
【0014】かかる鋳片を熱間圧延して製造した鋼材
は、厚み方向の未凝固状態で圧下された部位とそれ以外
の部位で濃度差が生じるため、得られた鋼材の特性も厚
み方向で変化し、要求特性を満足できない場合がしばし
ば発生する等の欠点を有しており、その改善のために、
必要以上の合金添加を行って要求特性を確保することが
必要であった。
【0015】
【課題を解決するための手段】本発明は、かかる課題を
一気に解決する画期的手段として、連続鋳造機を用いて
鋳片を製造するに際して、未凝固率が少なくとも40%
以下の凝固末期において、下記の式(1)を満足する圧
下条件で未凝固圧下を行うことを特徴とする、中心偏析
やセンターポロシティーの無い鋳片を製造するととも
に、圧下に伴う負偏析等の非定常部の無い鋳片を製造す
る技術を提供することにある。
【0016】 0.025≦(1−α)≦0.25 ・・・(1) (1−α)=δ/(D−2d) ・・・(2) α:圧下前に圧下帯位置に存在した溶鋼が圧下された後
に残存した比率 δ:圧下量 D:スラブ厚 d:圧下帯入り側の凝固厚み
【0017】
【作用】以下、本発明を詳細に説明する。まず、製品の
品質特性に及ぼす偏析の影響に関して、偏析比(偏析部
の元素の濃度/溶鋼の濃度、ここでは燐の偏析比(P偏
析比と略称)で代表して述べる。
【0018】鋼片におけるP偏析比と厚板製品における
溶接熱影響部の−60℃における靱性値の関係を図3
に、またセンターポロシティーの最大径とZ方向の引張
試験における引張強さとの関係を図4に示す。
【0019】図3に示すように、P偏析比が2.0を超
えると−60℃における溶接熱影響部の靱性値は極度に
低下したり、バラツキが大きく鋼材の規格にも因るが規
格値を満足しなかったり、あるいは規格値を満足しない
までには至らないものの、安定した品質が確保できない
こと等の課題がある。
【0020】一方、P偏析比が0.8未満になると−6
0℃における靱性値は再び低値を示すことを見だしたの
である。つまり、高靱性値を得る条件はP偏析比で0.
8/2.0の領域でしか得られないことを知見したので
ある。
【0021】また、図3中には0.1mmを超えるセン
ターポロシティーが存在した場合に靱性値についても併
記した●印が、同図に示すように0.1mm以上のセン
ターポロシティーが存在すると、たとえ偏析比が0.8
〜2.0の適正範囲に制御できたとしても安定した靱性
値を確保することは困難なことを知見した。
【0022】さらに、図4に示すように最大径が0.1
mmを超えるセンターポロシティーが鋳片に存在すると
とP偏析比が2.0以下の場合であってもZ方向の引張
試験において規格値を満足する特性が確保できないこと
も併せて見いだしたのである。
【0023】本発明者らは、さらに研究を進め、前記し
たPの偏析引張が2.0以下であり、かつ板厚中心部の
センターポロシティーの最大径が0.1mm以下に同時
に制御する方法を検討するに当たり、図5に示す凝固末
端の模擬圧下装置を用いて、連鋳工程の最終凝固部近傍
の凝固形態を実験室的に再現し、まずP偏析比に及ぼす
圧下量δと圧下直前の未凝固厚の関係を調査した。な
お、図5に示す装置は、鋳片1の凝固完了直前部(未凝
固先端部)を上下一対のチャッキングバー7a,7bを
有し、上バー7aを油圧シリンダー4で昇降可能とし、
下バー7bを固定したものである。
【0024】その結果は、図1に示すように、P偏析比
を2.0以下に制御し得る領域は未凝固率が増大する程
(凝固率が小さい程)、圧下率を増大しなければならな
いが(■印)、その一方過大に過ぎると靱性やZ方向引
張試験において低値が発生するP偏析比0.8未満の領
域(●印)になることをこの実験により見いだしたので
ある。
【0025】さらに、未凝固率によって異なるがある圧
下量を越えると内部割れが発生することがあり、この内
部割れを発生させる限界圧下量は未凝固率40%以上の
範囲では10mm以上の圧下量を付与すると発生し、未
凝固率が大きくなるほど、この内割れが発生する限界圧
下量が小さくなることを、この実験により見いだしたの
である。
【0026】つまり、未凝固率と圧下率との関係をある
範囲に維持しないと、偏析比を適正な領域に維持できな
い上に、圧下に伴う内部割れの発生を招くことを知見し
たのである。
【0027】ところで、未凝固率Gおよび圧下率Rは下
式で定義される。 G=(1−2d/D) R=δ/D 従って、両者の式に共通な鋳片厚Dで整理すると、未凝
固率Gは未凝固溶鋼の厚み、圧下率Rは圧下量δで表す
ことが可能である。
【0028】図1中に記した限界線−1は、図2に示す
δ/(D−2d)=0.25の場合であり、P偏析比
0.8未満が発生するある未凝固厚における限界圧下量
を示したものである。一方、限界線−2の場合は、図2
に示すδ/(D−2d)=0.025の場合であり、P
偏析比が2.0以上を生じる圧下条件の限界値を示して
いる。
【0029】また、未凝固率が大きい条件で圧下する
と、僅かの圧下量でも内部割れが発生し鋼材の諸特性を
劣化させることから有害である上、凝固率の変動によっ
て微妙な圧下量の調整が必要であることから、未凝固率
は40%以下で圧下することが望ましい。
【0030】本発明者らはさらに実験を進め、連続的に
圧した場合の偏析挙動の解析を行ったところ、圧下時に
未凝固溶鋼であった部分の凝固後の成分は、圧下開始直
後は圧下量によって異なるものの、いずれも負偏析(偏
析比≦1.0)が発生しているが、圧下を連続すると次
第に負偏析が解消し、ある一定濃度に至る現象が生じる
ことを知見した。
【0031】圧下開始から一定濃度に至る区間を非定常
部と定義して、この非定常部に及ぼす圧下条件の影響を
解析したところ、未凝固溶鋼量に対して過大な圧下を行
った場合には、非定常部が何時までも継続し一定値に至
らないばかりか、該負偏析度が大きく鋳造方向に安定し
た偏析比が得られず、従って、前記したように鋼材の特
性を安定しないことを知見した。
【0032】この非定常部長さを短くすることは鋼材の
品質特性の安定化はもとより、製造コスト削減にとって
極めて重要である。そこで、本研究者らはさらに研究を
進めた結果、この非定常部はその生成機構から考慮して
皆無にはできないものの、実質的に無害な水準まで改善
するには軽圧下が良く、圧下量が大きくなるほど負偏析
度が大きく、その結果非定常部長さが長くなるというこ
とを見いだしたのである。
【0033】つまり、圧下によって排出する未凝固部の
濃化溶鋼を少なくすることがこの非定常部の長さを短縮
することが可能であり、圧下によって排出された後の偏
析比が1.0ではこの非定常部が皆無であり、実質的に
皆無になる条件は前記した偏析比が0.8〜2.0であ
ることを知見したのである。
【0034】従って、前記した圧下条件は偏析やセンタ
ーポロシティーの解消のみならず、未凝固圧下によって
生じる鋼材に要求される品質安定化にも有効な手段であ
ることを見いだしたのである。本発明は、以上の知見に
よってなされたものである。
【0035】
【実施例】以下に本発明例と比較例について詳細に説明
する。表1に示す成分の鋼を用いて、図6及び図7に示
すウォーキングバー式圧下設備によって下記に示す条件
で製造した連続鋳造鋳片を表2以下に示す条件を適用し
て製造した厚鋼板の強度と板厚中心部の靱性(vTrs)
及び厚み方向の引張試験の断面収縮率RAZを、本発明例
と比較例に分けて併せて表2〜9に示す。このウォーキ
ングバー式圧下設備は、一般公知の機構のもので、内側
の上下一対のウォーキングバー12−2と外側の上下一
対のウォーキングバー12−1とこれらを交互に下降−
前進−上昇−後退動作させるカム式駆動装置13aと前
後駆動装置13bをハウジング14内に設置したもの
で、鋳片11の未凝固先端部15を圧下する。
【0036】
【表1】
【0037】
【表2】
【0038】
【表3】
【0039】
【表4】
【0040】
【表5】
【0041】
【表6】
【0042】
【表7】
【0043】
【表8】
【0044】
【表9】
【0045】表2、3は表1のA鋼について、表4、5
はB鋼、表6、7はC鋼、表8、9はD鋼について夫々
示した。また、各表中No.1〜No.7が本発明例で
あり、No.8〜No.16が比較例である。
【0046】比較例中、No.8〜No.11は圧下量
が大きいために、偏析比が0.8未満となり、厚鋼板の
特性値が著しく悪化したのみならず、圧下に伴って生成
した偏析比0.8未満の特性値を劣化させる非定常部位
が長く発生したために、規格品として振り当てすること
ができない事態が発生し、経済的にも劣る製造条件であ
った。
【0047】また、No.12は圧下率は適正な範囲に
あるものの未凝固率が高すぎて内部割れが発生したため
に規格外れを起こしたケースであり、No.13は圧下
率が高すぎて内部割れが発生するとともに、偏析比も著
しく小さく非定常部が極めて長くなり、偏析やセンター
ポロシティーの発生は防止されたものの、材質劣化の大
きな原因となった。No.14は凝固完了後に圧下した
ケースで圧下によってセンターポロシティーは圧着され
て実質無害化できたものの、偏析が残存し前記比較例と
同様材質劣化を防止するには至らなかった。No.15
とNo.16は圧下量が小さすぎた場合と無圧下の例で
あり、非定常部や内部割れの発生は存在しないものの、
いずれも厚鋼板の材質特性の向上をもたらすことはでき
なかった。
【0048】これらの実施例がら分かるように、本発明
によって製造した熱間圧延用連続鋳片から製造した該鋼
板は、いずれも優れた特性を示した。
【0049】該連続鋳造鋳片の製造法は以下の通りであ
る。 連続鋳造鋳片寸法;厚み200/284mm×幅1
900mm 凝固末期偏析及びセンターポロシティー制御装置;
(図3に示す装置) 型 式 ウォーキングバー方式 構 成 内バー(2) 3本 外バー(1) 4本 シフト量 100mm 圧下部長さ 1.0〜2.5m 圧下部入側鋳片厚 最大 284mm 圧下帯での圧下量 0〜最大 35mm 圧下帯入側未凝固厚 0〜最大 40mm
【0050】
【発明の効果】本発明は前記したように、従来熱間圧延
材に要求される材質特性を確保する上で、極めて重要な
鋳片品質、中でも偏析・センターポロシティーの低減を
安定的にしかも圧下に伴った発生する偏析比の小さい非
定常部位を生成させずに達成できるために、従来溶鋼処
理工程において実施していた低硫化、低燐化および脱水
素処理等の予備処理はもとより、熱間圧延工程における
高温熟熱加熱や高形状比圧延等の予備処理が全く不要に
なり、製品の材質安定化はもとより極めて経済的に製造
できるようになることから、この分野にもたらす効果は
極めて大きい。
【図面の簡単な説明】
【図1】偏析比及び内部割れの発生限界と鋳塊の圧下率
と未凝固率との関係を示した図
【図2】δ/(D−2d)とP(燐)の偏析比との関係
を説明する図
【図3】燐の偏析比及びセンターポロシティーの存在と
鋼板の靱性値との関係を説明する図
【図4】センターポロシティーの最大径とZ方向の引張
強度の関係を説明する図
【図5】凝固末端部の面圧下模擬試験装置の説明図
【図6】本発明の連続鋳造工程における鋳片の未凝固末
端を面圧下する手段を表す1実施例の側面(a)と正面
(b)を示す図
【図7】図6(a)におけるB−B断面の拡大正面図
【符号の説明】
1 鋳片 4 油圧シリンダー 7a チャッキングバー 7b チャッキングバー 12−1 外側上・下ウォーキングバー 12−2 内側上・下ウォーキングバー 13a カム式駆動装置 13b 前後駆動装置 14 ハウジング 15 未凝固先端部

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 連続鋳造機を用いて鋳片を製造するに際
    して、未凝固率が少なくとも40%以下の凝固末期にお
    いて、下記の式(1)を満足する圧下条件で未凝固圧下
    を行うことを特徴とする連続鋳造方法。 0.025≦(1−α)≦0.25 ・・・(1) (1−α)=δ/(D−2d) ・・・(2) α:圧下前に圧下帯位置に存在した溶鋼が圧下後におい
    ても残存した比率 δ:圧下量 D:スラブ厚 d:圧下帯入り側の凝固厚み
JP1879095A 1995-01-12 1995-01-12 連続鋳造方法 Pending JPH08192256A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1879095A JPH08192256A (ja) 1995-01-12 1995-01-12 連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1879095A JPH08192256A (ja) 1995-01-12 1995-01-12 連続鋳造方法

Publications (1)

Publication Number Publication Date
JPH08192256A true JPH08192256A (ja) 1996-07-30

Family

ID=11981408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1879095A Pending JPH08192256A (ja) 1995-01-12 1995-01-12 連続鋳造方法

Country Status (1)

Country Link
JP (1) JPH08192256A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314817A (ja) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2010029936A (ja) * 2008-06-30 2010-02-12 Jfe Steel Corp 連続鋳造用鋳型及び鋼の連続鋳造方法
WO2019203137A1 (ja) 2018-04-17 2019-10-24 Jfeスチール株式会社 鋼の連続鋳造方法
WO2020203715A1 (ja) 2019-04-02 2020-10-08 Jfeスチール株式会社 鋼の連続鋳造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314817A (ja) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2010029936A (ja) * 2008-06-30 2010-02-12 Jfe Steel Corp 連続鋳造用鋳型及び鋼の連続鋳造方法
WO2019203137A1 (ja) 2018-04-17 2019-10-24 Jfeスチール株式会社 鋼の連続鋳造方法
KR20200124752A (ko) 2018-04-17 2020-11-03 제이에프이 스틸 가부시키가이샤 강의 연속 주조 방법
US11471936B2 (en) 2018-04-17 2022-10-18 Jfe Steel Corporation Continuous casting method of steel
WO2020203715A1 (ja) 2019-04-02 2020-10-08 Jfeスチール株式会社 鋼の連続鋳造方法
KR20210133282A (ko) 2019-04-02 2021-11-05 제이에프이 스틸 가부시키가이샤 강의 연속 주조 방법
US11759851B2 (en) 2019-04-02 2023-09-19 Jfe Steel Corporation Method for continuously casting steel

Similar Documents

Publication Publication Date Title
DE60113451T2 (de) Verfahren zur herstellung von hochstickstoffhaltigem stahl mit extrem niedrigem kohlenstoffgehalt
JPH08192256A (ja) 連続鋳造方法
CN100336617C (zh) 一种应用薄板坯连铸连轧工艺生产焊接气瓶用热轧钢板的方法
US4709572A (en) Method of processing continuously cast slabs
JP3261556B2 (ja) 連続鋳造方法
JPH08238550A (ja) 鋼の連続鋳造方法
CN1563467A (zh) 一种基于紧凑式带钢生产工艺流程的汽车用热轧高强度钢板的生产工艺
JP3275835B2 (ja) 連続鋳造方法および連続鋳造機
JP3440891B2 (ja) 耐ラメラテア性に優れた構造用鋼材
JPH06297122A (ja) 連続鋳造方法
JP2001334353A (ja) 鋼の連続鋳造方法
JP2001138021A (ja) 連続鋳造鋳片の中心偏析低減方法
JP3055462B2 (ja) 連続鋳造方法
JP3114671B2 (ja) 鋼の連続鋳造方法
JP2004269981A (ja) 棒鋼の製造方法
JPH04313454A (ja) 連続鋳造法
JPH0390263A (ja) 連続鋳造方法
JPH05293618A (ja) 連続鋳造法
JP3394730B2 (ja) 鋼鋳片の連続鋳造方法
JP3113995B2 (ja) 熱間圧延用連続鋳造鋳片
JPH09276993A (ja) 回転連続鋳造の凝固末期軽圧下方法
JP2002178113A (ja) 優れた凝固組織を有する鋳片及びそれを加工した鋼材
JP2000218350A (ja) 連続鋳造方法
JPH08132204A (ja) 連続鋳造方法
JP3015985B2 (ja) 連続鋳造法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030408