JPH08184867A - 有機非線形光学材料用トラン誘導体及びその使用 - Google Patents

有機非線形光学材料用トラン誘導体及びその使用

Info

Publication number
JPH08184867A
JPH08184867A JP32658794A JP32658794A JPH08184867A JP H08184867 A JPH08184867 A JP H08184867A JP 32658794 A JP32658794 A JP 32658794A JP 32658794 A JP32658794 A JP 32658794A JP H08184867 A JPH08184867 A JP H08184867A
Authority
JP
Japan
Prior art keywords
group
nonlinear optical
optical material
organic nonlinear
tolan derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32658794A
Other languages
English (en)
Inventor
Tadashi Ogawa
但 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP32658794A priority Critical patent/JPH08184867A/ja
Publication of JPH08184867A publication Critical patent/JPH08184867A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 高分子材料中において十分な非線形感受率及
び十分な単分子分散性を示さないという、既存の有機非
線形光学材料の有する問題点を解決し、有機非線形光学
材料及び高分子材料より成る複合形態において実用十分
な非線形感受率及び単分子分散性を有する有機非線形光
学材料を提供することにある。 【構成】一般式[1]で表される有機非線形光学材料用
トラン誘導体。 一般式[1] 【化1】 [式中、A1〜A5の少なくとも2個は電子吸引性基を表
し、D1〜D5の少なくとも2個は電子供与性基を表
す。]

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、有機非線形光学化合物
及びこの化合物を含有する有機非線形光学材料並びにこ
の材料を用いた波長変換素子に関する。更に詳しくは、
2次、3次の非線形光学効果に基づく光機能素子に用い
ることのできる有機非線形光学化合物、材料及び波長変
換素子に関する。
【0002】
【従来の技術】光が物質を透過する際に誘起される分極
Pは光の電場がEの時、 P=χ(1)E+χ(2)E・E+χ(3)E・E・E+・・・ (1) として表させる。第一項は線形分極、第二項以降は非線
形分極と呼ばれる。この際に誘起される分極の大きさの
尺度となる係数χ(n)(n≧2)は、n次の非線形感受
率、χ(n)を含む項に基づく分極からの効果はn次の非
線形光学効果と呼ばれる。χ(n)は(n+1)階のテン
ソルで、非線形光学効果を定量的に表現する係数であ
る。一般にχ(2)、χ(3)等は微小量であり、光の電場E
が小さい場合には式(1)の第一項に基づく線形効果の
み認められるが、χ(2)、χ(3)の大きい材料の場合、レ
ーザー光の様な強電場の下では二次以上の項が無視出来
なくなり、その結果、非線形光学応答が現れる。二次の
非線形光学効果としては、第二高調波発生(SHG)、
光整流、パラメトリック増幅及びポッケルス効果などが
あり、三次の非線形光学効果としては、第三高調波発
生、直流誘起SHG、カー効果及び光双安定性などがあ
る。この様な効果を有する非線形光学材料については、
例えば次の文献に詳しく記載されている。
【0003】「Nonlinear Optical Properties of Orga
nic Molecules and Cristals」 D.S.Chemla,J.Zyss (ACADEMIC PRESS.INC.,1987年刊) 「有機非線形光学材料」加藤政雄、中西八郎監修 (株式会社シーエムシー、1985年刊) 「新・有機非線形光学材料1」 (株式会社シーエムシー、1991年刊) 「新・有機非線形光学材料2」 (株式会社シーエムシー、1991年刊) 「非線形光学のための有機材料」日本化学会編、季刊
化学総説 No.15 (学会出版センター、1992年刊)
【0004】上記のような非線形光学効果を有する非線
形光学材料は、これまでに、高調波発生によるレーザー
の波長変換、電気光学素子を利用した光通信など産業へ
の応用が図られている。特に、近年、低出力の半導体レ
ーザーが各種の光記録媒体の光源として使用される様に
なり、非線形光学材料のこの分野への応用が期待されて
いる。この様な用途に対してこれまでに用いられてきた
材料の多くはリン酸二水素カリウム、ニオブ酸リチウム
などをはじめとする無機系の強誘電結晶である。一般
に、無機材料では格子結合に係わる電子が光に対して非
線形応答しているのに対して、2−メチル−4−ニトロ
アニリン(MNA)で代表される有機材料では、非線形
応答が分極し易いπ電子に起因している。このため、一
般に有機材料は無機材料に比べて大きな非線形感受率を
有し、これまでに種々の型の有機化合物について非線形
光学材料としての応用が検討されている。これまでに検
討が行われた代表的な有機材料としては、既述のMNA
以外に、4−N,N,−ジメチルアミノ−4’−ニトロ
スチルベン(DANS)、メチル−(2,4−ジニトロ
フェニル)アミノプロパネート(MAP)、3−メチル
−4−ニトロピリジン−N−オキシド(POM)、2−
シクロオクチルアミノ−5−ニトロピリジン(COAN
P)、4’−ニトロベンジリデン−3−アセチルアミノ
−4−メトキシアニリン(MNBA)、3,5−ジメチ
ル−1−(4−ニトロフェニル)ピラゾール(DMN
P),2−メトキシ−5−ニトロフェノール(MN
P),4−(イソポロパキシカルボニル)アミノニトロ
ベンゼン(PCNB)、N−メトキシメチル−4−ニト
ロアニリン(MMNA)等が挙げられる。
【0005】既に述べたように、一般に有機材料は無機
材料に比べてより大きな非線形感受率を有するが、無機
材料に比べて硬度が低く、そのために適当な大きさの光
学的に均一な結晶あるいはそれ以外の形態の材料への加
工が困難であるという欠点があり、この点が有機材料を
光素子に応用する際の問題点となっていた。この様な問
題点は、有機非線形光学材料を適当な高分子材料中に分
散させ、高分子材料との複合形態とすることにより解決
される。この様な形態の材料が発現する非線形性能は、
分散している有機非線形光学材料の分散濃度と分子の有
する非線形感受率の積に比例する。この場合、高分子材
料中に有機非線形材料がより高濃度の状態で単分子分散
可能であれば、非線形性能の設定範囲が広がり、材料と
して自由度が高くなる。また、有機非線形光学材料の凝
集は、分子の配向を妨げ、光散乱の原因ともなり、非線
形性能の低下を引き起こす。
【0006】
【発明が解決しようとする課題】これまでに開発されて
きた有機非線形光学材料で、高分子材料中に分散させた
複合材料形態において実用上十分な程度の非線形感受率
を発現し、光異性化の生じるため非線形性能の低下の生
じない、且つ、高分子材料に対して高い単分子分散性を
有するものはなく、これらの材料は光素子としての応用
に関しては未だ不十分なものであった。本発明の目的
は、光異性化が生じ、且つ、高分子材料中において実用
十分な非線形感受率及び単分子分散性を示さないとい
う、既存の有機非線形光学材料の有する問題点を解決
し、有機非線形光学材料及び高分子材料より成る複合形
態において光異性化の生じない且つ実用上十分な非線形
感受率及び単分子分散性を有する非線形光学材料を提供
することにある。
【0007】
【課題を解決するための手段】本発明は、一般式[1]
で表される有機非線形光学材料用トラン誘導体である。
【0008】一般式[1]
【化2】
【0009】[式中、A1〜A5の少なくとも2個は電子
吸引性基を表し、D1〜D5の少なくとも2個は電子供与
性基を表す。] 電子供与性基が、アルキル基、アリール基、アルコキシ
基、アミノ基、モノまたはジアルキル置換アミノ基、モ
ノまたはジアリール置換アミノ基、アルキルアリールジ
置換アミノ基、アルキルチオ基、アリールオキシ基、ア
リールチオ基、シクロアルキル基、複素環基から選ばれ
る置換基、また、電子吸引性基が、ハロゲン原子、水酸
基、シアノ基、ニトロ基、カルボン酸基、アシル基、エ
ステル基、スルホン酸基、スルホン酸エステル基、フル
オロアルキル基から選ばれる置換基である有機非線形光
学材料用トラン誘導体。前記記載のトラン誘導体を透明
樹脂媒体中に保持した有機非線形光学材料である波長変
換素子。
【0010】本発明の一般式[1]のトラン誘導体のD
1〜D5を構成する電子供与性基としてはメチル基、エチ
ル基、プロピル基、ブチル基、sec−ブチル基、te
rt−ブチル基、ペンチル基、ヘキシル基、ヘプチル
基、オクチル基、ステアリル基等のアルキル基、フェニ
ル基、トリル基、ビフェニル基、ナフチル基、ベンジル
基、トリチル基等のアリール基、メトキシ基、エトキシ
基、プロポキシ基、イソプロポキシ基、ブトキシ基、s
ec−ブトキシ基、tert−ブトキシ基、ペンチルオ
キシ基、ヘキシルオキシ基、ステアリルオキシ基、2−
(2−エトキシエトキシ)エトキシ基、アミノ基、メチ
ルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエ
チルアミノ基、ジプロピルアミノ基、ジブチルアミノ
基、ビス(アセトオキシメチル)アミノ基、ビス(アセ
トオキシエチル)アミノ基、ビス(アセトオキシプロピ
ル)アミノ基、ビス(アセトオキシブチル)アミノ基等
のモノまたはジアルキル置換アミノ基、フェニルアミノ
基、トリルアミノ基、ビフェニルアミノ基、ナフチルア
ミノ基、ベンジルアミノ基、トリチルアミノ、ジフェニ
ルアミノ基、フェニルビフェニル等のモノまたはジアリ
ール置換アミノ基、N,N−メチルフェニルアミノ基、
N,N−エチルフェニルアミノ基等のアルキルアリール
ジ置換アミノ基、メチルチオ基、エチルチオ基、プロピ
ルチオ基、ブチルチオ基,sec−ブチルチオ基,te
rt−ブチルチオ基、ペンチルチオ基、ヘキシルチオ
基、ヘプチルチオ基、オクチルチオ基等のアルキルチオ
基、フェニノキシ基、トリルオキシ基、ビフェニルオキ
シ基、ナフチルオキシ基、ベンジルオキシ基、トリチル
オキシ基等のアリールオキシ基、フェニルチオ基、トリ
ルチオ基、ビフェニルチオ基、ナフチルチオ基、ベンジ
ルチオ基、トリチルチオ基等アリールチオ基、シクロプ
ロピル基、シクロヘキシル基等のシクロアルキル基、チ
エニル基、フリル基、ピロリル基、イミダソリル基、ピ
ラゾリル基、ピリジル基、ピラジニル基、ピリミジニル
基、ピリダジニル基、インドリル基、キノリル基、イソ
キノリル基、フタラジニル基、キノキサリニル基、キナ
ゾリニル基、カルバゾリル基、アクリジニル基、フェナ
ジニル基、フルフリル基、イソチアゾリル基、フラザニ
ル基、フェノキサジニル基、ベンゾチアゾリル基、ベン
ゾオキサゾリル基、ベンズイミダゾリル基、2−メチル
ピリジル基等の複素環基である。
【0011】特に、好ましくは、アルキル基、ジアルキ
ル置換アミノ基、ジアリール置換アミノ基、アルキルチ
オ基、アリールチオ基である。また、本発明の一般式
[1]のトラン誘導体のA1〜A5を構成する電子吸引性
基としは、フッ素原子、塩素原子、臭素原子、沃素原子
等のハロゲン原子、水酸基、シアノ基、ニトロ基、カル
ボキシ基、アセチル基、ブチリル基、ベンゾイル基、ト
ルオイル基、ナフトイル基等のアシル基、メトキシカル
ボニル基、エチトキシカルボニル基、プロピオキシカル
ボニル基、ブチトキシカルボニル基、フェノキシカルボ
ニル基、トリルオキシカルボニル基、ビフェニルオキシ
カルボニル基、ナフチルオキシカルボニル基、ベンジル
オキシカルボニル基、トリチルオキシカルボニル基等の
エステル基、スルホン酸基、ビフェニルスルホニル基、
ナフチルスルホニル基、ベンジルスルホニル基、トリチ
ルスルホニル基、メシル基、エチルスルホニル基、プロ
ピルスルホニル基、ブチルスルホニル基、フェニルスル
ホニル基、トシル基等のスルホン酸エステル基、トリフ
ルオロメチル基、ペンタフルオロエチル基、ヘプタフル
オロプロピル基、デカフルオロブチル基等のフルオロア
ルキル基であるが、これらの置換基に限定されるもので
はない。
【0012】電子供与性基の置換位置は、少なくとも一
つは3重結合に対してパラ位が好ましい。この理由は、
共鳴効果や誘起効果により電荷移動が起きやすく、パイ
電子の非極在化が進み非線形性が高くなるためである。
【0013】本発明のトラン誘導体は、少なくとも2個
の電子供与性基と少なくとも2個の電子吸引性基をそれ
ぞれのベンゼン環に有しているため、更に共鳴効果や誘
起効果により電荷移動が起きやすく、パイ電子の非極在
化が進み非線形性がより高くなり作用が生じるものと考
えられる。
【0014】本発明で用いられる一般式[1]で表され
るスチルベン誘導体は、例えば、次の方法により製造す
ることができる。Wittig反応を利用して対応する置換ハ
ロゲン化ベンジルと置換ベンズアリデヒドより合成し異
性化を行ってトランス体を得る方法、対応する置換フェ
ニル酢酸と置換ベンズアルデヒドとの塩基を触媒とした
合成法など、一般的なスチルベン誘導体の合成方法によ
り得たスチルベン誘導体に臭素を付加した後、塩基によ
って2分子の臭化水素を脱離して、トラン誘導体を合成
する方法、スチルベン誘導体をジメチルホルムアマイド
中、tert−ブトキシカリウム、酸素バブリングにより合
成する方法等が挙げられることができる。
【0015】本発明の有機非線形光学材料は、トラン誘
導体を透明樹脂媒体中に保持させることで得られる。ト
ラン誘導体を透明樹脂媒体中に保持させるには、例え
ば、透明樹脂媒体とトラン誘導体とを共通の溶剤に溶解
させ、基板に塗布し、溶剤を除去させれば良い。トラン
誘導体は透明樹脂中に、0.5重量%〜40重量%の範
囲で存在させることが好ましい
【0016】本発明の有機非線形光学材料に用いる透明
媒体は有機高分子化合物であれば特に制限はない。例え
ば、アクリル樹脂、ポリカーボネート樹脂、ポリエステ
ル樹脂、ポリアミド樹脂、塩化ビニル系樹脂、酢酸ビニ
ル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹
脂、ポリエーテルスルホン樹脂、ポリスルホン系樹脂な
どの熱可塑性樹脂類、フェノール系樹脂、ポリウレタン
などの熱硬化性樹脂類やエネルギー線硬化型ポリマー類
等が挙げられる。
【0017】膜の形成方法としては、キャスティング
法、スピン・コーティング法が例示される。この場合、
本発明による有機非線形光学材料及び樹脂の溶液が用い
られる。使用に適した溶剤としては、次のものが例示さ
れる。n−ヘキサン、n−ヘプタン、シクロヘキサン等
の飽和炭化水素、アセトン、メチルエチルケトン、メチ
ルイソブチルケトン、シクロヘキサノン等のケトン類、
酢酸エチル、酢酸ブチル、メチルセロソルブ、エチルセ
ロソルブ等のエステル類、メタノール、エタノール、n
−プロパノール、イソプロパノール、n−ブタノール、
sec−ブタノール、tert−ブタノール、ペンタノ
ール、ヘキサノール等のアルコール類、ベンゼン、トル
エン、キシレン、エチルベンゼン等の芳香族単環式炭化
水素類、クロロベンゼン、ブロモベンゼン,o−ジクロ
ロベンゼン、等のハロゲン化芳香族炭化水素類、クロロ
ホルム、ジクロロメタン、テトラクロロエチレン等のハ
ロゲン化脂肪族炭化水素類。以下に本発明による有機非
線形光学材料の代表例を示す。表中の符号は一般式
[1]に基づくものである。
【0018】
【表1】
【0019】
【実施例】以下、実施例にて本発明を詳細に説明する。
【0020】実施例1 (合成1−1)4−N,N−ジブチルアミノ−2−メチ
ルベンズアルデヒドの合成 DMF(N,N−ジメチルホルムアマイド)127.8
g(1.75mol)を氷浴で10℃以下に冷却する。
オキシ塩化リン267.8g(1.75mol)を液温
が10℃以下に保つように滴下する(やや赤味を帯びた
白色粘ちょう物である。)。氷浴を取り外し、3−N,
N−ジブチルアミノトルエン0.35mol)を適当量
DMFに溶解した液を滴下する。このとき、反応液温度
は60℃を越えないようにする。滴下終了後、反応液温
度を50℃にして2時間反応させた。反応終了後、室温
まで冷却し氷水中で注ぎ込む。ついで、水酸化ナトリウ
ム水溶液で中和し、クロロホルムで抽出した。抽出液を
無水硫酸マグネシウムで乾燥し、適度に濃縮し、シリカ
ゲルカラム(展開溶媒:クロロホルム)で精製し、展開
溶媒を留去した結果、4−N,N−ジブチルアミノ−2
−メチルベンズアルデヒドを収量72.0g得た。
【0021】(合成1−2)2,4−ジニトロ−4'−
ジブチルアミノ−2'−メチルスチルベンの合成 2,4−ジニトロトルエン18.2g(0.10mo
l)、四塩化炭素150ml、N−ブロモこはく酸イミ
ド(NBS)15.8g(0.10mol)、過酸化ベ
ンゾイル(BPO)600mgを仕込み還流下で20時
間反応させた後、室温まで冷却し、吸引ろ過でろ液を
得、溶媒を留去し、乾燥した。収量13.1g。これ
に、亜リン酸トリエチル8.3gを仕込み、オイルバス
の温度が150℃で1時間反応させた。室温まで冷却さ
せてから内容物を三角フラスコに入れたナトリウムメト
キシド3.2g(0.059mol)に加え、乾燥DM
F20mlで完全に移した。混合物を氷冷し、フラスコ
の内容物を十分に混ぜ、氷浴中でよくかき混ぜながら適
量の乾燥DMFに溶かした合成1−1で得た4−N,N
−ジブチルアミノ−2−メチルベンズアルデヒド12.
4g(0.05mol)を滴下する。滴下終了後、混合
物を室温にし、そのまま一晩撹拌する。次いで、適量の
水へ注ぎ、析出した沈澱物を吸引濾過し、これを乾燥し
た後、シリカゲルカラム(展開溶媒クロロホルム)で精
製し、エタノールで再結晶した。収量は10.3gであ
った。
【0022】(合成1−3)2,4−ジニトロ−4’−
ジブチルアミノ−2’−メチルトラン(化合物(A))
の合成 合成1−2で得た2,4−ジニト−4’−ジブチルアミ
ノ−2’−メチルスチルベン0.3g(0.783mm
ol)、DMF30mlとtert−ブトキシカリウム
0.26g(2.32mmol)を仕込み、酸素バブリ
ングしながら室温で150分間撹拌した後、100ml
の水に注いだ。次いで、30mlの2Nの塩酸を加え、
100mlのベンゼンで抽出し、20mlの10%水酸
化ナトリウム水溶液で2回洗浄し、溶液を無水硫酸マグ
ネシウムで乾燥した。溶媒留去後、エタノールより再結
晶をした。化合物(A):収量0.16g
【0023】この化合物(A)1g及び帝人化成(株)
製ポリカーボネート、パンライト9gをクロロホルム3
6gに溶解させた溶液を用いてスピン・コーティング法
によりスライドガラス上に厚さ約1μmの薄膜を形成さ
せた。この薄膜試料を厚さ約4mmの2枚のアルミニウ
ム板の間に鋏み、試料を120℃に加熱した。この温度
において直流電圧11kVを1時間印加した後、電圧を
印加したまま室温まで冷却を行った。上記の様に電場配
向処理を施した薄膜試料に対して薄膜側から、Nd:Y
AGレーザーの第二高調波による色素レーザーのポンピ
ングで発振する波長830nmのレーザーを照射し、発
生する第二高調波の強度を測定し、メーカー・フリンジ
を得た。このフリンジ・パターンから2次非線形感受率
dの値として42.3pm/Vを得た。
【0024】実施例2 (合成2−1)2−シアノ−4−ニトロ−4'−ジブチ
ルアミノ−2'−メチルスチルベンの合成 2−ブロモ−4−ニトロトルエン43.2g(0.20
mol)、と無水DMF440mlとシアン化第一銅1
8.0g(0.20mol)を仕込み、115℃で2時
間反応させた後、室温まで冷却し、7リットルの氷水へ
注いだ。撹拌を30分間行い、吸引ろ過、乾燥し、これ
をシリカゲルカラム(展開溶媒クロロホルム)で精製
し、溶媒を蒸発乾固し、4−シアノ−2−ニトロトルエ
ン14.4gを得た。この得た4−ニトロ−2−シアノ
トルエン14.4g(0.09mol)、四塩化炭素1
50ml、N−ブロモこはく酸イミド(NBS)14.
2g、BPO400mgを仕込み還流下で14時間反応
させた後、室温まで冷却し、吸引ろ過でろ液を得、溶媒
を留去し、乾燥した。収量13.6g。これに、亜リン
酸トリエチル9.9g(0.06mol)とを仕込み、
オイルバスの温度が150℃で1時間反応させた。室温
まで冷却てから内容物を三角フラスコに入れたナトリウ
ムメトキシド3.9g(0.072mol)に加え、乾
燥DMF20mlで完全に移した。混合物を氷冷し、フ
ラスコの内容物を十分に混ぜ、氷浴中でよくかき混ぜな
がら適量の乾燥DMFに溶かした合成1−1で得た4−
N,N−ジブチルアミノ−2−メチルベンズアルデヒド
14.8g(0.06mol)を滴下する。滴下終了
後、混合物を室温にし、そのまま一晩撹拌する。次い
で、適量の水へ注ぎ、析出した沈澱物を吸引濾過し、こ
れを乾燥した後、シリカゲルカラム(展開溶媒:クロロ
ホルム)で精製し、エタノールで再結晶しを得た。収量
は9.6gであった。
【0025】(合成2−2)2−シアノ−4−ニトロ−
4’−ジブチルアミノ−2’−メチルトランの合成(化
合物(I)) 合成2−1で得た2−シアノ−4−ニトロ−4’−ジブ
チルアミノ−2’−メチルスチルベン0.3g(0.7
83mmol)、DMF30mlとtert−ブチルカ
リウム0.26g(2.32mmol)を仕込み、酸素
バブリングしながら室温で150分間撹拌した後、10
0mlの水に注いだ。次いで、30mlの2Nの塩酸を
加え、100mlのベンゼンで抽出し、20mlの10
%水酸化ナトリウム水溶液で2回洗浄し、溶液を無水硫
酸マグネシウムで乾燥した。溶媒留去後、エタノールよ
り再結晶をした。化合物(I):収量0.18g
【0026】この化合物(I)1g及び帝人化成(株)
製ポリカーボネート、パンライト9gをクロロホルム3
6gに溶解させた溶液を用いてスピン・コーティング法
によりスライドガラス上に厚さ約1μmの薄膜を形成さ
せた。この薄膜試料を厚さ約4mmの2枚のアルミニウ
ム板の間に鋏み、試料を120℃に加熱した。この温度
において直流電圧11kVを1時間印加した後、電圧を
印加したまま室温まで冷却を行った。上記の様に電場配
向処理を施した薄膜試料に対して薄膜側から、Nd:Y
AGレーザーの第二高調波による色素レーザーのポンピ
ングで発振する波長830nmのレーザーを照射し、発
生する第二高調波の強度を測定し、メーカー・フリンジ
を得た。このフリンジ・パターンから2次非線形感受率
dの値として45.8pm/Vを得た。
【0027】実施例3〜25 化合物B〜H、J〜T、V、Y、Z、aを実施例1、2
と同様に合成し、薄膜及び測定も同様に行った。 比較例1 4−ジメチルアミノ−4'−ニトロスチルベンをエタノ
ールで再結晶したものを1g及び帝人化成(株)製ポリ
カーボネート、パンライト9gをクロロホルム36gに
溶解させた溶液を用いてスピン・コーティング法により
スライドガラス上に厚さ約1μmの薄膜を形成させた。
この薄膜試料を厚さ約4mmの2枚のアルミニウム板の
間に鋏み、試料を120℃に加熱した。この温度におい
て直流電圧11kVを1時間印加した後、電圧を印加し
たまま室温まで冷却を行った。上記の様に電場配向処理
を施した薄膜試料に対して薄膜側から、Nd:YAGレ
ーザーの第二高調波による色素レーザーのポンピングで
発振する波長830nmのレーザーを照射し、発生する
第二高調波の強度を測定し、メーカー・フリンジを得
た。このフリンジ・パターンから2次非線形感受率dの
値として33.5pm/Vを得た。測定結果を表1に示
す。
【0028】
【表2】
【0029】
【発明の効果】本発明によれば、有機非線形光学材料及
び各種の高分子材料より成る複合形態において、実用上
十分な非線形感受率及び単分子分散製を有する有機非線
形光学材料が提供される。本発明によれば、容易に膜形
成、膜厚制御及び非線形性能制御の可能な有機非線形光
学材料が提供される。更に本発明によれば、光エレクト
ロニクス分野における種々の光機能素子として応用可能
な有機非線形光学材料が提供される。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 一般式[1]で表される有機非線形光学
    材料用トラン誘導体。 一般式[1] 【化1】 [式中、A1〜A5の少なくとも2個は電子吸引性基を表
    し、D1〜D5の少なくとも2個は電子供与性基を表
    す。]
  2. 【請求項2】 電子供与性基が、アルキル基、アリール
    基、アルコキシ基、アミノ基、アルキルモノまたはジ置
    換アミノ基、アリールモノまたはジ置換アミノ基、アル
    キルチオ基、アリールオキシ基、アリールチオ基、シク
    ロアルキル基、複素環基から選ばれる置換基である請求
    項1記載の有機非線形光学材料用トラン誘導体。
  3. 【請求項3】 電子吸引性基が、ハロゲン原子、水酸
    基、シアノ基、ニトロ基、カルボン酸基、アシル基、エ
    ステル基、スルホン酸基、スルホン酸エステル基、フル
    オロアルキル基から選ばれる置換基である請求項1また
    は2記載の有機非線形光学材料用トラン誘導体。
  4. 【請求項4】 請求項1ないし3記載のトラン誘導体を
    透明樹脂媒体中に保持した有機非線形光学材料。
  5. 【請求項5】 請求項4記載の材料からなる波長変換素
    子。
JP32658794A 1994-12-28 1994-12-28 有機非線形光学材料用トラン誘導体及びその使用 Pending JPH08184867A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32658794A JPH08184867A (ja) 1994-12-28 1994-12-28 有機非線形光学材料用トラン誘導体及びその使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32658794A JPH08184867A (ja) 1994-12-28 1994-12-28 有機非線形光学材料用トラン誘導体及びその使用

Publications (1)

Publication Number Publication Date
JPH08184867A true JPH08184867A (ja) 1996-07-16

Family

ID=18189490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32658794A Pending JPH08184867A (ja) 1994-12-28 1994-12-28 有機非線形光学材料用トラン誘導体及びその使用

Country Status (1)

Country Link
JP (1) JPH08184867A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150272908A1 (en) * 2014-03-26 2015-10-01 University Of Kentucky Research Foundation Halogenated diarylacetylenes and methods of treating cancer
WO2022244431A1 (ja) * 2021-05-20 2022-11-24 パナソニックIpマネジメント株式会社 非線形光吸収材料、記録媒体、情報の記録方法及び情報の読出方法
US11656213B2 (en) * 2015-11-16 2023-05-23 Institut Dr. Foerster Gmbh & Co. Kg Fluorescent dye films for detecting NOx-based explosives in the air, in solutions, and from wipe samples

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150272908A1 (en) * 2014-03-26 2015-10-01 University Of Kentucky Research Foundation Halogenated diarylacetylenes and methods of treating cancer
US9895324B2 (en) * 2014-03-26 2018-02-20 University Of Kentucky Research Foundation Halogenated diarylacetylenes and methods of treating cancer
US11656213B2 (en) * 2015-11-16 2023-05-23 Institut Dr. Foerster Gmbh & Co. Kg Fluorescent dye films for detecting NOx-based explosives in the air, in solutions, and from wipe samples
WO2022244431A1 (ja) * 2021-05-20 2022-11-24 パナソニックIpマネジメント株式会社 非線形光吸収材料、記録媒体、情報の記録方法及び情報の読出方法

Similar Documents

Publication Publication Date Title
CA2100190A1 (en) Optically non-linear active waveguiding material comprising a dopant having multiple donor--acceptor systems
Lemaître et al. New Second-Order NLO Chromophores Based on 3, 3 ‘-Bipyridine: Tuning of Liquid Crystal and NLO Properties
Traskovskis et al. Structure-dependent tuning of electro-optic and thermoplastic properties in triphenyl groups containing molecular glasses
JPH08184865A (ja) 有機非線形光学材料用スチルベン誘導体及びその使用
JPH08184867A (ja) 有機非線形光学材料用トラン誘導体及びその使用
JPH08184866A (ja) 有機非線形光学材料用スチルベン誘導体及びその使用
JPH04121717A (ja) 新規な有機非線形光学材料及びそれを用いた光波長の変換方法
Kimura et al. Synthesis and non-linear optical properties of aromatic ester oligomers as chained chromophores
JP2836485B2 (ja) シクロブテンジオン誘導体及びその製造方法並びにこれを用いた非線形光学素子
EP0761643B1 (en) Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same
JPH08176107A (ja) 有機非線形光学材料用n−スチリルフタルイミド誘導体及びその使用
JP2887833B2 (ja) シクロブテンジオン誘導体及びその製造方法並びにこれを用いた非線形光学素子
JPH0754390B2 (ja) 非線形光学素子用材料
JP2727764B2 (ja) 非線形光学材料
JPH09136866A (ja) シクロブテンジオン誘導体及びその製造方法並びにこれを用いた非線形光学素子
US5412144A (en) Organic materials with nonlinear optical properties
JPH06128234A (ja) 不斉炭素原子を有する化合物およびそれからなる非線形光学材料
Rawal Cross-Conjugated Moieties as Design Motifs for a Class of Novel Electro-Optic Chromophores
JPH05257180A (ja) 有機非線形光学材料
JP2539849B2 (ja) 非線形光学材料とそれを用いた非線形光学素子
JPH08119914A (ja) シクロブテンジオン誘導体及びその製造方法並びにこれを用いた非線形光学素子
JPH01101522A (ja) 非線形光学材料とそれを用いた非線形光学素子
JPH06345747A (ja) 4−ニトロ−n−(1′−ピペリジノカルボニル)アニリン及び非線形光学材料
JPH10245498A (ja) 新規七員環色素材料
JPH036536A (ja) 有機非線形光学材料