JPH0818403B2 - Laminates and green composite films for laminates - Google Patents

Laminates and green composite films for laminates

Info

Publication number
JPH0818403B2
JPH0818403B2 JP5160256A JP16025693A JPH0818403B2 JP H0818403 B2 JPH0818403 B2 JP H0818403B2 JP 5160256 A JP5160256 A JP 5160256A JP 16025693 A JP16025693 A JP 16025693A JP H0818403 B2 JPH0818403 B2 JP H0818403B2
Authority
JP
Japan
Prior art keywords
layer
prepreg
unsintered
fluororesin
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5160256A
Other languages
Japanese (ja)
Other versions
JPH06344503A (en
Inventor
一雄 中嶋
若男 田口
仁 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP5160256A priority Critical patent/JPH0818403B2/en
Publication of JPH06344503A publication Critical patent/JPH06344503A/en
Publication of JPH0818403B2 publication Critical patent/JPH0818403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば、高周波
プリント配線基板として用いられる低誘電率積層板のよ
うな積層板および積層板用未焼結複合フィルムに関す
る。
TECHNICAL FIELD The present invention relates to, for example, a non-sintered composite film laminates contact and laminate, such as a low dielectric constant laminate used as a high-frequency printed wiring board.

【0002】[0002]

【従来の技術】従来、積層板の製造方法としては次に述
べるような各種の製造方法がある。第一の製造方法は、
基材にPTFE樹脂(ポリ・テトラ・フルオロ・エチレ
ン、4フッ化樹脂)を含浸し、これを乾燥および焼成し
てプリプレグ(pre-preg)を形成し、複数層のプリプレ
グ間にPFA樹脂(4フッ化エチレン・パーフルオロア
ルキルビニルエーテル共重合樹脂)フィルムまたはFE
P樹脂(パーフルオロエチレンプロピレン樹脂)フィル
ムを介設し、最外層に配置する金属箔とプリプレグとの
間にも上記フィルムを介設して、積層成形することによ
り積層板を製造する方法である。
2. Description of the Related Art Conventionally, as a method for manufacturing a laminated plate, there are various manufacturing methods as described below. The first manufacturing method is
A base material is impregnated with a PTFE resin (polytetrafluoroethylene, tetrafluoride resin), and this is dried and fired to form a prepreg (pre-preg), and a PFA resin (4 Fluorinated ethylene / perfluoroalkyl vinyl ether copolymer resin film or FE
This is a method for producing a laminated plate by interposing a P resin (perfluoroethylene propylene resin) film, and interposing the film also between the metal foil and the prepreg arranged in the outermost layer, and carrying out lamination molding. .

【0003】この第一の製造方法によれば、上記フィル
ムを介設することで、金属箔とプリプレグとの接着強さ
が保持され、またプリプレグ層間の接着力が保持され、
さらに積層板中の樹脂含有比率が調節できる利点がある
反面、一般に上述のフィルムはスクリュ押出機で樹脂を
溶融混練し、T型ダイスを通して射出成形されるため、
このフィルムの製造工程中に相当量の金属小片や金属粉
がフィルム中に混入し、金属小片および金属粉は導電性
を有するため、プリント配線基板においては回路の短
絡、断線などの要因となり、実質的に使用困難な問題点
があった。
According to this first manufacturing method, by interposing the film, the adhesive strength between the metal foil and the prepreg is maintained, and the adhesive force between the prepreg layers is maintained,
On the other hand, there is an advantage that the resin content ratio in the laminated plate can be adjusted. On the other hand, the above-mentioned film is generally melt-kneaded with a screw extruder and injection-molded through a T-type die.
During the manufacturing process of this film, a considerable amount of metal particles and metal powder are mixed in the film, and since the metal particles and metal powder have conductivity, they cause a short circuit of the printed wiring board, a disconnection, etc. There was a problem that it was difficult to use.

【0004】第二の製造方法は、基材に第1のフッ素樹
脂を含浸し、これを乾燥および焼成した後に、第2のフ
ッ素樹脂としてPFAまたはFEPを含浸し、これを乾
燥および焼成して形成したプリプレグの最外層に金属箔
を配置した後、積層成形することにより積層板を製造す
る方法である。
In the second manufacturing method, the base material is impregnated with the first fluororesin, dried and fired, then impregnated with PFA or FEP as the second fluororesin, dried and fired. In this method, a metal foil is placed on the outermost layer of the formed prepreg and then laminated forming is performed to produce a laminated plate.

【0005】この第二の製造方法によれば、基材に含浸
した第1のフッ素樹脂は乾燥後、該樹脂の融点以上で焼
成され、このようにフッ素樹脂が融点以上で焼成される
と、その表面エネルギが低く、濡れ性が極度に悪化する
ため、該フッ素樹脂の上にPFAまたはFEPを保持さ
せようとしても、乾燥、焼成工程中に脱落が生じて、均
一な高精度の膜の形成が困難で、プリプレグと金属箔と
の接着力、プリプレグ相互の接着力、樹脂含有量に部分
的な差異が発生し、特性値がばらつく関係上、安定した
性能の積層板が得られない問題点があった。
According to this second manufacturing method, the first fluororesin impregnated in the base material is dried and then baked at a temperature above the melting point of the resin. Thus, when the fluororesin is baked above the melting point, Since the surface energy is low and the wettability is extremely deteriorated, even if an attempt is made to hold PFA or FEP on the fluororesin, the PFA or FEP is removed during the drying and baking steps, and a uniform and highly accurate film is formed. It is difficult to obtain a laminated board with stable performance because the adhesive strength between the prepreg and the metal foil, the mutual adhesive strength between the prepregs, and the resin content are partially different and the characteristic values vary. was there.

【0006】第三の製造方法は、布状基材の表面にフッ
素樹脂層を形成し、このフッ素樹脂層における表面近傍
が未焼結であるプリプレグを形成し、このプリプレグの
表面に金属箔を配置した後に、加熱加圧して上述の金属
箔をプリプレグに接着させて、積層板を製造する方法で
ある。
The third manufacturing method is to form a fluororesin layer on the surface of a cloth-like substrate, form a prepreg in the vicinity of the surface of the fluororesin layer which is unsintered, and apply a metal foil to the surface of the prepreg. After arranging, it is a method of manufacturing a laminated board by heating and pressurizing and adhering the above metal foil to the prepreg.

【0007】この第三の製造方法によれば、布状基材に
含浸させたフッ素樹脂層はその表面近傍のみが未焼結と
なり、基材の芯部および基材近傍は焼結される。この第
三の製造方法によればプリプレグと金属箔との接着強さ
をある程度確保することができる利点がある反面、大型
の積層板においてはその全面にわたって均一な接着力を
得ることが困難で、ばらつきが大きいうえ、樹脂含有率
が低い積層板においては、回路形成時のエッチングによ
り金属箔を除去した後の樹脂表面から薬液の浸込みが生
じ、かつハンダ耐熱性が劣り、金属箔に膨れなどの欠陥
が発生する問題点があった。加えて、プリプレグ中に焼
結層と未焼結層とが混在する関係上、積層板の厚さが薄
い場合には、反り、捩れなどの欠陥が発生しやすい問題
点があった。
According to the third manufacturing method, the fluororesin layer impregnated in the cloth-like base material is unsintered only in the vicinity of the surface thereof, and the core portion of the base material and the vicinity of the base material are sintered. According to this third manufacturing method, there is an advantage that the adhesive strength between the prepreg and the metal foil can be secured to some extent, but on the other hand, in a large-sized laminated plate, it is difficult to obtain a uniform adhesive force over the entire surface, In the case of a laminate with a large variation and a low resin content, the chemical solution penetrates from the resin surface after the metal foil is removed by etching during circuit formation, and the solder heat resistance is poor and the metal foil swells. There is a problem that the defect of occurs. In addition, since a sintered layer and a non-sintered layer are mixed in the prepreg, there is a problem that defects such as warp and twist are likely to occur when the laminated plate is thin.

【0008】第四の製造方法は、布基材にPFAまたは
FEPを含浸し、これを乾燥および焼成してプリプレグ
を形成し、このプリプレグに金属箔を配置した後に、積
層成形することにより積層板を製造する方法である。
A fourth manufacturing method is to impregnate a cloth base material with PFA or FEP, dry and fire the prepreg to form a prepreg, place a metal foil on the prepreg, and form a laminate to laminate the laminate. Is a method of manufacturing.

【0009】この第四の製造方法によれば、プリプレグ
と金属箔との接着力、プリプレグ相互の接着力、布基材
とPFAまたはFEPのフッ素樹脂との接着力が何れも
安定する利点がある反面、PFAまたはFEPはその融
点以上の高温において粘度が低く、流動性が大きくなる
ため、積層成形時の加熱加圧工程中にPFAまたはFE
Pが流動しやすく、この結果、積層板の厚み精度が悪化
するうえ、上述のPFAまたFEPはPTFEに対して
コスト高となる問題点があった。
According to the fourth manufacturing method, the adhesive strength between the prepreg and the metal foil, the mutual adhesive strength between the prepregs, and the adhesive strength between the cloth base material and the fluororesin of PFA or FEP are all stable. On the other hand, since PFA or FEP has a low viscosity and a large fluidity at a temperature higher than its melting point, PFA or FEP has a high flowability during the heating and pressurizing step during lamination molding.
There is a problem that P easily flows, and as a result, the thickness accuracy of the laminated plate deteriorates, and the cost of PFA or FEP is higher than that of PTFE.

【0010】第五の製造方法は、基材に第1のフッ素樹
脂を含浸した後に、これを乾燥および焼結し、この上層
に対して第1のフッ素樹脂より低融点の第2のフッ素樹
脂を保持させてプリプレグを形成し、このプリプレグに
金属箔を配置した後に、第1のフッ素樹脂の融点より低
温で、しかも第2のフッ素樹脂の融点より高温となる温
度条件下で、積層成形することにより積層板を製造する
方法である。
In the fifth method, the base material is impregnated with the first fluororesin, dried and sintered, and the second fluororesin having a lower melting point than the first fluororesin for the upper layer. To form a prepreg, and after placing a metal foil on the prepreg, laminate molding is performed under a temperature condition that is lower than the melting point of the first fluororesin and higher than the melting point of the second fluororesin. This is a method for producing a laminated board.

【0011】この第五の製造方法によれば、積層加圧時
に上述の第1のフッ素樹脂は当該樹脂特有の形状記憶性
に起因してクッション性を発揮するため、積層板特性が
ばらついて不安定となり、加えて第1のフッ素樹脂の焼
成時にこの第1のフッ素樹脂の融点以上で焼成されるた
め、表面エネルギが低く、濡れ性が悪化するため、この
第1のフッ素樹脂の上に第2のフッ素樹脂を保持させよ
うとしても、乾燥、焼成工程中に脱落して均一な高精度
の膜の形成が困難となる問題点があった。
According to the fifth manufacturing method, since the above-mentioned first fluororesin exhibits cushioning property due to the shape memory property peculiar to the resin at the time of laminating and pressurizing the laminated plate, the characteristics of the laminating plate may vary. In addition to being stable, since the first fluororesin is fired at a temperature equal to or higher than the melting point of the first fluororesin during firing, the surface energy is low and the wettability is deteriorated. Even if the second fluororesin is held, there is a problem that it becomes difficult to form a uniform film with high accuracy because it falls off during the drying and baking steps.

【0012】一方、例えば比誘電率がεr=2.4以下
の低誘電率基板を得るためには、樹脂含有率が多い例え
ば80vol %以上のプリプレグを形成する必要がある
が、従来技術においては樹脂含有率が多いプリプレグを
形成することが困難であった。すなわち、ガラス布基材
に樹脂を含浸した後に、乾燥、焼結を繰返す場合、上述
の樹脂焼結工程で樹脂が収縮するので、仮りにガラス布
基材に対する樹脂の厚塗りが可能になっても、上記操作
の繰返しにより、基材が上記収縮力に耐えられず、波打
ち状に変形するため、形成されたプリプレグに凹凸状の
厚みむらが生じ、厚さ精度が悪化する。
On the other hand, for example, in order to obtain a low dielectric constant substrate having a relative dielectric constant of εr = 2.4 or less, it is necessary to form a prepreg having a high resin content, for example, 80 vol% or more. It was difficult to form a prepreg with a high resin content. That is, when the glass cloth base material is impregnated with the resin, and then dried and sintered repeatedly, the resin shrinks in the resin sintering step described above, so that it becomes possible to thickly coat the resin on the glass cloth base material. However, by repeating the above operation, the base material cannot withstand the shrinkage force and is deformed into a wavy shape, so that unevenness in thickness is generated in the formed prepreg, and the thickness accuracy is deteriorated.

【0013】したがって従来においては既述した第一の
製造方法に見られるように、各層間およびプリプレグと
金属箔との間にPFAフィルムやFEPフィルムを介設
して樹脂含有率を多くする方法がとられていたが、この
ような従来方法によれば、既述したようにPFAフィル
ム、FEPフィルム中への金属小片、金属粉の混入によ
り回路の短絡、断線等のトラブル発生の要因となる。ま
たPFAフィルム、FEPフィルムを多用すると積層板
の低誘電率化が容易な反面、曲げ弾性率が低下すると共
に、熱膨張率が大となり、積層板それ自体が軟弱化する
問題点があった。
Therefore, conventionally, as seen in the above-described first manufacturing method, there is a method of increasing the resin content by interposing a PFA film or FEP film between each layer and between the prepreg and the metal foil. However, according to such a conventional method, as described above, a metal short piece or a metal powder is mixed into the PFA film or the FEP film, which causes a trouble such as a short circuit or a disconnection of a circuit. Further, when the PFA film and the FEP film are frequently used, it is easy to reduce the dielectric constant of the laminated plate, but on the other hand, the bending elastic modulus is lowered and the thermal expansion coefficient is increased, so that the laminated plate itself is weakened.

【0014】[0014]

【発明が解決しようとする課題】この発明の請求項1記
載の発明は、基材に対するPTFE樹脂ディスパージョ
ンの含浸後、PTFE樹脂の融点を越えない低温条件下
で乾燥処理し、この未焼結の状態において含浸および乾
燥を繰返して必要樹脂保持量の未焼結プリプレグを形成
し、樹脂量の調整は該未焼結プリプレグで行なうと共
に、極薄2層構造の未焼結複合フィルムを用いて、積層
板を形成することで、厚さ精度が高く、厚さ方向の線膨
張係数が小さく、かつハンダ耐熱性に優れると共に、異
物混入が少なく、さらには接着力の向上を図ることがで
きる低誘電率の積層板の提供を目的とする。
The invention according to claim 1 of the present invention is such that after impregnation of the PTFE resin dispersion into the substrate, it is dried under a low temperature condition not exceeding the melting point of the PTFE resin, and this unsintered In this state, impregnation and drying are repeated to form an unsintered prepreg having a required resin retention amount, and the resin amount is adjusted with the unsintered prepreg, and an unsintered composite film having an ultrathin two-layer structure is used. By forming a laminated plate, the thickness accuracy is high, the linear expansion coefficient in the thickness direction is small, the solder heat resistance is excellent, the inclusion of foreign matter is small, and the adhesive strength can be improved. and an object thereof is to provide a dielectric constant of the laminate.

【0015】この発明の請求項2記載の発明は、キャス
ティング法により形成されたPTFE樹脂と該PTFE
樹脂に対して低融点のフッ素樹脂との2層構造の未焼結
複合フィルムとすることで、金属粉や炭化微粉の混入が
なく、10μm以下の極薄構造とすることができる積層
板用未焼結複合フィルムの提供を目的とする。
According to a second aspect of the present invention, there is provided a PTFE resin formed by a casting method and the PTFE resin.
By using a non-sintered composite film having a two-layer structure of a fluororesin having a low melting point with respect to the resin, an ultrathin structure of 10 μm or less can be obtained without mixing of metal powder or carbonized fine powder. An object is to provide a non-sintered composite film for a laminated plate.

【0016】この発明の請求項3記載の発明は、上記請
求項2記載の発明の目的と併せて、諸種の2層構造の
焼結複合フィルムを選定することで、プリプレグの製造
工程を標準化することができる積層板用未焼結複合フィ
ルムの提供を目的とする。
[0016] The invention of claim 3, wherein the present invention, in conjunction with the object of the invention of the second aspect, only a two-layer structure of Shoshu
By selecting the sintered composite film, and an object thereof is to provide a non-sintered composite film laminates which can be standardized manufacturing process of the prepreg.

【0017】この発明の請求項4記載の発明は、積層板
を多層化するに際して二次成形を行なっても、層間のず
れや回路部の流動いわゆるスイミング現象がなく、また
回路部と未焼結複合フィルムとの間に空隙が形成される
こともなく、ハンダ耐熱性、熱衝撃性、寸法安定性に優
れた多層化が可能な積層板の提供を目的とする。
In the invention according to claim 4 of the present invention, even when the secondary molding is performed when the laminated plate is made into a multilayer, there is no gap between layers or the flow of the circuit part, that is, a so-called swimming phenomenon, and the circuit part and the unsintered part are not sintered. An object of the present invention is to provide a laminated plate which is excellent in solder heat resistance, thermal shock resistance and dimensional stability and which can be formed into a multilayer without forming voids between the composite film and the composite film.

【0018】この発明の請求項5記載の発明は、上記請
求項4記載の発明の目的と併せて、未焼結複合フィルム
間に未焼結プリプレグを介設することで、回路の層間厚
さを任意に設定することができる積層板の提供を目的と
する。
According to the invention of claim 5 of the present invention, in addition to the object of the invention of claim 4, an unsintered prepreg is provided between the unsintered composite films to thereby obtain an interlayer thickness of a circuit. It is an object of the present invention to provide a laminated plate that can be set arbitrarily.

【0019】この発明の請求項6記載の発明は、上記請
求項4記載の発明の目的と併せて、未焼結複合フィルム
間に焼結プリプレグを介設することで、回路の層間厚さ
を任意に設定することができる積層板の提供を目的とす
る。
In the sixth aspect of the present invention, in addition to the object of the fourth aspect of the invention, a sintered prepreg is interposed between the unsintered composite films to reduce the interlayer thickness of the circuit. An object is to provide a laminated plate that can be set arbitrarily.

【0020】この発明の請求項7記載の発明は、積層板
を多層化するに際して二次成形を行なっても、層間のず
れや回路部の流動いわゆるスイミング現象がなく、また
回路部と未焼結複合フィルムとの間に空隙が形成される
こともなく、ハンダ耐熱性、熱衝撃性、寸法安定性に優
れ、多層化が可能なことと併せて、未焼結複合フィルム
間に熱硬化性プリプレグを介設することで、回路の層間
厚さを任意に設定することができると共に、上述の熱硬
化性プリプレグの介設により積層板全体の剛性向上を図
り、圧縮、復元力が繰返し付勢されるテストボードに適
用しても耐久性の向上を図ることができ、また部品実装
後においてシャーシ等に取付けることが可能な積層板の
提供を目的とする。
In the invention according to claim 7 of the present invention, even when secondary molding is carried out when the laminated plate is made into multiple layers, there is no gap between layers or flow of the circuit part, so-called swimming phenomenon, and the circuit part and unsintered. without the gap is formed between the composite film, solder heat resistance, thermal shock resistance, excellent dimensional stability, together with that which can be multilayered, thermosetting prepreg between unsintered composite film The inter-layer thickness of the circuit can be set arbitrarily by interposing the interposition of the thermosetting prepreg with the interposition of the thermosetting prepreg to improve the rigidity of the entire laminated plate, and the compressive and restoring forces are repeatedly applied. It is an object of the present invention to provide a laminated board which can be improved in durability even when applied to a test board, and which can be attached to a chassis or the like after mounting components.

【0021】この発明の請求項8記載の発明は、上記請
求項7記載の発明の目的と併せて、諸種の2層構造の
焼結複合フィルムを選定することで、プリプレグの製造
工程を標準化することができる積層板用未焼結複合フィ
ルムを用いた積層板の提供を目的とする。
[0021] The invention of claim 8, wherein the present invention, in conjunction with the object of the invention of the seventh aspect, only a two-layer structure of Shoshu
By selecting the sintered composite film, and an object thereof is to provide a laminated board using the unsintered composite film laminates which can be standardized manufacturing process of the prepreg.

【0022】[0022]

【課題を解決するための手段】この発明の請求項1記載
の発明は、基材にPTFE樹脂ディスパージョンを含浸
し、該PTFE樹脂の融点に対して低温で乾燥処理し、
上記含浸および乾燥を繰返して必要樹脂保持量と成した
未焼結プリプレグを形成する一方、一層がPTFE樹脂
で、他層が該PTFE樹脂に対して低融点のフッ素樹脂
で形成された2層構造の積層板用未焼結複合フィルムを
形成し、上記未焼結プリプレグの少なくとも片側外面に
上記未焼結複合フィルムを介して金属箔を配置した後
に、PTFE樹脂の融点に対して高温で加熱加圧した積
層板であることを特徴とする。
According to a first aspect of the present invention, a base material is impregnated with a PTFE resin dispersion and dried at a low temperature relative to the melting point of the PTFE resin,
A two-layer structure in which the above-mentioned impregnation and drying are repeated to form an unsintered prepreg having a required resin holding amount, while one layer is made of PTFE resin and the other layer is made of fluorine resin having a low melting point with respect to the PTFE resin. After forming a non-sintered composite film for a laminated plate, and arranging a metal foil on the outer surface of at least one side of the above-mentioned non-sintered prepreg via the above-mentioned non-sintered composite film, it is heated at a high temperature with respect to the melting point of the PTFE resin. the product of the pressure
It is a layered board .

【0023】この発明の請求項2記載の発明は、PTF
E樹脂ディスパージョンをプレート上に付着して薄層と
成した後乾燥処理し、該薄層表面にPTFE樹脂に対し
て低融点のフッ素樹脂ディスパージョンが付着した後乾
燥処理された2層構造フィルムを上記プレートから剥離
して形成された積層板用未焼結複合フィルムであること
を特徴とする。
The invention according to claim 2 of the present invention is the PTF.
E resin dispersion is deposited on the plate to form a thin layer and then dried, and a fluororesin dispersion having a low melting point for PTFE resin is deposited on the thin layer surface and then dried.
It is a non-sintered composite film for laminated plate, which is formed by peeling a dried two-layer structure film from the plate.

【0024】この発明の請求項3記載の発明は、上記請
求項2記載の発明の構成と併せて、上記低融点のフッ素
樹脂ディスパージョンは、PFA、FEPおよびETF
のうちの1つのフッ素樹脂ディスパージョンとした積
層板用未焼結複合フィルムであることを特徴とする。
According to a third aspect of the present invention, in addition to the constitution of the second aspect, the low melting point fluororesin dispersion is PFA, FEP and ETF.
One of E is a non-sintered composite film for a laminated plate which is a fluororesin dispersion.

【0025】この発明の請求項4記載の発明は、基材に
フッ素樹脂ディスパージョンを含浸した後に、乾燥して
未焼結プリプレグを形成し、該未焼結プリプレグの少な
くとも片面に金属箔を配置し、上記フッ素樹脂の融点よ
り高温で加熱加圧した回路部を有する内層用および外層
用の複数の回路層が形成され、上記複数の回路層間に、
一層がPTFE樹脂で、他層が該PTFE樹脂に対して
低融点のフッ素樹脂で形成された2層構造の未焼結複合
フィルムを介設し、上記未焼結複合フィルムの一層側を
反回路部側に、他層側を回路部側に対向させると共に、
未焼結複合フィルムの一層側と対向部材との間にPFA
もしくはFEPの介挿フィルムを介設し、PTFEの融
点より高温で加熱加圧する積層板であることを特徴とす
る。
According to a fourth aspect of the present invention, the base material is impregnated with the fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg. Then, a plurality of circuit layers for inner layer and outer layer having a circuit portion heated and pressed at a temperature higher than the melting point of the fluororesin is formed, and between the plurality of circuit layers,
An unsintered composite film having a two-layer structure in which one layer is a PTFE resin and the other layer is a fluororesin having a low melting point with respect to the PTFE resin is interposed, and one layer side of the unsintered composite film is an anti-circuit. On the part side, while facing the other layer side to the circuit part side,
Between the one side of the unsintered composite film and the facing member, PFA
Alternatively, it is a laminated plate which is provided with an FEP interposing film and is heated and pressed at a temperature higher than the melting point of PTFE.

【0026】この発明の請求項5記載の発明は、上記請
求項4記載の発明の構成と併せて、上記複数の回路層間
に上記未焼結複合フィルムを複数介設すると共に、複数
未焼結複合フィルム間には、基材にフッ素樹脂を含浸
後、乾燥した未焼結プリプレグを介設した積層板である
ことを特徴とする。
The invention of claim 5, wherein the present invention, the above claim 4 in conjunction with the configuration of the invention described, together with a plurality interposed the unsintered composite film to the plurality of circuit layers, a plurality of unsintered The laminated composite film is characterized in that it is a laminated plate in which a base material is impregnated with a fluororesin and then a dried unsintered prepreg is interposed.

【0027】この発明の請求項6記載の発明は、上記請
求項4記載の発明の構成と併せて、上記複数の回路層間
に上記未焼結複合フィルムを複数介設すると共に、複数
未焼結複合フィルム間には、基材にフッ素樹脂を含浸
後、乾燥および焼結した焼結プリプレグを介設した積層
板であることを特徴とする。
The invention of claim 6, wherein the present invention, the above claim 4 in conjunction with the configuration of the invention described, together with a plurality interposed the unsintered composite film to the plurality of circuit layers, a plurality of unsintered The laminated composite film is characterized in that it is a laminated plate in which a sintered prepreg obtained by impregnating a base material with a fluororesin and then drying and sintering is interposed between the bonded composite films.

【0028】この発明の請求項7記載の発明は、基材に
フッ素樹脂ディスパージョンを含浸した後に、乾燥して
未焼結プリプレグを形成し、該未焼結プリプレグの少な
くとも片面に金属箔を配置し、上記フッ素樹脂の融点よ
り高温で加熱加圧した回路部を有する内層用および外層
用の複数の回路層が形成され、上記複数の回路層間に、
一層がPTFE樹脂で、他層が該PTFE樹脂に対して
低融点のフッ素樹脂で形成された2層構造の未焼結複合
フィルムを介設し、上記未焼結複合フィルムの一層側を
反回路部側に、他層側を回路部側に対向させて熱融着さ
せると共に、反回路側表面を接触角70度以下に表面改
質し、上記複数の回路層間にはエポキシ系またはポリイ
ミド系のフッ素樹脂に対して低温で焼成固化する熱硬化
性プリプレグを介設し、2層構造の未焼結複合フィルム
を構成するPTFEより低融点のフッ素樹脂の融点に対
して低温で加熱加圧した積層板であることを特徴とす
る。
According to a seventh aspect of the present invention, the substrate is impregnated with the fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg. Then, a plurality of circuit layers for inner layer and outer layer having a circuit portion heated and pressed at a temperature higher than the melting point of the fluororesin is formed, and between the plurality of circuit layers,
An unsintered composite film having a two-layer structure in which one layer is a PTFE resin and the other layer is a fluororesin having a low melting point with respect to the PTFE resin is interposed, and one layer side of the unsintered composite film is an anti-circuit. On the part side, the other layer side is opposed to the circuit part side to be heat-sealed, and the surface opposite to the circuit side is surface-modified to a contact angle of 70 degrees or less. interposed thermosetting prepreg firing solidify at low temperatures to fluorine resin, laminated heated pressure at a low temperature for the two-layer unsintered composite film from PTFE constituting the low melting point of the fluororesin melting point of structure It is characterized by being a plate .

【0029】この発明の請求項8記載の発明は、上記請
求項7記載の発明の構成と併せて、上記低融点のフッ素
樹脂は、PFA、FEPおよびETFEのうちの1つの
フッ素樹脂とした積層板であることを特徴とする。
In the invention according to claim 8 of the present invention, in addition to the constitution of the invention according to claim 7, the low melting point fluororesin is one of PFA, FEP and ETFE. It is characterized by being a plate .

【0030】[0030]

【発明の効果】この発明の請求項1記載の発明によれ
ば、含浸および乾燥を繰返して必要樹脂保持量と成す未
焼結プリプレグを形成するので、樹脂量の調整はこの未
焼結プリプレグにおいて行なうことができ、また極薄2
層構造の未焼結複合フィルムを用いて積層板を製造する
ので、この未焼結複合フィルムを樹脂量調整に用いるこ
となく接着用に用いることができ、厚さ精度が高く、厚
さ方向の線膨張係数が小さく、かつハンダ耐熱性に優れ
ると共に、異物混入が少なく、さらには接着力の向上を
図ることができ、樹脂保持量の多い低誘電率の積層板を
得ることができる効果がある。
According to the invention described in claim 1 of the present invention, since the unsintered prepreg having the required resin holding amount is formed by repeating the impregnation and the drying, the resin amount can be adjusted in this unsintered prepreg. It can be done, and it is very thin 2
Since manufacturing a laminated board using unsintered composite film of the layer structure, the unsintered composite film can be used for bonding without using the resin amount adjustment, high thickness accuracy, the thickness direction In addition to having a small coefficient of linear expansion and excellent heat resistance to solder, it is possible to obtain a low-dielectric-constant laminate with a large amount of resin retained, with a small amount of foreign matter mixed in, and improved adhesive strength. .

【0031】この発明の請求項2記載の発明によれば、
キャスティング法により形成された積層板用未焼結複合
フィルムはPTFE樹脂と、該PTFE樹脂に対して低
融点のフッ素樹脂との2層構造のフィルムとすることが
でき、金属粉や炭化微粉の混入がなく、電気絶縁性に優
れると共に、10μm以下の極薄構造とすることができ
る効果がある。
According to the second aspect of the present invention,
The unsintered composite film for a laminated plate formed by the casting method can be a film having a two-layer structure of a PTFE resin and a fluororesin having a low melting point with respect to the PTFE resin, and contains metal powder or carbonized fine powder. There is no effect, and the electric insulation is excellent, and an extremely thin structure of 10 μm or less can be obtained.

【0032】この発明の請求項3記載の発明によれば、
上記請求項2記載の発明の効果と併せて、上記未焼結
合フィルムの一層を構成するPTFE樹脂(融点327
℃)に対して他層を構成するフッ素樹脂は、PFA(融
点310℃のテトラフルオロエチレン・パーフルオロア
ルキルビニルエーテル共重合体)、FEP(融点275
℃のテトラフルオロエチレンヘキサフルオロプロピレン
共重合体)、ETFE(融点270℃のテトラフルオロ
エチレン・エチレン共重合体)の諸種の低融点フッ素樹
脂から選定することができるので、諸種の2層構造の極
薄複合フィルムを得ることができ、このため未焼結プリ
プレグの製造工程を標準化することができる効果があ
る。
According to the invention of claim 3 of the present invention,
In conjunction with the effects of the invention described in claim 2, wherein, PTFE resin (melting point 327 which constitutes one layer of the unsintered multilayer <br/> coupling film
Fluorine resin forming the other layer with respect to (° C) is PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer having a melting point of 310 ° C), FEP (melting point of 275).
Since it is possible to select from various low melting point fluororesins such as tetrafluoroethylene hexafluoropropylene copolymer of ℃) and ETFE (tetrafluoroethylene / ethylene copolymer of melting point 270 ° C. ), various types of two-layer structure poles can be selected. A thin composite film can be obtained, which has the effect of standardizing the manufacturing process of the unsintered prepreg.

【0033】この発明の請求項4記載の発明によれば、
回路部を有する複数の回路層間に未焼結複合フィルムを
介設し、この未焼結複合フィルムのPTFE樹脂よりな
る一層側を反回路側に、PTFE樹脂に対して低融点の
フッ素樹脂よりなる他層側を回路側に配設して製造する
ので、積層板を多層化するに際して二次成形を行なって
も、回路層の回路部と未焼結複合フィルムとの間の空隙
は低融点フッ素樹脂の溶融流動により埋めることがで
き、層間のずれや回路部の流動いわゆるスイミング現象
未焼結複合フィルム一層側のPTFE樹脂により防止
することができる。
According to the invention of claim 4 of the present invention,
A non-sintered composite film is interposed between a plurality of circuit layers having a circuit portion, and one layer side of the PTFE resin of the non-sintered composite film is an anti-circuit side and a fluororesin having a low melting point with respect to the PTFE resin. Since the other layer side is arranged on the circuit side for manufacturing, even if secondary molding is performed when making a laminated board into a multilayer, the gap between the circuit part of the circuit layer and the unsintered composite film has a low melting point of fluorine. It can be filled with the melt flow of the resin, and the gap between the layers and the flow of the circuit portion, so-called swimming phenomenon can be prevented by the PTFE resin on the one side of the unsintered composite film.

【0034】この結果、積層板を多層化しても、層間の
ずれや回路部の流動(スイミング現象)がなく、また回
路部と未焼結複合フィルムとの間に空隙が形成されるこ
ともなく、また回路層を上記未焼結プリプレグからの製
造することで、ハンダ耐熱性、熱衝撃性、寸法安定性に
優れ、かつ多層化が可能な効果がある。
As a result, even when the laminated plate is formed into multiple layers, there is no gap between the layers or flow of the circuit portion (swimming phenomenon), and no void is formed between the circuit portion and the unsintered composite film. Also, by producing the circuit layer from the above-mentioned unsintered prepreg, there is an effect that it is excellent in solder heat resistance, thermal shock resistance and dimensional stability, and can be formed into multiple layers.

【0035】この発明の請求項5記載の発明によれば、
上記請求項4記載の発明の効果と併せて、複数の未焼結
複合フィルム間に未焼結プリプレグを介設したので、こ
の未焼結プリプレグにより回路の層間厚さを任意に設定
することができる効果がある。
According to the invention of claim 5 of the present invention,
In addition to the effect of the invention described in claim 4, since the unsintered prepreg is interposed between the plurality of unsintered composite films, the unsintered prepreg allows an arbitrary interlayer thickness of the circuit. There is an effect that can be set.

【0036】この発明の請求項6記載の発明によれば、
上記請求項4記載の発明の効果と併せて、複数の未焼結
複合フィルム間に焼結プリプレグを介設したので、この
焼結プリプレグにより回路の層間厚さを任意に設定する
ことができる効果がある。
According to the invention of claim 6 of the present invention,
In addition to the effect of the invention described in claim 4, since the sintered prepreg is provided between the plurality of unsintered composite films, the interlayer thickness of the circuit is arbitrarily set by the sintered prepreg. There is an effect that can be.

【0037】この発明の請求項7記載の発明によれば、
回路部を有する複数の回路層間に未焼結複合フィルムを
介設し、この未焼結複合フィルムのPTFE樹脂よりな
る一層側を反回路側に、PTFE樹脂に対して低融点の
フッ素樹脂よりなる他層側を回路側に配設して製造する
ので、積層板を多層化するに際して二次成形を行なって
も、回路層の回路部と未焼結複合フィルムとの間の空隙
は低融点フッ素樹脂の溶融流動により埋めることがで
き、層間のずれや回路部の流動いわゆるスイミング現象
未焼結複合フィルム一層側のPTFE樹脂により防止
することと併せて、複数の未焼結複合フィルム間に熱硬
化性プリプレグを介設したので、この熱硬化性プリプレ
グにより回路の層間厚さを任意に設定することができる
のは勿論、この熱硬化性プリプレグの介設により積層板
全体の剛性向上を図ることができるから、圧縮、復元力
が繰返し付勢されるテストボードに適用しても充分な耐
久性の向上を図ることができ、また部品実装後において
積層板をシャーシ等に取付けるには、上述の熱硬化性プ
リプレグを取付座として用いることができるで、積層板
のネジ止め固定が可能となる効果がある。
According to the invention of claim 7 of the present invention,
A non-sintered composite film is interposed between a plurality of circuit layers having a circuit portion, and one layer side of the PTFE resin of the non-sintered composite film is an anti-circuit side and a fluororesin having a low melting point with respect to the PTFE resin. Since the other layer side is arranged on the circuit side for manufacturing, even if secondary molding is performed when making a laminated board into a multilayer, the gap between the circuit part of the circuit layer and the unsintered composite film has a low melting point of fluorine. It can fill the molten resin flow, the flow-called swimming behavior of the deviation and the circuit portion of the interlayer along with preventing the unsintered composite film one layer side of the PTFE resin, the heat between the plurality of unsintered composite film Since the curable prepreg is interposed, the thermosetting prepreg can be used to set the interlayer thickness of the circuit as desired, and the thermosetting prepreg can be used to improve the rigidity of the entire laminate. Therefore, even if it is applied to a test board to which compression and restoring forces are repeatedly applied, it is possible to improve the durability sufficiently, and to mount the laminated plate on the chassis etc. after mounting the components, Since the thermosetting prepreg can be used as the mounting seat, there is an effect that the laminated plate can be screwed and fixed.

【0038】加えて熱硬化性プリプレグと対接する未焼
複合フィルムの対向面を接触角70度以下に表面改質
したので、これら両者(熱硬化性プリプレグと未焼結
合フィルム)の接合性の向上を図ることができる効果が
ある。
[0038] Additionally in contact thermosetting prepreg and pairs unsintered
Since surface modified the surface facing forming the composite film below the contact angle of 70 degrees, the effect capable of improving the bonding of these two (thermosetting prepreg and unsintered multi <br/> coupling film) is there.

【0039】この発明の請求項8記載の発明によれば、
上記請求項7記載の発明の効果と併せて、上記未焼結
合フィルムの一層を構成するPTFE樹脂(融点327
℃)に対して他層を構成するフッ素樹脂は、PFA、F
EP、ETFEの諸種の低融点フッ素樹脂から選定する
ことができるので、諸種の2層構造の極薄複合フィルム
を得ることができ、このため熱硬化性プリプレグや未焼
結プリプレグを用いた積層板の製造工程を標準化するこ
とができる効果がある。
According to the invention of claim 8 of the present invention,
In conjunction with the effects of the invention described in claim 7, wherein, PTFE resin (melting point 327 which constitutes one layer of the unsintered multilayer <br/> coupling film
Fluorine resin that composes the other layer is PFA, F
Since it is possible to select from various kinds of low melting point fluororesin such as EP and ETF E, it is possible to obtain various kinds of ultra-thin composite films having a two-layer structure. Therefore, lamination using thermosetting prepreg or unsintered prepreg is possible. There is an effect that the plate manufacturing process can be standardized.

【0040】[0040]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は積層板および積層板用未焼結複合フィル
ムを示し、まず図1に示すように目付48g/ m2 のガラ
ス布基材1にPTFE樹脂2、具体的にはPTFE樹脂
ディスパージョンを含浸し、このPTFE樹脂2の融点
327℃に対して低温の305℃の条件下で乾燥処理し
て、未焼結樹脂を上記ガラス布基材1に保持させる。こ
のような含浸および低温条件下での乾燥処理を繰返して
樹脂保持量が80〜96vol %の範囲内、例えば90vo
l %の未焼結プリプレグ3を複数層形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. The drawings illustrate unsintered composite film laminates contact and laminates, first PTFE resin 2 on the glass cloth base 1 having a basis weight of 48 g / m 2 as shown in FIG. 1, in particular impregnating the PTFE resin dispersion Then, the PTFE resin 2 is dried under the condition of a low temperature of 305 ° C. with respect to the melting point of 327 ° C. of the PTFE resin 2 to hold the unsintered resin on the glass cloth substrate 1. By repeating such impregnation and drying treatment under low temperature conditions, the resin retention amount is within the range of 80 to 96 vol%, for example, 90 vol.
Multiple layers of l% green prepreg 3 are formed.

【0041】一方、図2に示す積層板用未焼結複合フィ
ルムの製造装置を用いてキャスティング法により図3に
示す如く一層がPTFE樹脂4、他層がこのPTFE樹
脂4に対して低融点のフッ素樹脂5で形成された極薄か
つ2層構造の未焼結の複合フィルム6を形成する。
On the other hand, as shown in FIG. 3, one layer of the PTFE resin 4 and the other layer of the PTFE resin 4 have a low melting point by the casting method using the apparatus for producing a non-sintered composite film for laminated plates shown in FIG. An unsintered composite film 6 having an ultrathin and two-layer structure formed of the fluororesin 5 is formed.

【0042】すなわち、PTFE樹脂ディスパージョン
8を、ステンレス薄板(具体的にはSUS箔)製のキャ
リア7の上に付着して薄層となした後乾燥処理し、該薄
層表面にPTFE樹脂4に対して低融点のPFA樹脂デ
ィスパージョン10を付着した後乾燥処理させて、次に
上述の2層構造の複合フィルム6をキャリア7から剥離
して極薄の未焼結の複合フィルム6を形成する。
That is, the PTFE resin dispersion
8 is a stainless steel thin plate (specifically, SUS foil)
After being deposited on the rear 7 to form a thin layer, it is dried to
On the surface of the layer, PFA resin with a low melting point for PTFE resin 4
After attaching the dispersion 10, it is dried and then
The composite film 6 having the two-layer structure described above is peeled from the carrier 7.
Thus, an ultrathin unsintered composite film 6 is formed.

【0043】ここで、上述の低融点のフッ素樹脂5とし
てはPFA、FEP、ETFE、ECTFEおよびPC
TFEのうちの1つ例えばPFAを選定する。
Here, as the above-mentioned low melting point fluororesin 5, PFA, FEP, ETFE, ECTFE and PC are used.
Select one of the TFEs, eg PFA.

【0044】上述の図2に示す製造装置は、繰出し位置
Aと巻取り位置Bとの間を移動するステンレス薄板(具
体的にはSUS箔)製のキャリア7と、PTFE樹脂デ
ィスパージョン8を貯溜した第1容器9と、PFA樹脂
ディスパージョン10を貯溜した第2容器11と、加熱
用の第1ヒータ12,12および第2ヒータ13,13
と、必要箇所に配設した案内ローラ14〜22とを備え
ている。
The above-described manufacturing apparatus shown in FIG. 2 stores a carrier 7 made of a stainless thin plate (specifically, SUS foil) which moves between a feeding position A and a winding position B, and a PTFE resin dispersion 8. The first container 9, the second container 11 storing the PFA resin dispersion 10, the first heaters 12 and 12 for heating, and the second heaters 13 and 13
And guide rollers 14 to 22 arranged at necessary positions.

【0045】そしてSUS箔製のキャリア7を第1容器
9のPTFE樹脂ディスパージョン8内へ搬送し、この
キャリア7の両面にPTFE樹脂ディスパージョン8を
付着(コーティング)させ、次に上述のキャリア7を第
1ヒータ12,12間において例えば370℃で乾燥処
理した後に、両面にPTFE樹脂4がコーティングされ
たキャリア7を次の第2容器11のPFA樹脂ディスパ
ージョン10内へ搬送し、PTFE樹脂4の表面にPF
A樹脂ディスパージョン10を付着(コーティング)さ
せ、次に上述のキャリア7を第2ヒータ13,13間に
おいて乾燥処理し、次に上述の2層構造の複合フィルム
6を剥離位置Cにおいてキャリア7から剥離すると、等
方性を有する10μm以下の極薄の複合フィルム6を製
造することができる。
Then, the carrier 7 made of SUS foil is conveyed into the PTFE resin dispersion 8 of the first container 9, the PTFE resin dispersion 8 is adhered (coated) on both surfaces of the carrier 7, and then the above-mentioned carrier 7 is formed. Is dried between the first heaters 12 and 12 at, for example, 370 ° C., and then the carrier 7 coated with the PTFE resin 4 on both sides is conveyed into the PFA resin dispersion 10 of the next second container 11 to remove the PTFE resin 4 PF on the surface of
A resin dispersion 10 is adhered (coated), then the above-mentioned carrier 7 is dried between the second heaters 13 and 13, and then the above-mentioned two-layer composite film 6 is removed from the carrier 7 at the peeling position C. When peeled off, an extremely thin composite film 6 having an isotropic property of 10 μm or less can be manufactured.

【0046】ここで、上述の複合フィルム6は図3に示
すPTFE樹脂4の厚さを4〜25μmの範囲に、PF
A等の低融点フッ素樹脂5の厚さを3〜20μmの範囲
に調整することができるので、最小厚さ7μmの複合フ
ィルム6を得ることができる。
Here, the above-mentioned composite film 6 has a PF having a thickness of the PTFE resin 4 shown in FIG.
Since the thickness of the low melting point fluororesin 5 such as A can be adjusted in the range of 3 to 20 μm, the composite film 6 having a minimum thickness of 7 μm can be obtained.

【0047】なお、図2の製造装置においては容器およ
びヒータを前後2段構成としたが、一側のみの1段構成
の製造装置においてPTFE樹脂4をSUS箔にコーテ
ィングし、剥離後のPTFE樹脂4に対してPFA樹脂
をコーティングするように構成してもよい。
In the manufacturing apparatus of FIG. 2, the container and the heater have a front and rear two-stage structure. However, in the manufacturing apparatus having only one side and one step, the PTFE resin 4 is coated on the SUS foil and the PTFE resin after peeling is coated. 4 may be coated with a PFA resin.

【0048】またSUS箔製のキャリア7に対してまず
PTFE樹脂4をコーティングしたので、剥離位置Cに
おける剥離性が良好となるうえ、このPTFE樹脂4の
表面にPFA樹脂をコーティングするので、PFA樹脂
のPTFE樹脂4に対する接着性が良好となる。
Further, since the PTFE resin 4 is first coated on the carrier 7 made of SUS foil, the releasability at the peeling position C is good and the surface of the PTFE resin 4 is coated with the PFA resin. The adhesiveness to the PTFE resin 4 becomes good.

【0049】そして上記未焼結プリプレグ3を複数層、
例えば4層重ね合わせ、この上下外層に上述の複合フィ
ルム6,6を介して金属箔としての厚さ約35μmのC
u箔23,23を配置したものに対して、上記PTFE
樹脂2,4の融点327℃より高温の380℃の条件下
で、かつ面圧3.4MPa、加圧時間約60分の積層成
形条件下で積層成形した結果、図1に示すように厚さ
0.8mm、比誘電率εr=2.32の両面銅箔張り積層
板24(次表1の実施例品)を製造することができた。
A plurality of layers of the green prepreg 3 are formed,
For example, four layers are superposed, and C having a thickness of about 35 μm as a metal foil is formed on the upper and lower outer layers with the above-mentioned composite films 6 and 6 interposed therebetween.
For the one in which u foils 23, 23 are arranged, the above PTFE
As a result of lamination molding under the conditions of the temperature of 380 ° C., which is higher than the melting point 327 ° C. of the resins 2 and 4, and the surface pressure of 3.4 MPa and the pressurizing time of about 60 minutes, the thickness is as shown in FIG. A double-sided copper foil-clad laminate 24 (Example product in the following Table 1) having a thickness of 0.8 mm and a relative permittivity εr = 2.32 could be manufactured.

【0050】一方、比較例として目付48g/ m2 のガラ
ス布基材にPTFE樹脂ディスパージョンを含浸および
乾燥後、380℃で焼結し、この含浸、乾燥および焼結
を繰返して樹脂保持量75vol %の焼結プリプレグを形
成し、2層1組の焼結プリプレグ相互間および2層1組
の焼結プリプレグと厚さ約35μmのCu箔との間にそ
れぞれ従前のPFAフィルム(厚さ約25μm)を介設
し、380℃の高温条件下で、面圧3.4MPa、加圧
時間約60分の積層成形条件下で積層成形し、全体の厚
さが0.8mm、比誘電率εr=2.6の両面銅箔張り積
層板(次表1の比較品1)を製造した。
On the other hand, as a comparative example, a glass cloth substrate having a basis weight of 48 g / m 2 was impregnated with PTFE resin dispersion, dried, and then sintered at 380 ° C. The impregnation, drying and sintering were repeated to maintain a resin retention amount of 75 vol. % Sintered prepreg is formed, and the conventional PFA film (thickness of about 25 μm is provided between the two sets of two layers of the sintered prepreg and between the two sets of one set of the sintered prepreg and the Cu foil having a thickness of about 35 μm, respectively. ) Is placed under the conditions of a high temperature of 380 ° C., a surface pressure of 3.4 MPa, and a pressing time of about 60 minutes to perform laminate molding, and the overall thickness is 0.8 mm and the relative permittivity εr = A double-sided copper foil-clad laminate of 2.6 (Comparative Product 1 in Table 1 below) was produced.

【0051】同様に、比較例として目付48g/ m2 のガ
ラス布基材にPTFE樹脂ディスパージョンを含浸およ
び乾燥後、380℃で焼結し、この含浸、乾燥および焼
結を繰返して樹脂保持量80vol %の焼結プリプレグを
合計3層形成し、これらの各焼結プリプレグ相互間およ
び焼結プリプレグと厚さ約35μmのCu箔との間にそ
れぞれ従前のPFAフィルム(厚さ50μm)を介設
し、380℃の高温条件下で、面圧3.4MPa、加圧
時間約60分の積層成形条件下で積層成形し、全体の厚
さが0.6mm、比誘電率εr=2.33の両面銅箔張り
積層板(次表1の比較品2)を製造した。
Similarly, as a comparative example, a glass cloth substrate having a basis weight of 48 g / m 2 was impregnated with PTFE resin dispersion, dried, and then sintered at 380 ° C. This impregnation, drying and sintering were repeated to maintain the resin retention amount. A total of three layers of 80 vol% sintered prepregs were formed, and the conventional PFA film (thickness: 50 μm) was interposed between each of these sintered prepregs and between the sintered prepreg and a Cu foil having a thickness of about 35 μm. Then, under high temperature conditions of 380 ° C., lamination molding was performed under surface pressure of 3.4 MPa and pressurization time of about 60 minutes, and the total thickness was 0.6 mm and the relative permittivity εr = 2.33. A double-sided copper foil-clad laminate (Comparative Product 2 in Table 1 below) was produced.

【0052】上述の実施例品、比較品1、比較品2に対
して各種の測定および試験を行なった結果を次表1に示
す。
The following Table 1 shows the results of various measurements and tests performed on the above-described example product, comparative product 1 and comparative product 2.

【0053】[0053]

【表1】 [Table 1]

【0054】上表1から明らかなように、実施例品のも
のは板厚のばらつきR(但しRは最大寸法から最小寸法
を減算した値)が0.012mmと最も小さく、ハンダ耐
熱性も良好で、線膨張係数は180×10-6/kと良好な値
を示した。なお上表1中のxは板厚を示す。
As is clear from Table 1 above, in the case of the example product, the variation R in plate thickness (where R is the value obtained by subtracting the minimum dimension from the maximum dimension) is as small as 0.012 mm, and the solder heat resistance is also good. The linear expansion coefficient was 180 × 10 −6 / k, which was a good value. Note that x in Table 1 above indicates the plate thickness.

【0055】以上要するに、この実施例の積層板(請求
項1に対応)によれば、含浸および乾燥を繰返して必要
樹脂保持量(たとえば90vol %)と成した未焼結プリ
プレグ3を形成するので、樹脂量の調整はこの未焼結プ
リプレグ3において行なうことができ、また極薄2層構
造の複合フィルム6を用いて積層板24を製造するの
で、この複合フィルム6を樹脂量調整に用いることな
く、接着用に用いることができる。この結果、厚さ精度
が高く、厚さ方向の線膨張係数が小さく、かつハンダ耐
熱性に優れると共に、異物混入が少なく、さらには接着
力の向上を図ることができ、樹脂保持量の多い低誘電率
の積層板24を製造することができる効果がある。
In summary, according to the laminated plate of this embodiment (corresponding to claim 1), the impregnation and the drying are repeated to form the unsintered prepreg 3 having the required resin holding amount (for example, 90 vol%). The amount of resin can be adjusted in this unsintered prepreg 3, and since the laminated plate 24 is manufactured using the composite film 6 having an ultrathin two-layer structure, the composite film 6 can be used for adjusting the amount of resin. Instead, it can be used for bonding. As a result, the thickness accuracy is high, the linear expansion coefficient in the thickness direction is small, the solder heat resistance is excellent, the inclusion of foreign matter is small, and the adhesive strength can be improved. There is an effect that the laminated plate 24 having a dielectric constant can be manufactured.

【0056】また、上記実施例のキャスティング法によ
り形成された積層板用未焼結複合フィルム6(請求項
2、3に対応)はPTFE樹脂4と該PTFE樹脂4に
対して低融点のフッ素樹脂5との2層構造のフィルムと
することができ、金属粉や炭化微粉の混入がないため、
電気絶縁性に優れると共に、10μm以下の極薄構造と
することができる効果がある。
Further, the unsintered composite film 6 for laminates formed by the casting method of the above-mentioned embodiment (corresponding to claims 2 and 3) is a PTFE resin 4 and a fluororesin having a low melting point with respect to the PTFE resin 4. It is possible to make a two-layer film with No. 5, and since there is no mixing of metal powder or carbonized fine powder,
It is excellent in electrical insulation and has an effect that an extremely thin structure of 10 μm or less can be formed.

【0057】さらに、上述の複合フィルム6の一層を構
成するPTFE樹脂4に対して他層を構成する低融点フ
ッ素樹脂5は、PFA、FEP、ETFE、ECTF
E、PCTFEの諸種の低融点フッ素樹脂から選定する
ことができるので、諸種の2層構造の極薄複合フィルム
6を得ることができ、このため上述の未焼結プリプレグ
3の製造工程を標準化することができる効果がある。
Further, the low melting point fluororesin 5 constituting another layer in addition to the PTFE resin 4 constituting one layer of the composite film 6 is made of PFA, FEP, ETFE, ECTF.
Since it is possible to select from various kinds of low melting point fluororesins such as E and PCTFE, it is possible to obtain various kinds of ultra-thin composite films 6 having a two-layer structure, and thus standardize the manufacturing process of the above-mentioned unsintered prepreg 3. There is an effect that can be.

【0058】図4は積層板の他の実施例(請求項4に対
応)を示し、ガラス布基材25にフッ素樹脂ディスパー
ジョン、例えばPTFE樹脂26のディスパージョンを
含浸した後に、乾燥し、樹脂保持量60〜70vol %の
未焼結プリプレグ27を形成し、少なくとも1枚の未焼
結プリプレグ27の両面にCu箔28,28を配置し、
PTFE樹脂26の融点より高温(例えば380℃)で
加熱加圧した外層用の複数の回路層G,Gを形成し、こ
の回路層G,Gの片面のCu箔28,28を図4の如く
エッチングして回路部29,29いわゆる回路パターン
を形成する。
FIG. 4 shows another embodiment of the laminated plate (corresponding to claim 4). The glass cloth substrate 25 is impregnated with a fluororesin dispersion, for example, a dispersion of PTFE resin 26, and then dried to obtain a resin. The unsintered prepreg 27 having a holding amount of 60 to 70 vol% is formed, and the Cu foils 28, 28 are arranged on both surfaces of at least one unsintered prepreg 27,
As shown in FIG. 4, a plurality of circuit layers G, G for outer layers, which are heated and pressed at a temperature higher than the melting point of the PTFE resin 26 (for example, 380 ° C.), are formed, and the Cu foils 28, 28 on one side of the circuit layers G, G are formed as shown in FIG. The circuit portions 29, 29, so-called circuit patterns are formed by etching.

【0059】次に上述の複数の回路層G,G間に、一層
がPTFE樹脂4で、他層が該PTFE樹脂4に対して
低融点のフッ素樹脂5で形成された極薄2層構造の上述
同様の複合フィルム6,6を介設し、これら複合フィル
ム6,6のPTFE樹脂4側を反回路部側に、低融点フ
ッ素樹脂5側を回路部29側に対向させると共に、2枚
の複合フィルム6,6間にPFAもしくはFEPの介挿
フィルム30(流動層として用いるフィルム)を介設
し、PTFEの融点より高温(たとえば380℃)で加
熱加圧して多層プリント配線板31を製造した。
Next, between the above-mentioned plurality of circuit layers G, G, one layer is made of the PTFE resin 4, and the other layer is made of the fluororesin 5 having a low melting point with respect to the PTFE resin 4. The same composite films 6 and 6 as described above are provided, and the PTFE resin 4 side of these composite films 6 and 6 faces the non-circuit part side and the low melting point fluororesin 5 side faces the circuit part 29 side, and An intervening film 30 of PFA or FEP (film used as a fluidized bed) is interposed between the composite films 6 and 6, and heated and pressed at a temperature higher than the melting point of PTFE (for example, 380 ° C.) to manufacture a multilayer printed wiring board 31. .

【0060】このように回路部29を有する複数の回路
層G,G間に複合フィルム6を介設し、この複合フィル
ム6のPTFE樹脂4よりなる一層側を反回路側に、P
TFE樹脂4に対して低融点のフッ素樹脂5よりなる他
層側を回路部29側に配設して製造するので、多層板の
製造時に二次成形を行なっても、図5(二次成形完了後
の一部断面図)に示すように、回路層Gの回路部29と
複合フィルム6との間の空隙は低融点フッ素樹脂5の溶
融流動により埋めることができ、層間のずれや回路部2
9の流動いわゆるスイミング現象は複合フィルム6の一
層側のPTFE樹脂4により防止することができる。
In this way, the composite film 6 is interposed between the plurality of circuit layers G having the circuit portion 29, and the one side of the composite film 6 made of the PTFE resin 4 is the opposite circuit side, and P is the opposite side.
Since the other layer side made of the fluororesin 5 having a low melting point with respect to the TFE resin 4 is disposed on the side of the circuit portion 29 for manufacturing, even if the secondary molding is performed at the time of manufacturing the multilayer board, the structure shown in FIG. As shown in (partial cross-sectional view after completion), the gap between the circuit portion 29 of the circuit layer G and the composite film 6 can be filled with the melt flow of the low melting point fluororesin 5, resulting in a gap between layers and a circuit portion. Two
The flow phenomenon of 9 (so-called swimming phenomenon) can be prevented by the PTFE resin 4 on one side of the composite film 6.

【0061】この結果、積層板を多層化しても、層間の
ずれや回路部29の流動(スイミング現象)がなく、ま
た回路部29と複合フィルム6との間に空隙が形成され
ることもなく、また未焼結プリプレグ27からの製造に
より、ハンダ耐熱性、熱衝撃性、寸法安定性が優れ、か
つ、多層化が可能な効果がある。
As a result, even when the laminated plates are made into multiple layers, there is no gap between the layers or flow of the circuit portion 29 (swimming phenomenon), and no void is formed between the circuit portion 29 and the composite film 6. In addition, the production from the unsintered prepreg 27 has the effects of excellent solder heat resistance, thermal shock resistance, and dimensional stability, and also capable of forming multiple layers.

【0062】この実施例の比較例として、図6に示すよ
うに複合フィルム6に代えてPTFEフィルムのみを用
いた場合には、その溶融粘度が380℃で1010〜10
11ポイズと高いためPTFE樹脂が回路部29の角部に
流れ込まず、回路部29とPTFEフィルムとの間に空
隙32(PTFE樹脂が固化する時の収縮により形成さ
れる場合を含む)が残存し、接着力が弱く、ハンダ耐熱
性、熱衝撃性の何れにも劣った。
As a comparative example of this example, when only the PTFE film was used instead of the composite film 6 as shown in FIG. 6, the melt viscosity was 10 10 to 10 10 at 380 ° C.
Because of the high poise of 11 poise, the PTFE resin does not flow into the corners of the circuit portion 29, and the void 32 (including the case where it is formed by the contraction when the PTFE resin solidifies) remains between the circuit portion 29 and the PTFE film. The adhesive strength was weak, and it was inferior to both solder heat resistance and thermal shock resistance.

【0063】また上述の実施例の比較例として、複合フ
ィルム6に代えてPFAフィルムのみを用いた場合に
は、その溶融粘度が380℃条件下で104 〜105
イズで、溶融流動性が大きいため、層間のずれや回路部
29の流動が生じた。
Further, as a comparative example of the above-mentioned examples, when only the PFA film was used in place of the composite film 6, the melt viscosity was 10 4 to 10 5 poise under the condition of 380 ° C., and the melt fluidity was Since it is large, a gap between layers and a flow of the circuit portion 29 occur.

【0064】図7は積層板の他の実施例(請求項4に対
応)を示し、ガラス布基材25にフッ素樹脂ディスパー
ジョン、例えばPTFE樹脂26のディスパージョンを
含浸した後に、乾燥し、樹脂保持量60〜70vol %の
未焼結プリプレグ27を形成し、少なくとも1枚の未焼
結プリプレグ27の両面にCu箔28,28を配置し、
PTFE樹脂26の融点より高温(たとえば380℃)
で加熱加圧した内層用の回路層Nを形成し、この回路層
Nの両面のCu箔28,28を図7の如くエッチングし
て回路部29,29を形成する。
FIG. 7 shows another embodiment (corresponding to claim 4) of a laminated plate, in which a glass cloth substrate 25 is impregnated with a fluororesin dispersion, for example, a dispersion of PTFE resin 26, and then dried to obtain a resin. The unsintered prepreg 27 having a holding amount of 60 to 70 vol% is formed, and the Cu foils 28, 28 are arranged on both surfaces of at least one unsintered prepreg 27,
Higher than the melting point of PTFE resin 26 (eg 380 ° C)
A circuit layer N for the inner layer is formed by heating and pressurizing in step C, and the Cu foils 28, 28 on both sides of the circuit layer N are etched as shown in FIG. 7 to form circuit portions 29, 29.

【0065】この内層用の回路層Nの上下両面に複合フ
ィルム6,6、介挿フィルム30,30を介して図4の
実施例と同一製造方法により形成された外層用の回路層
G,Gを配設し、PTFEの融点より高温の380℃で
加熱加圧して多層プリント配線板33を製造した。
Circuit layers G and G for outer layers formed on the upper and lower surfaces of the circuit layer N for inner layers through the composite films 6 and 6 and the interposing films 30 and 30 by the same manufacturing method as in the embodiment of FIG. And was heated and pressed at 380 ° C., which is higher than the melting point of PTFE, to manufacture a multilayer printed wiring board 33.

【0066】このように構成しても図4の実施例とほぼ
同様の作用、効果を奏するので、図7において図4と同
一の部分には同一番号および同一符号を付して、その詳
しい説明を省略する。
Even with such a configuration, the same operation and effect as those of the embodiment of FIG. 4 can be obtained. Therefore, in FIG. 7, the same parts as those of FIG. Is omitted.

【0067】図8は積層板のさらに他の実施例(請求項
4に対応)を示し、内層用の回路層Nの上下両面に複合
フィルム6,6、介挿フィルム30,30、複合フィル
ム6,6、外層用の回路層Gを配設し、PTFEの融点
より高温の380℃で加熱加圧して多層プリント配線板
34を製造したものである。
FIG. 8 shows still another embodiment of the laminated plate (corresponding to claim 4). The composite films 6 and 6, the interposing films 30 and 30, and the composite film 6 are formed on the upper and lower surfaces of the circuit layer N for the inner layer. , 6 and the circuit layer G for the outer layer are disposed and heated and pressed at 380 ° C., which is higher than the melting point of PTFE, to manufacture the multilayer printed wiring board 34.

【0068】このように構成しても図4、図7の各実施
例とほぼ同様の作用、効果を奏するので、図8において
前図と同一の部分には同一番号および同一符号を付し
て、その詳しい説明を省略する。
Even if configured in this manner, the same actions and effects as in the respective embodiments of FIGS. 4 and 7 can be obtained. Therefore, in FIG. 8, the same parts as those in the previous figure are designated by the same reference numerals and symbols. , Its detailed description is omitted.

【0069】図9は積層板のさらに他の実施例(請求項
5に対応)を示し、複数の外層用の回路層G,G間に複
合フィルム6,6を複数介設すると共に、複数の複合フ
ィルム6,6間には、ガラス布基材35に例えばPTF
E樹脂36のディスパージョンを含浸後、乾燥した未焼
結プリプレグ37(電気絶縁層として用いる)を介設
し、この未焼結プリプレグ37の上下両面に介挿フィル
ム30,30を配設して、上述同様の製造方法により多
層プリント配線板38を製造したものである。
FIG. 9 shows still another embodiment of the laminated plate (corresponding to claim 5), in which a plurality of composite films 6 and 6 are provided between a plurality of outer circuit layers G, G, and a plurality of outer layers are provided. Between the composite films 6 and 6, a glass cloth base material 35, such as PTF, is used.
After impregnating the dispersion of the E resin 36, a dry unsintered prepreg 37 (used as an electric insulating layer) is provided, and the interposing films 30, 30 are provided on both upper and lower surfaces of the unsintered prepreg 37. The multilayer printed wiring board 38 is manufactured by the same manufacturing method as described above.

【0070】このように構成した場合には、上述の未焼
結プリプレグ37により回路の層間厚さを任意に設定す
ることができる効果がある。なお、その他の点について
は先の各実施例と同様の作用、効果を奏するので、図9
において前図と同一の部分には同一番号および同一符号
を付してその詳しい説明を省略する。
With such a structure, there is an effect that the green thickness of the circuit can be arbitrarily set by the above-mentioned green prepreg 37. In addition, in other respects, the same operation and effect as those of the respective embodiments described above are obtained, and therefore, FIG.
In the figure, the same parts as those in the previous figure are designated by the same reference numerals and their detailed description will be omitted.

【0071】図10は積層板のさらに他の実施例(請求
項5に対応)を示し、内層用の回路層Nの上下両面に複
合フィルム6、介挿フィルム30、未焼結プリプレグ3
7、介挿フィルム30、複合フィルム6、外層用の回路
層Gをこの順にそれぞれ配設し、PTFEの融点より高
温の380℃で加熱加圧して多層プリント配線板39を
製造したものである。
FIG. 10 shows still another embodiment of the laminated plate (corresponding to claim 5), in which the composite film 6, the interposing film 30, the unsintered prepreg 3 are formed on the upper and lower surfaces of the circuit layer N for the inner layer.
7, the interposer film 30, the composite film 6, and the circuit layer G for the outer layer are respectively arranged in this order, and heated and pressed at 380 ° C., which is higher than the melting point of PTFE, to manufacture the multilayer printed wiring board 39.

【0072】このように構成しても図9の実施例とほぼ
同様の作用、効果を奏するので、図10において前図と
同一の部分には同一番号および同一符号を付して、その
詳しい説明を省略する。
Even with this structure, the same operation and effect as in the embodiment of FIG. 9 can be obtained. Therefore, in FIG. 10, the same parts as those in the previous figure are designated by the same reference numerals and symbols, and detailed description thereof will be given. Is omitted.

【0073】図11は積層板のさらに他の実施例(請求
項6に対応)を示し、複数の外層用の回路層G,G間に
複合フィルム6,6を複数介設すると共に、複数の複合
フィルム6,6間には、ガラス布基材40に例えばPT
FE樹脂41のディスパージョンを含浸後、乾燥および
焼結した焼結プリプレグ42(電気絶縁層として用い
る)を介設し、この焼結プリプレグ42の上下両面に介
挿フィルム30,30を配設して、上述同様の製造方法
により多層プリント配線板43を製造したものである。
FIG. 11 shows still another embodiment of the laminated plate (corresponding to claim 6), in which a plurality of composite films 6 and 6 are provided between a plurality of outer circuit layers G, G and a plurality of outer films. Between the composite films 6 and 6, a glass cloth substrate 40, for example, PT
A sintered prepreg 42 (used as an electric insulating layer) that has been dried and sintered after being impregnated with the dispersion of the FE resin 41 is provided, and the interposing films 30, 30 are provided on both upper and lower surfaces of the sintered prepreg 42. Then, the multilayer printed wiring board 43 is manufactured by the same manufacturing method as described above.

【0074】このように構成した場合には、上述の焼結
プリプレグ42により回路の層間厚さを任意に設定する
ことができる効果がある。なお、その他の点については
先の各実施例と同様の作用、効果を奏するので、図11
において前図と同一の部分には同一番号および同一符号
を付してその詳しい説明を省略する。
In the case of such a structure, there is an effect that the above-mentioned sintered prepreg 42 can arbitrarily set the interlayer thickness of the circuit. In addition, in other respects, the same operation and effect as those of the above-described respective embodiments are achieved, and therefore, FIG.
In the figure, the same parts as those in the previous figure are designated by the same reference numerals and their detailed description will be omitted.

【0075】図12は積層板のさらに他の実施例(請求
項7に対応)を示し、複数の外層用の回路層G,G間に
複合フィルム6,6を複数介設して熱融着すると共に、
複数の複合フィルム6,6間には、ガラス布基材44に
エポキシ系またはポリイミド系のフッ素樹脂に対して低
温で焼成、固化する熱硬化性プリプレグ46(電気絶縁
層を兼ねる)を介設し、複合フィルム6,6を構成する
PTFEより低融点のフッ素樹脂の融点より低温で加熱
加圧して多層プリント配線板47を製造したものであ
る。
FIG. 12 shows still another embodiment of the laminated plate (corresponding to claim 7), in which a plurality of composite films 6 and 6 are provided between a plurality of circuit layers G for outer layers and heat fusion is performed. Along with
Between the composite films 6 and 6, a thermosetting prepreg 46 (also serving as an electrical insulating layer) that is fired and solidified at a low temperature with respect to an epoxy-based or polyimide-based fluororesin on the glass cloth base material 44 is provided. The multilayer printed wiring board 47 is manufactured by heating and pressing at a temperature lower than the melting point of the fluororesin having a melting point lower than that of PTFE constituting the composite films 6 and 6.

【0076】ここで、上述の複合フィルム6,6の熱硬
化性プリプレグ46と対向する面4a,4aはプラズマ
処理法、コロナ放電処理法、薬品処理法などにより水
(H20)との接触角を70°以下まで予め表面改質す
る。
Here, the surfaces 4a, 4a of the composite films 6, 6 facing the thermosetting prepreg 46 are brought into contact with water (H 2 0) by a plasma treatment method, a corona discharge treatment method, a chemical treatment method or the like. Surface is preliminarily modified to an angle of 70 ° or less.

【0077】このように構成した場合には、複数の複合
フィルム6,6間に介設された熱硬化性プリプレグ46
により回路の層間厚さを任意に設定することができるの
は勿論、この熱硬化性プリプレグ46の介設により多層
プリント配線板47全体の剛性向上を図ることができる
から、圧縮、復元力が繰返し付勢されるテストボードに
適用しても充分な耐久性の向上を図ることができ、また
部品実装後において多層プリント配線板47をシャーシ
等に取付けるには、例えば図12において上側の各要素
G,6,30にネジ頭部配設用の穴を穿孔し、上述の熱
硬化性プリプレグ46を取付座として用いることができ
るので、多層プリント配線板47のネジ止め固定が可能
となる効果がある。
In the case of such a constitution, the thermosetting prepreg 46 interposed between the plurality of composite films 6 and 6 is provided.
By using the thermosetting prepreg 46, it is possible to improve the rigidity of the entire multilayer printed wiring board 47 by using the thermosetting prepreg 46. Even if it is applied to a biased test board, the durability can be sufficiently improved, and in order to mount the multilayer printed wiring board 47 on the chassis after mounting the components, for example, each upper element G in FIG. , 6, 30 can be provided with holes for disposing screw heads, and the above-mentioned thermosetting prepreg 46 can be used as a mounting seat, so that the multilayer printed wiring board 47 can be screwed and fixed. .

【0078】加えて、上述の熱硬化性プリプレグ46と
対接する複合フィルム6の対抗面4a,4aをH2 Oと
の接触角が70度以下となるように表面改質したので、
これら両者46,6の充分な接合性を確保することがで
きる効果がある。
In addition, since the opposing surfaces 4a, 4a of the composite film 6 which are in contact with the above-mentioned thermosetting prepreg 46 are surface-modified so that the contact angle with H 2 O is 70 degrees or less,
There is an effect that a sufficient bondability of these both 46 and 6 can be secured.

【0079】さらに、上述の複合フィルム6の一層を構
成するPTFE樹脂4に対して他層を構成する低融点フ
ッ素樹脂5は、PFA、FEP、ETFE、ECTF
E、PCTFEの諸種の低融点フッ素樹脂から選定する
ことができるので、諸種の2層構造の極薄複合フィルム
6を得ることができ、このため上述の熱硬化性プリプレ
グ46や未焼結プリプレグを用いた積層板の製造工程を
標準化することができる効果がある。
Further, the low melting point fluororesin 5 constituting another layer in addition to the PTFE resin 4 constituting one layer of the composite film 6 is made of PFA, FEP, ETFE or ECTF.
Since it is possible to select from various kinds of low melting point fluororesins such as E and PCTFE, it is possible to obtain various kinds of ultra-thin composite films 6 having a two-layer structure. There is an effect that the manufacturing process of the used laminated plate can be standardized.

【0080】この発明の構成と、上述の実施例との対応
において、この発明の基材は、実施例のガラス布基材
1,25,35,40に対応し、以下同様に、金属箔
は、Cu箔23,28に対応するも、この発明は、上述
の実施例の構成のみに限定されるものではない。
In the correspondence between the constitution of the present invention and the above-mentioned embodiments, the base material of the present invention corresponds to the glass cloth base materials 1, 25, 35, 40 of the embodiments, and the same applies to the metal foil hereinafter. , Cu foils 23 and 28, the present invention is not limited to the configurations of the above-described embodiments.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の積層板の断面図。[1] cross-sectional view of the laminate of the present invention.

【図2】 本発明の積層板用未焼結複合フィルムの製造
に用いる製造装置の説明図。
FIG. 2 is an explanatory view of a manufacturing apparatus used for manufacturing a non-sintered composite film for a laminated plate of the present invention.

【図3】 本発明の積層板用未焼結複合フィルムの断面
図。
FIG. 3 is a cross-sectional view of an unsintered composite film for laminated plates of the present invention.

【図4】 積層板の他の実施例を示す分解断面図。FIG. 4 is an exploded sectional view showing another embodiment of the laminated plate .

【図5】 二次成形完了後の部分断面図。FIG. 5 is a partial cross-sectional view after completion of secondary molding.

【図6】 比較例を示す部分断面図。FIG. 6 is a partial cross-sectional view showing a comparative example.

【図7】 積層板のさらに他の実施例を示す分解断面
図。
FIG. 7 is an exploded sectional view showing still another embodiment of the laminated plate .

【図8】 積層板のさらに他の実施例を示す分解断面
図。
FIG. 8 is an exploded sectional view showing still another embodiment of the laminated plate .

【図9】 積層板のさらに他の実施例を示す分解断面
図。
FIG. 9 is an exploded sectional view showing still another embodiment of the laminated plate .

【図10】 積層板のさらに他の実施例を示す分解断面
図。
FIG. 10 is an exploded sectional view showing still another embodiment of the laminated plate .

【図11】 積層板のさらに他の実施例を示す分解断面
図。
FIG. 11 is an exploded sectional view showing still another embodiment of the laminated plate .

【図12】 積層板のさらに他の実施例を示す分解断面
図。
FIG. 12 is an exploded sectional view showing still another embodiment of the laminated plate .

【符号の説明】[Explanation of symbols]

1…ガラス布基材 2…PTFE樹脂 3…未焼結プリプレグ 4…PTFE樹脂 4a…対向面 5…低融点フッ素樹脂 6…複合フィルム 23…Cu箔 25,35,40…ガラス布基材 27…未焼結プリプレグ 28…Cu箔 29…回路部 G,N…回路層 30…介挿フィルム 37…未焼結プリプレグ 42…焼結プリプレグ 46…熱硬化性プリプレグ DESCRIPTION OF SYMBOLS 1 ... Glass cloth base material 2 ... PTFE resin 3 ... Unsintered prepreg 4 ... PTFE resin 4a ... Opposing surface 5 ... Low melting point fluororesin 6 ... Composite film 23 ... Cu foil 25, 35, 40 ... Glass cloth base material 27 ... Unsintered prepreg 28 ... Cu foil 29 ... Circuit part G, N ... Circuit layer 30 ... Insertion film 37 ... Unsintered prepreg 42 ... Sintered prepreg 46 ... Thermosetting prepreg

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−173638(JP,A) 特開 平3−79343(JP,A) 特開 昭60−257592(JP,A) 特開 昭60−257596(JP,A) 特開 昭63−199636(JP,A) 特開 昭63−47136(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-173638 (JP, A) JP-A-3-79343 (JP, A) JP-A-60-257592 (JP, A) JP-A-60- 257596 (JP, A) JP 63-199636 (JP, A) JP 63-47136 (JP, A)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基材にPTFE樹脂ディスパージョンを含
浸し、該PTFE樹脂の融点に対して低温で乾燥処理
し、上記含浸および乾燥を繰返して必要樹脂保持量と成
した未焼結プリプレグを形成する一方、 一層がPTFE樹脂で、他層が該PTFE樹脂に対して
低融点のフッ素樹脂で形成された2層構造の積層板用
焼結複合フィルムを形成し、 上記未焼結プリプレグの少なくとも片側外面に上記未焼
複合フィルムを介して金属箔を配置した後に、 PTFE樹脂の融点に対して高温で加熱加圧した積層
板。
1. A base material is impregnated with a PTFE resin dispersion, which is dried at a low temperature with respect to the melting point of the PTFE resin, and the impregnation and drying are repeated to form a green prepreg having a required resin retention amount. to one, more is a PTFE resin, non-laminates having a two-layer structure other layer is formed of a low melting point of the fluorine resin with respect to the PTFE resin
Forming a sintered composite film, the green on at least one side outer surface of said green prepreg
Via imaging composite film after placing the metal foil, laminate was heated and pressurized at a high temperature with respect to the PTFE resin melting point
Board.
【請求項2】PTFE樹脂ディスパージョンをプレート
上に付着して薄層と成した後乾燥処理し、該薄層表面に
PTFE樹脂に対して低融点のフッ素樹脂ディスパージ
ョンが付着した後乾燥処理された2層構造フィルムを上
記プレートから剥離して形成された積層板用未焼結複合
フィルム。
2. A PTFE resin dispersion is adhered onto a plate to form a thin layer and then dried, and a fluororesin dispersion having a low melting point for PTFE resin is adhered to the surface of the thin layer and then dried. A non-sintered composite film for a laminated plate, which is formed by peeling the two-layer structure film from the plate.
【請求項3】上記低融点のフッ素樹脂ディスパージョン
は、PFA、FEPおよびETFEのうちの1つのフッ
素樹脂ディスパージョンとした請求項2記載の積層板用
未焼結複合フィルム。
3. The laminated board according to claim 2, wherein the low melting point fluororesin dispersion is one of PFA, FEP and ETFE .
Unsintered composite film.
【請求項4】基材にフッ素樹脂ディスパージョンを含浸
した後に、乾燥して未焼結プリプレグを形成し、該未焼
結プリプレグの少なくとも片面に金属箔を配置し、上記
フッ素樹脂の融点より高温で加熱加圧した回路部を有す
る内層用および外層用の複数の回路層が形成され、 上記複数の回路層間に、一層がPTFE樹脂で、他層が
該PTFE樹脂に対して低融点のフッ素樹脂で形成され
た2層構造の未焼結複合フィルムを介設し、 上記未焼結複合フィルムの一層側を反回路部側に、他層
側を回路部側に対向させると共に、未焼結 複合フィルムの一層側と対向部材との間にPFA
もしくはFEPの介挿フィルムを介設し、PTFEの融
点より高温で加熱加圧した積層板。
4. A base material impregnated with a fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg, and the temperature is higher than the melting point of the fluororesin. A plurality of circuit layers for the inner layer and the outer layer having a circuit portion heated and pressed by are formed, and between the plurality of circuit layers, one layer is a PTFE resin and the other layer is a fluororesin having a low melting point with respect to the PTFE resin. in interposed unsintered composite film formed two-layer structure, the counter circuit section side one layer side of the unsintered composite film, along with to face the other layer side to the circuit side, unsintered composite PFA between the one side of the film and the facing member
Or interposed the interposed film of FEP, the laminated plate heated pressure at a temperature above the melting point of PTFE.
【請求項5】上記複数の回路層間に上記未焼結複合フィ
ルムを複数介設すると共に、 複数の未焼結複合フィルム間には、基材にフッ素樹脂を
含浸後、乾燥した未焼結プリプレグを介設した請求項4
記載の積層板。
5. with a plurality interposed the unsintered composite film to the plurality of circuit layers, between a plurality of unsintered composite film, after impregnation the fluororesin to the base material, dry green prepreg Claim 4 with the interposition
The laminate described .
【請求項6】上記複数の回路層間に上記未焼結複合フィ
ルムを複数介設すると共に、 複数の未焼結複合フィルム間には、基材にフッ素樹脂を
含浸後、乾燥および焼結した焼結プリプレグを介設した
請求項4記載の積層板。
6. A sintered body obtained by interposing a plurality of the unsintered composite films between the plurality of circuit layers and impregnating a base material with a fluororesin between the plurality of unsintered composite films, followed by drying and sintering. The laminated board according to claim 4, wherein a binding prepreg is provided .
【請求項7】基材にフッ素樹脂ディスパージョンを含浸
した後に、乾燥して未焼結プリプレグを形成し、 該未焼結プリプレグの少なくとも片面に金属箔を配置
し、上記フッ素樹脂の融点より高温で加熱加圧した回路
部を有する内層用および外層用の複数の回路層が形 成され、上記複数の回路層間に、一層がPTFE樹脂
で、他層が該PTFE樹脂に対して低融点のフッ素樹脂
で形成された2層構造の未焼結複合フィルムを介設し、 上記未焼結複合フィルムの一層側を反回路部側に、他層
側を回路部側に対向させて熱融着させると共に、 反回路側表面を接触角70度以下に表面改質し、 上記複数の回路層間にはエポキシ系またはポリイミド系
のフッ素樹脂に対して低温で焼成固化する熱硬化性プリ
プレグを介設し、 2層構造の未焼結複合フィルムを構成するPTFEより
低融点のフッ素樹脂の融点に対して低温で加熱加圧した
積層板。
7. A substrate is impregnated with a fluororesin dispersion and then dried to form an unsintered prepreg, and a metal foil is disposed on at least one surface of the unsintered prepreg, and the temperature is higher than the melting point of the fluororesin. A plurality of circuit layers for the inner layer and the outer layer having a circuit portion heated and pressed by are formed, and between the plurality of circuit layers, one layer is made of PTFE resin and the other layer is made of fluorine having a low melting point with respect to the PTFE resin. A non-sintered composite film having a two-layer structure formed of resin is interposed, and one layer side of the non-sintered composite film is opposed to the circuit side and the other layer side is opposed to the circuit side for heat fusion. At the same time, the surface opposite to the circuit side is surface-modified to a contact angle of 70 degrees or less, and a thermosetting prepreg that is baked and solidified at a low temperature with respect to an epoxy-based or polyimide-based fluororesin is interposed between the plurality of circuit layers. unsintered composite off a two-layer structure <br/> laminate was heated under pressure at a lower temperature with respect than the low melting point of the fluororesin melting PTFE constituting the Lum.
【請求項8】上記低融点のフッ素樹脂は、PFA、FE
およびETFEのうちの1つのフッ素樹脂とした請求
項7記載の積層板。
8. The low melting point fluororesin is PFA or FE.
The laminated plate according to claim 7, wherein one of P and ETFE is a fluororesin .
JP5160256A 1993-06-03 1993-06-03 Laminates and green composite films for laminates Expired - Lifetime JPH0818403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5160256A JPH0818403B2 (en) 1993-06-03 1993-06-03 Laminates and green composite films for laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5160256A JPH0818403B2 (en) 1993-06-03 1993-06-03 Laminates and green composite films for laminates

Publications (2)

Publication Number Publication Date
JPH06344503A JPH06344503A (en) 1994-12-20
JPH0818403B2 true JPH0818403B2 (en) 1996-02-28

Family

ID=15711078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5160256A Expired - Lifetime JPH0818403B2 (en) 1993-06-03 1993-06-03 Laminates and green composite films for laminates

Country Status (1)

Country Link
JP (1) JPH0818403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393647A (en) * 2013-05-31 2016-03-09 住友电气工业株式会社 High-frequency printed circuit board and wiring material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003478A1 (en) * 1999-07-05 2001-01-11 Nippon Pillar Packing Co., Ltd. Printed wiring board and prepreg for printed wiring board
JP3569197B2 (en) * 2000-05-19 2004-09-22 日本ピラー工業株式会社 Laminated plate and method of manufacturing the same
JP3867496B2 (en) * 2000-11-09 2007-01-10 日本ピラー工業株式会社 Multilayer circuit board and manufacturing method thereof
JP3942489B2 (en) * 2002-05-22 2007-07-11 株式会社巴川製紙所 Fluororesin printed wiring board and manufacturing method thereof
JP2004091948A (en) * 2002-08-30 2004-03-25 Tomoegawa Paper Co Ltd Fluororesin fiber sheet, metal-clad substrate for printed circuit board using the sheet and method for producing the board
JP2008012683A (en) * 2006-07-03 2008-01-24 Nippon Pillar Packing Co Ltd Copper clad substrate, printed circuit board and manufacturing method of copper clad substrate
WO2012161162A1 (en) * 2011-05-23 2012-11-29 住友電工ファインポリマー株式会社 High-frequency circuit substrate
WO2013076973A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Metal-clad laminate, and printed wiring board
JP2015012197A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Flexible printed wiring board
JP6631902B2 (en) * 2015-03-06 2020-01-15 パナソニックIpマネジメント株式会社 Circuit board manufacturing method
CN107921732B (en) * 2015-08-20 2019-08-13 Agc株式会社 The manufacturing method of laminated substrate and its formed body
JP6765816B2 (en) * 2016-01-21 2020-10-07 宇部エクシモ株式会社 Flexible metal laminate and manufacturing method of flexible metal laminate
JP5991500B1 (en) * 2016-03-18 2016-09-14 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
JP6796791B2 (en) * 2016-08-01 2020-12-09 パナソニックIpマネジメント株式会社 Manufacturing method of metal-clad laminate, printed wiring board, metal-clad laminate and manufacturing method of printed wiring board
JP6811400B2 (en) * 2019-08-26 2021-01-13 パナソニックIpマネジメント株式会社 Circuit board manufacturing method
CN111171736B (en) * 2020-01-14 2022-06-03 广东生益科技股份有限公司 Lacquer cloth, preparation method thereof, copper-clad plate comprising lacquer cloth and application
CN117048161B (en) * 2023-10-12 2024-01-12 山东东岳高分子材料有限公司 Expanded porous PTFE laminated board and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257596A (en) * 1984-06-04 1985-12-19 松下電工株式会社 Multilayer printed circuit board
JPS60257592A (en) * 1984-06-04 1985-12-19 松下電工株式会社 Multilayer printed circuit board
JPS63173638A (en) * 1987-01-14 1988-07-18 松下電工株式会社 Laminated board
JPS63199636A (en) * 1987-02-14 1988-08-18 松下電工株式会社 Laminated board
JPH0379343A (en) * 1989-08-23 1991-04-04 Fujikura Ltd Metal-foiled laminated sheet and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393647A (en) * 2013-05-31 2016-03-09 住友电气工业株式会社 High-frequency printed circuit board and wiring material
US10383215B2 (en) 2013-05-31 2019-08-13 Sumitomo Electric Industries, Ltd. Radio-frequency printed circuit board and wiring material

Also Published As

Publication number Publication date
JPH06344503A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
JPH0818403B2 (en) Laminates and green composite films for laminates
EP0568930B1 (en) Method of manufacturing organic substrate used for printed circuits
TWI381786B (en) An intermediate member for manufacturing a circuit board and a method of manufacturing the circuit board using the intermediate member
US20070107931A1 (en) Circuit board
WO1996009339A1 (en) Ptfe reinforced compliant adhesive and method of fabricating same
US6534160B2 (en) Semiconductor device having a thermoset-containing dielectric material and methods for fabricating the same
JP2614190B2 (en) Prepreg for multilayer board, laminated board, multilayer printed circuit board and method of manufacturing the same
US7281325B2 (en) Method of manufacturing circuit board
US20130062099A1 (en) Multiple layer z-axis interconnect apparatus and method of use
EP1408726B1 (en) Method of manufacturing a printed wiring board
JPH06344500A (en) Production of laminated sheet and mixed film for laminated sheet
JP3982417B2 (en) Circuit board manufacturing method
JPH0790626B2 (en) Laminated board manufacturing method
JPH0880539A (en) Manufacture of resin laminated plate and metal-clad laminated plate
JPH06344502A (en) Production of laminated sheet
JP3982418B2 (en) Circuit board manufacturing method
JP4089671B2 (en) Circuit forming substrate manufacturing method and circuit forming substrate
JP2007165436A (en) Process for manufacturing circuit board
JP3928560B2 (en) Circuit board
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JP3299501B2 (en) Laminate molding plate and laminate
JP4196125B2 (en) Circuit board manufacturing method
JP4196126B2 (en) Circuit board manufacturing method
US20050198818A1 (en) Circuit formation substrate manufacturing method and circuit formation substrate material
JP2003158374A (en) Manufacturing method for multilayer printed wiring board