JPH0379343A - Metal-foiled laminated sheet and preparation thereof - Google Patents

Metal-foiled laminated sheet and preparation thereof

Info

Publication number
JPH0379343A
JPH0379343A JP21496789A JP21496789A JPH0379343A JP H0379343 A JPH0379343 A JP H0379343A JP 21496789 A JP21496789 A JP 21496789A JP 21496789 A JP21496789 A JP 21496789A JP H0379343 A JPH0379343 A JP H0379343A
Authority
JP
Japan
Prior art keywords
metal foil
fluororesin
base film
melting point
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21496789A
Other languages
Japanese (ja)
Inventor
Masahiro Kaizu
雅洋 海津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP21496789A priority Critical patent/JPH0379343A/en
Publication of JPH0379343A publication Critical patent/JPH0379343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To suppress the irregularity of a laminated sheet and to obtain the laminated sheet excellent in withstand voltage characteristics by using a high m.p. fluoroplastic in a base film and interposing a specific fusible insulating film between a metal foil and the base film to integrally fuse all of them. CONSTITUTION:A metal foil 7 whose bonding surface is roughened is laminated to an insulating base film 5 whose bonding surface is roughened through a thin fusible insulating film 6 composed of fluoroplastic having an m.p. lower than that of fluoroplastic constituting the insulating base film and having a chemically activated surface. In this case, the metal foil 7 and the films 6, 5 are pressed and heated at temp. near to the lower limit within the m.p. of the fluoroplastic constituting the fusible insulating film 6 at first and continuously heated at temp. near to the upper limit within said m.p. under pressure higher than the previous one to be fused and subsequently cooled to room temp. under pressure. By this method, the thickness irregularity as the whole of the insulating layer is reduced and withstand voltage characteristics are also enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プリント配線板に供する金属箔張り積層板、
特にフレキシブルプリント配線板の耐熱性のある低誘電
率化ベースフィルムをもつ金属箔張り積層板及びその製
造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a metal foil-clad laminate for use in printed wiring boards,
In particular, the present invention relates to a metal foil-clad laminate having a heat-resistant, low dielectric constant base film for flexible printed wiring boards, and a method for manufacturing the same.

(従来の技術) 一般的なプリント配線板の基本構造は、ベースフィルム
と導電性の金属箔とを絶縁性接着剤にて接着した、いわ
ゆる金属箔張り積層板を用い、エツチング法などにより
回路パターンを形成したもので、その断面図を第4図に
示すが、同図において、1はベースフィルム、2は絶縁
性接着剤層、3はエツチングにより形成された金属箔か
らなる回路パターンであり、金属箔としては導電性の良
い銅箔を用いる例が主流をなしている。
(Prior technology) The basic structure of a typical printed wiring board is a so-called metal foil laminate in which a base film and conductive metal foil are bonded together using an insulating adhesive, and circuit patterns are etched using etching methods. The cross-sectional view is shown in FIG. 4, in which 1 is a base film, 2 is an insulating adhesive layer, 3 is a circuit pattern consisting of a metal foil formed by etching, The mainstream metal foil is copper foil, which has good conductivity.

このような構成のプリント配線板においては、ベースフ
ィルム1と絶縁性接着剤層2とからなる絶縁層4の特性
がそのままプリント配線板の物理的特性になる場合が少
なくない。例えば、セラミック配線板の代表的な特性で
ある、硬質で高絶縁性、かつ高度な寸法安定性などは、
ベースとなるセラミック自身の特性によるところが大き
い。さらに、今日的な課題として、搭載する電子部品の
機能と関連した内容のものが増加してきており、放熱の
問題、寸法精度、信号伝送速度などは電子部品の機能を
損なわないようにするために付与された特性と言うこと
ができる。最近になって、高周波帯で動作するデバイス
が一般化しつつあり、配線による信号伝達遅延がプリン
ト配線板についても問題視されつつある。すなわち、高
速伝送用配線板が求められている。
In a printed wiring board having such a configuration, the characteristics of the insulating layer 4 made of the base film 1 and the insulating adhesive layer 2 often directly become the physical characteristics of the printed wiring board. For example, the typical characteristics of ceramic wiring boards include hardness, high insulation, and high dimensional stability.
This largely depends on the characteristics of the base ceramic itself. Furthermore, there are an increasing number of modern issues related to the functions of electronic components installed, such as heat dissipation issues, dimensional accuracy, signal transmission speed, etc., to ensure that the functions of electronic components are not impaired. It can be said to be a given characteristic. Recently, devices that operate in high frequency bands have become commonplace, and signal transmission delays due to wiring are becoming a problem for printed wiring boards as well. In other words, a wiring board for high-speed transmission is required.

上述した一般的な構造でのプリント配線板において、信
号の伝達速度は導体回路パターンを支えるベースフィル
ム1と絶縁性接着剤層2とからなる絶縁層4の誘電率と
密接な関係がある。そこで、ふっ素樹脂は、その誘電率
が2.0〜2.8と他の有機系樹脂の誘電率に比して際
だって低いことから、高速伝送用配線板のベースフィル
ムとしてふっ素樹脂を用いることが試みられているが、
ふっ素樹脂は加工温度が高く、また金属との接着性が劣
っていることから、ガラス繊維などのフィラーに含浸し
た厚手のふっ素樹脂板を比較的低誘電率なイミド等の樹
脂材料接着剤で銅箔に積層したものや、ガラスエポキシ
繊維布等のフィラーに含浸したふっ素樹脂からなるベー
スフィルムと銅箔とを、ふっ素樹脂の融点以上の温度で
加熱圧着したものがあるが、いずれも硬質の配線板であ
る。
In the printed wiring board having the general structure described above, the signal transmission speed is closely related to the dielectric constant of the insulating layer 4 made up of the base film 1 supporting the conductor circuit pattern and the insulating adhesive layer 2. Therefore, since fluororesin has a dielectric constant of 2.0 to 2.8, which is significantly lower than that of other organic resins, fluororesin is used as a base film for wiring boards for high-speed transmission. has been attempted, but
Because fluororesin requires high processing temperatures and has poor adhesion to metal, a thick fluororesin plate impregnated with filler such as glass fiber is bonded to copper using a resin material adhesive such as imide, which has a relatively low dielectric constant. There are those that are laminated to foil, and those that are made by heat-pressing a base film made of fluororesin impregnated with filler such as glass epoxy fiber cloth and copper foil at a temperature higher than the melting point of the fluororesin, but both are hard wiring. It is a board.

(発明が解決しようとする課題) 上記したと同様に高速伝送用としてのフレキシブル配線
板の要求も強くなっており、フレキシブル配線板におけ
る低誘電率化として、ベースフィルムとしてふっ素樹脂
を用い、その表面に蒸着法やスパッタ法により導電性金
属の薄膜を形成したもの、あるいは、ふっ素樹脂フィル
ムと導電性金属箔を直接熱融着したものが提案されてい
る。
(Problems to be Solved by the Invention) Similar to the above, the demand for flexible wiring boards for high-speed transmission is increasing, and in order to lower the dielectric constant of flexible wiring boards, fluororesin is used as the base film, and the surface It has been proposed that a conductive metal thin film is formed by vapor deposition or sputtering, or that a fluororesin film and conductive metal foil are directly heat-sealed.

しかし、前者の場合は、層厚が厚くとも5n前後といっ
た導電性金属の薄膜を形成しても一般的な配線回路とし
て使用できないことから、相応の厚さの10−前後の厚
さとするために、更にめっき処理を必要とし、また、基
本的に蒸着法やスパッタ法によって形成された金属膜層
はベースフィルムとの接着性に難があり、特にベースフ
ィルムがふっ素樹脂の場合は固着強度が十分でなく、配
線板の変形や半田付けなどの外的ストレスにより導体回
路が剥離するという現象を生じ易い。さらに、めっき処
理により金属膜層を厚くした場合の膜厚のばらつきや、
金属膜層の内部応力により基板の反り、たわみが発生し
易い。
However, in the case of the former, even if a thin film of conductive metal is formed with a thickness of around 5 nm at most, it cannot be used as a general wiring circuit, so it is necessary to make the layer thickness around 10 nm. Furthermore, metal film layers formed by vapor deposition or sputtering methods have difficulty adhesion to the base film, and especially when the base film is made of fluororesin, the adhesion strength is insufficient. In addition, the conductor circuit is likely to peel off due to deformation of the wiring board or external stress such as soldering. Furthermore, variations in film thickness when the metal film layer is made thicker by plating,
Warpage and deflection of the substrate are likely to occur due to internal stress in the metal film layer.

また、後者の場合のように、金属箔とベースフィルムと
するふっ素樹脂フィルムとを直接熱融着したものは、こ
れらの間の接着強度は実用上問題のないレベルに実現で
きるものの、ふっ素樹脂フィルムが溶融して金属箔と融
着したのち、冷却後再びフィルム状態となることから、
プレス板の圧力分布のばらつきによりフィルム厚さにば
らつきを生じ、そのために面積の大きな基板の製作が困
難であるばかりか、ピンホール並びに耐電圧不良が発生
し易くなり、同時に基板の平滑性、寸法精度を損なうと
いった問題点がある。
In addition, as in the latter case, when the metal foil and the fluororesin film used as the base film are directly heat-sealed, the adhesive strength between them can be achieved at a level that does not pose any practical problems, but the fluororesin film After it melts and fuses with the metal foil, it becomes a film again after cooling.
Variations in the pressure distribution of the press plate cause variations in film thickness, which not only makes it difficult to manufacture large-area substrates, but also makes pinholes and withstand voltage failures more likely to occur.At the same time, the smoothness and dimensions of the substrate There are problems such as loss of accuracy.

(課題を解決するための手段) 本発明は、上記したような課題を解決するためになされ
たものであり、回路を形成するための金属箔と絶縁性ベ
ースフィルムとを積層した金属箔張り積層板として、ベ
ースフィルムに相対的に高融点のふっ素樹脂を用い、金
属箔とベースフィルムとの間にベースフィルムよりも低
融点で薄厚の低融点を有し、しかも金属箔との接着性の
よいふっ素樹脂からなる融着用絶縁性フィルムを介在さ
せて融着一体化してなる金属箔張り積層板を提供する。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and provides a metal foil-clad laminate in which metal foil and an insulating base film are laminated to form a circuit. As the plate, a fluororesin with a relatively high melting point is used for the base film, and between the metal foil and the base film, a thin film with a low melting point and a low thickness than the base film is used, and also has good adhesiveness with the metal foil. To provide a metal foil-clad laminate which is integrally fused by interposing an insulating film for fusion made of fluororesin.

また、本発明は上記の金属箔張り積層板を得るための方
法であって、金属箔はその接合面を粗面化する。そして
融着用として、絶縁性ベースフィルムを構成するふっ素
樹脂よりも低融点を有するふっ素樹脂からなる薄厚で、
かつ、その表面を不活性イオンプラズマ処理により化学
的に活性化した融着用絶縁性フィルムを介し、接合面を
スパッタエツチングにより粗面化した上記絶縁性ベース
フィルムを積層し、第一段階では、融着用絶縁性フィル
ムを構成しているふっ素樹脂の融点内であって、その下
限近傍の温度で加圧加熱し、続いて第二段階では上記融
着用絶縁性フィルムを構成しているふっ素樹脂の上限近
傍の温度で、しかも第一段階よりも高い圧力で加圧加熱
し、これにより層間を融着させた後、加圧下で常温まで
冷却することを特徴とする金属箔張り積層板の製造方法
を提供する。
The present invention also provides a method for obtaining the above-mentioned metal foil-clad laminate, in which the bonding surface of the metal foil is roughened. As a fusion material, a thin film made of fluororesin having a lower melting point than the fluororesin constituting the insulating base film is used.
Then, the insulating base film whose bonding surface has been roughened by sputter etching is laminated via the insulating film for fusion whose surface has been chemically activated by inert ion plasma treatment. The fluororesin constituting the insulating film for welding is heated under pressure at a temperature within the melting point and near its lower limit, and then in the second step, the upper limit of the fluororesin constituting the insulating film for fusing is heated. A method for producing a metal foil-clad laminate, which is characterized by heating under pressure at a nearby temperature and at a higher pressure than in the first step, thereby fusing the layers, and then cooling to room temperature under pressure. provide.

なお、金属箔張り積層板は金属箔を片面にのみ有する片
面積層板でもよいし、金属箔を両面に設けた両面積層板
とすることもできる。
Note that the metal foil-clad laminate may be a single-sided laminate with metal foil on only one side, or a double-sided laminate with metal foil on both sides.

次に、本発明で用いられるふっ素樹脂について説明すれ
ば、四ふっ化エチレン樹脂(PTFE融点327℃)、
四ふっ化エチレン−パーフルオロアルキルビニールエー
テルmJ11(PFA  融点300〜310℃)、四
ふっ化エチレンー六ぶつ化プロピレン共重合体樹脂(F
EP  融点250〜282℃)、三ふっ化塩化エチレ
ン樹脂(CTFE  融点210〜217℃)、四ふっ
化エチレンーエチレン共重合体…脂(ETFE  融点
270℃)があげられるが、これらの樹脂のうち相対的
に融点の高いものと、相対的に融点の低いものとを組合
わせ、前者をベースフィルムとし、後者を融着用フィル
ムとして用いる。
Next, to explain the fluororesin used in the present invention, tetrafluoroethylene resin (PTFE melting point 327°C),
Tetrafluoroethylene-perfluoroalkyl vinyl ether mJ11 (PFA melting point 300-310°C), tetrafluoroethylene-hexabutypropylene copolymer resin (F
Among these resins are A material with a relatively high melting point and a material with a relatively low melting point are combined, and the former is used as a base film and the latter is used as a fusion film.

(作用) 本発明の金属箔張り積層板は絶縁層としてふっ素樹脂を
用いているので、可撓性であり、低誘電率化が実現され
、かつ、ベースフィルムを構成している高融点のふっ素
樹脂は積層・融着工程においても物理的・化学的に変性
することなく一定の厚さを保持することから、プレス面
積内の圧力ばらつきによる積層板のばらつきを抑制し、
同時に絶縁層に貫通するピンホールの発生のない耐電圧
特性に優れた積層板を提供する。
(Function) Since the metal foil-clad laminate of the present invention uses fluororesin as the insulating layer, it is flexible and has a low dielectric constant. Since the resin maintains a constant thickness without changing physically or chemically during the lamination and fusing process, it suppresses variations in the laminate due to pressure variations within the press area.
At the same time, the present invention provides a laminate having excellent withstand voltage characteristics without the occurrence of pinholes penetrating the insulating layer.

また、本発明の積層板の製造においては、金属箔並びに
ベースフィルムの融着面を粗面化し、かつ、融着用フィ
ルムの表面を化学的に活性化することによって、ふっ素
樹脂相互並びに金属箔との融着用フィルムとの接着性を
高め、かつ、加圧加熱条件を特定のものとすることによ
り層間融着に信頼性が大きく、厚さのばらつきが非常に
小さい寸法精度のよい積層板が得られる。特に冷却段階
では加圧冷却法によっているため歪のない融着層が得ら
れる。
In addition, in manufacturing the laminate of the present invention, the fusion bonding surfaces of the metal foil and the base film are roughened, and the surface of the fusion film is chemically activated to bond the fluororesin and the metal foil to each other. By increasing the adhesion with the fusion film and using specific pressure and heating conditions, it is possible to obtain a laminate with high reliability in interlayer fusion and excellent dimensional accuracy with very little variation in thickness. It will be done. Particularly in the cooling stage, since a pressure cooling method is used, a strain-free fused layer can be obtained.

(実施例) 第1図は、本発明による両面金属箔張り積層板の断面概
要図、第2図は同じく片面金属箔張り積層板の断面概要
図である。これらの図において、5は絶縁性ベースフィ
ルムで相対的に高融点を有するふっ素樹脂として100
n厚さのPTFE (融点327℃)を用いた。6は熱
融着用絶縁性フィルムで上記ふっ素樹脂よりも低融点を
有するふっ素樹脂として5〇−厚さのFEP (融点2
50〜282℃)を用いた。7は銅箔からなり、これら
が加圧熱融着により一体化されて両面または片面の金属
箔張り積層板を形成している。この積層板の金属箔をエ
ツチング法などにより不要部分を除去して所要のフレキ
シブルプリント配線板が作られる。
(Example) FIG. 1 is a cross-sectional schematic diagram of a double-sided metal foil-clad laminate according to the present invention, and FIG. 2 is a cross-sectional schematic diagram of a single-sided metal foil-clad laminate. In these figures, 5 is an insulating base film and 100 is a fluororesin having a relatively high melting point.
n-thick PTFE (melting point 327°C) was used. 6 is an insulating film for heat fusion, which is a 50-thick FEP (melting point 2
50 to 282°C). Reference numeral 7 is made of copper foil, which are integrated by pressure heat fusion to form a double-sided or single-sided metal foil-clad laminate. A desired flexible printed wiring board is produced by removing unnecessary portions of the metal foil of this laminate using an etching method or the like.

上記の第1図に示す両面金属箔張り積層板の製造方法の
実施例を第3図を用いて説明する。
An embodiment of the method for manufacturing the double-sided metal foil clad laminate shown in FIG. 1 will be described with reference to FIG. 3.

銅箔7としてはベースフィルム5側に面する接着面をサ
ンドマット処理により粗面化した35pm厚の電解銅箔
を用い、ベースフィルム5としては上記の100μ厚の
PTFHのフィルムであって、スパッタエツチング処理
により接着表面を1〜3−程度の針状組織となるよう粗
面化したものを、熱融着用絶縁性フィルム6としては上
記の5On厚のFEPフィルムであって、ヘリウムやア
ルゴンなどの不活性ガスプラズマ放電処理を、その両面
に施し化学的に活性化したものを用い、ベースフィルム
5の両面に絶縁性フィルム6を介して銅箔7を積層して
積層板8を作成し、この積層板8を、その両面にそれぞ
れ耐熱性を有するセパレータ9を介してプレス装置の上
板10と下−板11との間に挟み、FEPの融点の範囲
内で、その下限値に近い250〜260℃に加熱して、
圧力10kg/cm2の緩い圧力を加えて約60分間加
圧し、続いて加熱温度をFEPの融点上限に近い270
〜290℃に加熱するとともに、圧力を25〜50kg
/cs”に上げて約30分間加圧してのち、この圧力を
加えたまま約120分別度の時間をかけてFEPの融点
以下の200〜250℃の温度まで緩やかに下げて行き
、その後室温まで自然冷却してのち圧力を解除してプレ
ス装置から抜き取り、セパレータを除去して所望の金属
箔張り積層板が得られる。なお、片面金属箔張り積層板
においても同様な製造方法により製造できる。
The copper foil 7 is a 35 pm thick electrolytic copper foil whose adhesive surface facing the base film 5 is roughened by sand matting, and the base film 5 is the above 100 μ thick PTFH film, which is sputtered. The adhesive surface is roughened to have an acicular structure of about 1 to 3 mm by etching treatment, and the insulating film 6 for heat fusion is the above-mentioned 5 On thick FEP film, which is coated with helium, argon, etc. A laminate 8 is created by laminating copper foil 7 on both sides of the base film 5 with an insulating film 6 interposed therebetween, using an inert gas plasma discharge treatment applied to both surfaces and chemically activated. The laminated plate 8 is sandwiched between the upper plate 10 and the lower plate 11 of the press machine with heat-resistant separators 9 on both sides of the plate, and the temperature is within the range of the melting point of FEP, from 250 to 250, which is close to its lower limit. Heat to 260℃,
A gentle pressure of 10 kg/cm2 was applied for about 60 minutes, and then the heating temperature was increased to 270°C, which is close to the upper limit of FEP's melting point.
Heat to ~290℃ and apply pressure to 25~50kg
/cs" and pressurized for about 30 minutes, then slowly lowered the temperature to 200 to 250 °C below the melting point of FEP over a period of about 120 degrees while keeping this pressure applied, and then to room temperature. After natural cooling, the pressure is released, the press is removed, and the separator is removed to obtain the desired metal foil-clad laminate. Note that a single-sided metal foil-clad laminate can also be manufactured by the same manufacturing method.

なお、絶縁性ベースフィルム及び融着用絶縁性フィルム
の厚さは、所望の金属箔張り積層板の厚さにより、その
組み合わせを変えればよい、しかし、層厚の寸法精度を
上げるためには、融着用絶縁性フィルムの厚さを薄くす
ればよいが、積層板全面にわたって良好な安定した接着
性ならびに平滑性を確保するためには今回使用した融着
用絶縁性フィルムの厚さが上記実施例の約1/2以上の
厚さがあることが好ましい。
Note that the thickness of the insulating base film and the insulating film for fusion can be changed depending on the desired thickness of the metal foil clad laminate. However, in order to increase the dimensional accuracy of the layer thickness, The thickness of the insulating film for welding can be made thinner, but in order to ensure good, stable adhesion and smoothness over the entire surface of the laminate, the thickness of the insulating film for fusing used this time should be approximately the same as in the above example. It is preferable that the thickness is 1/2 or more.

本発明は上記実施例に示した2種のふっ素樹脂の組み合
わせに限定されず、相対的に高融点のふっ素樹脂と低融
点のふっ素樹脂の他の組み合わせでもよいが、特に積層
板の製造にあたっては、第二段階の加熱、つまり、相対
的に低融点のふっ素樹脂の融点の上限近傍での加熱は、
相対的に高融点のふっ素樹脂を溶融させないような条件
で行なわれる必要がある。
The present invention is not limited to the combination of the two types of fluororesins shown in the above embodiments, and other combinations of fluororesins with a relatively high melting point and fluororesins with a low melting point may be used. , the second stage of heating, that is, heating near the upper limit of the melting point of the fluororesin, which has a relatively low melting point, is
It is necessary to carry out the process under conditions that do not melt the fluororesin, which has a relatively high melting point.

(発明の効果) 本発明の金属箔張り積層板は絶縁ベースフィルムとして
相対的に高融点で低誘電率のふっ素樹脂を用い、融着用
絶縁性フィルムとしても低誘電率の金属箔との接着性の
よいふっ素樹脂を用いているので、これらで形成される
絶縁層全体が低誘電率のふっ素樹脂からなり、しかも、
この絶縁層は極めて薄く構成することができるので、薄
層で柔軟性に富んだ低誘電率の金属箔張り積層板とする
ことができるので、これを用いて高速伝送用フレキシブ
ルプリント配線板を実現することができる。
(Effects of the Invention) The metal foil-clad laminate of the present invention uses a fluororesin with a relatively high melting point and low dielectric constant as an insulating base film, and has good adhesion with metal foils with a low dielectric constant as an insulating film for fusion. Since fluororesin with good properties is used, the entire insulating layer formed by these is made of fluororesin with a low dielectric constant.
Since this insulating layer can be made extremely thin, it can be made into a thin, flexible, low dielectric constant metal foil laminate, which can be used to create a flexible printed wiring board for high-speed transmission. can do.

なお、ベースフィルムとしては相対的に高融点のふっ素
樹脂を用い、融着用絶縁性フィルムとしてベースフィル
ムのふっ素樹脂より低融点のふっ素樹脂を用い、この低
融点のふっ素樹脂の融点の範囲の一定条件で熱融着させ
るので、ベースフィルムは溶融することなく、しかも熱
融着用絶縁性フィルムは薄いので、この層が溶融−固化
により層厚のばらつきが発生したとしても、絶縁層全体
としての厚さのばらつきは小さく、寸法精度が向上する
。同時にベースフィルムは一定の厚さを保持しピンホー
ルの発生もないので耐電圧特性も改善される。また、製
作単位面積を拡大することができる。熱融着用絶縁性フ
ィルムとして低融点のふっ素樹脂を用いているが、低融
点といっても一般の有機系樹脂に比べては融点は非常に
高<230℃前後の高温域でも安定して使用することが
できる。
In addition, a fluororesin with a relatively high melting point is used as the base film, a fluororesin with a lower melting point than the fluororesin of the base film is used as the insulating film for fusion, and certain conditions are set within the range of the melting point of this low melting fluororesin. Since the base film is not melted, and the insulating film for heat fusion is thin, even if the thickness of this layer varies due to melting and solidification, the overall thickness of the insulating layer will remain the same. The variation is small and the dimensional accuracy is improved. At the same time, since the base film maintains a constant thickness and no pinholes occur, the withstand voltage characteristics are also improved. Moreover, the manufacturing unit area can be expanded. A fluororesin with a low melting point is used as the insulating film for heat fusion, but even though it is low melting point, it has a very high melting point compared to general organic resins, and can be used stably even in the high temperature range of around 230℃. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による両面金属箔張り積層板の断面概要
図、第2図は同じ(片面金属箔張り積層板の断面概要図
、第3図は本発明による金属箔張り積層板の製造方法を
説明するための概要図、第4図は従来の金属箔張り積層
板によるプリント配線板の断面概要図である。 5:m縁性ベースフィルム、6:融着用絶縁性フィルム
、7:金属箔。
Figure 1 is a cross-sectional schematic diagram of a double-sided metal foil-clad laminate according to the present invention, Figure 2 is the same (cross-sectional schematic diagram of a single-sided metal foil-clad laminate, and Figure 3 is a method for manufacturing a metal foil-clad laminate according to the present invention). FIG. 4 is a cross-sectional schematic diagram of a printed wiring board made of a conventional metal foil-clad laminate. 5: M-edge base film, 6: Insulating film for fusion, 7: Metal foil .

Claims (2)

【特許請求の範囲】[Claims] 1.回路を形成するための金属箔と、絶縁性ベースフィ
ルムとが積層された金属箔張り積層板において、回路を
形成するための金属箔と相対的に高融点のふっ素樹脂か
らなる絶縁性ベースフィルムとが、上記ベースフィルム
よりも低融点のふっ素樹脂からなる融着用絶縁性フィル
ムを介して、積層され融着一体化されてなることを特徴
とする金属箔張り積層板。
1. In a metal foil laminate in which a metal foil for forming a circuit and an insulating base film are laminated, the metal foil for forming a circuit and an insulating base film made of a fluororesin having a relatively high melting point. are laminated and fused together via an insulating fusion film made of a fluororesin having a lower melting point than the base film.
2.接合面を粗面化した金属箔に、絶縁性ベースフィル
ムを構成するふっ素樹脂よりも低融点のふっ素樹脂から
なる融着用絶縁性フィルムを重ね、次に相対的に高融点
のふっ素樹脂からなる絶縁性ベースフィルムを重ねた後
、第一段階では前記融着用絶縁性フィルムを構成してい
るふっ素樹脂の融点の範囲内で、その下限近傍の温度で
加圧加熱し、続いて第二段階では前記融着用絶縁性フィ
ルムを構成しているふっ素樹脂の上限近傍の温度で、か
つ、第一段階より高い圧力を用いて加圧加熱し、層間を
融着させた後、加圧下で常温まで冷却することを特徴と
する金属箔張り積層板の製造方法。
2. A bonding insulating film made of a fluororesin with a lower melting point than the fluororesin constituting the insulating base film is layered on the metal foil with a roughened joint surface, and then an insulating film made of a fluororesin with a relatively high melting point is layered on the metal foil with a roughened joint surface. After overlapping the adhesive base film, in the first step, the melting point of the fluororesin constituting the insulating film for fusion is heated under pressure at a temperature near the lower limit of the melting point, and then in the second step, the Heat and pressurize at a temperature close to the upper limit of the fluororesin that makes up the insulating film for fusion and at a higher pressure than in the first stage to fuse the layers, then cool under pressure to room temperature. A method for manufacturing a metal foil-clad laminate, characterized by:
JP21496789A 1989-08-23 1989-08-23 Metal-foiled laminated sheet and preparation thereof Pending JPH0379343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21496789A JPH0379343A (en) 1989-08-23 1989-08-23 Metal-foiled laminated sheet and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21496789A JPH0379343A (en) 1989-08-23 1989-08-23 Metal-foiled laminated sheet and preparation thereof

Publications (1)

Publication Number Publication Date
JPH0379343A true JPH0379343A (en) 1991-04-04

Family

ID=16664527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21496789A Pending JPH0379343A (en) 1989-08-23 1989-08-23 Metal-foiled laminated sheet and preparation thereof

Country Status (1)

Country Link
JP (1) JPH0379343A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344503A (en) * 1993-06-03 1994-12-20 Nippon Pillar Packing Co Ltd Production of laminated sheet and composite film for laminated sheet
JP2001287300A (en) * 2000-04-04 2001-10-16 Shin Etsu Polymer Co Ltd Copper-clad laminated substrate and its manufacturing method
JP2001328205A (en) * 2000-05-19 2001-11-27 Nippon Pillar Packing Co Ltd Laminated sheet and method for manufacturing the same
JP2004091948A (en) * 2002-08-30 2004-03-25 Tomoegawa Paper Co Ltd Fluororesin fiber sheet, metal-clad substrate for printed circuit board using the sheet and method for producing the board
JP2007157965A (en) * 2005-12-05 2007-06-21 Junkosha Co Ltd Fluororesin lamination substrate
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344503A (en) * 1993-06-03 1994-12-20 Nippon Pillar Packing Co Ltd Production of laminated sheet and composite film for laminated sheet
JP2001287300A (en) * 2000-04-04 2001-10-16 Shin Etsu Polymer Co Ltd Copper-clad laminated substrate and its manufacturing method
JP2001328205A (en) * 2000-05-19 2001-11-27 Nippon Pillar Packing Co Ltd Laminated sheet and method for manufacturing the same
JP2004091948A (en) * 2002-08-30 2004-03-25 Tomoegawa Paper Co Ltd Fluororesin fiber sheet, metal-clad substrate for printed circuit board using the sheet and method for producing the board
JP2007157965A (en) * 2005-12-05 2007-06-21 Junkosha Co Ltd Fluororesin lamination substrate
JP4545682B2 (en) * 2005-12-05 2010-09-15 株式会社潤工社 Fluorine resin laminated substrate
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Similar Documents

Publication Publication Date Title
US8178191B2 (en) Multilayer wiring board and method of making the same
US4713284A (en) Ceramic coated laminate and process for producing the same
JP3059568B2 (en) Method of manufacturing multilayer printed circuit board
WO2007046459A1 (en) Multilayer printed wiring board and its manufacturing method
JPS6227558B2 (en)
JPH0379343A (en) Metal-foiled laminated sheet and preparation thereof
JPH11348178A (en) Coating method using polymer film and manufacture of metal foil laminated body
JPH11309803A (en) Multi-layered laminated sheet, its manufacture, and multilayered mounting circuit board
JP2002252436A (en) Double-sided laminate and its manufacturing method
JPH03178432A (en) Metal foil clad laminated sheet
JP2000071387A (en) Film fitted with metal foil and production of wiring board using the same
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2619164B2 (en) Manufacturing method of printed wiring board
JP2919672B2 (en) Double-sided circuit board and method of manufacturing the same
JP2004214273A (en) Method for manufacturing single side lamination wiring board
JP2010232596A (en) Method of manufacturing multilayer wiring board, and multilayer wiring board
JPH0992939A (en) Current protective element module and its manufacture
JPH05121876A (en) Manufacture of multilayer printed wiring board
JP2003243573A (en) Multilayer substrate and its manufacturing method
JPH03183539A (en) Metal plated laminated board
JP2002064273A (en) Multilayer printed board
JPH02137392A (en) Printed wiring board
JPH04174590A (en) Wiring board with built-in resistor and its manufacture
JP2004207266A (en) Method for manufacturing connection substrate and multilayer wiring board
JPS63100796A (en) Manufacture of fluorine resin multilayer printed board