JP3569197B2 - Laminated plate and method of manufacturing the same - Google Patents

Laminated plate and method of manufacturing the same Download PDF

Info

Publication number
JP3569197B2
JP3569197B2 JP2000148439A JP2000148439A JP3569197B2 JP 3569197 B2 JP3569197 B2 JP 3569197B2 JP 2000148439 A JP2000148439 A JP 2000148439A JP 2000148439 A JP2000148439 A JP 2000148439A JP 3569197 B2 JP3569197 B2 JP 3569197B2
Authority
JP
Japan
Prior art keywords
temperature
ptfe
copper foil
thickness
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000148439A
Other languages
Japanese (ja)
Other versions
JP2001328205A (en
Inventor
哲 橋本
仁 神崎
格司 大西
靖彦 市野
利光 谷井
敏晴 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2000148439A priority Critical patent/JP3569197B2/en
Publication of JP2001328205A publication Critical patent/JP2001328205A/en
Application granted granted Critical
Publication of JP3569197B2 publication Critical patent/JP3569197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波数電波を用いる機器、特に1GHz以上の高周波に適した機器に使用される低誘電正接、低誘電率積層板の製造方法に関する。
【0002】
【従来の技術】
フッ素樹脂は誘電正接、誘電率が低い樹脂であり、高周波数の用途の基板に適している。その中でも、PTFE(ポリテトラフルオロエチレン)樹脂が高周波数用途に最も適しているため、ガラス基材などの織布に含浸されてプリプレグを形成し、このプリプレグを積層して片面あるいは両面に銅箔を貼り合わせ、積層板を形成している。
【0003】
しかしながら、この積層板は、加熱加圧時に反りを生じる場合があり、その改善方法が検討されている。例えば、積層板に用いられるガラス基材の縦糸、横糸のテンション(伸び率)の差異が織布とした後にも残存することが、基板の反りの一つの原因と考えられ、これを解消するために、最外層のプリプレグの縦糸を他のプリプレグの縦糸方向に対して交差させた積層板が検討されている(特開平8−148780号公報)。
【0004】
しかし、この積層板は、加熱加圧時の反りを抑制するには優れた効果を奏するが、金属箔をエッチング除去したり、積層板に回路形成を行うときには、再び反りが生じるため、ガラス基材の繊維の方向を変えることのみでは、必ずしも効果的であるとは言えない。基板によっては、反りの量が20mm近くにも達する値を示し、このような基板では、回路形成ごの電子部品の実装が困難となり、単層基板や両面基板を順次、積層接着して行く多層基板においては、回路形成のためのレジスト膜を一様な厚さに形成できないため、精密な回路形成が不可能となるなどの問題を発生させるばかりでなく、更にレーダー波の受信などの高周波用アンテナなどに使用する場合においては、電波の有効受信面積が設計値通りにえられないという電気特性に係る問題も発生させる。
【0005】
本発明者の鋭意研究の結果、反りの原因と考えられるのは、PTFEと銅箔の線膨張係数の差が大きいことにあると認められた。すなわち、PTFEの融点(もしくはゲル化温度)が極端に高く、銅箔とPTFE樹脂とを接着するために380℃程度の高温加熱接着プレス工程が必要となり、高温加熱工程−冷却工程において銅箔が有する線膨張係数により大きく伸び、大きく収縮しようとするため、PTFE含浸プリプレグもしくはPTFE積層板の熱膨張量との差が大きくなり、このPTFE含浸プリプレグもしくはそれを使用した積層板と銅箔には残留応力が残存し、従って、回路形成の際エッチング工程で銅箔が除去される、あるいは積層板の上下面の除去率が異なると、積層板の上面、下面における残留応力のバランスが崩れ、反りが発生することが知見された。
【0006】
これを解決するためには、線膨張係数が銅の線膨張係数に近い樹脂をプリプレグに含浸して用いればよいが、金属箔と同程度の線膨張係数をもつフッ素樹脂は現在知られておらず、反りの発生を有効に防止できる可能性はない。
【0007】
また、基板の厚さを厚くすることにより反りを防止する方法も考えられるが、この方法では、同一のインピーダンスを得るために厚さに対して自然対数倍の基板の面積が必要であり、基板を小型化できないと言う問題がある。
【0008】
さらに、反りを抑制する方法として、高温伸び箔と言われる銅箔を用いる方法が考えられるが、高温伸び箔は、通常用いられる銅箔の2〜3倍の価格であるため、コスト的に採用されにくい。
【0009】
【発明が解決しようとする課題】
そこで、銅箔のエッチングにより回路を形成したときにおいても反りが少ない積層板およびその製造方法が求められている。
【0010】
【課題を解決するための手段】
本発明は、PTFE樹脂を含浸してなる1枚または2枚以上のプリプレグの最外層の両面に銅箔を有し、該プリプレグと該銅箔との間に溶融時の粘度が10ポワズ以下の溶融フッ素樹脂が2μmから該銅箔厚みの2倍以下の厚みで配置されることを特徴とする積層板に関する。
【0011】
好ましい実施態様においては、前記溶融フッ素樹脂層の厚みが銅箔の厚み以下である。
【0012】
また、好ましい実施態様においては、前記溶融フッ素樹脂が、PFA、FEP、ETFE、PVDF、ECTFE、PCTFE、PVFまたはこれらの混合物からなる群から選択される。
【0013】
本発明は、さらに、PTFE樹脂を含浸してなる1枚または2枚以上のプリプレグの最外層の両面に溶融時またはゲル化時の粘度が10ポワズ以下の溶融フッ素樹脂を配置し、該溶融フッ素樹脂上に銅箔を配置した後、減圧雰囲気の圧力下において、常温から前記PTFE樹脂の融点よりやや高い成形温度まで昇温する昇温工程と、該成形温度を所定時間保持し、該成形温度からPTFEの溶融開始前温度までを緩慢に降温する第1降温工程と、該PTFEの溶融開始前温度から常温までをやや緩慢に冷却する第2降温工程とを有し、該溶融フッ素樹脂が2μmから該銅箔厚みの2倍以下の厚みとなるように加圧成形することを特徴とする、積層板の製造方法に関する。
【0014】
【発明の実施の形態】
本発明に用いられるプリプレグは、PTFEを含浸したプリプレグであれば特に制限はないが、強度と好ましい誘電正接を得るためには、ガラス繊維などの織布にPTFEが含浸されたプリプレグであることが好ましい。
【0015】
本発明の積層板は、上面、下面またはその一方に回路を形成する単層板あるいは両面板であってもよく、一層以上の内層回路が積層された多層板であってもよい。この積層板の最外層の両面には銅箔が接合されている。用いる銅箔の厚みには特に制限がないが、一般に用いられる18μmから36μmの厚みが好ましく用いられる。
【0016】
本発明においては、プリプレグと銅箔との間に溶融時の粘度が10ポワズ以下の溶融フッ素樹脂がプリプレグの塗布層もしくは樹脂シートとして配置され、溶融フッ素樹脂層の厚みが2μmから該銅箔厚みの2倍以下の厚みとなるように加圧成形する点に特徴がある。本発明に用いられる溶融フッ素樹脂は、380℃以下で溶融するフッ素含有樹脂をいう。溶融フッ素樹脂としては、溶融時の粘度が10ポワズ以下であればどのようなフッ素樹脂でもよい。例えば、PFA(テトラフルオロエチレンパープロロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、ETFE(エチレン−テトラフルオロエチレン共重合体)、PVDF(ポリビニリデンフルオライド)、ECTFE(エチレンクロロトリフルオロエチレン)、PCTFE(ポリクロリネートトリフルオロエチレン)、PVF(ポリビニルフルオライド)などが挙げられる。これらの樹脂は単独で用いても良く、また、これらの混合樹脂も溶融時の粘度が10ポワズ以下であれば、好ましく用いられる。溶融時における好ましい粘度は10以上であり、10〜10ポワズが好ましく、10〜10ポワズがより好ましく、10〜10ポワズがさらに好ましい。
【0017】
溶融フッ素樹脂は、銅箔とプリプレグとの間にあり、溶融フッ素樹脂層の厚みが2μmから銅箔厚みの2倍以下の厚みとなるように加圧成形される。2μm未満では、十分な接着効果が得られず、反りが大きくなる。銅箔厚みの2倍を超えると、多層回路基板の加圧成形時に溶融フッ素樹脂層が溶融していわゆるスイミング現象を発現し内層回路を形成する銅箔が溶融フッ素樹脂の流動と共にずれる虞があり、好ましくない。特に多層回路基板を構成する場合を考慮すると、溶融フッ素樹脂層の厚みは、銅箔厚さ以下であることがより好ましい。
【0018】
加圧条件には特に制限がなく、プリプレグに銅箔を接着させる際に当業者が一般的に用いる方法を用いてもよいが、以下の方法を用いることが好ましい。すなわち、減圧雰囲気の圧力下において、まず、常温からPTFE樹脂の融点よりやや高い成形温度まで昇温し、ついで、この成形温度を所定時間保持する。降温は、第1および第2の降温工程の2段階で行うことが好ましい。第1降温工程は、成形温度からPTFEの溶融開始前温度までを緩慢に降温する工程であり、第2降温工程は、PTFEの溶融開始前温度から常温までをやや緩慢に冷却する工程である。
【0019】
具体的には、例えば、
(i)温度条件:常温からPCTFの溶融温度より高温である385℃までを60〜90分で昇温し、385℃で60〜90分保持し、385℃からPTFEの溶融開始前の温度である285℃までを、80〜120分で冷却し、285℃から常温まで20〜60分で冷却する;
(ii)成形面圧条件:昇温開始10〜30分後から、10〜70Kg/cmの面圧を負荷し、これを冷却終了まで継続する; および
(iii)真空度条件:昇温開始と同時に真空度を上昇させ、5〜20分後に700〜750mmHgとし、冷却終了まで継続する;
ことが好ましい。
【0020】
このような加圧条件で加圧することにより、エッチング処理したときに反りが小さく、回路のずれも小さい積層板が提供される。特に精密なプレスが要求される多層回路基板や回路線幅の小さい積層板においては、回路のずれや反りは導通不良や回路の断線を発生させ、致命的な欠陥となるため、エッチング処理後の反り、回路のずれがない積層板は、特に有用である。本発明でいう反りが10mm以下であれば、精密な多層回路の構成が可能である。
【0021】
本発明でいう積層板の反りとは、200×150mm、厚さ0.6mmの大きさの積層板の片面の全面をエッチングして銅箔を除去したときの反りをいう。なお、「200×150mmの大きさの積層板」は、本発明の積層板の大きさを規定するわけではなく、反りの測定のために用いる積層板の大きさを規定しているにすぎない。
【0022】
本発明において、「積層板の反り」は、以下の方法で測定される。すなわち、成形プレスして得られた200×150mm、厚さ0.6mmの積層板、あるいは成形プレスして得られた積層板から切り出した200×150mm、厚さ0.6mmの積層板をエッチングにより片面の銅箔を除去し、25℃、4時間放置した後、図1に示すように積層板を平面台の上に置き、積層板と台との最長距離h(単位mm)を測定する。測定枚数は3枚で、平均値で示す。反りが10mm以下となる積層板が、以降の工程に好ましく使用される。
【0023】
なお、プリプレグを積層する場合、各プリプレグ間に、上記380℃で特定の粘度範囲を有する溶融フッ素樹脂を接着剤として用いてもよい。
【0024】
【作用】
本発明の積層板は、PTFEと銅箔との間に、380℃における溶融粘度が特定範囲のフッ素樹脂を特定の厚みで配置するので、このPTFE含浸プリプレグと銅箔の間を強固に接着するとともに、冷却の際の残留応力を吸収し、銅とフッ素樹脂との間の接着性を向上させると考えられる。従って、回路形成の際エッチング工程で銅箔が除去される、あるいは積層板の上下面の除去率が異なっても、積層板の上面、下面における残留応力のバランスが保たれ、反りの防止を抑制すると考えられる。
【0025】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこの実施例に限定されない。
【0026】
(実施例1)
株式会社有沢製作所製の厚さ0.185mm、秤量215g/mのガラスクロス(M7628−545 S−650)2枚を基材として用いた。これにPTFE(三井デュポンフロロケミカル(株)製3443 J)を62.4%(質量%)含浸させた。得られたPTFE含浸プリプレグに、溶融フッ素樹脂として、PFA(三井デュポンフロロケミカル(株)製334 J)を3.6%(質量%)含浸させた。得られたプリプレグのガラス布織糸の方向を揃えて、両側に厚さ18μmの銅箔((株)ジャパンエナジー製標準箔 JTC箔)を載せ、成形プレスした。
【0027】
成形プレスの条件は以下の通りである:
(i)温度条件:常温から385℃までを70分で昇温し、385℃で80分保持し、385℃から285℃までを、100分で冷却し、285℃から常温まで40分で冷却した;
(ii)成形面圧条件:昇温開始20後から、50kg/cmの面圧を負荷し、これを冷却終了まで継続した; および
(iii)真空度条件:昇温開始と同時に真空度を上昇させ、10分後に740mmHgとし、冷却終了まで継続した。
【0028】
この加圧成形プレスにより、銅箔とPTFEプリプレグとの間に約5μmのPFA層(溶融フッ素樹脂層)を有する、厚みが0.6mmの積層板を得た。
【0029】
(実施例2)
溶融フッ素樹脂として、FEP(三井デュポンフロロケミカル(株)製120J)を用いた以外は実施例1と同じ材料を用い、同じ加圧成形条件で、銅箔とPTFEプリプレグとの間に約5μmのFEP樹脂層(溶融フッ素樹脂層)を有する、厚みが0.6mmの積層板を得た。
【0030】
(実施例3)
PTFE樹脂を47.1%(質量%)含浸させたプリプレグを用い、溶融フッ素樹脂として、PFAを18.9%(質量%)含浸させた以外は実施例1と同じ材料を用い、同じ加圧成形条件で、銅箔とPTFEプリプレグとの間に約28μmのPFA樹脂層(溶融フッ素樹脂層)を有する、厚みが0.6mmの積層板を得た。
【0031】
(実施例4)
PTFE樹脂を57.5%(質量%)含浸させたプリプレグを用い、溶融フッ素樹脂として25μmの厚さのPFAシート(株式会社東レ製)を配置した以外は実施例1と同じ材料を用い、同じ加圧成形条件で、銅箔とPTFEプリプレグとの間に約25μmのPFA樹脂層(溶融フッ素樹脂層)を有する、厚みが0.6mmの積層板を得た。
【0032】
(実施例5)
PTFEプリプレグの布織糸方向を交差させて積層した以外は、実施例1と同様にして積層板を作成した。すなわち、PTFE樹脂を62.4%(質量%)含浸させたPTFE含浸プリプレグに、PFA樹脂を3.6%(質量%)含浸させた。得られたプリプレグのガラス布織糸の方向を交差させて、両側に厚さ18μmの銅箔を載せ、加圧成形することにより、銅箔とPTFEプリプレグとの間に約5μmのPFA樹脂層を有する、厚みが0.6mmの積層板を得た。
【0033】
(比較例1)
実施例1と同じ材料を用いて、溶融フッ素樹脂を使用しなかった点以外は実施例1と同様にして積層板を得た。すなわち、PTFE樹脂を66%(質量%)含浸させたプリプレグのガラス布織糸の方向を揃えて積層し、両側に銅箔を載せて実施例1と同じ条件で加圧成形を行い、銅箔とPTFEプリプレグが直接接着した(すなわち、溶融フッ素樹脂層が介在しない)、厚みが0.6mmの積層板を得た。
【0034】
(比較例2)
実施例1と同じ材料を用いて、PTFE樹脂を65.2%(質量%)含浸させたPTFEプリプレグを用い、溶融フッ素樹脂としてPFA樹脂を0.8%(質量%)含浸させた以外は実施例1と同じ加圧成形条件で、銅箔とPTFEプリプレグとの間に約1μmのPFA樹脂層(溶融フッ素樹脂層)を有する、厚みが0.6mmの積層板を得た。
【0035】
(比較例3)
PTFE樹脂を66%(質量%)含浸させたプリプレグのガラス布織糸の方向を交差させて積層した以外は比較例1と同様にして積層板を作成した。すなわち、得られたPTFEプリプレグのガラス布織糸の方向を交差させて積層し、両側に銅箔を載せて実施例1と同じ条件で加圧成形を行い、銅箔とPTFEプリプレグが直接接着した(すなわち、溶融フッ素樹脂層が介在しない)、厚みが0.6mmの積層板を得た。
【0036】
(参考例)
比較例1の銅箔の代りに、三井金属工業(株)製高温伸び箔3EC−THE箔、厚み18μmの銅箔を用い、実施例1と同じ条件で加圧成形した。
【0037】
実施例1〜5、比較例1〜3、および参考例の積層板を、それぞれ200×150mmに切り出し、塩化第2鉄溶液でエッチングを行い、片面の銅箔を除去し、25℃で4時間放置し、反り量を求めた。結果を表1に示す。
【0038】
【表1】

Figure 0003569197
【0039】
表1の結果は、本発明の方法で得られた積層板は、いずれも反りが10mm以下であり、高温伸び銅箔を用いるよりも反り防止効果が得られたことを示している。他方、溶融フッ素樹脂を用いない比較例1および比較例3、溶融フッ素樹脂の厚みが2μm未満の比較例2では、反りは改善されなかった。プリプレグのガラス布織糸方向を交差させた比較例3の積層板は、比較例1と比べて反りはわずかに小さくなるものの、やはり、反りは改善されていない。比較例1と3との相違は、プリプレグのガラス布織糸方向がそろっているか、交差しているかであるから、この差が反りの改善に寄与しているとは考えられない。
他方、比較例3と同様、プリプレグのガラス布織糸方向を交差させ、溶融フッ素樹脂層を有する実施例5の反りは改善されている。また、比較例1と同様、プリプレグのガラス布織糸方向をそろえ、溶融フッ素樹脂層を有する実施例1の反りも改善されている。このことから、プリプレグのガラス布織糸方向を交差させるか否かは積層板の反りの改善には寄与する度合いが少なく、積層板の反りの解消には、PTFEと銅箔の間に溶融フッ素樹脂を介在させること、すなわち、銅箔とPTFEの熱膨張率の差に起因する残留応力を解消することが本質的に必要であると知見される。
【0040】
(実施例6)
この実施例では、上記実施例と同じ材料を用いた。ガラスクロス2枚を基材とし、PTFEを62.4%含浸させ、これに、PFAを表2に記載された厚みとなるようにガラス布織糸方向をそろえて配置し、その上に表2に記載の厚みの銅箔を配置して、上記と同じ条件で加圧成形した。得られた積層板を200×150mmの大きさに切り出し、それぞれ、図2に模式図として示す1mmの幅で同心方状に銅箔が残るエッチングパターンを図3に示すように8個等分配置して形成した。図2および3において、破線は銅箔部が残存している部分である。このエッチングした積層板にPFAシートを配置し、さらに12μmの銅箔を配置して、再び同じ条件で加圧成形し、さらに最外層の銅箔をエッチング処理して全て除いた。
得られた積層板の回路のずれを、対角線にずれが生じるか否かで判断した。結果を表2に示す。表2中の数字は、回路にずれが生じなかった積層板の個数を表す。7個以上を合格とした。
【0041】
【表2】
Figure 0003569197
【0042】
表2の結果からわかるように、銅箔の厚みが18μmおよび36μmのとき、銅箔厚み以下のPFA層を有する積層板は、すべて、回路の反りを生じることがなかった。また、銅箔厚みが12μmの場合を含め、銅箔厚みの2倍以下の場合も、ほとんど回路にずれは生じなかった
【0043】
(実施例7)
PTFEを47.1%含浸させたプリプレグを用いた以外は、実施例6と同様に積層板を形成し、実施例6と同様に評価した。結果を表3に示す。
【0044】
【表3】
Figure 0003569197
【0045】
表3の結果も、実施例6と同様、銅箔厚みの2倍以下のPFA厚みでは、回路のずれはほとんど生じず、銅箔厚み以下では、回路のずれは全くなかった。
【0046】
【発明の効果】
本発明により、銅箔のエッチング除去による回路形成後においても反りが少ない積層板が得られた。この積層板は、反りが少ないため、電子部品の実装に支障をきたすこともなく、一様なレジスト膜を形成することも可能となるため、その後の回路形成工程がスムーズに進行し、製造効率の向上に大きく寄与するとともに、アンテナなどに使用する場合においても設計値を忠実に反映させることができる安定した電気特性を確保できる基板を提供できる。
【図面の簡単な説明】
【図1】積層板の反りを測定する方法を示す図である。
【図2】積層板の回路のずれを判定するためのエッチングパターンを示す図である。
【図3】回路のずれを判定するエッチングパターンが形成された積層板の模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a low dielectric loss tangent and low dielectric constant laminate used for equipment using high frequency radio waves, particularly equipment suitable for high frequencies of 1 GHz or more.
[0002]
[Prior art]
Fluororesin is a resin having a low dielectric loss tangent and a low dielectric constant, and is suitable for a substrate for high frequency use. Among them, PTFE (polytetrafluoroethylene) resin is most suitable for high-frequency applications, so it is impregnated into a woven fabric such as a glass substrate to form a prepreg, and the prepreg is laminated to form a copper foil on one or both surfaces. Are laminated to form a laminate.
[0003]
However, this laminate may be warped when heated and pressed, and methods for improving the warpage are being studied. For example, the fact that the difference in the tension (elongation) between the warp and the weft of the glass base material used for the laminated board remains even after the woven fabric is considered to be one cause of the warpage of the substrate, In addition, a laminate in which the warp of the outermost prepreg crosses the warp direction of another prepreg has been studied (Japanese Patent Laid-Open No. 8-148780).
[0004]
However, although this laminated plate is excellent in suppressing warpage during heating and pressurizing, it is warped again when metal foil is removed by etching or when a circuit is formed on the laminated plate. Changing the fiber orientation of the material alone is not always effective. Depending on the substrate, the amount of warpage reaches a value close to 20 mm. With such a substrate, it is difficult to mount electronic components such as a circuit, and a multilayer substrate in which a single-layer substrate or a double-sided substrate is sequentially laminated and bonded. On the substrate, the resist film for forming the circuit cannot be formed to a uniform thickness, which not only causes problems such as the inability to form a precise circuit, but also for high-frequency applications such as radar wave reception. In the case where the antenna is used for an antenna or the like, a problem relating to electrical characteristics that an effective reception area of a radio wave cannot be obtained as designed value also occurs.
[0005]
As a result of earnest studies by the present inventors, it was recognized that the cause of the warpage was a large difference in linear expansion coefficient between PTFE and the copper foil. That is, the melting point (or gelation temperature) of PTFE is extremely high, and a high-temperature heat bonding press step of about 380 ° C. is required to bond the copper foil and the PTFE resin. Because of its large expansion and contraction due to its linear expansion coefficient, the difference from the thermal expansion of the PTFE-impregnated prepreg or the PTFE laminate becomes large, and the PTFE-impregnated prepreg or the laminate using the same and the laminate and copper foil remain. Stress remains, and therefore, if the copper foil is removed in the etching step during circuit formation, or if the removal rates of the upper and lower surfaces of the laminate differ, the balance of the residual stress on the upper and lower surfaces of the laminate is lost, and warpage occurs. It was found to occur.
[0006]
In order to solve this, a resin having a linear expansion coefficient close to that of copper may be impregnated and used in the prepreg, but a fluororesin having a linear expansion coefficient similar to that of a metal foil is not known at present. Therefore, there is no possibility that the occurrence of warpage can be effectively prevented.
[0007]
A method of preventing warpage by increasing the thickness of the substrate is also conceivable. However, this method requires a natural logarithmic multiple times the area of the substrate to obtain the same impedance. There is a problem that cannot be reduced in size.
[0008]
Furthermore, as a method of suppressing warpage, a method using a copper foil referred to as a high-temperature stretched foil is conceivable. However, since a high-temperature stretched foil is two to three times as expensive as a commonly used copper foil, it is employed in terms of cost. It is hard to be done.
[0009]
[Problems to be solved by the invention]
Therefore, there is a demand for a laminate having a small warpage even when a circuit is formed by etching a copper foil, and a method of manufacturing the laminate.
[0010]
[Means for Solving the Problems]
The present invention, on both sides of the outermost layer of one or two or more prepregs obtained by impregnating the PTFE resin has a copper foil, the viscosity during melt between the prepreg and the copper foil 10 7 poise or less Wherein the molten fluororesin is disposed at a thickness of 2 μm to twice or less the thickness of the copper foil.
[0011]
In a preferred embodiment, the thickness of the molten fluororesin layer is equal to or less than the thickness of the copper foil.
[0012]
In a preferred embodiment, the molten fluororesin is selected from the group consisting of PFA, FEP, ETFE, PVDF, ECTFE, PCTFE, PVF or a mixture thereof.
[0013]
The present invention further viscosity during melting or during gelation on both sides of the outermost layer of one or two or more prepregs obtained by impregnating the PTFE resin is placed 10 7 poise or less of the melting fluorine resin, the molten After arranging the copper foil on the fluororesin, under a pressure of a reduced pressure atmosphere, a temperature raising step of raising the temperature from room temperature to a molding temperature slightly higher than the melting point of the PTFE resin, and holding the molding temperature for a predetermined time, A first temperature lowering step for slowly lowering the temperature from the temperature to the temperature before the start of melting of PTFE, and a second temperature lowering step for slightly cooling the temperature from the temperature before the start of melting of the PTFE to normal temperature. The present invention relates to a method for manufacturing a laminated board, which comprises performing pressure molding so as to have a thickness of 2 μm to twice or less the thickness of the copper foil.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The prepreg used in the present invention is not particularly limited as long as it is a prepreg impregnated with PTFE, but in order to obtain strength and a preferable dielectric tangent, prepreg in which PTFE is impregnated into a woven fabric such as glass fiber may be used. preferable.
[0015]
The laminated board of the present invention may be a single-layer board or a double-sided board that forms a circuit on the upper surface, the lower surface, or one of them, or may be a multilayer board in which one or more inner-layer circuits are laminated. Copper foil is bonded to both surfaces of the outermost layer of the laminate. The thickness of the copper foil used is not particularly limited, but a commonly used thickness of 18 μm to 36 μm is preferably used.
[0016]
In the present invention, arranged as a coating layer or a resin sheet with a viscosity of 10 7 poise or less of the melting fluorine resin during melt prepreg between the prepreg and the copper foil, copper foil thickness of the molten fluororesin layer is from 2μm It is characterized in that pressure molding is performed so as to have a thickness of twice or less the thickness. The molten fluororesin used in the present invention refers to a fluorine-containing resin that melts at 380 ° C. or lower. The melt fluororesin, may be any fluoroplastic long 10 7 poise or less viscosity at the time of melting. For example, PFA (tetrafluoroethylene perproloalkyl vinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), ETFE (ethylene-tetrafluoroethylene copolymer), PVDF (polyvinylidene fluoride), ECTFE (ethylene chlorotrifluoroethylene), PCTFE (polychlorinate trifluoroethylene), PVF (polyvinyl fluoride) and the like. These resins may be used alone, also viscosity during even a mixed molten resin is not more 10 7 poise or less is preferably used. Preferred viscosity at the time of melting is 10 3 or more, preferably 107 to 3 poise, more preferably 105 to 3 poise, more preferably 105 to 4 poise.
[0017]
The molten fluororesin is located between the copper foil and the prepreg, and is pressure-formed so that the thickness of the molten fluororesin layer is from 2 μm to twice or less the thickness of the copper foil. If it is less than 2 μm, a sufficient adhesive effect cannot be obtained, and the warpage becomes large. If the thickness exceeds twice the thickness of the copper foil, the molten fluororesin layer melts during the pressure molding of the multilayer circuit board, so that a so-called swimming phenomenon may occur and the copper foil forming the inner layer circuit may shift with the flow of the molten fluororesin. Is not preferred. In particular, considering the case of forming a multilayer circuit board, the thickness of the molten fluororesin layer is more preferably equal to or less than the thickness of the copper foil.
[0018]
The pressing conditions are not particularly limited, and a method generally used by those skilled in the art when bonding a copper foil to a prepreg may be used, but the following method is preferably used. That is, under the pressure of a reduced-pressure atmosphere, first, the temperature is raised from room temperature to a molding temperature slightly higher than the melting point of the PTFE resin, and then the molding temperature is maintained for a predetermined time. The cooling is preferably performed in two stages of the first and second cooling processes. The first temperature lowering step is a step of slowly lowering the temperature from the molding temperature to the temperature before the start of melting of PTFE, and the second temperature lowering step is a step of slightly cooling the temperature from the temperature before the start of melting of PTFE to the normal temperature.
[0019]
Specifically, for example,
(I) Temperature condition: The temperature is raised from room temperature to 385 ° C., which is higher than the melting temperature of PCTF, in 60 to 90 minutes, held at 385 ° C. for 60 to 90 minutes, and maintained at 385 ° C. before the start of PTFE melting. Cooling to a certain 285 ° C. in 80-120 minutes and cooling from 285 ° C. to room temperature in 20-60 minutes;
(Ii) Surface pressure for molding: 10 to 30 minutes after the start of temperature rise, a surface pressure of 10 to 70 Kg / cm 2 is applied, and this is continued until the end of cooling; and (iii) vacuum condition: Start of temperature rise At the same time, the degree of vacuum is increased to 700 to 750 mmHg after 5 to 20 minutes and continued until the end of cooling;
Is preferred.
[0020]
By applying pressure under such pressurizing conditions, a laminated board which has a small warpage and a small circuit shift when etched is provided. In particular, in the case of a multilayer circuit board or a laminated board with a small circuit line width, which requires precise pressing, circuit misalignment and warping can cause conduction failure and circuit disconnection, and become fatal defects. Laminates without warpage or circuit displacement are particularly useful. If the warpage in the present invention is 10 mm or less, a precise multilayer circuit can be formed.
[0021]
The term “warpage of the laminate” as used in the present invention means the warpage when the copper foil is removed by etching the entire surface of one side of the laminate having a size of 200 × 150 mm and a thickness of 0.6 mm. The “laminate having a size of 200 × 150 mm” does not specify the size of the laminate of the present invention, but merely defines the size of the laminate used for measuring the warpage. .
[0022]
In the present invention, the “warpage of the laminate” is measured by the following method. That is, a 200 × 150 mm, 0.6 mm thick laminated plate obtained by molding press, or a 200 × 150 mm, 0.6 mm thick laminated plate cut from a laminated plate obtained by molding press is etched. After the copper foil on one side is removed and left at 25 ° C. for 4 hours, the laminate is placed on a flat table as shown in FIG. 1, and the longest distance h (unit: mm) between the laminate and the table is measured. The number of sheets measured is three, and the average value is shown. A laminate having a warpage of 10 mm or less is preferably used in the subsequent steps.
[0023]
When prepregs are laminated, a molten fluororesin having a specific viscosity range at 380 ° C. may be used as an adhesive between the prepregs.
[0024]
[Action]
In the laminate of the present invention, a fluorine resin having a melt viscosity at 380 ° C. in a specific range is disposed at a specific thickness between the PTFE and the copper foil, so that the PTFE-impregnated prepreg and the copper foil are firmly bonded to each other. At the same time, it is considered that the residual stress at the time of cooling is absorbed and the adhesiveness between copper and the fluororesin is improved. Therefore, even if the copper foil is removed in the etching step during circuit formation, or the removal rates of the upper and lower surfaces of the laminate are different, the balance of the residual stress on the upper and lower surfaces of the laminate is maintained, and the prevention of warpage is suppressed. It is thought that.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0026]
(Example 1)
Two glass cloths (M7628-545 S-650) having a thickness of 185 g / m 2 and a thickness of 0.185 mm manufactured by Arisawa Seisakusho Co., Ltd. were used as the base material. This was impregnated with 62.4% (mass%) of PTFE (3443 J manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd.). The obtained PTFE-impregnated prepreg was impregnated with PFA (334 J, manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd.) as a molten fluororesin at 3.6% (mass%). An 18 μm-thick copper foil (a standard foil JTC foil manufactured by Japan Energy Co., Ltd.) was placed on both sides of the obtained prepreg with the directions of the glass cloth yarns aligned, and formed and pressed.
[0027]
The conditions of the forming press are as follows:
(I) Temperature condition: the temperature is raised from room temperature to 385 ° C. in 70 minutes, held at 385 ° C. for 80 minutes, cooled from 385 ° C. to 285 ° C. in 100 minutes, and cooled from 285 ° C. to room temperature in 40 minutes. did;
(Ii) Molding surface pressure condition: A surface pressure of 50 kg / cm 2 was applied from 20 after the start of temperature rise, and this was continued until the end of cooling; and (iii) vacuum degree condition: The degree of vacuum was simultaneously increased with the start of temperature rise. The temperature was raised to 740 mmHg after 10 minutes and continued until the cooling was completed.
[0028]
By this press forming press, a laminate having a thickness of 0.6 mm having a PFA layer (molten fluororesin layer) of about 5 μm between the copper foil and the PTFE prepreg was obtained.
[0029]
(Example 2)
The same material as in Example 1 was used as the molten fluororesin except that FEP (120J manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd.) was used. Under the same pressure molding conditions, a gap of about 5 μm was formed between the copper foil and the PTFE prepreg. A laminate having an FEP resin layer (molten fluororesin layer) and a thickness of 0.6 mm was obtained.
[0030]
(Example 3)
A prepreg impregnated with 47.1% (% by mass) of PTFE resin was used, and the same material as in Example 1 was used, except that 18.9% (% by mass) of PFA was impregnated as a molten fluorine resin. Under the molding conditions, a laminate having a thickness of 0.6 mm having a PFA resin layer (molten fluororesin layer) of about 28 μm between the copper foil and the PTFE prepreg was obtained.
[0031]
(Example 4)
A prepreg impregnated with 57.5% (mass%) of a PTFE resin was used, and the same material as in Example 1 was used except that a PFA sheet (manufactured by Toray Industries, Inc.) having a thickness of 25 μm was arranged as a molten fluorine resin. Under pressure molding conditions, a laminate having a thickness of 0.6 mm having a PFA resin layer (molten fluororesin layer) of about 25 μm between the copper foil and the PTFE prepreg was obtained.
[0032]
(Example 5)
A laminated board was prepared in the same manner as in Example 1 except that the PTFE prepregs were laminated with the cloth yarn directions crossed. That is, the PTFE-impregnated prepreg impregnated with 62.4% (% by mass) of the PTFE resin was impregnated with 3.6% (% by mass) of the PFA resin. The direction of the glass cloth yarn of the obtained prepreg was crossed, and a copper foil having a thickness of 18 μm was placed on both sides and pressed to form a PFA resin layer of about 5 μm between the copper foil and the PTFE prepreg. Thus, a laminate having a thickness of 0.6 mm was obtained.
[0033]
(Comparative Example 1)
A laminate was obtained using the same materials as in Example 1, except that no molten fluororesin was used. That is, prepreg impregnated with 66% (mass%) of PTFE resin is laminated with the direction of the glass cloth woven yarn aligned, and copper foil is placed on both sides and pressure-molded under the same conditions as in Example 1 to obtain a copper foil. And a PTFE prepreg were directly adhered (that is, a molten fluororesin layer was not interposed), and a laminate having a thickness of 0.6 mm was obtained.
[0034]
(Comparative Example 2)
Using the same material as in Example 1, a PTFE prepreg impregnated with 65.2% (% by mass) of PTFE resin was used, and the same procedure was performed except that 0.8% (% by mass) of PFA resin was impregnated as a molten fluororesin. Under the same pressure molding conditions as in Example 1, a laminate having a thickness of 0.6 mm having a PFA resin layer (molten fluororesin layer) of about 1 μm between the copper foil and the PTFE prepreg was obtained.
[0035]
(Comparative Example 3)
A laminated board was prepared in the same manner as in Comparative Example 1, except that the prepreg impregnated with 66% (mass%) of PTFE resin was laminated so that the directions of the glass cloth yarns were crossed. That is, the obtained PTFE prepregs were laminated with the directions of the glass cloth yarns intersecting with each other, copper foil was placed on both sides, and pressure molding was performed under the same conditions as in Example 1, and the copper foil and the PTFE prepreg were directly bonded. A laminate having a thickness of 0.6 mm was obtained (that is, no molten fluororesin layer was interposed).
[0036]
(Reference example)
Instead of the copper foil of Comparative Example 1, a high-temperature stretched foil 3EC-THE foil manufactured by Mitsui Kinzoku Kogyo KK and a copper foil having a thickness of 18 μm were pressed and formed under the same conditions as in Example 1.
[0037]
The laminated boards of Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example were cut into 200 × 150 mm, respectively, and etched with a ferric chloride solution to remove a copper foil on one side, and then at 25 ° C. for 4 hours. It was left and the amount of warpage was determined. Table 1 shows the results.
[0038]
[Table 1]
Figure 0003569197
[0039]
The results in Table 1 show that the laminates obtained by the method of the present invention each had a warpage of 10 mm or less, and that a higher warp prevention effect was obtained than when a high-temperature stretched copper foil was used. On the other hand, in Comparative Examples 1 and 3 where no molten fluororesin was used, and in Comparative Example 2 where the thickness of the molten fluororesin was less than 2 μm, the warpage was not improved. The laminate of Comparative Example 3 in which the directions of the glass cloth yarns of the prepreg were intersected was slightly smaller than that of Comparative Example 1, but the warp was not improved. The difference between Comparative Examples 1 and 3 is whether the glass cloth yarn direction of the prepreg is uniform or intersects. Therefore, it is not considered that this difference contributes to the improvement of the warpage.
On the other hand, as in Comparative Example 3, the direction of the glass cloth yarn of the prepreg was crossed, and the warpage of Example 5 having the molten fluororesin layer was improved. Further, similarly to Comparative Example 1, the direction of the glass cloth yarn of the prepreg was aligned, and the warpage of Example 1 having the molten fluororesin layer was also improved. Therefore, whether or not the direction of the glass cloth yarn of the prepreg intersects little contributes to the improvement of the warpage of the laminate, and to eliminate the warp of the laminate, the molten fluorine is used between the PTFE and the copper foil. It is found that it is essentially necessary to interpose a resin, that is, to eliminate the residual stress caused by the difference in the coefficient of thermal expansion between the copper foil and PTFE.
[0040]
(Example 6)
In this example, the same material as in the above example was used. Two glass cloths were used as a base material, impregnated with 62.4% of PTFE, and PFA was arranged on the glass cloth so as to have the thickness shown in Table 2 in the same direction as the glass cloth yarn. Was placed under pressure and molded under the same conditions as above. The obtained laminated board is cut into a size of 200 × 150 mm, and each of the etching patterns is concentrically provided with a copper foil having a width of 1 mm as schematically shown in FIG. 2 and eight equally arranged as shown in FIG. Formed. In FIGS. 2 and 3, the dashed line is the portion where the copper foil portion remains. A PFA sheet was placed on the etched laminate, a copper foil of 12 μm was further placed, pressure molding was performed again under the same conditions, and the outermost copper foil was removed by etching.
The shift of the circuit of the obtained laminated board was determined based on whether or not a shift occurred in the diagonal line. Table 2 shows the results. The numbers in Table 2 represent the number of laminated boards in which no shift occurred in the circuit. Seven or more pieces were accepted.
[0041]
[Table 2]
Figure 0003569197
[0042]
As can be seen from the results in Table 2, when the thickness of the copper foil was 18 μm and 36 μm, all the laminates having a PFA layer having a thickness equal to or less than the copper foil thickness did not cause circuit warpage. In addition, even when the thickness of the copper foil was 12 μm or less, even when the thickness of the copper foil was twice or less, there was almost no deviation in the circuit.
(Example 7)
A laminate was formed in the same manner as in Example 6, except that a prepreg impregnated with 47.1% of PTFE was used, and evaluated in the same manner as in Example 6. Table 3 shows the results.
[0044]
[Table 3]
Figure 0003569197
[0045]
Also in the results of Table 3, as in the case of Example 6, there was almost no circuit displacement when the PFA thickness was twice or less the copper foil thickness, and no circuit displacement occurred below the copper foil thickness.
[0046]
【The invention's effect】
According to the present invention, a laminate having less warpage even after a circuit is formed by etching and removing a copper foil was obtained. Since the laminated board has a small warpage, it does not hinder the mounting of electronic components, and it is possible to form a uniform resist film. It is possible to provide a substrate which can greatly contribute to improvement of the performance and can secure stable electric characteristics capable of faithfully reflecting design values even when used for an antenna or the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for measuring the warpage of a laminated plate.
FIG. 2 is a diagram showing an etching pattern for determining a shift of a circuit of a laminated board.
FIG. 3 is a schematic view of a laminated plate on which an etching pattern for determining a circuit shift is formed.

Claims (3)

PTFE樹脂を含浸してなる1枚または2枚以上のプリプレグの最外層の両面に380℃における粘度が10ポワズ以下の溶融フッ素樹脂を配置し、該溶融フッ素樹脂上に銅箔を配置した後、減圧雰囲気の圧力下において、常温から前記PTFE樹脂の融点より高い成形温度まで温度を上昇させる昇温工程と、該成形温度を所定時間保持する工程と、該成形温度からPTFEの溶融開始前温度まで温度を降下させる第1降温工程と、該PTFEの溶融開始前温度から常温まで冷却する第2降温工程とを有し、該溶融フッ素樹脂が2μmから該銅箔厚みの2倍以下の厚みとなるように加圧成形すること、および該第1降温工程に要する時間を第2降温工程に要する時間よりも長くすることを特徴とする、積層板の製造方法。The one or viscosity at 380 ° C. on both sides of the outermost layer of two or more prepreg 10 7 poise or less of the molten fluororesin obtained by impregnating the PTFE resin is disposed, after placing the foil onto the molten fluororesin A temperature raising step of raising the temperature from normal temperature to a molding temperature higher than the melting point of the PTFE resin under the pressure of the reduced pressure atmosphere; a step of maintaining the molding temperature for a predetermined time; and a temperature before the start of melting of the PTFE from the molding temperature. A first temperature lowering step of lowering the temperature of the PTFE from a temperature before the start of melting of the PTFE to a second temperature lowering step of cooling the same to a room temperature, wherein the molten fluororesin has a thickness of 2 μm to twice or less the thickness of the copper foil. A method for producing a laminated board, wherein pressure molding is performed so that the time required for the first temperature lowering step is longer than the time required for the second temperature lowering step . 前記加圧成形により得られる積層板の溶融フッ素樹脂層の厚みが銅箔の厚み以下である、請求項1に記載の製造方法。The manufacturing method according to claim 1, wherein the thickness of the molten fluororesin layer of the laminate obtained by the pressure molding is equal to or less than the thickness of the copper foil. 前記溶融フッ素樹脂が、PFA、FEP、ETFE、PVDF、ECTFE、PCTFE、およびPVFからなる群より選択される少なくとも1種である、請求項1または2に記載の製造方法。 3. The method according to claim 1, wherein the molten fluororesin is at least one selected from the group consisting of PFA, FEP, ETFE, PVDF, ECTFE, PCTFE, and PVF. 4.
JP2000148439A 2000-05-19 2000-05-19 Laminated plate and method of manufacturing the same Expired - Fee Related JP3569197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148439A JP3569197B2 (en) 2000-05-19 2000-05-19 Laminated plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148439A JP3569197B2 (en) 2000-05-19 2000-05-19 Laminated plate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001328205A JP2001328205A (en) 2001-11-27
JP3569197B2 true JP3569197B2 (en) 2004-09-22

Family

ID=18654462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148439A Expired - Fee Related JP3569197B2 (en) 2000-05-19 2000-05-19 Laminated plate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3569197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903127B2 (en) * 2020-10-26 2024-02-13 Nan Ya Plastics Corporation Fluoride-based resin prepreg and circuit substrate using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273630A (en) * 2002-03-13 2003-09-26 Daikin Ind Ltd Antenna element
EP3339016A4 (en) * 2015-08-20 2019-05-01 AGC Inc. Multilayer base and method for producing molded body of same
CN108859326B (en) * 2018-06-07 2021-01-05 南京大学 Copper-clad method of PTFE (polytetrafluoroethylene) -based PCB (printed Circuit Board) copper-clad plate
TWI680871B (en) * 2018-09-27 2020-01-01 南亞塑膠工業股份有限公司 Fluorine resin composition, prepreg and copper foil substrate using the composition
US10889741B2 (en) 2018-11-28 2021-01-12 Nan Ya Plastics Corporation Fluorocarbon resin composition and prepreg and copper foil substrate using the same
CN109849477A (en) * 2019-02-22 2019-06-07 昆山华阳新材料股份有限公司 Composite material with electro-magnetic screen function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216742A (en) * 1986-03-19 1987-09-24 日立化成工業株式会社 Manufacture of aluminum-core copper lined laminated plate
JPS63173638A (en) * 1987-01-14 1988-07-18 松下電工株式会社 Laminated board
JPS63199636A (en) * 1987-02-14 1988-08-18 松下電工株式会社 Laminated board
JPH0379343A (en) * 1989-08-23 1991-04-04 Fujikura Ltd Metal-foiled laminated sheet and preparation thereof
JP2548879Y2 (en) * 1991-08-14 1997-09-24 中興化成工業株式会社 Laminated materials for printed wiring boards
JPH05138741A (en) * 1991-11-19 1993-06-08 Nitto Denko Corp Adhesive sheet for printed circuit board and board using the same
JPH0818403B2 (en) * 1993-06-03 1996-02-28 日本ピラー工業株式会社 Laminates and green composite films for laminates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903127B2 (en) * 2020-10-26 2024-02-13 Nan Ya Plastics Corporation Fluoride-based resin prepreg and circuit substrate using the same

Also Published As

Publication number Publication date
JP2001328205A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
KR100963180B1 (en) Copper-clad laminate, printed-wiring boards, multilayer printed-wiring boards, and method for manufacturing the same
KR101339537B1 (en) Fluoropolymer-glass fabric for circuit substrates
US8997340B2 (en) Method of manufacturing and insulating sheet
US6783841B2 (en) Low signal loss bonding ply for multilayer circuit boards
US7572500B2 (en) Method of manufacturing circuit-forming board and material of circuit-forming board
KR100502179B1 (en) Preparation of Metal Clad Laminate for Printed Circuit Board
US20080311358A1 (en) Fluorine Resin Laminated Substrate
JP3569197B2 (en) Laminated plate and method of manufacturing the same
JP6364184B2 (en) Printed wiring board
JP2004349654A (en) Copper foil with insulator layer, its manufacturing method, and multilayer printed circuit board using it
EP1487245B1 (en) Manufacturing method for a circuit board
JP2783359B2 (en) Fluororesin multilayer circuit board
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JP2001203453A (en) Manufacturing method for multilayer laminated board
JP2008177243A (en) Manufaturing method for multilayer printed board
JP2000286560A (en) Multilayer fluororesin substrate and its manufacture
JP2022186605A (en) laminate
JP2021104624A (en) Laminate plate
JP2002158415A (en) Printed wiring board
JPH0748460A (en) Laminated sheet
JPH03126547A (en) Manufacture of laminated board
JP2001150432A (en) Prepreg, method of manufacturing the same and method of manufacturing laminated sheet
JPH03155936A (en) Manufacture of laminated sheet
JPH03155935A (en) Manufacture of laminated sheet
JPS62173236A (en) Manufacture of multi-layer plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees