JP4089671B2 - Circuit forming substrate manufacturing method and circuit forming substrate - Google Patents

Circuit forming substrate manufacturing method and circuit forming substrate Download PDF

Info

Publication number
JP4089671B2
JP4089671B2 JP2004269598A JP2004269598A JP4089671B2 JP 4089671 B2 JP4089671 B2 JP 4089671B2 JP 2004269598 A JP2004269598 A JP 2004269598A JP 2004269598 A JP2004269598 A JP 2004269598A JP 4089671 B2 JP4089671 B2 JP 4089671B2
Authority
JP
Japan
Prior art keywords
substrate material
substrate
thickness
stage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004269598A
Other languages
Japanese (ja)
Other versions
JP2005005734A (en
Inventor
利浩 西井
康晴 福井
清秀 辰巳
嘉洋 川北
眞治 中村
英明 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004269598A priority Critical patent/JP4089671B2/en
Publication of JP2005005734A publication Critical patent/JP2005005734A/en
Application granted granted Critical
Publication of JP4089671B2 publication Critical patent/JP4089671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、各種電子機器に利用される回路形成基板の製造方法および回路形成基板に関する。   The present invention relates to a method for manufacturing a circuit forming substrate and a circuit forming substrate used in various electronic devices.

近年の電子機器の小型化・高密度化に伴って、電子部品を搭載する回路形成基板も従来の片面基板から両面、多層基板の採用が進み、より多くの回路および部品を基板上に集積可能な高密度基板が開発されている(たとえば、日刊工業新聞社発行の「表面実装技術」1997年1月号、高木清著;“目覚ましいビルドアップ多層PWBの開発動向”)。   As electronic devices have become smaller and more dense in recent years, more and more circuits and components can be integrated on a circuit-forming board on which electronic components are mounted, instead of the conventional single-sided board. High-density substrates have been developed (for example, “Surface mount technology” published by Nikkan Kogyo Shimbun, January 1997 issue, Kiyoshi Takagi; “Remarkable development trend of build-up multilayer PWB”).

従来例について図を用いて以下に説明する。   A conventional example will be described below with reference to the drawings.

図3(A)に示す基板材料1は回路形成基板に用いられる補強材としてのガラス繊維織布に熱硬化性のエポキシ樹脂等を含浸しBステージ状態としたいわゆるプリプレグである。基板材料1には熱ロール等を用いたラミネート法によりフィルム2を両面に張り付ける。   A substrate material 1 shown in FIG. 3A is a so-called prepreg in which a glass fiber woven fabric as a reinforcing material used for a circuit forming substrate is impregnated with a thermosetting epoxy resin or the like to be in a B-stage state. A film 2 is attached to both surfaces of the substrate material 1 by a laminating method using a hot roll or the like.

次に、図3(B)に示すようにレーザ等の加工法により基板材料1にビア穴3を形成した後に銅粉等の導電性粒子と熱硬化性樹脂、硬化剤、溶剤などを混練しペースト状にした導電性ペースト4を充填して図3(C)に示す構成を得る。   Next, as shown in FIG. 3B, via holes 3 are formed in the substrate material 1 by a processing method such as laser, and then conductive particles such as copper powder and a thermosetting resin, a curing agent, a solvent, and the like are kneaded. The conductive paste 4 made into a paste is filled to obtain the configuration shown in FIG.

その後にフィルム2を剥離することで図3(D)に示すような導電性ペースト4が突出した形状を得て、その両側に銅箔5を配置して熱プレス装置(図示せず)によって加熱加圧することで図3(E)に示すように基板材料1は熱硬化し、導電性ペースト4は圧縮されて表裏の銅箔5が電気的に接続される。その際に、基板材料1中の含浸されたエポキシ樹脂は流動し外側に流出し流れ出し部6を形成する。   Thereafter, the film 2 is peeled to obtain a shape in which the conductive paste 4 protrudes as shown in FIG. 3D, and copper foils 5 are arranged on both sides thereof and heated by a hot press device (not shown). By applying pressure, the substrate material 1 is thermally cured as shown in FIG. 3E, the conductive paste 4 is compressed, and the copper foils 5 on the front and back sides are electrically connected. At that time, the impregnated epoxy resin in the substrate material 1 flows and flows out to form a flow-out portion 6.

その後に端部の余分な部分を切り落として図3(F)のような形状とし、さらにエッチングなどの方法で銅箔5を所望のパターンに加工して回路7とし、図3(G)に示すような両面の回路形成基板を得る。
高木清、“目覚ましいビルドアップ多層PWBの開発動向”、「表面実装技術」1月号、日刊工業新聞社、1997年
Thereafter, excess portions at the ends are cut off to form the shape as shown in FIG. 3F, and the copper foil 5 is processed into a desired pattern by a method such as etching to form a circuit 7, which is shown in FIG. 3G. Such a double-sided circuit-formed substrate is obtained.
Kiyoshi Takagi, “Development Trend of Remarkable Build-up Multilayer PWB”, “Surface Mount Technology” January issue, Nikkan Kogyo Shimbun, 1997

しかしながら、上記のような回路形成基板の製造法では、導電性ペーストによる回路形成基板の表裏の回路、また、多層回路形成基板の場合には表層と内層の回路についての電気的接続が不安定なものになる場合がある。   However, in the method of manufacturing a circuit forming substrate as described above, the electrical connection between the front and back circuits of the circuit forming substrate using a conductive paste, or the surface layer and inner layer circuits is unstable in the case of a multilayer circuit forming substrate. It may become a thing.

その原因を調べるため、発明者が実験試作あるいは製作した回路形成基板の解析を実施した結果、上記の接続不良の原因は接続図3(E)に示すような導電性ペースト4中の導電性粒子がビア穴3の穴径から外部に流れ出す流出粒子8の発生等によることを確認した。   In order to investigate the cause, the inventor conducted an experimental trial or analysis of the circuit-formed substrate produced, and as a result, the cause of the above-mentioned connection failure is the conductive particles in the conductive paste 4 as shown in the connection diagram 3E. It was confirmed that this is due to the generation of outflow particles 8 flowing out from the diameter of the via hole 3.

すなわち、理想的な電気的接続の実現には導電性ペースト4は図中上下方向に圧縮され、効率的に導電性ペースト中の導電性粒子同士が強固に接触し、銅箔5とも強固に接触する必要がある。   That is, in order to realize an ideal electrical connection, the conductive paste 4 is compressed in the vertical direction in the figure, and the conductive particles in the conductive paste efficiently contact each other and the copper foil 5 also contacts firmly. There is a need to.

しかしながら、図3(D)から3(E)に至る工程中で流れ出し部6が形成されることでも解るように、基板材料1中の熱硬化性樹脂は加熱圧縮時に外側の開放端に向かって流動する。その際に、流動した熱硬化性樹脂により導電性ペースト4中の導電性粒子が図中の横方向に押し流される現象を起こす。その結果、効率的な導電性ペースト4の圧縮が行われず、導電性ペースト4による電気的接続は不安定なものとなってしまう。   However, as can be seen from the fact that the flow-out portion 6 is formed in the process from FIG. 3D to 3E, the thermosetting resin in the substrate material 1 is directed toward the outer open end during heat compression. To flow. At that time, the flowing thermosetting resin causes a phenomenon that the conductive particles in the conductive paste 4 are washed away in the horizontal direction in the figure. As a result, efficient compression of the conductive paste 4 is not performed, and the electrical connection by the conductive paste 4 becomes unstable.

以上の説明では、ガラス織布と熱硬化性樹脂を用いた基板材料の場合を述べたが、ガラス以外の無機繊維あるいはアラミド等の有機繊維や、織布以外の不織布の補強材を用いた場合でも同様の接続不良現象は確認できた。   In the above description, the case of the substrate material using the glass woven fabric and the thermosetting resin has been described, but the case of using the inorganic fiber other than glass or the organic fiber such as aramid or the non-woven fabric reinforcing material other than the woven fabric. However, the same connection failure phenomenon was confirmed.

特に、織布を用いた場合には織布を用いた構成による流動抵抗の小ささにより、上述した熱硬化性樹脂の流動は顕著なものとなり、導電性ペーストによる電気的接続の実現は困難であった。   In particular, when a woven fabric is used, the flow of the thermosetting resin described above becomes remarkable due to the small flow resistance due to the configuration using the woven fabric, and it is difficult to realize the electrical connection with the conductive paste. there were.

発明者は、種々の実験を繰り返し実施し、電気的接続の不十分なビア穴部周辺を解析した結果、図3(E)に示すような流出粒子8は基板材料1の表面側に多く観察されることを見いだした。さらに、その発生原因を考察し次に述べるような結論を得た。   The inventor repeatedly conducted various experiments and analyzed the periphery of the via hole portion with insufficient electrical connection. As a result, many outflow particles 8 as shown in FIG. 3E were observed on the surface side of the substrate material 1. I found out that Furthermore, the cause of the occurrence was examined and the following conclusions were obtained.

基板材料としてガラス繊維織布を用いたプリプレグを使用する場合において、基板材料は図4に示すような断面形状を有する。すなわち、基板材料1はガラス繊維織布9にワニス状のエポキシ樹脂等の熱硬化性樹脂を含浸樹脂10として含浸し、所望の厚みになるようロール等で含浸樹脂10の厚みを調節した後に、乾燥してBステージ化する工程により製造する。   When a prepreg using a glass fiber woven fabric is used as the substrate material, the substrate material has a cross-sectional shape as shown in FIG. That is, the substrate material 1 is impregnated with a glass fiber woven fabric 9 as a impregnating resin 10 with a thermosetting resin such as a varnish-like epoxy resin, and after adjusting the thickness of the impregnating resin 10 with a roll or the like so as to have a desired thickness, Manufactured by a process of drying and B-stage.

従って、初期のガラス繊維織布9の厚みに対して、その表面に形成された含浸樹脂10の層の厚みが加わったものが基板材料1の厚みとなる。表面に形成された含浸樹脂10の層は前述した回路形成基板の製造工程中の熱プレス工程において激しく流動する。そのため基板材料1の表面付近に流出粒子8が多く発生する結果、導電ペースト4による層間の接続が不十分なものとなる。   Accordingly, the thickness of the substrate material 1 is obtained by adding the thickness of the impregnating resin 10 formed on the surface to the initial thickness of the glass fiber woven fabric 9. The layer of the impregnating resin 10 formed on the surface flows violently in the hot pressing step in the circuit forming substrate manufacturing process described above. Therefore, many outflow particles 8 are generated in the vicinity of the surface of the substrate material 1, and as a result, the connection between the layers by the conductive paste 4 becomes insufficient.

通常のプリプレグを基板材料として用いた回路形成基板では熱プレスによりプリプレグを完全硬化させ、すなわちCステージ化した後にドリル等を用いて穴加工を実施し、銅等の金属をめっきすることで層間の接続をとるので上記したような問題は発生しない。   In a circuit-formed substrate using a normal prepreg as a substrate material, the prepreg is completely cured by hot pressing, that is, after forming a C-stage, drilling is performed using a drill or the like, and a metal such as copper is plated between layers. Since the connection is established, the above-mentioned problem does not occur.

近年、高密度回路形成基板では導電性物質すなわち導電性ペースト等をBステージ状態の基板材料中に形成したビア穴に充填して層間接続手段とするという工法が開発され、そのような工法にて回路形成基板を製造する際に上記のような問題が顕在化してきた。   In recent years, a method of filling a via hole formed in a substrate material in a B-stage state with a conductive substance, that is, a conductive paste has been developed for a high-density circuit forming substrate to form an interlayer connection means. The above problems have become apparent when manufacturing circuit-formed substrates.

回路形成基板としては、層間の絶縁層には種々の厚みが設計上要求されるが、プリプレグに使用する補強材の厚みの種類は限られており、図4で示した含浸樹脂10の層の厚みが比較的厚い基板材料も多く用いられているのが現状である。   As the circuit forming substrate, various thicknesses are required for the insulating layer between the layers, but the types of the thickness of the reinforcing material used for the prepreg are limited, and the layer of the impregnating resin 10 shown in FIG. At present, a relatively thick substrate material is also used.

以上述べたような従来の問題点を発明者は多くの実験結果および試作サンプルの解析等から基板材料の表面付近すなわち補強材の上下に存在する含浸樹脂が主体となる部分の厚さと、含浸樹脂が補強材と一体となっている基板材料の中心部分の厚さとを適切な比率に保つことが重要であることを見い出した。すなわち前記比率が不適切な場合に基板材料の表面付近において導電性粒子等の層間接続手段が熱プレス等の工程時に基板材料成分の流動等により流出してしまう現象が起こる。   From the results of many experiments and the analysis of prototype samples, the inventor has found that the conventional problems as described above are the thickness of the portion mainly composed of the impregnating resin near the surface of the substrate material, that is, above and below the reinforcing material, and the impregnating resin. Has found that it is important to maintain an appropriate ratio between the thickness of the central portion of the substrate material integrated with the reinforcing material. That is, when the ratio is inappropriate, a phenomenon occurs in which the interlayer connection means such as conductive particles flows out due to the flow of the substrate material components in the process such as hot pressing in the vicinity of the surface of the substrate material.

本発明の回路形成基板の製造方法においては、Bステージ状態基板材料が補強材としての織布もしくは不織布あるいは織布と不織布の混成材料を含み、熱プレス工程において成型後の前記Bステージ状態基板材料の厚みが前記補強材厚み以上かつ前記補強材厚みの1.5倍以下である等の構成を採用したものである。   In the method for producing a circuit-formed substrate of the present invention, the B-stage state substrate material includes a woven fabric or a non-woven fabric as a reinforcing material, or a mixed material of a woven fabric and a non-woven fabric, and the B-stage state substrate material after molding in a hot press process The thickness of the reinforcing material is not less than the thickness of the reinforcing material and not more than 1.5 times the thickness of the reinforcing material.

この本発明により、導電性ペースト等の層間接続手段による電気的接続の発現が効率的に行える。   According to the present invention, the electrical connection can be efficiently expressed by the interlayer connection means such as the conductive paste.

また、本発明の回路形成基板の製造用材料においては、補強材の基板材料中の重量比が30%以上かつ60%以下である構成とする。   Moreover, in the manufacturing material of the circuit formation board | substrate of this invention, it is set as the structure whose weight ratio in the board | substrate material of a reinforcing material is 30% or more and 60% or less.

この本発明によれば、導電性ペースト等の層間接続手段による電気的接続の発現が効率的に行えるものである。   According to the present invention, electrical connection can be efficiently expressed by interlayer connection means such as conductive paste.

以上の結果として、導電性ペースト等を用いた層間の電気的接続の信頼性が大幅に向上し、高密度で品質の優れた回路形成基板を提供できるものである。   As a result, the reliability of electrical connection between layers using a conductive paste or the like is greatly improved, and a circuit forming substrate having high density and excellent quality can be provided.

以上述べたように本発明の回路形成基板の製造方法および回路形成基板においては、層間接続手段の存在する層の基板材料の厚みが前記補強材厚み以上かつ前記補強材厚みの1.5倍以下とする等の構成としたものであり、導電性ペースト等の層間接続手段による電気的接続の発現が効率的に行えるものである。   As described above, in the circuit forming substrate manufacturing method and the circuit forming substrate of the present invention, the thickness of the substrate material of the layer where the interlayer connection means exists is not less than the thickness of the reinforcing material and not more than 1.5 times the thickness of the reinforcing material. The electrical connection by the interlayer connection means such as a conductive paste can be efficiently performed.

特に、基板材料としてのプリプレグの補強材にガラス等の繊維を用いた織布を用いた場合には、織布の持つ寸法安定性および、銅箔等の引き剥がし強度が強い等の利点を生かしながら、層間の接続を安定化できるという格別の効果を発揮するものである。   In particular, when a woven fabric using fibers such as glass is used as a reinforcing material for a prepreg as a substrate material, taking advantage of the dimensional stability of the woven fabric and the strong peeling strength of copper foil or the like. However, the special effect that the connection between the layers can be stabilized is exhibited.

また、本発明の回路形成基板の製造用材料においては、補強材の基板材料中の重量比が30%以上かつ60%以下もしくは補強材の厚みが基板材料厚みの50%以上かつ90%以下に設定する等の構成とすることで、導電性ペースト等の層間接続手段による電気的接続の発現が効率的に行える。   Further, in the material for manufacturing a circuit-formed substrate of the present invention, the weight ratio of the reinforcing material in the substrate material is 30% or more and 60% or less, or the thickness of the reinforcing material is 50% or more and 90% or less of the substrate material thickness. By adopting a configuration such as setting, electrical connection can be efficiently expressed by an interlayer connection means such as a conductive paste.

以上の結果として、導電性ペースト等を用いた層間の電気的接続の信頼性が大幅に向上し、高密度で品質の優れた回路形成基板を提供できる。   As a result, the reliability of the electrical connection between layers using a conductive paste or the like is greatly improved, and a high-density and high-quality circuit forming substrate can be provided.

本発明の請求項1に記載の発明は、
(1)金属箔、もしくは支持体に張り付けられた金属箔、もしくは支持体に張り付けられ回路パターンを形成された金属箔
(2)層間接続手段を設けたBステージ状態の基板材料
(3)回路もしくは金属箔と層間接続手段を備えたBステージ状態の基板材料
(4)回路もしくは金属箔を備えたCステージ状態基板材料もしくは回路もしくは金属箔と層間接続手段を備えたCステージ状態基板材料
のうち、
少なくとも1種以上の層間接続手段を設けたBステージ状態の基板材料を含んだ2種以上の金属箔もしくは基板材料を積層物として積層する積層工程と、
前記積層物を加熱・加圧により成型する熱プレス工程と、
前記熱プレス工程の際に基板材料中から流動した熱硬化性樹脂の流れ出し部を含む積層物周辺を切断する工程を備え、
前記Bステージ状態の基板材料は、厚みT1のガラス繊維織布の補強材と前記補強材に含浸された熱硬化性樹脂で構成され、
前記Bステージ状態の基板材料中の前記補強材の割合は重量比で30%以上かつ60%以下であり、
前記補強材の厚みT1は前記Bステージ状態基板材料の厚みの50%から90%になるよう調整され、
前記Bステージ状態の基板材料は、前記熱プレス工程を経て前記基板材料中の熱硬化性樹脂が流動し流れ出し部を形成することにより厚みT2の基板材料に圧縮されて成型されるものであって、
前記熱プレス工程は、厚みT1、T2の比率T2/T1が1.17以上かつ1.31以下を満たす加熱・加圧条件で行うものであり、
前記Bステージ状態の基板材料に設けられた層間接続手段はビア穴に充填された導電性粒子と樹脂成分を主体とする導電性ペーストで構成され、
前記導電性ペーストは前記熱プレス工程にて前記基板材料の厚み方向に圧縮されることを特徴とする回路形成基板の製造方法としたものであり、熱プレス工程の際に基板材料中から流動した熱硬化性樹脂の流れ出し部が形成されることにより、熱プレス工程で厚みT1の補強材と熱硬化性樹脂で構成された基板材料を、熱プレス工程後に厚みT2の基板材料に効率的に圧縮し成型することができる。これにより導電性物質等にて構成された層間接続手段は、低抵抗の層間接続を実現できるという効果を有する。
また、補強材の重量は基板材料の重量の30%以上かつ60%以下とすることにより、熱プレス工程での基板材料の流動が制御でき、層間接続手段の形成が安定する等の効果を有する。
The invention described in claim 1 of the present invention
(1) Metal foil, or metal foil affixed to a support, or metal foil affixed to a support and formed with a circuit pattern (2) B-stage substrate material provided with interlayer connection means (3) Circuit or B stage substrate material with metal foil and interlayer connection means (4) C stage state substrate material with circuit or metal foil or C stage state substrate material with circuit or metal foil and interlayer connection means,
A laminating step of laminating two or more metal foils or substrate materials including a B-stage substrate material provided with at least one or more types of interlayer connection means;
A hot press step of forming the laminate by heating and pressing;
And a step of cutting the laminate periphery comprising flowing out of the thermosetting resin flows from the substrate material during the heat pressing step,
The substrate material of B-stage is composed of a woven fiber glass thermosetting resin impregnated in the reinforcing material and the reinforcing material thickness T1,
The ratio of the reinforcing material in the substrate material in the B stage state is 30% or more and 60% or less by weight ratio,
The thickness T1 of the reinforcing material is adjusted to be 50% to 90% of the thickness of the B-stage substrate material,
The substrate material in the B stage state is molded by being compressed into a substrate material having a thickness T2 by forming a flow-out portion through the thermosetting resin in the substrate material flowing through the hot pressing step. ,
The hot pressing step is performed under heating and pressurizing conditions where the ratio T2 / T1 of the thicknesses T1 and T2 satisfies 1.17 or more and 1.31 or less ,
The interlayer connection means provided in the substrate material in the B stage state is composed of conductive particles filled in via holes and a conductive paste mainly composed of a resin component,
The conductive paste is a method for manufacturing a circuit-formed substrate, wherein the conductive paste is compressed in the thickness direction of the substrate material in the hot press process, and flows from the substrate material during the hot press process. By forming the flow-out portion of the thermosetting resin, the substrate material composed of the reinforcing material having the thickness T1 and the thermosetting resin is efficiently compressed into the substrate material having the thickness T2 after the heat pressing step. Can be molded. As a result, the interlayer connection means made of a conductive material or the like has an effect of realizing a low resistance interlayer connection.
Further, by setting the weight of the reinforcing material to be 30% or more and 60% or less of the weight of the substrate material, it is possible to control the flow of the substrate material in the hot press process and to stabilize the formation of the interlayer connection means. .

また、補強材にガラス繊維織布を用いた場合には、織布の持つ寸法安定性および、銅箔等の引き剥がし強度が強い等の利点を生かしながら、層間の接続を安定化できるという格別の効果を発揮するものである。 In addition, when glass fiber woven fabric is used as the reinforcing material, the connection between the layers can be stabilized while taking advantage of the dimensional stability of the woven fabric and the strong peeling strength of the copper foil. The effect of is demonstrated.

また、層間接続手段は貫通穴に充填された導電性粒子と樹脂成分を主体とする導電性ペーストで構成されることにより、導電性物質の貫通穴への充填作業が簡便に行えるとともに、形成される層間接続手段が可とう性を有するために、熱衝撃や機械的繰り返しストレスに対しての信頼性が向上する等の効果を有する。 Further, the interlayer connecting means are shorted with be composed of a conductive paste mainly containing filled conductive particles and a resin component in the hole of the through, the filling work into the hole of the penetration of the conductive material can be performed conveniently At the same time, since the interlayer connection means to be formed has flexibility, it has an effect of improving reliability against thermal shock and mechanical repeated stress.

以下、本発明の実施の形態について、図1、図2を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

(実施の形態1)
図1(A)〜(G)は本発明の第1の実施の形態における回路形成基板の製造方法および回路形成基板の製造用材料を示す工程断面図である。
(Embodiment 1)
1A to 1G are process cross-sectional views illustrating a method for manufacturing a circuit forming substrate and a material for manufacturing the circuit forming substrate according to the first embodiment of the present invention.

図1(A)に示すように両面に厚み20μmのフィルム2を張り合わせた基板材料1を準備する。基板材料1はガラス繊維織布を補強材として用いたプリプレグである。補強材としてのガラス繊維織布の厚みを表現するには通常よく用いられる公称厚という数値を用いる。   As shown in FIG. 1A, a substrate material 1 is prepared in which a film 2 having a thickness of 20 μm is bonded to both surfaces. The substrate material 1 is a prepreg using a glass fiber woven fabric as a reinforcing material. In order to express the thickness of the glass fiber woven fabric as a reinforcing material, a numerical value called a nominal thickness that is usually used is used.

フィルム2には厚み20μmのポリエチレンテレフタレート(PET)を用いた。PETフィルムにかえてエポキシ樹脂等の熱硬化性樹脂等をコーティングしてフィルム2として用いても良い。   For film 2, polyethylene terephthalate (PET) having a thickness of 20 μm was used. Instead of the PET film, a thermosetting resin such as an epoxy resin may be coated and used as the film 2.

次に、図1(B)に示すように炭酸ガスレーザを用いて約200μm径のビア穴3を加工した。   Next, as shown in FIG. 1B, a via hole 3 having a diameter of about 200 μm was processed using a carbon dioxide laser.

次に、スクリーン印刷等の方法で、図1(C)に示すように導電性ペースト4をビア穴3に充填した。導電性ペースト4は、直径約5μmの銅粉を熱硬化性樹脂及び硬化剤とともに混練したものである。粘度調整等の目的で導電性ペースト4に溶剤などを添加することも可能である。   Next, the conductive paste 4 was filled in the via hole 3 as shown in FIG. 1C by a method such as screen printing. The conductive paste 4 is obtained by kneading copper powder having a diameter of about 5 μm together with a thermosetting resin and a curing agent. It is also possible to add a solvent or the like to the conductive paste 4 for the purpose of adjusting the viscosity.

次に、図1(D)に示すように基板材料1の両面のフィルム2を剥離して、フィルム2の厚みに相当して導電性ペースト4が突出した基板材料1を得たのち、両面に銅箔5を配置する。   Next, as shown in FIG. 1 (D), the film 2 on both sides of the substrate material 1 is peeled to obtain the substrate material 1 with the conductive paste 4 protruding corresponding to the thickness of the film 2, and then on both sides. Copper foil 5 is disposed.

次に、基板厚み方向に加熱加圧する熱プレス工程を経ることで図1(E)に示すような形状を得る。その際に基板材料1中の熱硬化性樹脂は流動し流れ出し部6となる。   Next, a shape as shown in FIG. 1 (E) is obtained through a hot pressing step of heating and pressing in the substrate thickness direction. At that time, the thermosetting resin in the substrate material 1 flows and becomes a flow-out portion 6.

次に、図1(F)に示すように基板材料1の周辺部を所望のサイズに切断した後に銅箔5をエッチング等の方法でパターン形成して回路7を形成し、図1(G)に示すような両面回路形成基板を得た。   Next, as shown in FIG. 1 (F), the peripheral portion of the substrate material 1 is cut into a desired size, and then the copper foil 5 is patterned by a method such as etching to form a circuit 7. FIG. A double-sided circuit-formed substrate as shown in FIG.

以上のような工程にて回路形成基板を製造した場合に、従来例で述べたような導電性ペースト4の導電性粒子が流れる等の現象で導電性ペースト4による電気的接続が不十分となる課題を解決するために、発明者は様々な基板材料および熱プレス工程条件の検討を実施した。   When the circuit forming substrate is manufactured through the above-described steps, the electrical connection by the conductive paste 4 becomes insufficient due to the phenomenon that the conductive particles of the conductive paste 4 flow as described in the conventional example. In order to solve the problem, the inventor has studied various substrate materials and hot press process conditions.

通常のプリント配線板用の平織ガラス繊維織布で厚みが60,80,100μmの3種の補強材を用い、補強材に含浸する熱硬化性樹脂の量を重量比で樹脂量として表している。含浸した熱硬化性樹脂は乾燥機にてBステージ化してプリプレグを製造している。熱プレス後の基板厚みを測定し、ガラス織布厚みとの比を算出した。   Three types of reinforcing materials having a thickness of 60, 80, and 100 μm are used in a plain woven glass fiber woven fabric for an ordinary printed wiring board, and the amount of thermosetting resin impregnated in the reinforcing material is expressed as a resin amount by weight ratio. . The impregnated thermosetting resin is B-staged with a dryer to produce a prepreg. The substrate thickness after hot pressing was measured, and the ratio with the glass woven fabric thickness was calculated.

さらに作成した両面基板に約200μm径のビア穴で層間接続部が500個直列に接続されるようなテストパターンを配置して、その回路電気抵抗を測定して1カ所あたりの表裏の接続抵抗値、すなわち両面基板の表裏を接続する層間接続部1ヶ所の電気抵抗値の平均を算出してビア抵抗値とした。   In addition, a test pattern in which 500 interlayer connection parts are connected in series with approximately 200 μm diameter via holes on the double-sided board was measured, and the circuit electrical resistance was measured to determine the connection resistance values of the front and back surfaces per location. That is, the average of the electrical resistance values of one interlayer connection portion connecting the front and back surfaces of the double-sided board was calculated as the via resistance value.

以上の結果をまとめて(表1)に示す。   The above results are summarized in (Table 1).

Figure 0004089671
Figure 0004089671

(表1)の結果からもわかるように基板材料1中の補強材、すなわち実施の形態1では基板材料1の熱プレス後の厚み(T2)がガラス繊維織布の厚み(T1)の1.5倍以下の場合にビア抵抗値が安定することがわかる。   As can be seen from the results of (Table 1), the thickness of the reinforcing material in the substrate material 1, that is, the thickness (T2) of the substrate material 1 after hot pressing in the first embodiment is 1. It can be seen that the via resistance value is stable when it is 5 times or less.

また、実験番号1のサンプルはビア抵抗値は低いものの、銅箔5を基板材料1から引き剥がすピール強度が通常より低下しており、ピール強度を要求する用途に用いる場合には樹脂量を66%から増量し、67%〜68%にすることが望ましい。   In addition, although the sample of Experiment No. 1 has a low via resistance value, the peel strength for peeling the copper foil 5 from the substrate material 1 is lower than usual, and the resin amount is 66 when used for applications requiring peel strength. It is desirable to increase it from 67% to 67% to 68%.

また、実験番号2のサンプルを高温高湿下での保存信頼性試験を行うとビア抵抗値の上昇が見られた。   In addition, when the storage reliability test was performed on the sample of Experiment No. 2 under high temperature and high humidity, an increase in via resistance was observed.

上記実験の結果から、ビア抵抗を10mΩ以下に形成することが総合的に好ましいことが分かった。従って、熱プレス後の基板厚みを測定し、T2/T1の比を1.5以下にすることが良好であるとの結論を得た。   From the results of the above experiments, it has been found that it is generally preferable to form via resistances of 10 mΩ or less. Therefore, the thickness of the substrate after hot pressing was measured, and it was concluded that it was good to set the ratio of T2 / T1 to 1.5 or less.

より良好な電気的接続を得るには図1(E)の状態での基板材料1のプレス後厚みは薄くするほど有効であるが、一方で、先述のピール強度の問題および熱プレス工程での成型性および、後述する多層回路形成基板を製造する際の内層回路形成基板の回路凹凸を埋め込む必要性等の理由により、少なくとも補強材厚み以上のプレス後厚みが必要であることを実験の結果として得た。   In order to obtain a better electrical connection, the post-press thickness of the substrate material 1 in the state of FIG. 1 (E) is more effective as the thickness is reduced. As a result of the experiment, it is necessary to have a post-press thickness that is at least greater than the thickness of the reinforcing material due to the moldability and the necessity of embedding the circuit irregularities of the inner circuit formation substrate when manufacturing the multilayer circuit formation substrate described later. Obtained.

さらに前記プレス後厚み(T2)を薄くしすぎた際の問題点として、補強材中の繊維が銅箔と接触し銅マイグレーション等の問題を起こしやすいことも試験サンプルの信頼性試験等の結果により確認した。   Furthermore, as a problem when the post-press thickness (T2) is made too thin, the fiber in the reinforcing material is in contact with the copper foil and easily causes problems such as copper migration. confirmed.

また、上記の基板材料のプレス後厚み(T2)を達成する手段として、基板材料中の補強材の割合を重量比で30%以上かつ60%以下にすること、および図1(A)の状態での基板材料1の厚みを補強材厚みの2倍から1.1倍の間に設定すること、すなわち補強材厚みが基板材料1厚みの50%から90%になるよう調整することが有効であることも実験の結果として確認した。   Further, as means for achieving the post-pressing thickness (T2) of the substrate material, the ratio of the reinforcing material in the substrate material is 30% or more and 60% or less by weight, and the state of FIG. It is effective to set the thickness of the substrate material 1 at 2 to 1.1 times the thickness of the reinforcing material, that is, to adjust the thickness of the reinforcing material to be 50% to 90% of the thickness of the substrate material 1. It was confirmed as a result of the experiment.

(実施の形態2)
実施の形態1では両面回路形成基板について説明したが、実施の形態2では、図2に示すように多層回路形成基板を製造する場合について説明する。
(Embodiment 2)
In the first embodiment, the double-sided circuit formation substrate has been described. In the second embodiment, a case where a multilayer circuit formation substrate is manufactured as shown in FIG. 2 will be described.

まず、図2(A)に示すような両面回路形成基板11を用意し、図2(B)に示すように導電性ペースト4を充填した基板材料1および銅箔5を両面回路形成基板11の表裏に位置合わせして配置する。この状態で熱プレス装置等で加熱加圧することで基板材料1を成型および硬化させ図2(C)のような形状を得る。その際、流動した基板材料1の成分により流れ出し部6が形成される。   First, a double-sided circuit forming substrate 11 as shown in FIG. 2A is prepared. As shown in FIG. 2B, the substrate material 1 and the copper foil 5 filled with the conductive paste 4 are used as the double-sided circuit forming substrate 11. Align and place on the front and back. In this state, the substrate material 1 is molded and cured by heating and pressing with a hot press apparatus or the like to obtain a shape as shown in FIG. At that time, the flow-out portion 6 is formed by the component of the substrate material 1 that has flowed.

次に、周辺の余分な部分を切断して図2(D)のような形状を得た後に、銅箔5をエッチング等の方法でパターン形成して回路7を形成し、図2(E)に示すような4層回路形成基板を得た。   Next, after cutting off an excess part of the periphery to obtain a shape as shown in FIG. 2D, the copper foil 5 is patterned by a method such as etching to form a circuit 7, and FIG. A four-layer circuit forming substrate as shown in FIG.

このような多層回路形成基板の製造においても、本発明の回路形成基板の製造方法および製造用材料を適用することで、層間の電気的接続が良好に形成できた。   Also in the manufacture of such a multilayer circuit forming substrate, the electrical connection between the layers could be satisfactorily formed by applying the manufacturing method and manufacturing material of the circuit forming substrate of the present invention.

なお、本実施の形態で用いた両面回路形成基板11は実施の形態1で説明したものでもよいが、通常のめっき法等で層間の接続を形成した基板を用いることも可能であり、また図2(B)に示す段階で両面回路形成基板11に基板材料1が仮圧着されたような構成も採用できる。   The double-sided circuit forming substrate 11 used in the present embodiment may be the one described in the first embodiment, but it is also possible to use a substrate in which an interlayer connection is formed by a normal plating method or the like. A configuration in which the substrate material 1 is temporarily press-bonded to the double-sided circuit forming substrate 11 at the stage shown in FIG.

その製造法の例を説明する。図2(A)に示す回路形成基板の両面にラミネート法等を用いて図1(A)〜(G)で示したようにフィルム2、基板材料1、回路形成基板7、基板材料1、フィルム2の順番になるように貼り合わせする。次に、レーザー加工によりビア穴3を加工した後に導電性ペースト4をビア穴3に充填し、その後、フィルム2をはがし、さらにその後、銅箔5を外側に配置して熱プレスするという製造方法が可能である。   An example of the manufacturing method will be described. As shown in FIGS. 1A to 1G, the film 2, the substrate material 1, the circuit formation substrate 7, the substrate material 1, and the film are laminated on both sides of the circuit formation substrate shown in FIG. Paste them together so that they are in the order of 2. Next, after processing the via hole 3 by laser processing, the conductive paste 4 is filled in the via hole 3, then the film 2 is peeled off, and then the copper foil 5 is disposed on the outside and hot pressing is performed. Is possible.

以上述べた実施の形態1から2で基板材料すなわちプリプレグとして説明した材料の例としては、通常のガラス繊維織布あるいは不織布に熱硬化性樹脂を含浸しBステージ化したものを用いることが可能で、ガラス繊維の代わりにアラミド等の有機繊維を採用することもできる。   As an example of the material described as the substrate material, that is, the prepreg in the first and second embodiments described above, it is possible to use a normal glass fiber woven fabric or non-woven fabric impregnated with a thermosetting resin to form a B stage. In addition, organic fibers such as aramid can be employed instead of glass fibers.

また、織布と不織布を混成した材料、たとえば2枚のガラス繊維の間にガラス繊維不織布を挟み込んだような材料を補強材として用いることも可能である。   Moreover, it is also possible to use the material which mixed the woven fabric and the nonwoven fabric, for example, the material which inserted | pinched the glass fiber nonwoven fabric between two glass fibers as a reinforcing material.

また、本発明の実施の形態で熱硬化性樹脂と記述した部分の熱硬化性樹脂の例としては、エポキシ系樹脂、エポキシ・メラミン系樹脂、不飽和ポリエステル系樹脂、フェノール系樹脂、ポリイミド系樹脂、シアネート系樹脂、シアン酸エステル系樹脂、ナフタレン系樹脂、ユリア系樹脂、アミノ系樹脂、アルキド系樹脂、ケイ素系樹脂、フラン系樹脂、ポリウレタン系樹脂、アミノアルキド系樹脂、アクリル系樹脂、フッ素系樹脂、ポリフェニレンエーテル系樹脂、シアネートエステル系樹脂等の単独、あるいは2種以上混合した熱硬化性樹脂組成物あるいは熱可塑性樹脂で変性された熱硬化性樹脂組成物を用いることができ、必要に応じて難燃剤や無機充填剤の添加も可能である。   In addition, examples of the thermosetting resin in the portion described as the thermosetting resin in the embodiment of the present invention include an epoxy resin, an epoxy / melamine resin, an unsaturated polyester resin, a phenol resin, and a polyimide resin. , Cyanate resin, cyanate ester resin, naphthalene resin, urea resin, amino resin, alkyd resin, silicon resin, furan resin, polyurethane resin, aminoalkyd resin, acrylic resin, fluorine resin A resin, a polyphenylene ether resin, a cyanate ester resin, etc. can be used alone, or two or more thermosetting resin compositions or thermosetting resin compositions modified with a thermoplastic resin can be used. In addition, flame retardants and inorganic fillers can be added.

また、銅箔の代わりに支持体に仮止めされた金属箔等からなる回路を用いることもできる。   Further, a circuit made of metal foil or the like temporarily fixed to a support can be used instead of copper foil.

また、層間接続手段として導電性ペーストを用いて説明したが、導電性ペーストとしては銅粉等の導電性粒子を硬化剤を含む熱硬化性樹脂に混練したもの以外に、導電性粒子と適当な粘度の高分子材料あるいは溶剤等を混練したもの等多種の組成が利用可能である。   Further, although the conductive paste has been described as the interlayer connection means, the conductive paste is not limited to those obtained by kneading conductive particles such as copper powder in a thermosetting resin containing a curing agent, and suitable conductive particles. Various compositions such as a kneaded polymer material having a viscosity or a solvent can be used.

さらに、導電性ペースト以外にめっき等により形成したポスト状の導電性突起や、ペースト化していない比較的大きな粒径の導電性粒子を単独で層間接続手段として用いることも可能である。   In addition to the conductive paste, post-shaped conductive protrusions formed by plating or the like, or conductive particles having a relatively large particle size that are not made into a paste can be used alone as an interlayer connection means.

(A)〜(G)は本発明の第1の実施の形態の回路形成基板の製造方法を示す工程断面図(A)-(G) is process sectional drawing which shows the manufacturing method of the circuit formation board | substrate of the 1st Embodiment of this invention. (A)〜(E)は本発明の第2の実施の形態の回路形成基板の製造方法を示す工程断面図(A)-(E) is process sectional drawing which shows the manufacturing method of the circuit formation board | substrate of the 2nd Embodiment of this invention. (A)〜(G)は第1の従来例における回路形成基板の製造方法を示す工程断面図(A)-(G) is process sectional drawing which shows the manufacturing method of the circuit formation board | substrate in a 1st prior art example. 第2の従来例における回路形成基板の製造用材料を示す断面模式図Sectional schematic diagram showing material for manufacturing circuit forming substrate in second conventional example

符号の説明Explanation of symbols

1 基板材料
2 フィルム
3 ビア穴
4 導電性ペースト
5 銅箔
6 流れ出し部
7 回路
8 流出粒子
9 ガラス繊維織布
10 含浸樹脂
11 両面回路形成基板
DESCRIPTION OF SYMBOLS 1 Board | substrate material 2 Film 3 Via hole 4 Conductive paste 5 Copper foil 6 Outflow part 7 Circuit 8 Outflow particle 9 Glass fiber woven fabric 10 Impregnation resin 11 Double-sided circuit formation board

Claims (1)

(1)金属箔、もしくは支持体に張り付けられた金属箔、もしくは支持体に張り付けられ回路パターンを形成された金属箔
(2)層間接続手段を設けたBステージ状態の基板材料
(3)回路もしくは金属箔と層間接続手段を備えたBステージ状態の基板材料
(4)回路もしくは金属箔を備えたCステージ状態基板材料もしくは回路もしくは金属箔と層間接続手段を備えたCステージ状態基板材料
のうち、
少なくとも1種以上の層間接続手段を設けたBステージ状態の基板材料を含んだ2種以上の金属箔もしくは基板材料を積層物として積層する積層工程と、
前記積層物を加熱・加圧により成型する熱プレス工程と、
前記熱プレス工程の際に基板材料中から流動した熱硬化性樹脂の流れ出し部を含む積層物周辺を切断する工程を備え、
前記Bステージ状態の基板材料は、厚みT1のガラス繊維織布の補強材と前記補強材に含浸された熱硬化性樹脂で構成され、
前記Bステージ状態の基板材料中の前記補強材の割合は重量比で30%以上かつ60%以下であり、
前記補強材の厚みT1は前記Bステージ状態基板材料の厚みの50%から90%になるよう調整され、
前記Bステージ状態の基板材料は、前記熱プレス工程を経て前記基板材料中の熱硬化性樹脂が流動し流れ出し部を形成することにより厚みT2の基板材料に圧縮されて成型されるものであって、
前記熱プレス工程は、厚みT1、T2の比率T2/T1が1.17以上かつ1.31以下を満たす加熱・加圧条件で行うものであり、
前記Bステージ状態の基板材料に設けられた層間接続手段はビア穴に充填された導電性粒子と樹脂成分を主体とする導電性ペーストで構成され、
前記導電性ペーストは前記熱プレス工程にて前記基板材料の厚み方向に圧縮されることを特徴とする回路形成基板の製造方法。
(1) Metal foil, or metal foil affixed to the support, or metal foil affixed to the support and formed with a circuit pattern (2) B-stage substrate material provided with interlayer connection means (3) Circuit or B stage substrate material with metal foil and interlayer connection means (4) C stage state substrate material with circuit or metal foil or C stage state substrate material with circuit or metal foil and interlayer connection means,
A laminating step of laminating two or more metal foils or substrate materials including a B-stage substrate material provided with at least one or more types of interlayer connection means;
A hot press step of forming the laminate by heating and pressing;
And a step of cutting the laminate periphery comprising flowing out of the thermosetting resin flows from the substrate material during the heat pressing step,
The substrate material of B-stage is composed of a woven fiber glass thermosetting resin impregnated in the reinforcing material and the reinforcing material thickness T1,
The ratio of the reinforcing material in the substrate material in the B stage state is 30% or more and 60% or less by weight ratio,
The thickness T1 of the reinforcing material is adjusted to be 50% to 90% of the thickness of the B-stage substrate material,
The substrate material in the B stage state is molded by being compressed into a substrate material having a thickness of T2 by forming a flow-out portion through the thermosetting resin in the substrate material flowing through the hot pressing step. ,
The hot pressing step is performed under heating and pressurizing conditions where the ratio T2 / T1 of the thicknesses T1 and T2 satisfies 1.17 or more and 1.31 or less ,
The interlayer connection means provided on the B-stage substrate material is composed of conductive particles filled in via holes and a conductive paste mainly composed of a resin component,
The method of manufacturing a circuit-formed substrate, wherein the conductive paste is compressed in the thickness direction of the substrate material in the hot pressing step .
JP2004269598A 2001-07-18 2004-09-16 Circuit forming substrate manufacturing method and circuit forming substrate Expired - Fee Related JP4089671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269598A JP4089671B2 (en) 2001-07-18 2004-09-16 Circuit forming substrate manufacturing method and circuit forming substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001217775 2001-07-18
JP2004269598A JP4089671B2 (en) 2001-07-18 2004-09-16 Circuit forming substrate manufacturing method and circuit forming substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003514859A Division JPWO2003009656A1 (en) 2001-07-18 2002-07-16 Circuit forming substrate manufacturing method and circuit forming substrate

Publications (2)

Publication Number Publication Date
JP2005005734A JP2005005734A (en) 2005-01-06
JP4089671B2 true JP4089671B2 (en) 2008-05-28

Family

ID=34106156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269598A Expired - Fee Related JP4089671B2 (en) 2001-07-18 2004-09-16 Circuit forming substrate manufacturing method and circuit forming substrate

Country Status (1)

Country Link
JP (1) JP4089671B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196567A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Method for manufacturing circuit formation substrate
JP5109283B2 (en) * 2006-04-20 2012-12-26 パナソニック株式会社 Circuit board manufacturing method
JP5662853B2 (en) * 2011-03-18 2015-02-04 パナソニックIpマネジメント株式会社 Manufacturing method of flexible printed wiring board

Also Published As

Publication number Publication date
JP2005005734A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US6459046B1 (en) Printed circuit board and method for producing the same
US7572500B2 (en) Method of manufacturing circuit-forming board and material of circuit-forming board
US7816611B2 (en) Circuit board
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
US20060210780A1 (en) Circuit board and production method therefor
JPWO2003009656A1 (en) Circuit forming substrate manufacturing method and circuit forming substrate
EP1408726B1 (en) Method of manufacturing a printed wiring board
JP4089671B2 (en) Circuit forming substrate manufacturing method and circuit forming substrate
JP2006348225A (en) Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
JP4003769B2 (en) Circuit forming substrate manufacturing method and circuit forming substrate manufacturing material
JP4254343B2 (en) Method for manufacturing circuit-formed substrate
JP5050656B2 (en) Method for manufacturing circuit-formed substrate
JP2004221236A (en) Process for producing circuit board
JP4774606B2 (en) Method for manufacturing circuit-formed substrate
JP2008041679A (en) Manufacturing method of circuit formation substrate
JP2006086544A (en) Circuit forming substrate and method of manufacturing the circuit forming substrate
JP2000151113A (en) Manufacture of multilayer printed wiring board and multilayer printed wiring board manufactured thereby
JP2007189244A (en) Method for manufacturing circuit board
JP2007201492A (en) Method for producing circuit board
JP2007214586A (en) Manufacturing method of circuit forming board and manufacturing material for circuit forming board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees