JPH0817125B2 - Method for manufacturing magnetic alloy sintered body - Google Patents

Method for manufacturing magnetic alloy sintered body

Info

Publication number
JPH0817125B2
JPH0817125B2 JP62294143A JP29414387A JPH0817125B2 JP H0817125 B2 JPH0817125 B2 JP H0817125B2 JP 62294143 A JP62294143 A JP 62294143A JP 29414387 A JP29414387 A JP 29414387A JP H0817125 B2 JPH0817125 B2 JP H0817125B2
Authority
JP
Japan
Prior art keywords
powder
iron
sintering
alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62294143A
Other languages
Japanese (ja)
Other versions
JPH01136308A (en
Inventor
勝司 草加
達也 富岡
吉和 山道
悟 仁後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62294143A priority Critical patent/JPH0817125B2/en
Publication of JPH01136308A publication Critical patent/JPH01136308A/en
Publication of JPH0817125B2 publication Critical patent/JPH0817125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い焼結密度及び良好な磁気特性を有する
磁性合金焼結体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a magnetic alloy sintered body having high sintering density and good magnetic properties.

従来の技術 粉末冶金法は、鋳造法、鍛造法等とならんで最終製品
またはそれに近い形状の部品を製造する手段として、近
年注目されている。特に、最近のエレクトロニックスの
発展に呼応し、磁石材料だけでなく、ケイ素鉄やパーマ
ロイ合金等の軟質磁性材料についても粉末冶金法により
製品化する傾向がみられ、良質の原料粉末の出現が要望
されている。
2. Description of the Related Art The powder metallurgy method has recently attracted attention as a means for manufacturing a final product or a part having a shape similar to that of a casting method, a forging method, and the like. In particular, in response to recent developments in electronics, not only magnet materials but also soft magnetic materials such as silicon iron and permalloy alloys have tended to be manufactured by powder metallurgy, and the appearance of high-quality raw material powder is desired. Has been done.

一般に、純鉄をはじめとする軟質磁性材料は、磁気特
性が金属組織により影響を受けやすいため、軟質磁性材
料を構成する粉末焼結体は、ミクロ偏析がなく、かつ高
密度化して残留気孔を極力減らすことが不可欠になって
くる。この様な粉末焼結体を得る為には、溶湯噴霧法を
利用する方法によって製造された焼結用磁性合金粉末、
及び鉄粉に所定量の合金成分となる元素粉末または合金
粉末を添加する母合金混合法によって製造された焼結用
磁性合金粉末を用いることが知られている。又、母合金
混合法の改良法によるものとして、磁性合金粉末ではな
いが、特公昭45−9649号、特開昭59−215401号及び特開
昭61−130401号公報には、鉄粉にモリブデン、銅、ニッ
ケル等の元素粉末を拡散付着させることにより製造され
た焼結用合金鋼粉末を用いることが開示されている。
In general, the magnetic properties of soft magnetic materials such as pure iron are easily affected by the metal structure, so the powder sintered body that constitutes the soft magnetic material does not have micro segregation and has a high density to form residual pores. It is essential to reduce it as much as possible. In order to obtain such a powder sintered body, a magnetic alloy powder for sintering produced by a method utilizing a molten metal spray method,
It is known to use a magnetic alloy powder for sintering produced by a mother alloy mixing method in which a predetermined amount of elemental powder or alloy powder to be an alloy component is added to iron powder. Further, as an improved method of the mother alloy mixing method, although it is not a magnetic alloy powder, JP-B-45-9649, JP-A-59-215401 and JP-A-61-130401 disclose iron powder and molybdenum. It is disclosed that alloy steel powder for sintering produced by diffusing and adhering elemental powders of copper, nickel, etc. is used.

発明が解決しようとする問題点 ところが、溶湯噴霧法を利用する方法によって製造さ
れた焼結用合金鋼粉末は、鉄粉に添加元素が合金化し、
固溶硬化した形をとるため、鉄粉本来の圧縮性が損なわ
れて高密度の焼結体が得られず、結果的には磁気特性が
低下する。一方、母合金混合法によって製造された焼結
用合金鋼粉末は、鉄粉が混在するために圧縮性は比較的
良好であるものの、通常の焼結条件では、添加元素や合
金の拡散反応が不十分となり、得られた焼結体の組織
は、不均一になるため、かえって本来の磁気特性を損な
うという問題が残る。更に、母合金混合法の上記改良法
による場合は、添加元素がケイ素、アルミニウム等のよ
うに活性な金属を用いた焼結用合金鋼粉末については適
用することが困難であって、Mo、Cu、NiなどFeよりも酸
化物の標準生成自由エネルギーが大きく還元されやすい
元素に限られるという問題がある。
Problems to be Solved by the Invention However, the alloy steel powder for sintering produced by the method utilizing the molten metal spraying method, the additive element is alloyed with the iron powder,
Since it takes a solid solution-hardened form, the original compressibility of the iron powder is impaired, and a high-density sintered body cannot be obtained, and as a result, the magnetic properties deteriorate. On the other hand, the alloy steel powder for sintering produced by the mother alloy mixing method has relatively good compressibility because iron powder is mixed, but under normal sintering conditions, the diffusion reaction of additional elements and alloys Since the structure becomes insufficient and the structure of the obtained sintered body becomes non-uniform, there remains a problem that the original magnetic properties are deteriorated. Furthermore, in the case of the above-mentioned improved method of the mother alloy mixing method, it is difficult to apply the additive element to the alloy steel powder for sintering using an active metal such as silicon and aluminum, and Mo and Cu. However, there is a problem that the standard free energy of formation of oxides is larger than that of Fe, such as Ni, and Ni is limited to elements that are easily reduced.

本発明は、上記の問題点を解決するためになされたも
のである。
The present invention has been made to solve the above problems.

したがって、本発明の目的は、高い焼結密度及び良好
な磁気特性を有する磁性合金焼結体の製造方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a method for producing a magnetic alloy sintered body having high sintering density and good magnetic properties.

問題点を解決するための手段及び作用 本発明者等は、上記母合金混合法の改良について検討
した結果、鉄粉に添加する成分元素を予め鉄合金微粉末
の形で混合・成形して、焼結時に容易に拡散・合金化す
る手法によれば、特に鉄合金がケイ素やアルミニウムな
どの活性金属を含有する場合でも、焼結時に酸化されに
くいということを見出だし、本発明を完成するに至っ
た。
Means and Actions for Solving Problems The present inventors, as a result of studying the improvement of the mother alloy mixing method, previously mixed and molded the component elements to be added to the iron powder in the form of iron alloy fine powder, According to the method of easily diffusing and alloying at the time of sintering, it was found that even if the iron alloy contains active metals such as silicon and aluminum, it is difficult to be oxidized at the time of sintering, and the present invention is completed. I arrived.

本発明は、上記磁性合金焼結体の製造方法に関するも
のであって、鉄を98重量%以上含有する鉄鋼粉末に、鉄
を30重量%以上及びケイ素を15〜25重量%含有し、かつ
該鉄鋼粉末の平均粒径の5分の1以下の平均粒径を有す
る鉄合金微粉末を、該鉄鋼粉末に対して10〜30重量%混
合し、真空または非酸化性雰囲気中で700〜900℃の温度
において焼鈍して、鉄合金微粉末を鉄鋼粉末の表面に固
着させ、形成された磁性合金粉末を圧縮成形し、真空又
は非酸化性雰囲気中で1250℃以上において焼結・固化す
ることを特徴とする。
The present invention relates to a method for producing the above magnetic alloy sintered body, wherein the iron and steel powder containing 98% by weight or more of iron contains 30% by weight or more of iron and 15 to 25% by weight of silicon, and Fine iron alloy powder having an average particle diameter of ⅕ or less of the average particle diameter of iron and steel powder is mixed with 10 to 30% by weight of the iron and steel powder, and the temperature is 700 to 900 ° C. in a vacuum or a non-oxidizing atmosphere. At that temperature, the iron alloy fine powder is fixed to the surface of the steel powder, the formed magnetic alloy powder is compression-molded, and sintered and solidified at 1250 ° C or higher in a vacuum or non-oxidizing atmosphere. Characterize.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の磁性合金焼結体を製造するために用いる焼結
用磁性合金粉末は、鉄鋼粉末と鉄合金微粉末とより構成
される。
The magnetic alloy powder for sintering used for producing the magnetic alloy sintered body of the present invention is composed of steel powder and iron alloy fine powder.

鉄鋼粉末としては、鉄を98重量%以上含有するものな
らばどの様なものでも使用することができ、例えば、カ
ーボン等が不純物程度に含まれているものでも使用可能
である。純鉄分が98重量%以上であれば圧縮性は良好で
ある。又、その平均粒径は特に限定されるものではな
く、通常の粉末冶金用鉄粉が好適に使用される。
As the steel powder, any powder containing 98% by weight or more of iron can be used, and for example, powder containing carbon or the like as impurities can be used. If the pure iron content is 98% by weight or more, the compressibility is good. The average particle size is not particularly limited, and ordinary iron powder for powder metallurgy is preferably used.

一方、鉄合金微粉末は、鉄を30重量%以上含有する鉄
合金であって、ケイ素を15〜25重量%含有するものであ
る。焼結時の融液発生の観点から、状態図的にはFe−21
Si(数字は重量%、以下同じ)の組成付近(共晶温度:1
200℃)が好ましく、したがって、本発明においては、
ケイ素の下限は15重量%に設定する。逆に鉄合金微粉末
中のケイ素の量が多すぎると、粉末の焼鈍や焼結工程で
酸化され易く、又焼結時の拡散・合金化の面からも不利
になるので、上限を25重量%に設定する。
On the other hand, the iron alloy fine powder is an iron alloy containing 30% by weight or more of iron and containing 15 to 25% by weight of silicon. From the viewpoint of melt generation during sintering, the phase diagram is Fe-21
Near the composition of Si (the numbers are% by weight, the same below) (eutectic temperature: 1
200 ° C.), and therefore, in the present invention,
The lower limit of silicon is set at 15% by weight. Conversely, if the amount of silicon in the iron alloy fine powder is too large, it is easily oxidized in the annealing and sintering steps of the powder, and it is disadvantageous in terms of diffusion and alloying during sintering. Set to%.

更に、この鉄合金微粉末の平均粒径は、鉄鋼粉末の平
均粒径の5分の1以下であることが必要である。鉄合金
微粉末の平均粒径が鉄鋼粉末の平均粒径の5分の1を越
えると、鉄合金微粉末が軟らかい鉄鋼粉末の間隙中を埋
める形で取り込まれず、鉄鋼粉末が本来もっている圧縮
性を損なう結果となる。
Further, the average particle size of the iron alloy fine powder needs to be 1/5 or less of the average particle size of the steel powder. When the average particle size of the iron alloy fine powder exceeds 1/5 of the average particle size of the iron and steel powder, the iron alloy fine powder is not taken in to fill the gaps of the soft iron and steel powder, and the compressibility that the iron and steel powder originally has. Will result in damage to.

本発明において、鉄合金微粉末には、ケイ素の他、ア
ルミニウム等、鉄以外の他の成分元素が含まれていても
よい。
In the present invention, the iron alloy fine powder may contain component elements other than iron, such as aluminum, in addition to silicon.

この鉄合金微粉末は、どの様な製造法によって得られ
たものであってもよいが、例えば、高圧水噴霧法によっ
て製造されたものが使用される。
The iron alloy fine powder may be obtained by any production method, and for example, a powder produced by a high-pressure water spray method is used.

本発明において用いる焼結用磁性合金粉末は、鉄鋼粉
末に鉄合金微粉末を添加し、混合することによって得ら
れる。その場合、鉄鋼粉末と鉄合金微粉末の配合割合
は、鉄合金微粉末が、鉄鋼粉末に対し10〜30重量%の範
囲になるように設定される。鉄合金微粉末の配合量が10
重量%未満の場合には、その分ケイ素の含有量が増大
し、かつ、焼結時の融液生成量も不十分になるため、拡
散・合金化が充分でなくなる。逆に30重量%を越えると
軟らかい鉄鋼粉末が本来もっている圧縮性を損なう結果
となる。
The magnetic alloy powder for sintering used in the present invention is obtained by adding fine iron alloy powder to steel powder and mixing them. In that case, the mixing ratio of the iron powder and the iron alloy fine powder is set such that the iron alloy fine powder is in the range of 10 to 30% by weight based on the steel powder. Iron alloy fine powder content of 10
If it is less than wt%, the content of silicon increases correspondingly, and the amount of melt produced during sintering becomes insufficient, so that diffusion and alloying become insufficient. On the other hand, if it exceeds 30% by weight, the soft steel powder loses its original compressibility.

軟質磁性材料としての組成の観点からは、ケイ素は、
高々センダスト(Fe−9.6Si−5.4Al)の10重量%辺りま
での量、又、アルミニウムは、アルフェノールの16重量
%辺りまでの量を含む焼結体が得られるように、両者を
混合するのが効果的である。
From the viewpoint of the composition as a soft magnetic material, silicon is
At most up to 10% by weight of sendust (Fe-9.6Si-5.4Al), and aluminum is mixed with aluminum so as to obtain a sintered body containing up to 16% by weight of alphenol. Is effective.

本発明において磁性合金焼結体を製造するには、上記
鉄鋼粉末と鉄合金微粉末とを混合し、得られた焼結用磁
性合金粉末を直接、所望の形状を有する金型に導入し、
例えばプレス成形機などによって圧縮成形し、次いで、
真空又はアルゴン等の非酸化性雰囲気中で1250℃以上に
おいて、焼結・固化すればよい。
To produce a magnetic alloy sintered body in the present invention, the iron and steel powder and iron alloy fine powder are mixed, the resulting magnetic alloy powder for sintering is directly introduced into a mold having a desired shape,
For example, compression molding with a press molding machine, etc.,
It may be sintered and solidified at 1250 ° C. or higher in a vacuum or a non-oxidizing atmosphere such as argon.

しかしながら、焼結用磁性合金粉末として、鉄合金微
粉末が鉄鋼粉末の表面に固着した状態のものとして用い
るのが好ましい。即ち、上記鉄鋼粉末と鉄合金微粉末と
を混合して得た混合物を、真空または非酸化性雰囲気中
で焼鈍して、鉄合金微粉末を鉄鋼粉末の表面に固着さ
せ、このようにして得られた焼結用磁性合金粉末を所望
の形状を有する金型に導入し、プレス成形した後、真空
又はアルゴン等の非酸化性雰囲気中で1250℃以上におい
て、焼結・固化する。
However, as the magnetic alloy powder for sintering, it is preferable to use the iron alloy fine powder in a state of being fixed to the surface of the steel powder. That is, a mixture obtained by mixing the iron and steel powder and the iron alloy fine powder is annealed in a vacuum or a non-oxidizing atmosphere to fix the iron alloy fine powder to the surface of the iron and steel powder, and thus obtain The obtained magnetic alloy powder for sintering is introduced into a mold having a desired shape, press-molded, and then sintered and solidified at 1250 ° C. or higher in a non-oxidizing atmosphere such as vacuum or argon.

この場合、焼鈍温度は、700〜900℃の範囲に設定する
のが好ましい。焼鈍温度が鉄合金微粉末の再結晶温度で
ある700℃よりも低い場合には、鉄鋼粉末の表面に鉄合
金微粉末が仮焼結した形で均一分散し難く、又、再結晶
によるいわゆる焼鈍効果も得られない。逆に焼鈍温度が
900℃よりも高くなると、鉄鋼粉末同士が焼結・固化し
たり、鉄鋼粉末に対し、鉄合金微粉末中のケイ素、アル
ミニウム等の合金成分元素の焼結・拡散が進み、固溶硬
化してしまう。
In this case, the annealing temperature is preferably set in the range of 700 to 900 ° C. If the annealing temperature is lower than the recrystallization temperature of 700 ° C, which is the recrystallization temperature of iron alloy fine powder, it is difficult to uniformly disperse the iron alloy fine powder on the surface of the steel powder in a pre-sintered form. No effect can be obtained. Conversely, the annealing temperature
If the temperature is higher than 900 ° C, the steel powders will sinter and solidify, and the alloying elements such as silicon and aluminum in the iron alloy fine powders will sinter and diffuse into the steel powders, resulting in solid solution hardening. I will end up.

又、焼結温度は1250℃以上であることが必要である。
焼結温度が1250℃より低いと、焼結・固化する際に、Fe
−Si合金融液の発生量が充分でなく、液相焼結による高
密度化、拡散・均一化と、それによってもたらされる磁
気特性の向上が期待できなくなる。しかしながら、焼結
温度が1250℃以上で適切であれば、上記合金融液の発生
量が10体積%以上となり、液相焼結が進行し、磁気特性
の良好な磁性合金焼結体を得ることができる。
Further, the sintering temperature must be 1250 ° C or higher.
If the sintering temperature is lower than 1250 ° C, Fe will be
The amount of -Si synthetic financial liquid generated is not sufficient, and it is impossible to expect high density, diffusion and homogenization due to liquid phase sintering, and improvement of magnetic properties brought about by it. However, if the sintering temperature is 1250 ° C or higher, the amount of the above-mentioned financial liquid is 10% by volume or more, liquid phase sintering proceeds, and a magnetic alloy sintered body with good magnetic properties is obtained. You can

実施例 以下、本発明を実施例によって説明する。Examples Hereinafter, the present invention will be described with reference to Examples.

実施例1 鉄鋼粉末として鉱石還元鉄粉(〜80メッシュ、平均粒
径83μm)に、水噴霧法によって製造されたFe−19Si合
金微粉末(平均粒径15μm)を混合して均一化し、800
℃で1時間水素雰囲気下焼鈍を施した。得られた焼鈍粉
末について、45mmφ×35mmφの金型を使用して、7トン
/cm2でプレス成形して、環状圧粉体を製造した。
Example 1 As a steel powder, ore reduced iron powder (-80 mesh, average particle size 83 μm) was mixed with Fe-19Si alloy fine powder (average particle size 15 μm) produced by a water atomization method to homogenize the mixture.
Annealing was performed in a hydrogen atmosphere at ℃ for 1 hour. About the obtained annealed powder, using a mold of 45mmφ × 35mmφ, 7 tons
A ring-shaped green compact was manufactured by press molding at a pressure of / cm 2 .

得られた環状圧粉体を、1200℃、1250℃又は1350℃の
各温度で1時間真空焼結し、それぞれFe−1Si、Fe−2S
i、Fe−3Si、Fe−4Si、Fe−5Si、Fe−6Siの組成の焼結
体を得た。これらについて直流磁気特性を測定した。そ
の結果を第1表に示す。
The obtained annular green compact is vacuum-sintered for 1 hour at each temperature of 1200 ° C, 1250 ° C, or 1350 ° C, and Fe-1Si and Fe-2S, respectively.
A sintered body having a composition of i, Fe-3Si, Fe-4Si, Fe-5Si, Fe-6Si was obtained. DC magnetic characteristics of these were measured. The results are shown in Table 1.

第1表からも明らかなように、1200℃で焼結して得た
焼結体(試料No.1〜5)は、Fe−19Si合金微粉末の融点
が1220℃以下のため、鉄鋼粉末への混入量とは関係なく
焼結密度が低く、したがって、直流磁気特性も全般に低
いことが分かる。これに対して、焼結温度1250℃以上の
焼結体(試料No.7〜9、12〜15)は、液相焼結による緻
密化効果により、焼結密度が高く(合格判定基準である
7.60g/cm3以上)であり、直流磁気特性も良好である。
尚、試料No.15はFe−19Si合金微粉末の鉄鋼粉末に対す
る混入量が26重量%と多めであるので、圧縮性がやや低
いが、焼結密度は7.60g/cm3以上となっている。しかし
ながら、Fe−19Si合金微粉末を30重量%より多く混入し
た焼結体(試料No.10)は、圧縮性の影響で焼結密度が
低く、一方、Fe−19Si合金微粉末を10重量%より少なく
混入した焼結体(試料No.6及び11)は、焼結時の融液生
成量が不足し、焼結密度が低く、直流磁気特性も改善さ
れていない。
As is clear from Table 1, the sintered bodies (Sample Nos. 1 to 5) obtained by sintering at 1200 ° C. were converted to steel powder because the melting point of Fe-19Si alloy fine powder was 1220 ° C. or less. It can be seen that the sintering density is low regardless of the amount of mixed in, and therefore the direct current magnetic characteristics are also generally low. On the other hand, the sintered bodies (Sample Nos. 7 to 9 and 12 to 15) having a sintering temperature of 1250 ° C. or higher have a high sintering density due to the densification effect of the liquid phase sintering (passing criterion).
7.60 g / cm 3 or more) and good DC magnetic characteristics.
Sample No. 15 has a relatively small amount of the Fe-19Si alloy fine powder mixed with the steel powder, which is 26% by weight, so the compressibility is somewhat low, but the sintered density is 7.60 g / cm 3 or more. . However, the sintered body (Sample No. 10) containing more than 30% by weight of Fe-19Si alloy fine powder has a low sintering density due to the influence of compressibility, while 10% by weight of Fe-19Si alloy fine powder is contained. The less mixed sintered bodies (Sample Nos. 6 and 11) had a shortage of melt generation during sintering, had a low sintering density, and did not have improved DC magnetic characteristics.

実施例2 鉄鋼粉末として鉱石還元鉄粉(〜100メッシュ、平均
粒径76μm)に、水噴霧法によって製造されたFe−9S
i、Fe−21Si、又はFe−27Si合金微粉末を、Fe−3Siの組
成を有する焼結体が得られるような割合で混合して均一
化し、600〜1000℃の範囲の特定の温度で1時間水素雰
囲気下、焼鈍を施した。焼鈍温度が700℃未満の場合に
は、鉄鋼粉末とFe−Si合金粉末の仮焼結が不十分であ
り、又900℃を越えると、鉄鋼粉末同士の焼結が進み、
凝集・固化が生じた。
Example 2 Fe-9S produced by a water atomization method on ore-reduced iron powder (-100 mesh, average particle size 76 μm) as steel powder.
Fine powder of i, Fe-21Si, or Fe-27Si alloy is mixed and homogenized at a ratio such that a sintered body having a composition of Fe-3Si is obtained, and 1 at a specific temperature in the range of 600 to 1000 ° C. Annealing was performed in a hydrogen atmosphere for an hour. If the annealing temperature is lower than 700 ° C, the pre-sintering of the steel powder and the Fe-Si alloy powder is insufficient, and if it exceeds 900 ° C, the sintering of the steel powder progresses,
Aggregation and solidification occurred.

焼鈍温度800℃において得られた焼鈍粉末について、4
5mmφ×35mmφの金型を使用して、7トン/cm2でプレス
成形して、環状圧粉体を製造した。
Regarding the annealed powder obtained at an annealing temperature of 800 ° C, 4
Using a 5 mmφ × 35 mmφ mold, press molding was performed at 7 tons / cm 2 to produce an annular green compact.

得られた環状圧粉体を1350℃で1時間真空焼結し、い
ずれもFe−3Siの組成の焼結体を得た。これらについて
直流磁気特性を測定した。その結果を第2表に示す。
The obtained green compact was vacuum-sintered at 1350 ° C. for 1 hour to obtain a sintered body having a Fe-3Si composition. DC magnetic characteristics of these were measured. Table 2 shows the results.

第2表からも明らかなように試料No.16の焼結体は鉄
鋼粉末にFe−9Si合金微粉末を30重量%以上混合するた
め、圧粉密度が低く、かつ焼結時の融液生成量も数%
(融点:1350℃)で、高密度化しにくい、又、試料No.19
の焼結体は、本発明の実施例である試料No.17及び18の
場合と同一組成のFe−21Si合金微粉末を用いているが、
粗大粒度を有するものであるため、鉄鋼粉末本来の圧縮
性が損なわれ、相対的に焼結密度も低く、他方、試料N
o.20のFe−27Si合金微粉末を用いる場合は、やはり融
点:1350℃であるため、液相焼結による高密度化が起こ
らない。
As is clear from Table 2, the sintered body of sample No. 16 has a low green density and a molten liquid is formed during sintering because it mixes 30% by weight or more of Fe-9Si alloy fine powder with steel powder. A few percent
(Melting point: 1350 ℃), difficult to densify, and sample No.19
The sintered body of, using the Fe-21Si alloy fine powder of the same composition as in the case of Sample No. 17 and 18 which is an example of the present invention,
Since it has a coarse grain size, the original compressibility of steel powder is impaired and the sintered density is relatively low.
When the Fe-27Si alloy fine powder of o.20 is used, since the melting point is also 1350 ° C, densification due to liquid phase sintering does not occur.

発明の効果 本発明における磁性合金焼結体は、鉄を98重量%以上
含有する鉄鋼粉末と、該鉄鋼粉末に対して10〜30重量%
の、鉄を30重量%以上及びケイ素を15〜25重量%含有
し、かつ該鉄鋼粉末の平均粒径の5分の1以下の平均粒
径を有する鉄合金微粉末とよりなる磁性合金粉末を、圧
隙成形し、焼結してなるものであるかわ、高い焼結密度
を有し、優れた直流磁気特性を有するものであり、軟質
磁石材料として使用するのに好適である。
Effect of the Invention The magnetic alloy sintered body according to the present invention is a steel powder containing 98% by weight or more of iron, and 10 to 30% by weight based on the steel powder.
Magnetic alloy powder comprising iron alloy fine powder containing 30% by weight or more of iron and 15 to 25% by weight of silicon and having an average particle diameter of 1/5 or less of the average particle diameter of the steel powder. A paste formed by pressure forming and sintering, which has a high sintering density and excellent direct current magnetic characteristics, and is suitable for use as a soft magnet material.

又、この磁性合金焼結体を製造するに際して、鉄鋼粉
末と鉄合金微粉末との混合物を圧縮成形後、真空又は非
酸化性雰囲気中で1250℃以上において焼結・固化するか
ら、焼結温度でFe−Si合金微粉末の融液を生成させ、い
わゆる液相焼結が施されるので、更に高密度化し、磁気
特性が改善された焼結体が得られる。
Also, when manufacturing this magnetic alloy sintered body, the mixture of iron and steel powder and iron alloy fine powder is compression-molded and then sintered and solidified at 1250 ° C or higher in a vacuum or non-oxidizing atmosphere. Since a melt of Fe-Si alloy fine powder is generated and so-called liquid phase sintering is performed, a sintered body having higher density and improved magnetic characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−27545(JP,A) 特開 昭63−14838(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-27545 (JP, A) JP-A-63-14838 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄を98重量%以上含有する鉄鋼粉末に、鉄
を30重量%以上及びケイ素を15〜25重量%含有し、かつ
該鉄鋼粉末の平均粒径の5分の1以下の平均粒径を有す
る鉄合金微粉末を、該鉄鋼粉末に対して10〜30重量%混
合し、真空または非酸化性雰囲気中で700〜900℃の温度
において焼鈍して鉄合金微粉末を鉄鋼粉末の表面に固着
させ、形成された磁性合金粉末を圧縮成形し、真空又は
非酸化性雰囲気中で1250℃以上において焼結・固化する
ことを特徴とする磁性合金焼結体の製造方法。
1. An iron and steel powder containing 98% by weight or more of iron, containing 30% by weight or more of iron and 15 to 25% by weight of silicon, and having an average of 1/5 or less of the average particle size of the iron and steel powder. The iron alloy fine powder having a particle diameter is mixed with 10 to 30% by weight with respect to the iron and steel powder, and annealed at a temperature of 700 to 900 ° C. in a vacuum or a non-oxidizing atmosphere to obtain the iron alloy fine powder of the steel powder. A method for producing a magnetic alloy sintered body, which comprises sticking to a surface, compression-molding the formed magnetic alloy powder, and sintering and solidifying at 1250 ° C. or higher in a vacuum or a non-oxidizing atmosphere.
JP62294143A 1987-11-24 1987-11-24 Method for manufacturing magnetic alloy sintered body Expired - Lifetime JPH0817125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294143A JPH0817125B2 (en) 1987-11-24 1987-11-24 Method for manufacturing magnetic alloy sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294143A JPH0817125B2 (en) 1987-11-24 1987-11-24 Method for manufacturing magnetic alloy sintered body

Publications (2)

Publication Number Publication Date
JPH01136308A JPH01136308A (en) 1989-05-29
JPH0817125B2 true JPH0817125B2 (en) 1996-02-21

Family

ID=17803865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294143A Expired - Lifetime JPH0817125B2 (en) 1987-11-24 1987-11-24 Method for manufacturing magnetic alloy sintered body

Country Status (1)

Country Link
JP (1) JPH0817125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779027A (en) * 2015-04-03 2015-07-15 陈继红 Method for preparing soft magnetic composite powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227545A (en) * 1985-07-30 1987-02-05 Toshiba Corp Manufacture of sintered soft-magnetic parts
JPS6314838A (en) * 1986-07-04 1988-01-22 Riken Corp Production of fe-si type sintered soft magnetic material

Also Published As

Publication number Publication date
JPH01136308A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
JPH09104902A (en) Powder compacting method
WO2019111834A1 (en) Partial diffusion alloyed steel powder
JPH0817125B2 (en) Method for manufacturing magnetic alloy sintered body
JP2639812B2 (en) Magnetic alloy powder for sintering
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
JPS5854185B2 (en) Powder for high permeability sintered iron-nickel alloys
JPS5812331B2 (en) intermetallic compound magnet
JP2749165B2 (en) TiA-based composite material and method for producing the same
JP3147521B2 (en) Manufacturing method of anisotropic magnet
JPS631361B2 (en)
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS61127848A (en) Manufacture of sintered alnico magnet
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH08253833A (en) Copper-molybdenum alloy and its production
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JP4140083B2 (en) NiAlMo sputtering target and manufacturing method thereof
JPS6389602A (en) Production of alloy steel powder for powder metallurgy
JPS6347344A (en) Production of low oxygen alloy molding
JPH04285141A (en) Manufacture of ferrous sintered body
JP2760131B2 (en) Method for producing Fe-Co-V soft magnetic sintered alloy
JPH01180902A (en) Fe powder for sintering
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JP3270970B2 (en) High strength sintered iron material and method of manufacturing the same