JPH08165543A - Non-magnetic steel material and production thereof - Google Patents

Non-magnetic steel material and production thereof

Info

Publication number
JPH08165543A
JPH08165543A JP20131495A JP20131495A JPH08165543A JP H08165543 A JPH08165543 A JP H08165543A JP 20131495 A JP20131495 A JP 20131495A JP 20131495 A JP20131495 A JP 20131495A JP H08165543 A JPH08165543 A JP H08165543A
Authority
JP
Japan
Prior art keywords
less
steel material
weight
magnetic
magnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20131495A
Other languages
Japanese (ja)
Other versions
JP3276045B2 (en
Inventor
Yukihiro Oishi
幸広 大石
Takeshi Yoshioka
剛 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20131495A priority Critical patent/JP3276045B2/en
Publication of JPH08165543A publication Critical patent/JPH08165543A/en
Application granted granted Critical
Publication of JP3276045B2 publication Critical patent/JP3276045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a non-magnetic steel material for prestressed concrete, excellent in mechanical properties and delayed fracture characteristic, by subjecting a steel material, having specific Mn and Ni contents, to wire drawing at specific reduction of area and then to heating treatment. CONSTITUTION: The non-magnetic steel material has a composition consisting of, by weight, <=0.15% C, <=2.0% Si, 1.0-15.0% Mn, 2.0-15.0% Ni, 15.0-20.0% Cr, 0.1-0.5% N, and the balance essentially Fe and satisfying Ni+Mn=10 to 18%. The steel material with this composition is wire-drawn at a draft of 50-70% reduction of area and heated at 300-700 deg.C, preferably at 500-600 deg.C. By this method, the non-magnetic steel material, having <=1.01 magnetic permeability, >=1600N/mm<2> fracture strength, and >=3.5% elongation, can be obtained. This material is suitably used for prestressed concrete (PC). Further, the amount of martensite is regulated to 2-10% in this steel material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非磁性が要求される構
造物におけるプレストレストコンクリート(以下PCと
よぶ)用に好適な鋼材とその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material suitable for prestressed concrete (hereinafter referred to as PC) in a structure requiring non-magnetism and a method for producing the steel material.

【0002】[0002]

【従来の技術】従来、PC鋼は炭素鋼をベースにした鉄
鋼材料が使用されている。これらは全て磁気的に強磁性
体であるため、リニアモーターカーのガイドウェイの様
に構造物の非磁性が要求されるところには使用できな
い。また、非磁性を実現する鉄鋼材料として、Mnを1
5%程度以上添加した高Mn鋼およびオーステナイト系
のステンレス鋼が従来より知られている(特開平4-1549
38号公報、特開平4-141557号公報、特開平4-193934号公
報、特開平4-143252号公報および特公平6-4891号公報参
照)。
2. Description of the Related Art Conventionally, carbon steel is a steel material based on carbon steel. Since these are all magnetically ferromagnetic, they cannot be used in places where non-magnetism of structures is required, such as guideways for linear motor cars. In addition, Mn is 1 as a steel material that realizes non-magnetism.
High Mn steels and austenitic stainless steels containing about 5% or more have been conventionally known (Japanese Patent Laid-Open No. 4-1549).
38, JP-A-4-141557, JP-A-4-139934, JP-A-4-143252 and JP-B-6-4891).

【0003】[0003]

【発明が解決しようとする課題】しかし、高Mn鋼はM
nを多量に含有するため遅れ破壊特性が低下し、PC鋼
として望ましくない。また、オーステナイト系ステンレ
ス鋼にはSUS304やSUS316などがあるが、共に冷間加工に
よって透磁率が上昇し、非磁性が損なわれるほか、PC
鋼に要求される引張強度、比例限、降伏強度、伸び、リ
ラクセーションといった機械的特性を満足することがで
きないという問題があった。従って、本発明の目的は、
PC鋼としての機械的特性(引張強度、比例限、降伏強
度、伸び、リラクセーション)を満足し、かつ遅れ破壊
特性に優れた非磁性鋼材の製造方法を提供することにあ
る。
However, the high Mn steel is M
Since a large amount of n is contained, delayed fracture characteristics are deteriorated, which is not desirable for PC steel. Austenitic stainless steels such as SUS304 and SUS316 are both used, but the cold working increases the magnetic permeability, impairs non-magnetism, and PC.
There is a problem in that mechanical properties such as tensile strength, proportional limit, yield strength, elongation and relaxation required for steel cannot be satisfied. Therefore, the object of the present invention is to
It is an object of the present invention to provide a method for producing a non-magnetic steel material which satisfies the mechanical properties (tensile strength, proportional limit, yield strength, elongation, relaxation) of PC steel and is excellent in delayed fracture properties.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明の第一の構成は、重量%でC:0.15%以
下、Si:2.0%以下、Mn:1.0〜15.0%、
Ni:2.0〜15.0%、Cr:15.0〜20.0
%、N:0.1〜0.5%、残部は実質的にFeからな
る非磁性鋼材で、Ni+Mn:10〜18%、透磁率が
1.01以下、引張強度が1600N/mm2 以上、伸びが
3.5%以上であることを特徴とする。ここで、Mnの
量は1.0〜5.0重量%、Niの量は10.0〜1
5.0重量%であることが好適である。その製造方法
は、同組成の鋼材を、断面減少率50%以上70%以下
の加工度で線引加工し、300℃以上700℃以下、好
ましくは500℃以上600℃以下に加熱することを特
徴とする。
In order to achieve this object, the first constitution of the present invention is such that, in% by weight, C: 0.15% or less, Si: 2.0% or less, Mn: 1.0-. 15.0%,
Ni: 2.0 to 15.0%, Cr: 15.0 to 20.0
%, N: 0.1 to 0.5%, the balance being a non-magnetic steel material consisting essentially of Fe, Ni + Mn: 10 to 18%, magnetic permeability of 1.01 or less, tensile strength of 1600 N / mm 2 or more, The elongation is 3.5% or more. Here, the amount of Mn is 1.0 to 5.0% by weight, and the amount of Ni is 10.0 to 1
It is preferably 5.0% by weight. The manufacturing method is characterized in that a steel material having the same composition is drawn at a working ratio of 50% or more and 70% or less in cross-section reduction and heated to 300 ° C to 700 ° C, preferably 500 ° C to 600 ° C. And

【0005】また、第二の構成は、重量%でC:0.1
5%以下、Si:2.0%以下、Mn:1.0〜15.
0%、Ni:2.0〜15.0%、Cr:15.0〜2
0.0%、N:0.1〜0.5%、残部は実質的にFe
からなる非磁性鋼材で、Ni+Mn:10〜18%、リ
ラクセーション値が1.5%以下であることを特徴とす
る。ここで、Mnの量は1.0〜5.0重量%、Niの
量は10.0〜15.0重量%であることが好適であ
る。そして、その製造方法は、同組成の鋼材に冷間加工
を施した後、200℃〜700℃の温度に加熱し、鋼材
の破断荷重未満の引張力を与えることを特徴とする。
The second constitution is C: 0.1% by weight.
5% or less, Si: 2.0% or less, Mn: 1.0 to 15.
0%, Ni: 2.0 to 15.0%, Cr: 15.0 to 2
0.0%, N: 0.1 to 0.5%, the balance being substantially Fe
A non-magnetic steel material consisting of Ni + Mn: 10 to 18% and a relaxation value of 1.5% or less. Here, it is preferable that the amount of Mn is 1.0 to 5.0% by weight and the amount of Ni is 10.0 to 15.0% by weight. And the manufacturing method is characterized in that after cold working a steel material having the same composition, it is heated to a temperature of 200 ° C. to 700 ° C. to give a tensile force less than the breaking load of the steel material.

【0006】第三の構成は、重量%でC:0.15%以
下、Si:2.0%以下、Mn:1.0〜5.0%、N
i:10.0〜13.0%、Cr:15.0〜20.0
%、N:0.1〜0.5%、残部は実質的にFeからな
る鋼材において、次の3つの条件のうち少なくとも一つ
を満たすことを特徴とする。 体積%でマルテンサイト量が2〜10%である。 X線解析におけるfcc (220) の半価幅が0.65以
上、より好ましくは0.7以上。 100nm以下の炭化物が分散されている。
The third structure is such that, in weight%, C: 0.15% or less, Si: 2.0% or less, Mn: 1.0 to 5.0%, N.
i: 10.0 to 13.0%, Cr: 15.0 to 20.0
%, N: 0.1 to 0.5%, the balance being a steel material consisting essentially of Fe, characterized in that at least one of the following three conditions is satisfied. The amount of martensite is 2 to 10% by volume. The full width at half maximum of fcc (220) in X-ray analysis is 0.65 or more, more preferably 0.7 or more. Carbides of 100 nm or less are dispersed.

【0007】このような鋼材の製造方法は、重量%で
C:0.15%以下、Si:2.0%以下、Mn:1.
0〜5.0%、Ni:10.0〜13.0%、Cr:1
5.0〜20.0%、N:0.1〜0.5%、残部は実
質的にFeからなる鋼材を線引加工した後、熱処理する
際、次の条件の少なくとも一つを満たすことを特徴とす
る。 線引加工を0〜100℃、より好ましくは0〜60℃
の温度域にて行う。 線引加工の断面減少率を50〜70%とする。 熱処理条件を300〜600℃、より好ましくは50
0〜600℃で、10〜60分とする。
[0007] In such a steel material manufacturing method, C: 0.15% or less, Si: 2.0% or less, and Mn: 1.
0 to 5.0%, Ni: 10.0 to 13.0%, Cr: 1
5.0 to 20.0%, N: 0.1 to 0.5%, the balance being at least one of the following conditions when heat-treated after wire-drawing a steel material consisting essentially of Fe Is characterized by. Wire drawing processing is 0 to 100 ° C, more preferably 0 to 60 ° C
In the temperature range of. The cross-section reduction rate of wire drawing is set to 50 to 70%. The heat treatment condition is 300 to 600 ° C., more preferably 50.
It is 10 to 60 minutes at 0 to 600 ° C.

【0008】このように、成分や製造条件を限定した理
由は次の通りである。Cはオーステナイトを安定させ、
かつ固溶強化による強度向上に寄与する元素であり非常
に重要な元素である。しかし、重量%で0.15%を越
えて含有すると炭化物が析出するため遅れ破壊特性が低
下し、延性が低下するため0.15%以下とした。Si
は脱酸剤として製造上必要とされる元素である。しか
し、一方ではフェライトの安定化元素であるため、2.
0%を越えて含有するとフェライトが生成し、非磁性が
損なわれる可能性があるためである。Mnは強力なオー
ステナイト安定化元素であり、冷間加工後の非磁性を確
保するために必要な元素である。しかし、1.0%未満
の含有量では不十分であり、15%を越えて含有する
と、線引加工性を低下させるばかりでなく遅れ破壊特性
も低下させるからである。遅れ破壊特性を考慮すると、
Mn量は1.0〜5.0%が望ましい。
The reasons for limiting the components and manufacturing conditions in this way are as follows. C stabilizes austenite,
In addition, it is an element that contributes to the strength improvement by solid solution strengthening and is a very important element. However, if the content is more than 0.15% by weight, carbides precipitate and delayed fracture characteristics deteriorate, and ductility decreases, so the content was made 0.15% or less. Si
Is an element required in production as a deoxidizer. However, since it is a stabilizing element of ferrite on the one hand, 2.
This is because if the content exceeds 0%, ferrite may be generated and the non-magnetism may be impaired. Mn is a strong austenite stabilizing element, and is an element necessary for ensuring non-magnetism after cold working. However, a content of less than 1.0% is not sufficient, and a content of more than 15% not only deteriorates the wire drawability but also deteriorates the delayed fracture property. Considering delayed fracture characteristics,
The Mn content is preferably 1.0 to 5.0%.

【0009】NiはMn同様オーステナイト安定化元素
であり、鋼材の非磁性を確保するために有効な元素であ
る。2.0%未満ではその効果が不十分であり、15%
を越えてもそれ以上の効果はなく、コストアップを招く
だけだからである。実用上、10.0〜13.0%が好
ましい。また、MnとNiは共にオーステナイト安定化
元素であり、鋼材を確実に非磁性にするためには、Mn
+Niの量が10%以上必要である。一方、多すぎると
コストアップを招くため、18%以下が好適である。C
rは鋼材の耐食性を向上させ、かつ適量の添加によりオ
ーステナイトの安定化に寄与する元素であるが、過剰に
含有させるとフェライトの生成を促進する。従って、耐
食性を確保する必要上、15%以上の含有量が必要であ
るが、フェライトの生成を抑え、非磁性を確保する必要
上、20%以下とする必要がある。NはCと同様にオー
ステナイト安定化に寄与し、固溶強化により強度確保に
必要な元素である。0.1%未満ではその効果が小さ
く、0.5%を越えて含有すると製鋼時に気泡が多量に
発生し、熱間加工性を損ない、さらに遅れ破壊特性を低
下させる。
Ni, like Mn, is an austenite stabilizing element and is an element effective for ensuring the non-magnetism of the steel material. If less than 2.0%, the effect is insufficient, 15%
This is because there is no further effect even if the above is exceeded, and only the cost is increased. Practically, 10.0 to 13.0% is preferable. Further, both Mn and Ni are austenite stabilizing elements, and in order to make the steel material nonmagnetic surely, Mn
The amount of + Ni must be 10% or more. On the other hand, if the amount is too large, the cost increases, so 18% or less is preferable. C
r is an element that improves the corrosion resistance of the steel material and contributes to the stabilization of austenite by the addition of an appropriate amount, but when it is contained in excess, it promotes the formation of ferrite. Therefore, the content of 15% or more is required to ensure the corrosion resistance, but it is necessary to be 20% or less in order to suppress the generation of ferrite and to secure the nonmagnetic property. N, like C, contributes to austenite stabilization and is an element necessary for securing strength by solid solution strengthening. If it is less than 0.1%, its effect is small, and if it exceeds 0.5%, a large amount of bubbles are generated during steel making, which impairs hot workability and further deteriorates delayed fracture characteristics.

【0010】また、このような組成を有する鋼材の線引
加工後の熱処理温度を300℃以上700℃以下とした
のは、非磁性PC鋼に要求される引張強度、伸びを十分
に満足する鋼材を得るためである。さらに、上記組成の
鋼材に冷間加工を施した後、破断荷重未満の引張力をか
ける際の温度条件を200℃〜700℃としたのは、前
記機械的特性の他、比例限、降伏限度を大幅に向上し、
リラクセーションを低く抑えるためである。なお、特公
昭61-53408号公報は、本発明の熱処理と同様の熱処理を
提案しているが、基本的に対象としている鋼材の組成が
異なっている。特にCの含有量に関しては同公報記載の
発明が0.2%以上であるのに対し、本願のそれは0.
15%以下と低く、低C鋼において比例限や降伏強度の
向上を図っている点で大きく異なっている。
The heat treatment temperature of the steel material having such a composition after wire drawing is set to 300 ° C. or more and 700 ° C. or less because the steel material sufficiently satisfies the tensile strength and elongation required for the non-magnetic PC steel. Is to get. Furthermore, the temperature conditions when applying a tensile force less than the breaking load to 200 ° C. to 700 ° C. after cold working the steel material having the above composition are the mechanical properties, the proportional limit, and the yield limit. Greatly improved,
This is to keep the relaxation low. Japanese Patent Publication No. 61-53408 proposes a heat treatment similar to the heat treatment of the present invention, but basically the composition of the target steel material is different. In particular, regarding the content of C, the invention described in the publication is 0.2% or more, whereas that of the present application is 0.
It is as low as 15% or less, which is a big difference in that it aims to improve the proportional limit and the yield strength in low C steel.

【0011】さらに、線引加工温度を0〜60℃にする
ことにより、線引後のマルテンサイト量を2〜10体積
%に、fcc(220)の半価幅を0.65以上にすることがで
きる。マルテンサイト量が10%を越えて存在すると、
鋼材の透磁率が大幅に上昇し、一般に非磁性といわれて
いる透磁率1.01以下の条件を逸脱する。一方、マル
テンサイト量が2%未満では、PC鋼材として要求され
る強度を満足することができない。同様に、fcc(220)の
半価幅が0.65未満ではPC鋼材として要求される強
度を満足することができない。同半価幅が0.70以上
であれば、特に強度向上効果が大きい。
Further, by setting the drawing processing temperature to 0 to 60 ° C., the amount of martensite after drawing is set to 2 to 10% by volume, and the half width of fcc (220) is set to 0.65 or more. You can If the amount of martensite exceeds 10%,
The magnetic permeability of the steel material is significantly increased, which deviates from the condition that the magnetic permeability is 1.01 or less, which is generally said to be non-magnetic. On the other hand, if the amount of martensite is less than 2%, the strength required as a PC steel material cannot be satisfied. Similarly, if the full width at half maximum of fcc (220) is less than 0.65, the strength required as a PC steel material cannot be satisfied. When the half-value width is 0.70 or more, the strength improving effect is particularly large.

【0012】線引加工後の熱処理温度を300〜700
℃に限定することが引張強度や伸びの向上に寄与するこ
とは先に述べた。この熱処理条件を300〜600℃、
より好ましくは500〜600℃、加熱時間を10〜6
0分に限定することで、さらに引張強度と遅れ破壊特性
を向上させることができる。即ち、この熱処理により、
鋼材に100nm以下の微細な炭化物を分散させ、PC鋼
材として十分な強度を得ることができる。加熱時間が6
0分を越えたり、加熱温度が600℃を越えたりする
と、炭化物が100nmよりも大きくなり、強度は得られ
ても遅れ破壊特性が劣る。一方、加熱時間が10分未満
であったり、加熱温度が300℃未満であったりする
と、炭化物の析出が不十分で高強度の材料が得難い。
The heat treatment temperature after wire drawing is set to 300 to 700.
As described above, limiting the temperature to ° C contributes to the improvement of tensile strength and elongation. This heat treatment condition is 300 to 600 ° C.
More preferably, the temperature is 500 to 600 ° C., and the heating time is 10 to 6
By limiting the time to 0 minutes, the tensile strength and delayed fracture characteristics can be further improved. That is, by this heat treatment,
By dispersing fine carbide of 100 nm or less in the steel material, it is possible to obtain sufficient strength as a PC steel material. Heating time 6
If it exceeds 0 minutes or if the heating temperature exceeds 600 ° C., the carbide becomes larger than 100 nm, and the delayed fracture property is inferior even if the strength is obtained. On the other hand, if the heating time is less than 10 minutes or the heating temperature is less than 300 ° C., the precipitation of carbide is insufficient and it is difficult to obtain a high-strength material.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。 (実施例1)表1に示す組成の鋼材に熱間処理を行って
7mmφの線材を得た。それらを溶体化処理後、各条件
で線引加工および熱処理を行った。熱処理は各温度に1
0分間保持して水冷を行った。その後、透磁率、引張強
度、破断伸び、降伏強度、比例限、リラクセーションお
よび遅れ破壊特性の調査を行った。その結果を表2及び
図1に示す。
Embodiments of the present invention will be described below. (Example 1) A steel material having a composition shown in Table 1 was subjected to hot treatment to obtain a wire rod having a diameter of 7 mm. After the solution treatment, they were drawn and heat-treated under each condition. 1 heat treatment for each temperature
It hold | maintained for 0 minute and water-cooled. After that, magnetic permeability, tensile strength, elongation at break, yield strength, proportional limit, relaxation and delayed fracture characteristics were investigated. The results are shown in Table 2 and FIG.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表2は断面減少率が55%の線引加工を行
ったものを350℃で10分間加熱保持し、これを水冷
した線材に関する機械的特性の結果を示すものである。
遅れ破壊特性は、チオシアン酸アンモニウム(NH4
CN)溶液中において、引張強度の70%の荷重をか
け、破断するまでの時間が200時間以上保持できるこ
とを条件とした。表2から分かるように、実施例は冷間
加工後も安定した磁気特性を示し、透磁率は非常に小さ
い。また、引張強度、破断伸びも比較例に対して高い値
を示している。一方、図1は表1のサンプルDに対して
冷間加工後の熱処理における加熱温度の影響を示したも
のである。同図に示すように、300℃以上700℃以
下の温度(特に、500〜600℃)に加熱することに
よって引張強度が大幅に向上することが確認された。
Table 2 shows the results of the mechanical properties of a wire rod which was subjected to wire drawing with a cross-section reduction rate of 55%, heated and held at 350 ° C. for 10 minutes, and water-cooled.
The delayed fracture characteristic is ammonium thiocyanate (NH 4 S
In the (CN) solution, a load of 70% of the tensile strength was applied, and the time until breakage was maintained for 200 hours or more. As can be seen from Table 2, the examples show stable magnetic characteristics even after cold working, and the magnetic permeability is very small. The tensile strength and elongation at break also show higher values than those of the comparative examples. On the other hand, FIG. 1 shows the influence of the heating temperature in the heat treatment after cold working on the sample D in Table 1. As shown in the figure, it was confirmed that the tensile strength was significantly improved by heating to a temperature of 300 ° C. or higher and 700 ° C. or lower (particularly 500 to 600 ° C.).

【0017】(実施例2)表1記載のサンプルDを用
い、熱間圧延により7mmφの線材を作製した。その
後、溶体化処理を行い、断面減少率55%で線引加工を
行って各温度に加熱し、破断荷重の50%の荷重をかけ
た材料の降伏強度、比例限、リラクセーションを調べ
た。その結果を表3に示す。
(Example 2) Using sample D shown in Table 1, a wire rod having a diameter of 7 mm was produced by hot rolling. After that, solution treatment was performed, wire drawing was performed at a cross-sectional reduction rate of 55%, heating was performed at each temperature, and the yield strength, proportional limit, and relaxation of the material subjected to 50% of the breaking load were examined. Table 3 shows the results.

【0018】[0018]

【表3】 [Table 3]

【0019】表3に示すように、200℃以上700℃
以下の温度域で荷重をかけることにより、降伏強度、比
例限は大きく向上し、リラクセーションは非常に小さく
なっている。従って、PC鋼材として非常に優れている
ことが確認できた。
As shown in Table 3, above 200 ° C. and 700 ° C.
By applying a load in the following temperature range, the yield strength and proportional limit are greatly improved, and the relaxation is very small. Therefore, it was confirmed that it was extremely excellent as a PC steel material.

【0020】(実施例3)さらに、表1記載のサンプル
Dを用い、各断面減少率で加工を行い、350℃×10
分の熱処理を行った線材の強度と伸びを測定した。断面
減少率とこれら機械的特性の関係を図2のグラフに示
す。同図に示すように、断面減少率が高くなると、引張
強度が高くなるが伸びが小さくなる傾向があり、断面減
少率を50〜70%としたとき、強度と靱性に優れる線
材を得られることがわかる。
(Example 3) Further, using sample D shown in Table 1, processing was performed at each cross-section reduction rate, and 350 ° C x 10
The strength and elongation of the wire which was heat treated for a minute were measured. The relationship between the cross-section reduction rate and these mechanical properties is shown in the graph of FIG. As shown in the figure, when the cross-section reduction rate is high, the tensile strength is high, but the elongation tends to be small. When the cross-section reduction rate is 50 to 70%, a wire having excellent strength and toughness can be obtained. I understand.

【0021】(実施例4)表4に示す組成(表1におけ
るサンプルDと同じ)の鋼材を熱間圧延を行って7mmφ
の線材を得た。それらを溶体化処理後、各加工温度で断
面減少率56.5%の線引加工を行った。その後、52
5℃にて10分間保持して水冷し、引張強度・透磁率・
X線解析によるマルテンサイト量・X線解析によるfcc
(220)ピークの半価幅を測定した。加工温度は、線引加
工におけるダイス出口の線材の温度とした。
(Example 4) A steel material having the composition shown in Table 4 (same as Sample D in Table 1) was hot-rolled to give a diameter of 7 mmφ.
I got the wire. After the solution treatment, they were subjected to wire drawing with a cross-section reduction rate of 56.5% at each processing temperature. Then 52
Hold at 5 ℃ for 10 minutes and cool with water to obtain tensile strength, magnetic permeability,
Amount of martensite by X-ray analysis, fcc by X-ray analysis
The full width at half maximum of the (220) peak was measured. The processing temperature was the temperature of the wire material at the die exit in the wire drawing process.

【0022】[0022]

【表4】 [Table 4]

【0023】その結果を図3〜6に示す。各図に示すよ
うに、加工温度の低下に伴い、マルテンサイト量・fcc
(220)ピークの半価幅(オーステナイト相中の歪み量)
が増大し、引張強度を向上できることがわかる。加工温
度100℃程度でも1600N/mm2 の引張強度が得られ
るが、特に60℃以下で線引加工すると、より高強度の
線材を得ることができる。しかし、加工温度が0℃未満
になると、マルテンサイト量の増大に伴って透磁率の上
昇を招き、非磁性材料として好ましくない。
The results are shown in FIGS. As shown in each figure, as the processing temperature decreases, the amount of martensite / fcc
Full width at half maximum of (220) peak (amount of strain in austenite phase)
It can be seen that the tensile strength is increased and the tensile strength can be improved. Although a tensile strength of 1600 N / mm 2 can be obtained even at a processing temperature of about 100 ° C., a wire material having a higher strength can be obtained particularly by wire drawing at 60 ° C. or less. However, when the processing temperature is lower than 0 ° C., the magnetic permeability increases with the increase in the amount of martensite, which is not preferable as a nonmagnetic material.

【0024】(実施例5)表4に示す組成の鋼材を熱間
圧延を行って7mmφの線材を得た。それらを溶体化処理
後、50〜55 ℃で断面減少率56.5%の線引加工を行
った。その後、種々の条件で熱処理を行い、引張強度・
炭化物の析出状況・遅れ破壊特性を評価した。遅れ破壊
特性は、0.1規定のHCl溶液を腐食液として破断荷
重の80%の荷重で試験し、試験時間は最大200時間
とした。実施例1では主にHによる遅れ破壊特性を調べ
たが、本例ではさらにCl- の腐食による遅れ破壊特性
も調べている。その結果を表5に示す。
Example 5 A steel material having the composition shown in Table 4 was hot-rolled to obtain a wire rod having a diameter of 7 mm. After subjecting them to solution treatment, wire drawing was carried out at 50 to 55 ° C. at a cross-section reduction rate of 56.5%. After that, heat treatment is performed under various conditions to obtain tensile strength
The state of carbide precipitation and delayed fracture characteristics were evaluated. The delayed fracture property was tested by using 0.1N HCl solution as a corrosive liquid at a load of 80% of the breaking load, and the test time was 200 hours at maximum. In Example 1, the delayed fracture characteristics mainly due to H were investigated, but in this example, the delayed fracture characteristics due to Cl corrosion was also investigated. The results are shown in Table 5.

【0025】[0025]

【表5】 [Table 5]

【0026】同表に示すように、加熱温度が300〜7
00℃の範囲で、1600N/mm2 以上の引張強度が得ら
れていることがわかる。特に、加熱温度を500〜60
0℃にすると、微細な炭化物が析出され、引張強度の向
上が顕著に認められる。また、加熱時間を10〜60分
とすれば、高い引張強度と優れた遅れ破壊特性を具えた
線材を得ることができた。加熱温度が高すぎたり、加熱
時間が長すぎると、析出炭化物が大きくなり、引張強度
は高くても遅れ破壊特性が劣る。
As shown in the table, the heating temperature is 300 to 7
It can be seen that a tensile strength of 1600 N / mm 2 or more is obtained in the range of 00 ° C. In particular, the heating temperature is 500-60
When the temperature is 0 ° C., fine carbides are precipitated and the tensile strength is remarkably improved. Moreover, when the heating time was set to 10 to 60 minutes, a wire rod having high tensile strength and excellent delayed fracture characteristics could be obtained. If the heating temperature is too high or the heating time is too long, the precipitated carbides will be large, and the delayed fracture property will be poor even if the tensile strength is high.

【0027】(実施例6)表6に示す組成の鋼材に熱間
圧延を行って7mmφの線材を得た。それらを溶体化処理
後、各加工温度で断面減少率56.5%の線引加工を行
った。その後、525℃にて10分間保持して水冷し、
得られた線材の遅れ破壊特性を評価した。評価は実施例
5と同様の方法で行った。その結果を表7に示す。同表
から明らかなように、実施例は参考例に比べて極めて優
れた遅れ破壊特性を示すことがわかる。
Example 6 A steel material having the composition shown in Table 6 was hot-rolled to obtain a wire rod having a diameter of 7 mm. After the solution treatment, they were subjected to wire drawing with a cross-section reduction rate of 56.5% at each processing temperature. Then, hold at 525 ° C for 10 minutes and cool with water,
The delayed fracture characteristics of the obtained wire rod were evaluated. The evaluation was performed in the same manner as in Example 5. The results are shown in Table 7. As is clear from the table, it can be seen that the examples show extremely excellent delayed fracture characteristics as compared with the reference examples.

【0028】[0028]

【表6】 [Table 6]

【0029】[0029]

【表7】 [Table 7]

【0030】[0030]

【発明の効果】以上説明したように、本発明により非磁
性PC鋼に要求される機械的特性を満足する鋼材を得る
ことができる。特に請求項1記載の鋼材は、透磁率、引
張強度、伸びおよび遅れ破壊に優れている。また、請求
項3記載の鋼材は、これらの機械的特性に加えて、降伏
強度、比例限およびリラクセーションに優れている。さ
らに、請求項7〜9記載の鋼材も、引張強度に優れ、低
透磁率を実現できる。特に請求項9記載の鋼材は、遅れ
破壊特性に優れている。従って、リニアモーターカーの
ガイドウェイや核磁気共鳴断層室などの非磁性が要求さ
れる構造物においてPC鋼とし利用することができる。
As described above, according to the present invention, it is possible to obtain a steel material which satisfies the mechanical properties required for non-magnetic PC steel. Particularly, the steel material according to claim 1 is excellent in magnetic permeability, tensile strength, elongation and delayed fracture. The steel material according to claim 3 is excellent in yield strength, proportional limit and relaxation in addition to these mechanical properties. Further, the steel materials according to claims 7 to 9 are also excellent in tensile strength and can realize low magnetic permeability. In particular, the steel material according to claim 9 is excellent in delayed fracture characteristics. Therefore, it can be used as PC steel in a structure requiring non-magnetism such as a guideway of a linear motor car and a nuclear magnetic resonance tomography chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱処理温度と引張強度の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between heat treatment temperature and tensile strength.

【図2】断面減少率と機械的特性の関係を示すグラフで
ある。
FIG. 2 is a graph showing a relationship between a cross-section reduction rate and mechanical properties.

【図3】線引加工温度と引張強度の関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between drawing processing temperature and tensile strength.

【図4】線引加工温度と透磁率の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between drawing processing temperature and magnetic permeability.

【図5】線引加工温度とマルテンサイト量の関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between the drawing processing temperature and the amount of martensite.

【図6】線引加工温度とfcc(220)ピークの関係を示すグ
ラフである。
FIG. 6 is a graph showing the relationship between the drawing processing temperature and the fcc (220) peak.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜15.0%、Ni:2.
0〜15.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、Ni
+Mn:10〜18%で、透磁率が1.01以下、破断
強度が1600N/mm2 以上、伸びが3.5%以上である
ことを特徴とする非磁性鋼材。
1. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 15.0%, Ni: 2.
0 to 15.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance consisting essentially of Fe, Ni
+ Mn: 10-18%, a magnetic permeability of 1.01 or less, a breaking strength of 1600 N / mm 2 or more, and an elongation of 3.5% or more, a non-magnetic steel material.
【請求項2】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜15.0%、Ni:2.
0〜15.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、Ni
+Mn:10〜18%の鋼材を、断面減少率50%以上
70%以下の加工度で線引加工し、300℃以上700
℃以下に加熱することを特徴とする非磁性鋼材の製造方
法。
2. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 15.0%, Ni: 2.
0 to 15.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance consisting essentially of Fe, Ni
+ Mn: Steel material of 10 to 18% is subjected to wire drawing at a working ratio of 50% or more and 70% or less in cross-section reduction, and 300 ° C or more and 700
A method for producing a non-magnetic steel material, which comprises heating to below ℃.
【請求項3】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜15.0%、Ni:2.
0〜15.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、Ni
+Mn:10〜18%で、リラクセーション値が1.5
%以下であることを特徴とする非磁性鋼材。
3. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 15.0%, Ni: 2.
0 to 15.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance consisting essentially of Fe, Ni
+ Mn: 10 to 18%, relaxation value is 1.5
% Or less, a non-magnetic steel material.
【請求項4】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜15.0%、Ni:2.
0〜15.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、Ni
+Mn:10〜18%の鋼材に冷間加工を施した後、2
00℃〜700℃の温度に加熱し、鋼材の破断荷重未満
の引張力を与えることを特徴とする非磁性鋼材の製造方
法。
4. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 15.0%, Ni: 2.
0 to 15.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance consisting essentially of Fe, Ni
+ Mn: 10 to 18% of steel, after cold working, 2
A method for producing a non-magnetic steel material, which comprises heating to a temperature of 00 ° C to 700 ° C and applying a tensile force less than a breaking load of the steel material.
【請求項5】 鋼材の化学成分中、Mnが1.0〜5.
0重量%、Niが10.0〜13.0重量%であること
を特徴とする請求項1または3記載の非磁性鋼材。
5. Among the chemical components of steel, Mn is 1.0 to 5.
The non-magnetic steel material according to claim 1 or 3, wherein 0 wt% and Ni are 10.0 to 13.0 wt%.
【請求項6】 鋼材の化学成分中、Mnが1.0〜5.
0重量%、Niが10.0〜13.0重量%であること
を特徴とする請求項2または4記載の非磁性の製造方
法。
6. The chemical composition of a steel material, wherein Mn is 1.0 to 5.
The non-magnetic manufacturing method according to claim 2 or 4, wherein 0 wt% and Ni are 10.0 to 13.0 wt%.
【請求項7】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜5.0%、Ni:10.
0〜13.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、体積
%でマルテンサイト量が2〜10%であることを特徴と
する非磁性材料。
7. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 5.0%, Ni: 10.
0 to 13.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance substantially consisting of Fe, and the amount of martensite in volume% is 2 to 10%, a non-magnetic material.
【請求項8】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜5.0%、Ni:10.
0〜13.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、X線
解析におけるfcc(220) の半価幅が0.65以上である
ことを特徴とする非磁性材料。
8. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 5.0%, Ni: 10.
0 to 13.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance being substantially Fe, and a half-value width of fcc (220) in X-ray analysis of 0.65 or more.
【請求項9】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜5.0%、Ni:10.
0〜13.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなり、10
0nm以下の炭化物が分散されていることを特徴とする非
磁性鋼材。
9. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 5.0%, Ni: 10.
0 to 13.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance consisting essentially of Fe, 10
A non-magnetic steel material in which carbides of 0 nm or less are dispersed.
【請求項10】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜5.0%、Ni:10.
0〜13.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなる鋼材
を、0〜100℃の温度域で線引加工することを特徴と
する非磁性鋼材の製造方法。
10. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 5.0%, Ni: 10.
0 to 13.0%, Cr: 15.0 to 20.0%, N:
A method for producing a non-magnetic steel material, which comprises subjecting a steel material, which is 0.1 to 0.5% and the balance being substantially Fe, to a wire drawing process in a temperature range of 0 to 100 ° C.
【請求項11】 線引加工度が断面減少率で50〜70
%であることを特徴とする請求項10記載の非磁性鋼材
の製造方法。
11. The drawing workability is a cross-section reduction rate of 50 to 70.
%, The method for producing a non-magnetic steel material according to claim 10.
【請求項12】 重量%でC:0.15%以下、Si:
2.0%以下、Mn:1.0〜5.0%、Ni:10.
0〜13.0%、Cr:15.0〜20.0%、N:
0.1〜0.5%、残部は実質的にFeからなる鋼材を
線引加工し、500〜600℃の温度域で、10〜60
分加熱することを特徴とする非磁性鋼材の製造方法。
12. C: 0.15% or less by weight%, Si:
2.0% or less, Mn: 1.0 to 5.0%, Ni: 10.
0 to 13.0%, Cr: 15.0 to 20.0%, N:
0.1 to 0.5%, the balance being steel made of substantially Fe, drawn in a temperature range of 500 to 600 ° C. for 10 to 60
A method for producing a non-magnetic steel material, which comprises heating for a minute.
【請求項13】 線引加工を0〜100℃の温度域で行
うことを特徴とする請求項12記載の非磁性鋼材の製造
方法。
13. The method for producing a non-magnetic steel material according to claim 12, wherein the drawing process is performed in a temperature range of 0 to 100 ° C.
JP20131495A 1994-10-12 1995-07-13 Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same Expired - Lifetime JP3276045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20131495A JP3276045B2 (en) 1994-10-12 1995-07-13 Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-274453 1994-10-12
JP27445394 1994-10-12
JP20131495A JP3276045B2 (en) 1994-10-12 1995-07-13 Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11222661A Division JP2000038642A (en) 1994-10-12 1999-08-05 Nonmagnetic steel and its production

Publications (2)

Publication Number Publication Date
JPH08165543A true JPH08165543A (en) 1996-06-25
JP3276045B2 JP3276045B2 (en) 2002-04-22

Family

ID=26512721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20131495A Expired - Lifetime JP3276045B2 (en) 1994-10-12 1995-07-13 Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3276045B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026650A (en) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd High-strength stainless-steel wire superior in hydrogen embrittlement resistance and formed product of stainless steel using the same
JP2014185367A (en) * 2013-03-22 2014-10-02 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
JP2017106096A (en) * 2015-12-07 2017-06-15 ポスコPosco High strength wire material excellent in corrosion resistance and manufacturing method therefor
WO2020140379A1 (en) * 2019-01-03 2020-07-09 南京钢铁股份有限公司 Welding wire for submerged arc welding of high-manganese low-temperature steel, and welding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212358A (en) * 1992-12-28 1994-08-02 Nippon Steel Corp Nonmagnetic pc steel wire and its production
JPH0711388A (en) * 1993-06-28 1995-01-13 Kobe Steel Ltd High strength nonmagnetic reinforcing material for prestressed concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212358A (en) * 1992-12-28 1994-08-02 Nippon Steel Corp Nonmagnetic pc steel wire and its production
JPH0711388A (en) * 1993-06-28 1995-01-13 Kobe Steel Ltd High strength nonmagnetic reinforcing material for prestressed concrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026650A (en) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd High-strength stainless-steel wire superior in hydrogen embrittlement resistance and formed product of stainless steel using the same
JP2014185367A (en) * 2013-03-22 2014-10-02 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
JP2017106096A (en) * 2015-12-07 2017-06-15 ポスコPosco High strength wire material excellent in corrosion resistance and manufacturing method therefor
WO2020140379A1 (en) * 2019-01-03 2020-07-09 南京钢铁股份有限公司 Welding wire for submerged arc welding of high-manganese low-temperature steel, and welding method

Also Published As

Publication number Publication date
JP3276045B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
KR101029431B1 (en) High-strength spring steel excellent in brittle fracture resistance and method for producing same
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
EP1491647B1 (en) Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
US6645319B2 (en) Wire rod for drawing superior in twisting characteristics and method for production thereof
JP2013147728A (en) Steel for mechanical structure for cold working, and method for manufacturing the same
JP3527641B2 (en) Steel wire with excellent cold workability
JP7226548B2 (en) wire
JPH11199977A (en) Wire rod excellent in wire drawability
JPS6039150A (en) Steel for pipe for oil well with superior resistance to stress corrosion cracking
JPH08165543A (en) Non-magnetic steel material and production thereof
JP3749656B2 (en) Steel material with excellent toughness
JP3348188B2 (en) High-strength PC steel rod and method of manufacturing the same
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JP2000119808A (en) Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture
JP2001073081A (en) Low yield ratio high tensile strength steel rod and its production
JP2003231919A (en) Production method for stainless steel wire
JP2000038642A (en) Nonmagnetic steel and its production
JP2802155B2 (en) Method for producing high-strength steel wire without heat treatment and excellent in fatigue resistance and wear resistance
JPH0790495A (en) High strength steel wire and its production
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JP3468828B2 (en) Manufacturing method of high strength PC steel rod
JPH1072639A (en) Steel material for machine structural use, excellent in machinability, cold forgeability, and hardenability
JP2003096544A (en) Wire for high strength high carbon steel wire, and production method therefor
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JP3348187B2 (en) High-strength PC steel rod and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term