JP3749656B2 - Steel material with excellent toughness - Google Patents

Steel material with excellent toughness Download PDF

Info

Publication number
JP3749656B2
JP3749656B2 JP2000283617A JP2000283617A JP3749656B2 JP 3749656 B2 JP3749656 B2 JP 3749656B2 JP 2000283617 A JP2000283617 A JP 2000283617A JP 2000283617 A JP2000283617 A JP 2000283617A JP 3749656 B2 JP3749656 B2 JP 3749656B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel material
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000283617A
Other languages
Japanese (ja)
Other versions
JP2002097543A (en
Inventor
琢哉 ▲高▼知
護 長尾
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000283617A priority Critical patent/JP3749656B2/en
Publication of JP2002097543A publication Critical patent/JP2002097543A/en
Application granted granted Critical
Publication of JP3749656B2 publication Critical patent/JP3749656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、輸送機械や建築構造物等の機械構造物に用いられる鋼材に関し、特にばねやボルトの素材に適した高強度で高靭性の鋼材に関するものである。
【0002】
【従来の技術】
近年、輸送機械や建築構造物等に使用される機械構造物用鋼材は、軽量化および長寿命化という目的から、より一層の高強度化が要求されている。こうした高強度化を達成することは、例えば自動車における燃費や排ガス低減が図れ、その結果として環境への負荷の低減が図れるのである。
【0003】
上記の様な高強度機械構造用鋼材としては、焼入れ・焼戻し処理によって組織をマルテンサイト化した鋼(マルテンサイト鋼)が主に用いられており、その強度レベルはロックウェルC硬さ(HRC)で45以上、好ましくはHRC50以上が必要とされている。しかしながら、鋼材の高強度化を図ることは靭性の劣化を招くという弊害が生じることになる。こうしたことから、高強度化を図ると共に、遅れ破壊感受性や腐食疲労特性等の靭性をも良好にすることが現在の重要な課題とされている。
【0004】
高強度と良好な靭性を兼ね備えた鋼材の開発を目指してこれまでにも様々な技術が提案されており、例えば特公昭60−30736号には、冷間成形コイルばねの靭性向上を目標として、高周波加熱焼入れによってマルテンサイト組織を微細化する技術が提案されている。但し、この技術では、急速加熱処理によってオーステナイト組織を微細化し、間接的にマルテンサイト組織を微細化するものであるので、靭性向上の程度も十分に満足できるものではなく、更なる高靭性化の技術の開発が望まれている。
【0005】
また、特開平6−116637号には、成分組成としてNiを多量(8.0〜11.0%程度)に含有させると共に、昇温中に剪断型逆変態オーステナイト相を生成させ、転位密度の高い未変態オーステナイトから焼入れることによって、マルテンサイト鋼の靭性を向上させる技術が提案されている。しかしながら、Niは積極的に多量添加するには高価な元素であるという欠点がある。
【0006】
更に、特開平7−224355号には、マルテンサイト鋼に1回の伸線加工を施して鋼材表層に<110>集合組織を形成させることによって、マルテンサイト鋼の旧オーステナイト粒界における割れを防止して靭性を向上させる方法が開示されている。しかしながらこの技術は、PC(prestressed concrete)鋼棒に適用されることを想定してなされたものであるので、こうした用途で要求される特性が重視されており、またマルテンサイト鋼の強度を決定する添加C量も0.1〜0.4%と低く設定されており、ばねやボルト用鋼として適用するには強度および靭性ともに要求水準を満足するものではかった。
【0007】
【発明が解決しようとする課題】
本発明はこうした状況の下でなされたものであって、その目的は、HRC45以上の高強度が要求される構造部材として用いても十分な強度を有すると共に、靭性にも優れた鋼材を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成し得た本発明の鋼材とは、C:0.3〜1.2%、Mn:0.15〜2.0%を夫々含有する他、(1)Cr:3%以下(0%を含まない)、Mo:2%以下(0%を含まない)、Ni:10%以下(0%を含まない)およびCu:1%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、(2)Si:3.0%以下(0%を含まない)および/またはAl:1.5%以下(0%を含まない)、(3)Ti:0.30%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、V:0.3%以下(0%を含まない)およびZr:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、を含有し、P:0.02%以下(0%を含む)およびS:0.02%以下(0%を含む)に夫々抑制し、残部がFeおよび不可避的不純物からなるものであり、マルテンサイト組織を主体とし、且つロックウェルC硬さ(HRC)が45〜64、X線回折におけるα−Fe(200)ピークの半価幅HWα(200)が下記(1)式、望ましくは下記(2)式を満足する点に要旨を有するものである。
HWα(200)>−0.94+3.94×10−2×HRC ……(1)
HWα(200)>−0.90+3.94×10−2×HRC ……(2)
【0010】
【発明の実施の形態】
マルテンサイト鋼の最高到達硬さは、炭素含有量によってほぼ決定されることが知られている。これは、マルテンサイト鋼の強度レベルを決定する各種強化機構の中で、Cの固溶強化と析出強化を含む時効再配列等による寄与が、格子欠陥による強化に比べて大きいからである。従って、マルテンサイト鋼の高強度化には、C含有量を増加させることや炭化物形成元素の添加等が有効となる。しかしながら、C含有量を増加させることにより高強度化を図った場合には、靭性の確保が非常に困難になる。
【0011】
一方、強度と靭性を両立させる強化手段として、結晶粒の微細化を図ることが有効であることも良く知られている。しかしながら、現状のレベルよりも更に結晶粒微細化を図ることは、現在のところ非常に困難である。また、結晶粒微細化以外の強化機構については、靭性に及ぼす影響が明らかにされている訳ではない。
【0012】
上記の様な状況の下で本発明者らは、結晶粒微細化以外の手段で鋼材の強度と靭性を両立させる強化機構について様々な角度から検討を重ねた。その結果、格子欠陥の導入による強化機構においては、靭性劣化への影響が非常に小さいことが判明した。そして、こうした知見に基づいて更に検討を重ねたところ、鋼材に多量の格子欠陥を導入して全強度に対する格子欠陥の寄与をできるだけ増大させてやれば、高強度と高靭性を兼ね備えた鋼材が実現できることを見出し、本発明を完成した。以下、本発明で規定する各要件について説明する。
【0013】
まず本発明の鋼材は、基本的にC:0.3〜1.2%、Mn:0.15〜2.0%を夫々含有すると共に、P:0.02%以下(0%を含む)およびS:0.02%以下(0%を含む)に夫々抑制したものであるが、これらの元素の範囲限定理由は下記の通りである。
【0014】
C:0.3〜1.2%
本発明の鋼材に目標とする強度・靭性レベルを確保させるためには、Cは少なくとも0.3%含有させる必要がある。鋼材は、C含有量の増加に伴って高強度化が達成されることになる。また、C含有量を増加することによって、焼入れ後のマルテンサイト鋼中の欠陥密度が高くなるので、高欠陥密度による靭性向上を図る本発明においては、C含有量はできるだけ高い方が有利である。しかしながら、C含有量が過剰になって1.2%を超えると、焼割れが生じ易くなる。尚、C含有量の好ましい下限は0.3%程度であり、好ましい上限は0.8%程度である。
【0015】
Mn:0.15〜2.0%
Mnは、焼入れ性向上元素として添加されるが、その効果を発揮させるためには0.15%以上含有させる必要がある。しかしながら、その含有量が過剰になると、冷間成形性や靭性の低下を招くので、上限を2.0%とする。尚、Mn含有量の好ましい下限は0.2%であり、好ましい上限は1.0%である。
【0016】
P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)
PとSが鋼材中に過度に存在すると、オーステナイト結晶粒界に偏析して粒界破壊を助長して靭性を低下させるので、できるだけ少ない方が良いが、いずれも0.02%以下に抑制すればこうした不都合を回避することができる。尚、これらの元素は、いずれも0.01%以下に抑制することが好ましい。
【0017】
本発明の鋼材における基本的な化学成分組成は上記の通りであるが、その他、(1)Cr:3%以下(0%を含まない)、Mo:2%以下(0%を含まない)、Ni:10%以下(0%を含まない)およびCu:1%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、(2)Si:3.0%以下(0%を含まない)および/またはAl:1.5%以下(0%を含まない)、(3)Ti:0.30%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、V:0.3%以下(0%を含まない)およびZr:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、等を含有し、残部はFeおよび不可避的不純物からなるものである。これらの元素の範囲限定理由は、下記の通りである。尚、これらの成分以外にも、本発明の鋼材には、その特性を阻害しない範囲の微量成分(例えば、B,Mg,Ta,Co,Sb,W,希土類元素等)も含み得るものであり、こうした鋼材も本発明の技術的範囲に含まれるものである。
【0018】
Cr:3%以下(0%を含まない)、Mo:2%以下(0%を含まない)、Ni:10%以下(0%を含まない)およびCu:1%以下(0%を含まない)よりなる群から選ばれる1種以上の元素
Cr、Mo、NiおよびCuは、耐食性を向上させるのに有効な元素であるが、過剰に含有させると焼入れ性が高くなり過ぎ、ボルト成形時等における冷間成形性を劣化させる。また、これらの元素は高価であるので、増量による特性向上とコスト増加との兼ね合いから、上限を夫々上記の様に設定した。尚、これらの元素による上記効果は、上記範囲内でその含有量を増加させるにつれて大きくなるが、上記効果を発揮させる為には、いずれも0.1%以上含有させることが好ましい。
【0019】
Si:3.0%以下(0%を含まない)および/またはAl:1.5%以下(0%を含まない)
SiおよびAlは、ばね鋼として要求される耐へたり性を向上させるのに有効な元素であるが、過剰に含有させると熱処理時の脱炭や鋳造時の凝固割れ等の問題が起こるので、上限を夫々上記の様に設定した。尚、上記の様な効果を有効に発揮させるためには、Siで0.5%以上、Alで0.2%以上含有させることが好ましい。
【0020】
Ti:0.30%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、V:0.3%以下(0%を含まない)およびZr:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素
Ti、Nb、VおよびZrは、微量の添加で微細析出物を形成し、析出強化をもたらすと共に、鋼材組織の粗大化抑制および微細化等に寄与し、靭性を向上させるのに有効な元素である。これらの効果は、その含有量が増加するにつれて大きくなるが、過剰に含有させると析出物が粗大化し加工性が悪くなるので、上限を夫々上記の様に設定した。尚、上記の様な効果を有効に発揮させるためには、いずれも0.05%以上含有させることが好ましい。
【0021】
本発明の鋼材は、前述の如くマルテンサイト組織を主体とするものである。焼入れ後や焼戻し後の組織には、未変態のオーステナイト(残留オーステナイト)を含む場合があるが、本発明におけるマルテンサイト組織とは、焼入れ・焼戻し後の残留オーステナイトを除く組織を指す。また、「マルテンサイト組織を主体とする」とは、マルテンサイト組織が90体積%程度以上であることを意味し、この体積割合は例えばX線回折法によって求められる残留オーステナイト量から計算することができる。この様に、マルテンサイト組織を主体とする組織とすることによって、前記C含有量と相俟って、鋼材の強度をロックウェルC硬さHRCで45〜64とすることができる。
【0022】
但し、上記の要件(化学成分および組織)を満足するだけでは、本発明で目的とする高靭性を達成することができない。本発明では格子欠陥密度の評価パラメータの一つであるX線回折におけるα−Fe(200)ピークの半価幅HWα(200)を用いて、本発明の意図する高靭性を達成する為の指標となる格子欠陥密度を限定したのである。
【0023】
即ち、本発明においては、マルテンサイトのα−Fe(200)ピークの半価幅HWα(200)が、上記HRCとの関係で上記(1)式[好ましくは上記(2)式]を満足すれば、本発明で意図する優れた高靭性が発揮されるためである。尚、前記半価幅HWα(200)は、湿式切断した鋼材の圧延方向横断面に切断加工歪み影響部を除去するのための湿式研磨や電界研磨を施して測定面とし、X線回折法によって求められるものである。
【0024】
上記の様な要件を満足する本発明のマルテンサイト鋼は、高強度および高靭性の両特性を具備したものとなり、高強度ばねや高強度ボルトの素材として好適である。この様なマルテンサイト鋼を製造するに当たっては、鋼材中の欠陥密度を高めるという観点から、例えば後記実施例の製造パターンAの条件に示す如く、マルテンサイト鋼の製造プロセスである焼入れ・焼戻し処理において、焼入れ後および焼戻し後の夫々において、総減面率が20%以上となる様な冷間加工を1回以上施せば良い。
【0025】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0026】
【実施例】
下記表1に示す化学成分組成を有する各種鋼材(No.1〜18)を、溶製、形状加工し、直径:18mmの棒材を得た。
【0027】
【表1】

Figure 0003749656
【0028】
次に、下記表2に示す3つの製造パターンA〜Cによって、マルテンサイト鋼を作製した。この製造プロセスは、▲1▼焼入れ処理、▲2▼中間加工処理、▲3▼焼戻し処理、▲4▼後加工処理および▲5▼ブルーイング処理の5つの処理工程からなり、下記表2には各工程の処理条件範囲を示してある(但し、「−」は処理無しであることを意味する)。
【0029】
【表2】
Figure 0003749656
【0030】
焼入れ処理については、後の冷間加工時の加工性を確保する為に昇温速度および処理時間を制御し、加熱温度はAc3〜Ac3+200℃とした。但し、製造パターンAについては、高いレベルでの特性実現の為に、製造パターンB,Cと比べて各焼入れ処理条件を更に制限した。また、焼入れ時の冷却については、冷却速度が臨界冷却速度以上となる様に水冷で行なった。
【0031】
焼入れ後、製造パターンA,Bでは、中間加工処理として室温にて伸線加工を行なった。この伸線加工は、前述の如く、鋼中の欠陥密度を高める目的で行なうものであり、内部まで加工される様に、総減面率が20%以上となる様に行なった。これに対して、製造パターンCでは、中間加工は行なわなかった。尚、この実施例では、加工方法として伸線を選択したけれども、欠陥密度を高めるための手段としての加工方法はこれに限定されるものではなく、例えば圧延、転造、ショットピーニング等、その他の方法も採用することができる。
【0032】
焼戻し処理については、必要な強度レベルに調整する様に条件を設定した。焼戻し処理時に欠陥密度は回復によって減少するので、鋼材における最終的な欠陥密度を高める為には、できるだけ(a)昇温速度を大きく、(b)加熱温度を低く、(c)処理時間を短くした方が良い。こうした観点から、上記製造パターンA〜Cのいずれにおいても、30℃/sec以上という比較的大きな昇温速度にしているが、特に製造パターンAでは条件を更に制限し、昇温速度を100℃/sec以上とした。
【0033】
焼戻し後、製造パターンA,Cでは、後加工処理として室温で伸線加工を施した。この後加工処理では、前述した中間加工処理と同様、鋼材中の欠陥密度を高める為に行なうものであり、内部まで加工される様に、総減面率が20%以上となる様に行なった。この後加工処理においても、前記中間加工処理と同様に、圧延その他の方法を採用することができる。
【0034】
後加工した後は、いくつかの試料においては、更に強度を高めることを目的としてブルーイング処理を行なった。加工した鋼材に熱処理を施すと、固溶Cが再配列することによって、強度が上昇する。ブルーイング処理は、処理中に欠陥密度が低下し過ぎない様に、比較的低温の300℃×10分とした(製造パターンA,C)。
【0035】
尚、各熱処理時の温度は、試料作成工程において、試料表面に熱電対を溶接して表面温度を測定し、測定温度から昇温速度を算出した。
【0036】
焼戻し、後加工およびブルーイング後の鋼材の強度評価として、ロックウェルC硬さ(HRC)を求めた。このとき、圧延方向横断面を測定面とする為に、湿式切断、♯80および♯150のエミリー紙を用いて湿式研磨後、D/4(D:直径)位置の硬さを4点測定し、その平均値を求めた。
【0037】
また、靭性評価特性値として、4点曲げ−陰極チャージ試験における破断寿命を採用した。例えば、CAMP−ISIJ,11(1998),495において、4点曲げ−陰極チャージ試験の破断寿命が、破断靭性値KICと良い相関を得ることが報告されており、本発明においてもこうした試験方法を靭性評価の試験方法として採用した。本発明で採用したこの試験方法の概要は、下記の通りである。
【0038】
[4点曲げ−陰極チャージ試験]
まず、焼戻し後の試料から、放電処理によって長さ:60mm,幅:15mm,厚さ:1.5mmの板状試験片を切り出し、図1に示す治具によって曲げ応力1400MPaで4点にて拘束した。そして、この拘束した試験片を装着した治具を、0.5mol/l硫酸および0.01mol/lのKSCNの混合液に浸し、陽極に白金電極を用いて、陰極電位−700mVを付加することで、試験片に電気化学的に水素を供給した。電位付与後、曲げ応力を与えた試験片が破断するまでの時間で測定した。そして、寿命が1000secを超えるものが、実用に適する靭性を有することから、寿命が1000secを合否の判断基準とした。
【0039】
また、鋼材中の欠陥密度の評価基準となる前記半価幅HWα(200)は、下記の手順によって求めた。
【0040】
[半価幅HWα(200)の測定条件]
ターゲットとしてCoを用い、モノクロメータによりCo−Kαに単色化した。また、配向の異方性を除くため試料に回転と振動をかけながら測定を行なった。測定条件は、ターゲット電圧:40kV,ターゲット電流:200mA,発散スリット:1°,受光スリット:0.15mm,モノクロメータ受光スリット:0.6mm,サンプリング幅:0.020°,走査速度:0.080°/min,測定範囲:74.5〜81.0°として、α−Fe(200)ピークデータを測定し、半価幅HWα(200)を算出した。
【0041】
前記表1に示した鋼材を、表2に示した製造パターンで製造した試料における特性を測定した結果を、詳細な製造条件と共に下記表3に示す。尚、下記表3における記号は、例えば表1の鋼材1を表2の製造パターンAで製造したときには、「1−A」と表記してある。また、下記表3における「17−A」のものは、焼入れ後の脱炭が許容外のものであり、また18−Aは中間加工処理の際に断線が生じたものであるので、いずれもその後の評価は行なわなかった。
【0042】
【表3】
Figure 0003749656
【0043】
表3の結果に基づき、HRCとX線半価幅HWα(200)の関係を図2に示す。製造パターンAで作製した試料では、製造パターンB,Cで作成した試料に比べてX線半価幅HWα(200)が大きくなっており、このX線半価幅HWα(200)はHRCとの間で前記(1)式の関係を満足していることが分かる。
【0044】
図3に、4点曲げ−陰極チャージ試験の結果を示す。X線回折の結果から、本発明で規定する成分を満足し、半価幅HWα(200)とHRCが前記(1)式の間系を満足するものでは、いずれも寿命が1000secを上回っており、良好な靭性が発揮されていた。更に、前記(2)式を満足するものでは、いずれも1200secを上回る優れた靭性を示していた。しかしながら、化学成分組成が本発明で規定する範囲を外れている鋼材No.14〜16を用いたものでは、製造パターンAで製造し、且つ半価幅HWα(200)が前記(1)式の関係を満足していても、靭性が低下しており、本発明の効果が発揮されていないことがわかる。
【0045】
【発明の効果】
本発明は以上の様に構成されており、ばねやボルトの素材として十分な強度を有すると共に、靭性にも優れたマルテンサイト鋼材が実現できた。
【図面の簡単な説明】
【図1】4点曲げ−陰極チャージ試験で用いた治具を示す概略説明図である。
【図2】HRCとX線半価幅HWα(200)の関係を示すグラフである。
【図3】4点曲げ−陰極チャージ試験の結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material used for a mechanical structure such as a transport machine or a building structure, and particularly to a high-strength and high-toughness steel material suitable for a spring or bolt material.
[0002]
[Prior art]
In recent years, steel materials for machine structures used for transportation machines, building structures, and the like have been required to have higher strength for the purpose of weight reduction and longer life. Achieving such high strength can reduce fuel consumption and exhaust gas in automobiles, for example, and as a result, reduce environmental burden.
[0003]
As the steel materials for high-strength mechanical structures as described above, steel with martensitic structure (martensite steel) is mainly used by quenching and tempering, and its strength level is Rockwell C hardness (HRC). Is 45 or more, preferably HRC50 or more. However, increasing the strength of a steel material has the adverse effect of causing toughness deterioration. For these reasons, increasing the strength and improving the toughness such as delayed fracture susceptibility and corrosion fatigue properties are currently considered important issues.
[0004]
Various technologies have been proposed so far with the aim of developing a steel material having both high strength and good toughness. For example, Japanese Patent Publication No. 60-30736 aims to improve the toughness of cold-formed coil springs. A technique for refining the martensite structure by induction heating and quenching has been proposed. However, with this technique, the austenite structure is refined by rapid heat treatment, and the martensite structure is refined indirectly, so the degree of toughness improvement is not fully satisfactory, and further toughening Technology development is desired.
[0005]
Japanese Patent Laid-Open No. 6-116637 contains a large amount (about 8.0 to 11.0%) of Ni as a component composition, and generates a sheared reverse transformation austenite phase during temperature rise. A technique for improving the toughness of martensitic steel by quenching from high untransformed austenite has been proposed. However, Ni has a drawback that it is an expensive element to actively add a large amount.
[0006]
Furthermore, Japanese Patent Laid-Open No. 7-224355 discloses that martensite steel is subjected to a single drawing process to form a <110> texture in the steel surface layer, thereby preventing martensitic steel from cracking at the prior austenite grain boundaries. Thus, a method for improving toughness is disclosed. However, since this technology was made assuming that it is applied to PC (prestressed concrete) steel bars, the characteristics required for such applications are emphasized, and the strength of martensitic steel is determined. The amount of added C was also set to a low value of 0.1 to 0.4%, and the strength and toughness did not satisfy the required levels for application as spring or bolt steel.
[0007]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and an object thereof is to provide a steel material having sufficient strength and excellent toughness even when used as a structural member requiring high strength of HRC45 or higher. There is.
[0008]
[Means for Solving the Problems]
The steel material of the present invention capable of achieving the above object includes C: 0.3 to 1.2% and Mn: 0.15 to 2.0%, respectively (1) Cr: 3% or less ( Selected from the group consisting of Mo: 2% or less (not including 0%), Ni: 10% or less (not including 0%) and Cu: 1% or less (not including 0%) (2) Si: 3.0% or less (not including 0%) and / or Al: 1.5% or less (not including 0%), (3) Ti: 0.30 % Or less (excluding 0%), Nb: 0.3% or less (not including 0%), V: 0.3% or less (not including 0%), and Zr: 0.3% or less (0% One or more elements selected from the group consisting of P: 0.02% or less (including 0%) and S: 0.02% or less (including 0%). The balance is composed of Fe and inevitable impurities, is mainly composed of a martensite structure, has a Rockwell C hardness (HRC) of 45 to 64, and a half value of the α-Fe (200) peak in X-ray diffraction. The gist is that the width HW α (200) satisfies the following formula (1), preferably the following formula (2).
HW α (200) > − 0.94 + 3.94 × 10 −2 × HRC (1)
HW α (200) > −0.90 + 3.94 × 10 −2 × HRC (2)
[0010]
DETAILED DESCRIPTION OF THE INVENTION
It is known that the ultimate hardness of martensitic steel is almost determined by the carbon content. This is because, among various strengthening mechanisms that determine the strength level of martensitic steel, the contribution due to aging rearrangement including solid solution strengthening and precipitation strengthening of C is greater than that due to lattice defects. Therefore, to increase the strength of martensitic steel, increasing the C content, adding carbide-forming elements, and the like are effective. However, when the strength is increased by increasing the C content, it is very difficult to ensure toughness.
[0011]
On the other hand, it is also well known that it is effective to make crystal grains fine as a strengthening means for achieving both strength and toughness. However, at present, it is very difficult to further refine the crystal grain than the current level. In addition, regarding the strengthening mechanism other than grain refinement, the effect on toughness has not been clarified.
[0012]
Under the circumstances as described above, the present inventors have studied from various angles a strengthening mechanism that achieves both strength and toughness of a steel material by means other than crystal grain refinement. As a result, it was found that the strengthening mechanism by the introduction of lattice defects has a very small influence on toughness degradation. As a result of further studies based on these findings, steel materials that have both high strength and high toughness can be realized if a large amount of lattice defects are introduced into the steel to increase the contribution of lattice defects to the total strength as much as possible. The present invention has been completed by finding out what can be done. Hereinafter, each requirement prescribed | regulated by this invention is demonstrated.
[0013]
First, the steel material of the present invention basically contains C: 0.3 to 1.2%, Mn: 0.15 to 2.0%, and P: 0.02% or less (including 0%). And S: 0.02% or less (including 0%), respectively. The reasons for limiting the ranges of these elements are as follows.
[0014]
C: 0.3-1.2%
In order to ensure the target strength and toughness level in the steel material of the present invention, it is necessary to contain C at least 0.3%. The steel material achieves higher strength as the C content increases. Further, since the defect density in the martensitic steel after quenching is increased by increasing the C content, in the present invention for improving toughness due to the high defect density, it is advantageous that the C content is as high as possible. . However, if the C content becomes excessive and exceeds 1.2%, fire cracks are likely to occur. In addition, the preferable minimum of C content is about 0.3%, and a preferable upper limit is about 0.8%.
[0015]
Mn: 0.15 to 2.0%
Mn is added as a hardenability improving element, but in order to exert its effect, it is necessary to contain 0.15% or more. However, if the content is excessive, the cold formability and toughness are reduced, so the upper limit is made 2.0%. In addition, the minimum with preferable Mn content is 0.2%, and a preferable upper limit is 1.0%.
[0016]
P: 0.02% or less (including 0%), S: 0.02% or less (including 0%)
If P and S are excessively present in the steel material, they segregate at the austenite grain boundaries to promote intergranular fracture and reduce toughness, so it is better to have as little as possible, but both are suppressed to 0.02% or less. Such inconvenience can be avoided. In addition, it is preferable to suppress these elements to 0.01% or less.
[0017]
The basic chemical composition of the steel material of the present invention is as described above. In addition, (1) Cr: 3% or less (not including 0%), Mo: 2% or less (not including 0%), One or more elements selected from the group consisting of Ni: 10% or less (not including 0%) and Cu: 1% or less (not including 0%), (2) Si: 3.0% or less (0% And / or Al: 1.5% or less (not including 0%), (3) Ti: 0.30% or less (not including 0%), Nb: 0.3% or less (0% 1) or more elements selected from the group consisting of V: 0.3% or less (not including 0%) and Zr: 0.3% or less (not including 0%), etc. The balance consists of Fe and inevitable impurities. The reasons for limiting the ranges of these elements are as follows. In addition to these components, the steel material of the present invention can also contain trace components (for example, B, Mg, Ta, Co, Sb, W, rare earth elements, etc.) in a range that does not impede its properties. Such steel materials are also included in the technical scope of the present invention.
[0018]
Cr: 3% or less (not including 0%), Mo: 2% or less (not including 0%), Ni: 10% or less (not including 0%), and Cu: 1% or less (not including 0%) ) One or more elements selected from the group consisting of Cr, Mo, Ni, and Cu are effective elements for improving the corrosion resistance. Degradation of cold formability in Moreover, since these elements are expensive, the upper limit is set as described above in consideration of the improvement in characteristics due to the increase in quantity and the increase in cost. In addition, although the said effect by these elements becomes large as the content increases within the said range, in order to exhibit the said effect, it is preferable to contain all 0.1% or more.
[0019]
Si: 3.0% or less (not including 0%) and / or Al: 1.5% or less (not including 0%)
Si and Al are effective elements for improving the sag resistance required for spring steel, but excessive inclusion causes problems such as decarburization during heat treatment and solidification cracking during casting. The upper limit was set as described above. In order to effectively exhibit the above effects, it is preferable to contain 0.5% or more of Si and 0.2% or more of Al.
[0020]
Ti: 0.30% or less (not including 0%), Nb: 0.3% or less (not including 0%), V: 0.3% or less (not including 0%), and Zr: 0.3 % Or more of elements Ti, Nb, V and Zr selected from the group consisting of not more than% (not including 0%) form fine precipitates with a small amount of addition, resulting in precipitation strengthening and coarse steel structure It is an element that contributes to suppression of refinement and refinement and is effective in improving toughness. These effects increase as the content increases. However, if excessively contained, precipitates become coarse and workability deteriorates, so the upper limit was set as described above. In addition, in order to exhibit the above effects effectively, it is preferable to contain 0.05% or more in any case.
[0021]
As described above, the steel material of the present invention is mainly composed of a martensite structure. Although the structure after quenching or tempering may contain untransformed austenite (residual austenite), the martensite structure in the present invention refers to a structure excluding the retained austenite after quenching and tempering. Further, “mainly composed of a martensite structure” means that the martensite structure is about 90% by volume or more, and this volume ratio can be calculated from, for example, the amount of retained austenite obtained by an X-ray diffraction method. it can. In this way, by making the structure mainly composed of a martensite structure, the strength of the steel material can be set to 45 to 64 in terms of Rockwell C hardness HRC in combination with the C content.
[0022]
However, the high toughness intended in the present invention cannot be achieved only by satisfying the above requirements (chemical components and structure). In the present invention, an index for achieving the high toughness intended by the present invention using the half-value width HWα (200) of the α-Fe (200) peak in X-ray diffraction, which is one of the evaluation parameters of the lattice defect density. This limited the lattice defect density.
[0023]
That is, in the present invention, the half-value width HWα (200) of the α-Fe (200) peak of martensite satisfies the above formula (1) [preferably the above formula (2)] in relation to the above HRC. This is because the excellent high toughness intended in the present invention is exhibited. The half width HWα (200) is obtained by subjecting the wet cut steel material to a measurement surface by performing wet polishing or electropolishing to remove the cutting strain-affected zone on the transverse cross section in the rolling direction. It is required.
[0024]
The martensitic steel of the present invention that satisfies the above requirements has both high strength and high toughness, and is suitable as a material for high strength springs and high strength bolts. In manufacturing such martensitic steel, from the viewpoint of increasing the defect density in the steel material, for example, in the quenching and tempering process that is a manufacturing process of martensitic steel, as shown in the conditions of manufacturing pattern A in the examples described later. In each of the cases after quenching and tempering, cold working may be performed once or more so that the total area reduction rate is 20% or more.
[0025]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0026]
【Example】
Various steel materials (Nos. 1 to 18) having chemical composition shown in Table 1 below were melted and shaped to obtain a bar material having a diameter of 18 mm.
[0027]
[Table 1]
Figure 0003749656
[0028]
Next, martensitic steel was produced by three production patterns A to C shown in Table 2 below. This manufacturing process consists of five processing steps: (1) quenching process, (2) intermediate processing process, (3) tempering process, (4) post-processing process and (5) bluing process. The processing condition range of each step is shown (however, “-” means no processing).
[0029]
[Table 2]
Figure 0003749656
[0030]
As for the quenching treatment, the heating rate and the treatment time were controlled in order to ensure the workability during the subsequent cold working, and the heating temperature was set to Ac 3 to Ac 3 + 200 ° C. However, with respect to the manufacturing pattern A, each quenching process condition was further limited as compared with the manufacturing patterns B and C in order to realize characteristics at a high level. In addition, the cooling at the time of quenching was performed by water cooling so that the cooling rate was equal to or higher than the critical cooling rate.
[0031]
After the quenching, the production patterns A and B were drawn at room temperature as an intermediate processing. As described above, this wire drawing is performed for the purpose of increasing the defect density in the steel, and was performed so that the total area reduction rate was 20% or more so that the inside was processed. On the other hand, in the manufacturing pattern C, intermediate processing was not performed. In this embodiment, although wire drawing is selected as the processing method, the processing method as a means for increasing the defect density is not limited to this, and other methods such as rolling, rolling, shot peening, etc. A method can also be employed.
[0032]
For tempering, conditions were set to adjust to the required strength level. Since the defect density is reduced by the recovery during the tempering process, in order to increase the final defect density in the steel material, (a) the heating rate is increased as much as possible, (b) the heating temperature is decreased, and (c) the processing time is decreased. Better to do. From such a viewpoint, in any of the production patterns A to C, a relatively large temperature increase rate of 30 ° C./sec or more is used. However, in the production pattern A, the conditions are further limited, and the temperature increase rate is set to 100 ° C. / More than sec.
[0033]
After tempering, the production patterns A and C were subjected to wire drawing at room temperature as post-processing. This post-processing treatment is performed in order to increase the defect density in the steel material in the same manner as the above-described intermediate processing treatment, and is performed so that the total area reduction rate is 20% or more so as to be processed to the inside. . Also in this post-processing, the rolling and other methods can be adopted as in the intermediate processing.
[0034]
After post-processing, some samples were subjected to blueing treatment for the purpose of further increasing the strength. When the processed steel material is subjected to heat treatment, the solid solution C rearranges to increase the strength. The blueing treatment was performed at a relatively low temperature of 300 ° C. × 10 minutes (manufacturing patterns A and C) so that the defect density did not decrease too much during the treatment.
[0035]
In addition, the temperature at the time of each heat processing measured the surface temperature by welding a thermocouple to the sample surface in the sample preparation process, and calculated the temperature increase rate from the measured temperature.
[0036]
Rockwell C hardness (HRC) was determined as a strength evaluation of the steel material after tempering, post-processing, and brewing. At this time, in order to use the cross section in the rolling direction as the measurement surface, wet cutting was performed using # 80 and # 150 emily paper, and the hardness at the D / 4 (D: diameter) position was measured at four points. The average value was obtained.
[0037]
Moreover, the fracture life in the 4-point bending-cathode charge test was adopted as the toughness evaluation characteristic value. For example, in CAMP-ISIJ, 11 (1998), 495, it has been reported that the fracture life of the four-point bending-cathode charge test has a good correlation with the fracture toughness value K IC. Was adopted as a test method for toughness evaluation. The outline of this test method employed in the present invention is as follows.
[0038]
[4-point bending-cathode charge test]
First, a plate-like test piece having a length of 60 mm, a width of 15 mm, and a thickness of 1.5 mm was cut out from the tempered sample by electric discharge treatment, and restrained at 4 points with a bending stress of 1400 MPa by the jig shown in FIG. did. Then, immerse the jig equipped with the restrained test piece in a mixed solution of 0.5 mol / l sulfuric acid and 0.01 mol / l KSCN, and apply a cathode potential of −700 mV using a platinum electrode as the anode. Then, hydrogen was electrochemically supplied to the test piece. After applying the potential, the time was measured until the test piece to which bending stress was applied was broken. And what has a lifetime exceeding 1000 sec has toughness suitable for practical use, so that the lifetime was 1000 sec.
[0039]
Further, the half width HWα (200), which is an evaluation standard of the defect density in the steel material, was determined by the following procedure.
[0040]
[Measurement conditions for half-width HWα (200) ]
Co was used as a target, and it was monochromatized to Co-Kα by a monochromator. In addition, the measurement was performed while rotating and vibrating the sample in order to remove the orientation anisotropy. The measurement conditions are: target voltage: 40 kV, target current: 200 mA, divergence slit: 1 °, light receiving slit: 0.15 mm, monochromator light receiving slit: 0.6 mm, sampling width: 0.020 °, scanning speed: 0.080 The α-Fe (200) peak data was measured at ° / min, measurement range: 74.5 to 81.0 °, and the half width HWα (200) was calculated.
[0041]
Table 3 below shows the results of measuring the characteristics of the steel materials shown in Table 1 measured with the production patterns shown in Table 2 together with the detailed production conditions. In addition, the symbol in following Table 3 is described as "1-A" when the steel material 1 of Table 1 is manufactured with the manufacturing pattern A of Table 2, for example. Moreover, since the thing of "17-A" in following Table 3 is a thing in which the decarburization after hardening is not accept | permitted, and 18-A is what a disconnection generate | occur | produced in the intermediate processing, all are Subsequent evaluation was not performed.
[0042]
[Table 3]
Figure 0003749656
[0043]
Based on the results of Table 3, the relationship between HRC and X-ray half width HWα (200) is shown in FIG. In the sample produced with the production pattern A, the X-ray half-value width HWα (200) is larger than the samples produced with the production patterns B and C, and this X-ray half-value width HWα (200) is the same as that of the HRC. It can be seen that the relationship of the expression (1) is satisfied.
[0044]
FIG. 3 shows the results of a four-point bending-cathode charge test. From the results of X-ray diffraction, the components specified in the present invention are satisfied, and the half-value width HWα (200) and HRC satisfy the system between the above formulas (1), both have a lifetime exceeding 1000 sec. Good toughness was exhibited. Furthermore, all satisfying the formula (2) exhibited excellent toughness exceeding 1200 sec. However, the steel material No. whose chemical composition is outside the range defined in the present invention. In the case of using 14 to 16, the toughness is lowered even when the half-width HWα (200) satisfies the relationship of the formula (1), and the toughness is reduced. It can be seen that is not exhibited.
[0045]
【The invention's effect】
The present invention is configured as described above, and a martensitic steel material having sufficient strength as a material for springs and bolts and excellent in toughness has been realized.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a jig used in a four-point bending-cathode charge test.
FIG. 2 is a graph showing the relationship between HRC and X-ray half width HWα (200) .
FIG. 3 is a graph showing the results of a four-point bending-cathode charge test.

Claims (1)

C:0.3〜1.2%(質量%の意味、以下同じ)、Mn:0.15〜2.0%を夫々含有する他、(1)Cr:3%以下(0%を含まない)、Mo:2%以下(0%を含まない)、Ni:10%以下(0%を含まない)およびCu:1%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、(2)Si:3.0%以下(0%を含まない)および/またはAl:1.5%以下(0%を含まない)、(3)Ti:0.30%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、V:0.3%以下(0%を含まない)およびZr:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、を含有し、P:0.02%以下(0%を含む)およびS:0.02%以下(0%を含む)に夫々抑制し、残部がFeおよび不可避的不純物からなるものであり、マルテンサイト組織を主体とし、且つロックウェルC硬さ(HRC)が45〜64、X線回折におけるα−Fe(200)ピークの半価幅HWα(200)が下記(1)式を満足することを特徴とする靭性に優れた鋼材。
HWα(200)>−0.94+3.94×10−2×HRC ……(1)
C: 0.3 to 1.2% (meaning mass%, hereinafter the same), Mn: 0.15 to 2.0% , respectively (1) Cr: 3% or less (0% not included) ), Mo: 2% or less (not including 0%), Ni: 10% or less (not including 0%) and Cu: 1% or less (not including 0%) Element, (2) Si: 3.0% or less (not including 0%) and / or Al: 1.5% or less (not including 0%), (3) Ti: 0.30% or less (0% Nb: 0.3% or less (not including 0%), V: 0.3% or less (not including 0%), and Zr: 0.3% or less (not including 0%) Containing at least one element selected from the group consisting of P: 0.02% or less (including 0%) and S: 0.02% or less (including 0%), respectively, It consists of Fe and inevitable impurities, is mainly composed of martensite, has a Rockwell C hardness (HRC) of 45 to 64, and a half-value width HW α of α-Fe (200) peak in X-ray diffraction ( 200) a steel material excellent in toughness characterized by satisfying the following formula (1).
HW α (200) > − 0.94 + 3.94 × 10 −2 × HRC (1)
JP2000283617A 2000-09-19 2000-09-19 Steel material with excellent toughness Expired - Lifetime JP3749656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000283617A JP3749656B2 (en) 2000-09-19 2000-09-19 Steel material with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000283617A JP3749656B2 (en) 2000-09-19 2000-09-19 Steel material with excellent toughness

Publications (2)

Publication Number Publication Date
JP2002097543A JP2002097543A (en) 2002-04-02
JP3749656B2 true JP3749656B2 (en) 2006-03-01

Family

ID=18767955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000283617A Expired - Lifetime JP3749656B2 (en) 2000-09-19 2000-09-19 Steel material with excellent toughness

Country Status (1)

Country Link
JP (1) JP3749656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568163A (en) * 2015-12-31 2016-05-11 安徽红桥金属制造有限公司 Compression spring for engine and production process thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
CN102268604A (en) 2007-07-20 2011-12-07 株式会社神户制钢所 Steel wire material for spring and its producing method
JP5001874B2 (en) * 2008-02-22 2012-08-15 中央発條株式会社 Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire
JP5600502B2 (en) * 2010-07-06 2014-10-01 株式会社神戸製鋼所 Steel for bolts, bolts and methods for producing bolts
KR101604938B1 (en) 2012-01-11 2016-03-18 가부시키가이샤 고베 세이코쇼 Steel for bolts, bolt, and method for producing bolt
JP5973903B2 (en) 2012-12-21 2016-08-23 株式会社神戸製鋼所 High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring
JP5913214B2 (en) * 2013-07-05 2016-04-27 株式会社神戸製鋼所 Bolt steel and bolts, and methods for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568163A (en) * 2015-12-31 2016-05-11 安徽红桥金属制造有限公司 Compression spring for engine and production process thereof

Also Published As

Publication number Publication date
JP2002097543A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
EP2546379B1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP6088252B2 (en) Bolt and bolt manufacturing method
WO2011111873A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
KR20060107915A (en) Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5846080B2 (en) High-strength steel with excellent delayed fracture resistance
JP6027302B2 (en) High strength tempered spring steel
CN111164230A (en) Wire rod and steel wire for spring having excellent corrosion and fatigue resistance, and method for producing same
CN113383094B (en) Bolt and steel for bolt
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
JP5400591B2 (en) Bearing steel with excellent cold workability
JP2004359973A (en) High strength steel sheet having excellent delayed fracture resistance, and its production method
JP7049142B2 (en) Martensitic stainless steel sheet and its manufacturing method and spring members
JP3749656B2 (en) Steel material with excellent toughness
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP2002212665A (en) High strength and high toughness steel
JP3934303B2 (en) Method for producing high-strength martensitic steel
EP3279357A1 (en) Heat-treated steel wire having excellent fatigue-resistance characteristics
JP4124590B2 (en) High-strength steel wire with excellent delayed fracture resistance and corrosion resistance
JP4202663B2 (en) Steel material with excellent toughness
JP4132178B2 (en) PC steel wire or bar with good delayed fracture resistance and manufacturing method thereof
JP4664929B2 (en) High strength martensitic steel
JP4081234B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP7168101B2 (en) High-strength steel member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051202

R150 Certificate of patent or registration of utility model

Ref document number: 3749656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

EXPY Cancellation because of completion of term