JPH0790495A - High strength steel wire and its production - Google Patents

High strength steel wire and its production

Info

Publication number
JPH0790495A
JPH0790495A JP25914793A JP25914793A JPH0790495A JP H0790495 A JPH0790495 A JP H0790495A JP 25914793 A JP25914793 A JP 25914793A JP 25914793 A JP25914793 A JP 25914793A JP H0790495 A JPH0790495 A JP H0790495A
Authority
JP
Japan
Prior art keywords
wire
strength
steel wire
less
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25914793A
Other languages
Japanese (ja)
Inventor
Nozomi Kawabe
望 河部
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25914793A priority Critical patent/JPH0790495A/en
Publication of JPH0790495A publication Critical patent/JPH0790495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce a wire with which high strength is easily attained and having practical strength, in a steel wire with a pearlitic structure having a specified compsn. constituted of C, Si, Mn, Cr, V, Nb and iron. CONSTITUTION:In a steel wire with a pearlitic structure having a compsn. contg., by weight, 0.7 to 1.0% C, <=1.0% Si, <=0.7% Mn, <=0.5% Cr and/or 0.02 to 1.0% V and/or Nb, and the balance iron with inevitable impurities, the carbide of V or Nb with <=0.1mum size is precipitated into ferrite by 0.05 to 1.0vol.% to obtain a high strength steel wire with which high strength can be attained even at a low draft. This steel wire is produced by holding the wire having the same componental compsn. at 950 to 1200 deg.C, thereafter executing rapid cooling to 650 to 500 deg.C, holding it for 5sec to 5min, next executing cooling to a room temp., subsequently subjecting it to wire drawing at 60 to 98% reduction rate of area and moreover executing heating treatment at 300 to 500 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はPC鋼線,亜鉛めっき
線,ばね用鋼線等に用いられる高強度鋼線とその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel wire used for a PC steel wire, a galvanized wire, a steel wire for springs, etc., and a method for producing the same.

【0002】[0002]

【従来の技術】従来、高強度鋼線の強度化技術としては
次のようなものがある。 (1) パーライト鋼 C量を高くして高強度のFe3 C(セメンタイト)の
量を増やす方法(特開平5-171276号、同156370号公報)
や、セメンタイトとフェライトの間隔を狭くして強化す
る方法。 Nb,Vを添加してγ粒径を小さくすることで強化を
図る方法(特開平5-171268号、特開昭63-179017 号公
報)。
2. Description of the Related Art Conventionally, there are the following techniques for strengthening high strength steel wire. (1) Method of increasing the amount of pearlite steel C to increase the amount of high strength Fe 3 C (cementite) (Japanese Patent Laid-Open Nos. 5-171276 and 156370)
Or, a method of strengthening by narrowing the interval between cementite and ferrite. A method for strengthening by adding Nb and V to reduce the γ particle size (Japanese Patent Laid-Open Nos. 5-171268 and 63-179017).

【0003】(2) マルテンサイト鋼 一般にマルテンサイト鋼を焼戻してNbやVを析出さ
せ、2次硬化により強化する方法。
(2) Martensitic steel Generally, a method of tempering martensitic steel to precipitate Nb and V, and strengthen it by secondary hardening.

【0004】(3) 加工硬化 パーライト鋼に代表される比較的加工性の良好な鋼材料
をベースに線引加工に伴う加工硬化により強度化を図る
ことが知られている。この場合、一般には加工度が高い
ほど強度は向上するが、加工限界(それ以上加工すると
断線などが起こる加工度)等により強度が決まる。 その一方で不純物を低減した低炭素鋼に特殊熱処理を
施すことによって加工度が非常に大きくとれる(99.
99%)複合化組織を得て、引張強度500kgf/mm2
いった鋼線を得る方法もある(日本金属学会会報,第28
巻,第4号,1989) 。
(3) Work hardening It is known that the strength is increased by work hardening associated with the drawing work based on a steel material having relatively good workability represented by pearlite steel. In this case, generally, the higher the working degree is, the higher the strength is, but the strength is determined by the working limit (working degree at which breakage occurs when further working) and the like. On the other hand, by performing special heat treatment on low carbon steel with reduced impurities, the workability can be made extremely large (99.
99%) There is also a method of obtaining a composite structure to obtain a steel wire having a tensile strength of 500 kgf / mm 2 (Journal of Japan Institute of Metals, No. 28).
Vol. 4, No. 4, 1989).

【0005】[0005]

【発明が解決しようとする課題】このように高強度化に
関する技術が種々提案されているが、先ずの材料は伸
線加工に伴う加工硬化で350kgf/mm2 といった高強度
化ができるものの、これだけの加工を行う素材を得る熱
処理条件はC量が高いほど困難になり、量産では製造条
件が狭くなる。又、セメンタイトとフェライトの2相の
加工硬化による強度化を図るため加工度をある程度大き
くする必要があるが、加工度が大きすぎると靱性が低下
するという問題もある。
As described above, various techniques relating to high strength have been proposed. Although the first material is work hardening associated with wire drawing, high strength of 350 kgf / mm 2 can be achieved. The higher the amount of C, the more difficult the heat treatment condition for obtaining the material to be processed becomes, and the mass production condition becomes narrower. Further, although it is necessary to increase the workability to some extent in order to increase the strength by work hardening of the two phases of cementite and ferrite, there is also a problem that if the workability is too high, the toughness decreases.

【0006】次にの材料は高強度化が図れるものの無
添加材に対する強度の向上程度が小さい。又、の材料
は疲労特性に優れるものの引張強度が低いものしか得ら
れず、さらにの技術は加工度が非常に大きく製造コス
トが高くなり過ぎるといった問題があった。このような
事情に鑑み、本発明は加工度が小さくても高強度化が図
れ、かつ実用的強度を有する線材を得ることを目的とす
る。
The following materials can be made to have high strength, but the degree of improvement in strength with respect to the additive-free material is small. Further, the material (1) has excellent fatigue properties, but only a low tensile strength can be obtained, and the further technology has a problem that the workability is extremely large and the manufacturing cost becomes too high. In view of such circumstances, it is an object of the present invention to obtain a wire rod that can achieve high strength even if the workability is small and that has practical strength.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明線材は、重量%でC:0.7〜1.0、Si:
1.0以下、Mn:0.7以下、Cr:0.5以下と、
V及びNbの少なくとも一方を0.02〜1.0含有
し、残部が鉄及び不可避的不純物からなるパーライト組
織の鋼線であって、フェライト中にV若しくはNbの炭
化物が体積%で0.05〜1.0析出し、この炭化物の
大きさが0.1μm以下であることを特徴とする。
In order to achieve this object, the wire of the present invention contains C: 0.7 to 1.0 by weight% and Si:
1.0 or less, Mn: 0.7 or less, Cr: 0.5 or less,
A steel wire having a pearlite structure containing 0.02 to 1.0 of at least one of V and Nb, and the balance consisting of iron and unavoidable impurities, wherein the carbide of V or Nb is 0.05% by volume in ferrite. .About.1.0 is precipitated, and the size of the carbide is 0.1 .mu.m or less.

【0008】又、その製造方法の特徴は前記組成の線材
に次の処理を施すことにある。 線材を950〜1200℃で保持する その後650〜500℃まで急冷して5秒以上5分以
下保持する 室温まで冷却した後減面率60から98%の線引加工
を施す さらに300〜500℃に加熱して2次硬化させる
The manufacturing method is characterized in that the wire having the above composition is subjected to the following treatment. Hold the wire at 950 to 1200 ° C, then rapidly cool it to 650 to 500 ° C and hold it for 5 seconds or more and 5 minutes or less. Heat to secondary cure

【0009】[0009]

【作用】上記構成の限定理由を述べる。 [高強度線材] (1) 成分 C:0.7未満では強度が不足し、1.0を越えると靱
性が不足するからである。 Si:1.0以下で固溶強化が図れるからである。1.
0を越えると靱性が不足する。 Mn:0.7を越えると偏析に伴う組織異常から靱性及
び強度が低下するため、0.7以下として焼入れ性を確
保した。 Cr:0.5以下とすることで組織の微細化が図れ強度
が向上するからである。0.5を越えると靱性が低下す
る。 V,Nb:0.02未満では強度向上効果が小さく(強
度は向上するが2次硬化が少ない)、逆に1.0を越え
ても強度向上効果が小さい。0.02〜1.0の範囲と
することで十分2次硬化できる。
The reason for limiting the above configuration will be described. [High-strength wire] (1) Component C: If the content is less than 0.7, the strength is insufficient, and if it exceeds 1.0, the toughness is insufficient. This is because solid solution strengthening can be achieved with Si: 1.0 or less. 1.
If it exceeds 0, toughness is insufficient. If Mn exceeds 0.7, the toughness and strength are deteriorated due to the abnormal structure caused by segregation. Therefore, the hardenability is secured to 0.7 or less. This is because if the Cr content is 0.5 or less, the structure can be made finer and the strength can be improved. If it exceeds 0.5, the toughness decreases. If V, Nb: less than 0.02, the strength improving effect is small (strength is improved but secondary hardening is small), and conversely, if it exceeds 1.0, the strength improving effect is small. By setting it in the range of 0.02 to 1.0, secondary curing can be sufficiently performed.

【0010】(2) フェライト中にV,Nbの炭化物が体
積%で0.05〜1.0析出し、この炭化物の大きさが
0.1μm以下であること セメンタイト中に析出しても強度向上効果が小さくこの
ような条件が必要となる。0.05%未満では強度向上
効果が少なく、逆に1.0%を越えると強度は向上する
が靱性が低下する。又、この炭化物の大きさが0.1μ
m未満では加工性を阻害する。
(2) V- and Nb carbides are precipitated in ferrite in an amount of 0.05 to 1.0% by volume, and the size of these carbides is 0.1 μm or less. Strength is improved even if they are precipitated in cementite. The effect is small and such a condition is required. If it is less than 0.05%, the effect of improving the strength is small, and if it exceeds 1.0%, the strength is improved but the toughness is deteriorated. The size of this carbide is 0.1μ
If it is less than m, the workability is impaired.

【0011】[製造方法] (1) 線材を950〜1200℃で保持 この加熱により炭化物を全てオーステナイト中に溶け込
ませる。950℃未満では固溶不足で、1200℃を越
えるとγ粒が粗大化し強度が低下する。 (2) 650〜500℃まで急冷して5秒以上5分以下保
持 フェライト中へNb,Vの炭化物を極力少なくし加工性
の良好なパーライト組織を得るためである。650℃を
越えると初析セメンタイトが、500℃未満ではベイナ
イト等の加工性に劣る組織が析出する。又、伸線前に
V,Nbの炭化物が析出すると伸線加工性が低下する。 (3) 減面率60から98%の線引加工を施す 60%未満では強度向上効果が小さく、98%を越える
と靱性が低下する。 (4) 300〜600℃に加熱して2次硬化させる 300℃未満では効果が小さく、500℃を越えると2
次硬化よりもマトリックスの軟化が大きくトータルとし
て強度が低下する。
[Manufacturing Method] (1) Hold the wire rod at 950 to 1200 ° C. By this heating, all the carbides are dissolved in the austenite. If it is less than 950 ° C, solid solution is insufficient, and if it exceeds 1200 ° C, γ grains are coarsened and the strength is lowered. (2) Quenching to 650 to 500 ° C. and holding for 5 seconds or more and 5 minutes or less This is to reduce carbides of Nb and V in ferrite as much as possible to obtain a pearlite structure with good workability. If it exceeds 650 ° C., pro-eutectoid cementite will precipitate, and if it is less than 500 ° C., a structure such as bainite having poor workability will precipitate. Further, if V and Nb carbides are precipitated before wire drawing, wire drawing workability is deteriorated. (3) Area-drawing rate of 60 to 98% is applied. If it is less than 60%, the strength improving effect is small, and if it exceeds 98%, the toughness is reduced. (4) Secondary curing by heating to 300 to 600 ° C. Less than 300 ° C, little effect, and above 500 ° C, 2
The softening of the matrix is larger than that in the second hardening, and the strength is lowered as a whole.

【0012】[0012]

【実施例】以下、本発明の実施例について説明する。表
1に示す組成の供試材No1から14を溶解・鋳造し、6m
mφの圧延材を得た。以下の各実施例ではこの圧延材を
供試材として用いる。尚、No1は比較例である。
EXAMPLES Examples of the present invention will be described below. Sample materials No. 1 to 14 having the composition shown in Table 1 were melted and cast to 6 m
A rolled material of mφ was obtained. This rolled material is used as a test material in each of the following examples. No. 1 is a comparative example.

【0013】[0013]

【表1】 [Table 1]

【0014】(実施例1)No1,4,7の供試材を10
00℃で15分間加熱後70℃/sec 以上の冷却速度で
600℃まで冷却し、次いで600℃の鉛浴中で60秒
保持してその後水冷した。そしてこれらの各材料を6m
mφから4,3,2,1mmφまで伸線加工してそれぞ
れの引張強度を測定した。その結果を図1に示す。図示
のように、いずれも加工度が上昇するに伴い強度も向上
している。さらに、これらの各線材に400℃×20分
の加熱により2次硬化させたところ、実施例はいずれも
10kg/mm2向上したのに対し、比較例は10kg/mm2低下
した。これらのことからNo4,7の両実施例はNo1の比
較例に比べ高強度化を達成できていることが確認され
た。
(Embodiment 1) No. 1, 4 and 7 test materials
After heating at 00 ° C. for 15 minutes, it was cooled to 600 ° C. at a cooling rate of 70 ° C./sec or more, then kept in a lead bath at 600 ° C. for 60 seconds and then cooled with water. And each of these materials is 6m
Wire drawing was performed from mφ to 4,3,2,1 mmφ and the tensile strength of each was measured. The result is shown in FIG. As shown in the figure, in both cases, the strength is improved as the workability is increased. Further, when each of these wire rods was subjected to secondary curing by heating at 400 ° C. for 20 minutes, in each of the examples, 10 kg / mm 2 was improved, whereas in the comparative example, it was decreased by 10 kg / mm 2 . From these facts, it was confirmed that both Nos. 4 and 7 were able to achieve higher strength than the No. 1 comparative example.

【0015】(実施例2)次に同材料を700,65
0,500,450℃の鉛浴で保持したところ、700
℃のものは初析セメンタイトが析出し、450℃のもの
はベイナイトが析出していずれも減面率80%程度の伸
線で断線した。このことから650から500℃の温度
で保持(パーライト変態)させる必要のあることが判明
した。尚、保持時間はパーライト変態が終了できるよう
5秒以上とした。又、変態が終了できればそれ以上保持
しても生産性が劣ることから5分以下とした。
(Embodiment 2) Next, the same material was added to 700 and 65
When kept in a lead bath at 0,500,450 ℃, 700
For those with a temperature of ℃, pro-eutectoid cementite was precipitated, and for those with a temperature of 450 ° C., bainite was precipitated, and both were broken by wire drawing with an area reduction rate of about 80%. From this, it became clear that it was necessary to hold (perlite transformation) at a temperature of 650 to 500 ° C. The holding time was set to 5 seconds or longer so that the pearlite transformation could be completed. If the transformation could be completed, the productivity would be inferior even if the transformation was maintained for more than 5 minutes.

【0016】(実施例3)さらに全ての供試材No1〜14
を1000℃で15分加熱後600℃まで急冷し、60
0℃の鉛浴中で1分間保持してパーライト変態を終了さ
せた後室温まで冷却した。そしてこれらの材料を2mm
まで伸線加工し、400℃で2次硬化させて強度を調べ
てみた。その結果を表2に示す。
(Example 3) Furthermore, all test materials No. 1 to 14
Is heated at 1000 ° C for 15 minutes and then rapidly cooled to 600 ° C.
It was kept in a lead bath at 0 ° C for 1 minute to complete the pearlite transformation, and then cooled to room temperature. And these materials are 2mm
The wire was wire-drawn, and it was secondarily cured at 400 ° C. to check the strength. The results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】同表に示すように、供試材No5,8,10,
12は伸線加工の際断線が発生した。供試材No1,2,
6,14は伸線後の強度は高いものの2次硬化による強化
は見られず、従来のNb,V添加材と同等の強度であっ
た。又、No11,13は強度は高いものの伸び・絞りなどの
靱性値が著しく低く、実用には適しないことがわかっ
た。これに対して、No3,4,7,9のものはいずれも
2次硬化による高強度化が可能であった。尚、No3,
4,7,9と同等の高強度化を図るためには、Nb,V
を添加せずC量を1.0〜1.1%とすることで達成で
きることがわかっている。しかし、その場合は鉛炉の温
度制御が厳しく、本発明のように650〜500℃とい
った生産性の良好な広い条件で製造することは困難であ
った。
As shown in the table, test materials No. 5, 8, 10,
In No. 12, wire breakage occurred during wire drawing. Specimen No. 1, 2,
Although Nos. 6 and 14 had high strength after wire drawing, no strengthening due to secondary hardening was observed, and the strength was equivalent to that of the conventional Nb, V-added material. It was also found that Nos. 11 and 13 were not suitable for practical use because they had high strength but had extremely low toughness values such as elongation and drawing. On the other hand, all of Nos. 3, 4, 7 and 9 were able to be strengthened by secondary curing. Incidentally, No3
In order to achieve high strength equivalent to 4, 7, 9 Nb, V
It has been found that this can be achieved by adding C and adjusting the C amount to 1.0 to 1.1%. However, in that case, the temperature control of the lead furnace was strict, and it was difficult to manufacture under a wide range of good productivity such as 650 to 500 ° C. as in the present invention.

【0019】(実施例4)伸線加工が可能で2次硬化の
効果があったNo3,4,7,9の各材料を用いてさらに
最適の2次硬化の得られる条件を検討した。試験方法は
6mmφの圧延材を2mmφまで伸線し、それに温度を
変えて熱処理(2次硬化)を施して、各材料の引張強度
を測定する。比較のため熱処理を施していない材料の引
張強度も測定した。その結果を図2に示す。図示のよう
に、熱処理温度が100℃以上で強度の向上が見られる
が、500℃を越えると逆に低下する。特に、300℃
以上500℃以下の温度範囲で強度の向上が顕著であっ
た。
(Embodiment 4) Using the materials No. 3, 4, 7 and 9 which were capable of wire drawing and had an effect of secondary hardening, conditions for obtaining more optimal secondary hardening were examined. As a test method, a rolled material having a diameter of 6 mm is drawn to a diameter of 2 mm and subjected to a heat treatment (secondary hardening) at a different temperature to measure the tensile strength of each material. For comparison, the tensile strength of the material that was not heat treated was also measured. The result is shown in FIG. As shown in the figure, when the heat treatment temperature is 100 ° C. or higher, the strength is improved, but when it exceeds 500 ° C., the strength is decreased. Especially 300 ° C
The strength was remarkably improved in the temperature range of 500 ° C. or lower.

【0020】(実施例5)実施例4で用いた各材料の組
織を走査型電子顕微鏡及び透過型電子顕微鏡で観察し、
各熱処理温度毎のV・Nbの炭化物析出量を調べた。そ
の結果を図3に示す。さらにこれらの供試材について、
熱処理温度と絞りの関係も調べた。その結果を図4に示
す。図3に示すように、V・Nbの炭化物が0.05vo
l %以上で強度が高まっていることがわかる。しかし、
同1%を越えると図4の500℃における供試材No4の
ように、靱性(絞り)が著しく劣るため上限は1%が好
ましい。なお、析出物の大きさは0.1μm以下であっ
た。
(Example 5) The structures of the materials used in Example 4 were observed with a scanning electron microscope and a transmission electron microscope,
The amount of V.Nb carbide precipitates at each heat treatment temperature was examined. The result is shown in FIG. Furthermore, regarding these test materials,
The relationship between heat treatment temperature and drawing was also investigated. The result is shown in FIG. As shown in FIG. 3, V / Nb carbide is 0.05 vo
It can be seen that the strength increases at l% or more. But,
If it exceeds 1%, the toughness (drawing) is remarkably deteriorated as in the case of sample material No. 4 at 500 ° C. in FIG. 4, so the upper limit is preferably 1%. The size of the precipitate was 0.1 μm or less.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば従
来のパーライト鋼よりも高強度の鋼線を得ることができ
る。特に、従来から行われているC量を高めて高強度化
を図る方法よりも幅広い条件で製造することができる。
又、2次硬化を利用するため伸線加工時は比較的低強度
で伸線性も良好である。
As described above, according to the present invention, it is possible to obtain a steel wire having higher strength than the conventional pearlite steel. In particular, it can be manufactured under a wider range of conditions than the conventional methods for increasing the C content to increase the strength.
Further, since secondary hardening is utilized, the wire drawing property is relatively low during wire drawing and the wire drawability is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】線径(加工度)と引張強度の関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between wire diameter (workability) and tensile strength.

【図2】2次硬化温度と引張強度の関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between secondary curing temperature and tensile strength.

【図3】2次硬化温度とV・Nb炭化物の析出量の関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the secondary hardening temperature and the precipitation amount of V · Nb carbide.

【図4】2次硬化温度と絞りの関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between a secondary curing temperature and a diaphragm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.7〜1.0、Si:
1.0以下、Mn:0.7以下、Cr:0.5以下と、
V及びNbの少なくとも一方を0.02〜1.0含有
し、残部が鉄及び不可避的不純物からなるパーライト組
織の鋼線であって、フェライト中にV若しくはNbの炭
化物が体積%で0.05〜1.0析出し、該炭化物の大
きさが0.1μm以下であることを特徴とする高強度鋼
線。
1. C: 0.7 to 1.0 by weight%, Si:
1.0 or less, Mn: 0.7 or less, Cr: 0.5 or less,
A steel wire having a pearlite structure containing 0.02 to 1.0 of at least one of V and Nb, and the balance consisting of iron and unavoidable impurities, wherein the carbide of V or Nb is 0.05% by volume in ferrite. A high-strength steel wire, characterized in that it precipitates up to 1.0 and the size of the carbide is 0.1 μm or less.
【請求項2】 重量%でC:0.7〜1.0、Si:
1.0以下、Mn:0.7以下、Cr:0.5以下と、
V及びNbの少なくとも一方を0.02〜1.0含有
し、残部が鉄及び不可避的不純物からなる線材に以下の
処理を施すことを特徴とする高強度鋼線の製造方法。 線材を950〜1200℃で保持する その後650〜500℃まで急冷して5秒以上5分以
下保持する 室温まで冷却した後減面率60から98%の線引加工
を施す さらに300〜500℃に加熱する
2. C: 0.7 to 1.0, Si: in weight%.
1.0 or less, Mn: 0.7 or less, Cr: 0.5 or less,
A method for producing a high-strength steel wire, which comprises subjecting a wire rod containing 0.02-1.0 of at least one of V and Nb and the balance being iron and unavoidable impurities to the following treatment. Hold the wire at 950 to 1200 ° C, then rapidly cool it to 650 to 500 ° C and hold it for 5 seconds or more and 5 minutes or less. To heat
JP25914793A 1993-09-22 1993-09-22 High strength steel wire and its production Pending JPH0790495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25914793A JPH0790495A (en) 1993-09-22 1993-09-22 High strength steel wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25914793A JPH0790495A (en) 1993-09-22 1993-09-22 High strength steel wire and its production

Publications (1)

Publication Number Publication Date
JPH0790495A true JPH0790495A (en) 1995-04-04

Family

ID=17329992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25914793A Pending JPH0790495A (en) 1993-09-22 1993-09-22 High strength steel wire and its production

Country Status (1)

Country Link
JP (1) JPH0790495A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470646B1 (en) * 2000-12-13 2005-03-07 주식회사 포스코 A method for manufacturing high carbon steel rod
KR100481367B1 (en) * 2000-11-30 2005-04-07 주식회사 포스코 Method of isothermal heat treatment for high carbon steel wire rod containing vanadium
US7597768B2 (en) * 2002-04-02 2009-10-06 Kabushiki Kaisha Kobe Seiko Sho Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof
JP2011058035A (en) * 2009-09-08 2011-03-24 Sumitomo Electric Ind Ltd Hard-drawn wire
KR101372651B1 (en) * 2011-09-23 2014-03-10 주식회사 포스코 High strength steel wire rod and steel wire having good low-temperature toughness, high strength wire having good low-temperature toughness and producing method for the same
JP2017101296A (en) * 2015-12-02 2017-06-08 株式会社神戸製鋼所 Hot rolled wire excellent in hydrogen blistering resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481367B1 (en) * 2000-11-30 2005-04-07 주식회사 포스코 Method of isothermal heat treatment for high carbon steel wire rod containing vanadium
KR100470646B1 (en) * 2000-12-13 2005-03-07 주식회사 포스코 A method for manufacturing high carbon steel rod
US7597768B2 (en) * 2002-04-02 2009-10-06 Kabushiki Kaisha Kobe Seiko Sho Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof
US7763123B2 (en) 2002-04-02 2010-07-27 Kabushiki Kaisha Kobe Seiko Sho Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP2011058035A (en) * 2009-09-08 2011-03-24 Sumitomo Electric Ind Ltd Hard-drawn wire
KR101372651B1 (en) * 2011-09-23 2014-03-10 주식회사 포스코 High strength steel wire rod and steel wire having good low-temperature toughness, high strength wire having good low-temperature toughness and producing method for the same
JP2017101296A (en) * 2015-12-02 2017-06-08 株式会社神戸製鋼所 Hot rolled wire excellent in hydrogen blistering resistance

Similar Documents

Publication Publication Date Title
GB2132225A (en) Manufacturing high tensile strength steel plates
JP2004143482A (en) High strength cold formed spring steel wire and its production method
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JPH05320749A (en) Production of ultrahigh strength steel
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JPH0790495A (en) High strength steel wire and its production
JPH05295448A (en) Manufacture of hypereutectoid steel wire rod
JP3153071B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP3457498B2 (en) High-strength PC steel bar and method of manufacturing the same
JP3153072B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP2544867B2 (en) Manufacturing method of hyper-eutectoid steel wire
JPH07268545A (en) High strength pc steel bar and its production
JPH0526850B2 (en)
JPH0625745A (en) Manufacture of steel for machine structural use excellent in delayed fracture resistance
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JP3468828B2 (en) Manufacturing method of high strength PC steel rod
JPH0718326A (en) Production of highly strong and tough rail by on-line heat treatment
JPH04254526A (en) Manufacture of high carbon steel wire excellent in wire drawability
JP4112676B2 (en) Manufacturing method of high strength steel wire
JPH05117764A (en) Manufacture of high strength bead wire
JPH0450364B2 (en)
JP3348189B2 (en) High-strength PC steel rod and method of manufacturing the same
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
JPH04131323A (en) Production of heat treatment saving type high tensile steel wire having excellent fatigue resistance and wear resistance