JPH08145483A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08145483A
JPH08145483A JP28513894A JP28513894A JPH08145483A JP H08145483 A JPH08145483 A JP H08145483A JP 28513894 A JP28513894 A JP 28513894A JP 28513894 A JP28513894 A JP 28513894A JP H08145483 A JPH08145483 A JP H08145483A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
degree
indoor
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28513894A
Other languages
Japanese (ja)
Inventor
Shozo Funakura
正三 船倉
Minoru Tagashira
實 田頭
Kazuo Nakatani
和生 中谷
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28513894A priority Critical patent/JPH08145483A/en
Publication of JPH08145483A publication Critical patent/JPH08145483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To provide an air conditioner in which no inconvenience occurs even if a non-azeotrope refrigerant in which sealing composition substantially coincides with circulating composition is used. CONSTITUTION: This air conditioner comprises an outdoor unit 8 having a compressor 1, an outdoor heat exchanger 3, an outdoor expansion valve 6, an outdoor fan 4, etc., a plurality of indoor units 12 each having an indoor heat exchanger 9, an indoor expansion valve 10, an indoor fan 11, etc., to be connected by a pipe, and a refrigerant reservoir 5 provided between the valves 6 and 10, wherein a tube from the valve 6 and a tube from the valve 10 protrude to the vicinity of the bottom in the reservoir 5 to seal a non-azeotrope refrigerant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機に関するも
のであり、特に冷媒として非共沸混合冷媒を用いた空気
調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner using a non-azeotropic mixed refrigerant as a refrigerant.

【0002】[0002]

【従来の技術】従来より、複数台の室内機を備えた空気
調和機として図2に示すようなものがある。図2におい
て、1は圧縮機、2は冷房運転、暖房運転の切換を行う
四方弁、3は室外熱交換器、4は室外ファン、5は冷媒
貯留器、6は室外膨張弁、7はアキュムレータであり、
これらで室外機8を構成している。また9a、9bは室
内熱交換器、10a、10bは室内膨張弁、11a、1
1bは室内ファンであり、これらで室内機12a、12
bを構成している。室内機12a、12bで冷房を行う
場合には、四方弁2を図2中の実線のように切り換えて
室外熱交換器3を凝縮器として、室内熱交換器9a、9
bを蒸発器として作用させる。また室内機12a、12
bで暖房を行う場合には、四方弁2を図2中の破線のよ
うに切り換えて室外熱交換器3を蒸発器として、室内熱
交換器9a、9bを凝縮器として作用させる。なお冷媒
として一般には単一冷媒であるHCFC22が用いられ
ている。
2. Description of the Related Art Conventionally, there is an air conditioner having a plurality of indoor units as shown in FIG. In FIG. 2, 1 is a compressor, 2 is a four-way valve for switching between cooling operation and heating operation, 3 is an outdoor heat exchanger, 4 is an outdoor fan, 5 is a refrigerant reservoir, 6 is an outdoor expansion valve, and 7 is an accumulator. And
These constitute the outdoor unit 8. Further, 9a and 9b are indoor heat exchangers, 10a and 10b are indoor expansion valves, and 11a and 1b.
1b is an indoor fan, and these are indoor units 12a, 12
b. When performing cooling with the indoor units 12a and 12b, the four-way valve 2 is switched as shown by the solid line in FIG. 2 and the outdoor heat exchanger 3 is used as a condenser, and the indoor heat exchangers 9a and 9b are used.
b acts as an evaporator. In addition, the indoor units 12a, 12
When heating is performed in b, the four-way valve 2 is switched as shown by the broken line in FIG. 2 to cause the outdoor heat exchanger 3 to act as an evaporator and the indoor heat exchangers 9a and 9b to act as condensers. As the refrigerant, HCFC22 which is a single refrigerant is generally used.

【0003】ここで、室外熱交換器3のみが凝縮器とし
て作用する冷房運転時には、複数の室内熱交換器(本実
施例では9a、9bの2台)が凝縮器として作用する暖
房運転時に比べて冷媒過充填となり、吐出圧力異常上昇
等の不具合を生じるが、これを回避するために、冷房運
転時に凝縮器として作用する室外熱交換器3で液化され
た冷媒を冷媒貯留器5内に液状態で貯留することができ
るように、冷媒貯留器5は、冷房運転時には液冷媒が底
部から入って頂部から出るように、また暖房運転時には
室外膨張弁6で減圧されて2相状態となった冷媒が頂部
から入って底部から出るように構成されている。
Here, in the cooling operation in which only the outdoor heat exchanger 3 acts as a condenser, in comparison with the heating operation in which a plurality of indoor heat exchangers (two units 9a and 9b in this embodiment) act as condensers. As a result, the refrigerant is overfilled, causing a problem such as an abnormal increase in discharge pressure. In order to avoid such a problem, the refrigerant liquefied in the outdoor heat exchanger 3 acting as a condenser during the cooling operation is liquefied in the refrigerant reservoir 5. In order to be able to store the refrigerant in the state, the refrigerant reservoir 5 has a two-phase state in which the liquid refrigerant enters from the bottom and exits from the top during the cooling operation, and is decompressed by the outdoor expansion valve 6 during the heating operation. Refrigerant is configured to enter at the top and exit at the bottom.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、地球環
境保護の観点から成層圏オゾン層を破壊するとしてHC
FC22の全廃が決定し、その代替冷媒として非共沸混
合冷媒が有力視されている。この非共沸混合冷媒では、
2相状態での液相と気相では組成が異なるため、上述し
た従来の構成の空気調和機に非共沸混合冷媒を適用した
場合には、次のような課題がある。
However, from the viewpoint of protecting the global environment, it is considered that the ozone layer of the stratosphere is destroyed and HC
It has been decided that the FC22 will be completely abolished, and non-azeotropic mixed refrigerants are regarded as promising alternative refrigerants. With this non-azeotropic mixed refrigerant,
Since the liquid phase and the gas phase in the two-phase state have different compositions, there are the following problems when the non-azeotropic mixed refrigerant is applied to the above-described conventional air conditioner.

【0005】まず冷房運転時には、外気温度が高い時な
ど室外熱交換器3で冷媒の過冷却が確保できにくい状態
になると、冷媒貯留器5には2相状態の冷媒が底部から
流入するが、頂部からは気相冷媒のみが流出していく。
したがって冷媒貯留器5では蒸留作用が起こり、冷媒貯
留器5内には高沸点成分が多く含まれた非共沸混合冷媒
が貯留し、冷凍サイクル内には低沸点成分が多く含まれ
た冷媒が循環する。このように冷凍サイクル内を循環す
る冷媒組成は、あらかじめ設定された封入組成と異なる
ため、各熱交換器出口での冷媒過熱度や過冷却度あるい
は圧縮機1吸入部での冷媒過熱度の検知が困難となり、
また冷媒組成変化による効率低下、吐出温度上昇等の不
具合や、冷媒過多状態での運転による効率低下や、吐出
圧力上昇などによる圧縮機負荷の異常増大といった問題
も発生する。
First, during the cooling operation, when it becomes difficult to ensure supercooling of the refrigerant in the outdoor heat exchanger 3 such as when the outside air temperature is high, the two-phase refrigerant flows into the refrigerant reservoir 5 from the bottom, Only the vapor phase refrigerant flows out from the top.
Therefore, a distillation action occurs in the refrigerant reservoir 5, the non-azeotropic mixed refrigerant containing a large amount of high boiling point components is stored in the refrigerant reservoir 5, and the refrigerant containing a large amount of low boiling point components is stored in the refrigeration cycle. Circulate. Since the refrigerant composition circulating in the refrigeration cycle is different from the preset encapsulation composition, the refrigerant superheat degree or supercooling degree at each heat exchanger outlet or the refrigerant superheat degree at the compressor 1 suction portion is detected. Becomes difficult,
There are also problems such as a decrease in efficiency due to a change in the refrigerant composition, a problem such as an increase in discharge temperature, a decrease in efficiency due to operation in an excessive refrigerant condition, and an abnormal increase in compressor load due to an increase in discharge pressure.

【0006】また暖房運転時には、室内熱交換器9a、
9bは凝縮器として作用するが、室内機運転台数や暖房
負荷によって冷凍サイクル内の冷媒量が過多となるとき
があり、従来の構成では冷媒貯留器5での貯留量を制御
することはできず、余剰冷媒はアキュムレータ7で貯留
される。しかしアキュムレータ7は圧縮機1に液冷媒が
吸入されないようにアキュムレータ7内の上部の気相冷
媒のみを流出させる構成であるので、冷房運転時の冷媒
貯留器5と同様に蒸留作用が起こり、アキュムレータ7
内には高沸点成分が多く含まれた非共沸混合冷媒が貯留
し、冷凍サイクル内には低沸点成分が多く含まれた冷媒
が循環する。このように冷凍サイクル内を循環する冷媒
組成は、あらかじめ設定された封入組成と異なるため、
各熱交換器出口での冷媒過熱度や過冷却度あるいは圧縮
機1吸入部での冷媒過熱度の検知が困難となり、また凝
縮器として作用する室内熱交換器9a、9b内の飽和温
度変化などによる能力不足や効率低下、吐出温度上昇等
の不具合も発生する。
During the heating operation, the indoor heat exchanger 9a,
Although 9b acts as a condenser, the amount of refrigerant in the refrigeration cycle may become excessive due to the number of operating indoor units and the heating load, and the amount of refrigerant stored in the refrigerant reservoir 5 cannot be controlled with the conventional configuration. The excess refrigerant is stored in the accumulator 7. However, since the accumulator 7 has a configuration in which only the vapor phase refrigerant in the upper part of the accumulator 7 flows out so that the liquid refrigerant is not sucked into the compressor 1, a distillation action occurs like the refrigerant reservoir 5 during the cooling operation, and the accumulator 7 is generated. 7
The non-azeotropic mixed refrigerant containing a large amount of high boiling point components is stored therein, and the refrigerant containing a large amount of low boiling point components circulates in the refrigeration cycle. In this way, the refrigerant composition circulating in the refrigeration cycle is different from the preset enclosure composition,
It becomes difficult to detect the degree of refrigerant superheat or the degree of supercool at the outlet of each heat exchanger, or the degree of refrigerant superheat at the suction part of the compressor 1, and the saturation temperature changes in the indoor heat exchangers 9a and 9b that act as condensers. There are also problems such as insufficient capacity, reduced efficiency, and increased discharge temperature.

【0007】本発明は、従来の空気調和機のこのような
課題を考慮し、余剰冷媒が存在するときにも冷凍サイク
ル内を循環する非共沸混合冷媒組成が封入組成と異なる
ことを防止し、冷凍サイクル内を循環する冷媒量を適正
化して不具合を解消し、オゾン層を破壊しない非共沸混
合冷媒を用いた空気調和機を提供することを目的とす
る。
The present invention, in consideration of such problems of the conventional air conditioner, prevents the non-azeotropic mixed refrigerant composition circulating in the refrigeration cycle from being different from the enclosed composition even when the excess refrigerant exists. An object of the present invention is to provide an air conditioner using a non-azeotropic mixed refrigerant that does not destroy the ozone layer by optimizing the amount of refrigerant circulating in the refrigeration cycle.

【0008】[0008]

【課題を解決するための手段】本発明は前記目的を達す
るため、圧縮機、室外熱交換器、室外膨張弁、室外ファ
ン等からなる室外機と、室内熱交換器、室内膨張弁、室
内ファン等からなる複数台の室内機を配管接続し、室外
膨張弁と室内膨張弁の間に冷媒貯留器を設け、室外膨張
弁からの配管と室内膨張弁からの配管をそれぞれ冷媒貯
留器内の底部付近まで突出するように接続し、非共沸混
合冷媒を封入したことを特徴とするものである。
In order to achieve the above object, the present invention has an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an outdoor fan, etc., an indoor heat exchanger, an indoor expansion valve, and an indoor fan. Plural indoor units consisting of etc. are connected by piping, a refrigerant reservoir is provided between the outdoor expansion valve and the indoor expansion valve, and the piping from the outdoor expansion valve and the piping from the indoor expansion valve are respectively located at the bottom of the refrigerant reservoir. It is characterized in that it is connected so as to protrude to the vicinity and a non-azeotropic mixed refrigerant is enclosed.

【0009】さらに本発明は、圧縮機の吸入部での冷媒
の過熱度を検知する過熱度検知器と、冷房時には室外熱
交換器出口あるいは暖房時には室内熱交換器出口での冷
媒の過冷却度を検知する過冷却度検知器と、過熱度検知
器によって検知された過熱度が適正な範囲内となるよう
に冷房時には室内膨張弁あるいは暖房時には室外膨張弁
を操作する過熱度制御器と、過冷却度検知器によって検
知された過冷却度が適正な範囲内となるように冷房時に
は室外膨張弁あるいは暖房時には室内膨張弁を操作する
過冷却度制御器とを備えたことを特徴とするものであ
る。
The present invention further provides a superheat detector for detecting the degree of superheat of the refrigerant in the suction portion of the compressor, and the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger during cooling or at the outlet of the indoor heat exchanger during heating. A supercooling degree detector that detects the temperature, a superheat degree controller that operates the indoor expansion valve during cooling or the outdoor expansion valve during heating so that the degree of superheat detected by the superheater detector falls within an appropriate range, and It is characterized by including a subcooling degree controller that operates an outdoor expansion valve during cooling or an indoor expansion valve during heating so that the degree of subcooling detected by the cooling degree detector falls within an appropriate range. is there.

【0010】[0010]

【作用】上記構成の空気調和機では、冷媒貯留器の底部
に室外膨張弁からの配管と室内膨張弁からの配管をそれ
ぞれ冷媒貯留器内の底部付近まで突出するように接続し
たことにより、冷媒貯留器に流入する冷媒と流出する冷
媒はともにほとんどの場合は2相状態あるいは液冷媒と
なるので蒸留作用は起こらず、封入した非共沸混合冷媒
組成と実際に冷凍サイクル内を循環する非共沸混合冷媒
組成が異なることを防止でき、各熱交換器出口での冷媒
過熱度や過冷却度あるいは圧縮機吸入部での冷媒過熱度
の検知が容易となり、また冷媒組成変化による蒸発器あ
るいは凝縮器内の飽和温度変化などによる能力不足や効
率低下、吐出温度上昇等の不具合も解消できる。
In the air conditioner having the above-mentioned structure, the pipe from the outdoor expansion valve and the pipe from the indoor expansion valve are connected to the bottom of the refrigerant reservoir so as to project to the vicinity of the bottom of the refrigerant reservoir. In most cases, both the refrigerant flowing into the reservoir and the refrigerant flowing out are in a two-phase state or a liquid refrigerant, so that no distillation action occurs, and the composition of the enclosed non-azeotropic mixed refrigerant and the non-azeotropic refrigerant actually circulating in the refrigeration cycle. It is possible to prevent the difference in the composition of the boiling mixed refrigerant, making it easy to detect the degree of refrigerant superheat or supercooling at the outlet of each heat exchanger or the degree of refrigerant superheat at the compressor suction part. Problems such as insufficient capacity, reduced efficiency, and increased discharge temperature due to changes in the saturation temperature in the vessel can be resolved.

【0011】また、圧縮機吸入過熱度と凝縮器として作
用する熱交換器出口での過冷却度が適正な範囲内となる
ように室内膨張弁や室外膨張弁を操作することにより、
冷媒貯留器に流入あるいは流出する冷媒量を変化させ、
冷媒貯留量を調節することができ、非共沸混合冷媒を用
いた空気調和機においても、循環冷媒組成が封入組成と
異なることなく余剰冷媒を貯留して、冷媒過多状態での
運転による効率低下や、吐出圧力上昇などによる圧縮機
負荷の異常増大といった問題も解消できる。
Further, by operating the indoor expansion valve and the outdoor expansion valve so that the degree of superheat of suction by the compressor and the degree of supercooling at the outlet of the heat exchanger acting as a condenser are within proper ranges,
Change the amount of refrigerant flowing in or out of the refrigerant reservoir,
Refrigerant storage amount can be adjusted, and even in air conditioners that use non-azeotropic mixed refrigerant, the circulating refrigerant composition does not differ from the enclosed composition, and excess refrigerant is stored, resulting in reduced efficiency due to operation in an excessive refrigerant state. Also, problems such as abnormal increase in compressor load due to increase in discharge pressure can be solved.

【0012】[0012]

【実施例】以下に本発明をその実施例を示す図面に基づ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0013】図1は、本発明にかかる一実施例の空気調
和機の構成図である。図1において、1は圧縮機、2は
冷房運転、暖房運転の切換を行う四方弁、3は室外熱交
換器、4は室外ファン、5は冷媒貯留器、6は室外膨張
弁、7はアキュムレータであり、これらで室外機8を構
成している。また9a、9bは室内熱交換器、10a、
10bは室内膨張弁、11a、11bは室内ファンであ
り、これらで室内機12a、12bを構成している。こ
こで冷媒貯留器5は、室外膨張弁6からの配管と室内膨
張弁10a、10bからの配管がそれぞれ冷媒貯留器5
内の底部付近まで突出するように接続されている。
FIG. 1 is a block diagram of an air conditioner according to an embodiment of the present invention. In FIG. 1, 1 is a compressor, 2 is a four-way valve for switching between cooling operation and heating operation, 3 is an outdoor heat exchanger, 4 is an outdoor fan, 5 is a refrigerant reservoir, 6 is an outdoor expansion valve, and 7 is an accumulator. And these constitute the outdoor unit 8. Further, 9a and 9b are indoor heat exchangers, 10a,
Reference numeral 10b is an indoor expansion valve, 11a and 11b are indoor fans, and these constitute indoor units 12a and 12b. Here, in the refrigerant reservoir 5, the piping from the outdoor expansion valve 6 and the piping from the indoor expansion valves 10a and 10b are respectively the refrigerant reservoir 5
It is connected so as to protrude to the vicinity of the bottom inside.

【0014】また、13は圧縮機吸入部での冷媒過熱度
を検知する過熱度検知器であり、たとえば冷媒の温度、
圧力を測定し、その圧力とあらかじめ設定された非共沸
混合冷媒の封入組成での飽和ガス温度相関式により飽和
ガス温度を計算して、測定された温度との差により過熱
度を決定する。また、14は冷房時過冷却度検知器、1
5a、15bは暖房時過冷却度検知器であり、たとえば
過熱度検知器13と同様に冷媒の温度、圧力を測定し
て、その圧力とあらかじめ設定された非共沸混合冷媒の
封入組成での飽和液温度相関式により飽和液温度を計算
して、測定された温度との差により、冷房時には冷房時
過冷却度検知器14あるいは暖房時には暖房時過冷却度
検知器15a、15bで過冷却度を決定する。また16
は過熱度制御器であり、過熱度検知器13で決定された
過熱度が適正な範囲内となるように、冷房時には室内膨
張弁10a、10bを、暖房時には室外膨張弁6を操作
する。さらに17は過冷却度制御器であり、冷房時過冷
却度検知器14あるいは暖房時過冷却度検知器15a、
15bで決定された過冷却度が適正な範囲内となるよう
に、冷房時には室外膨張弁6あるいは暖房時には室内膨
張弁10a、10bを操作する。
Reference numeral 13 is a superheat detector for detecting the degree of superheat of the refrigerant at the suction portion of the compressor.
The pressure is measured, the saturated gas temperature is calculated by the saturated gas temperature correlation equation with the preset composition of the non-azeotropic mixed refrigerant, and the superheat degree is determined by the difference between the measured temperature and the saturated gas temperature. Further, 14 is a supercooling degree detector during cooling, and 1
Reference numerals 5a and 15b denote supercooling degree detectors during heating. For example, like the superheat degree detector 13, the temperature and pressure of the refrigerant are measured and the pressure and preset composition of the non-azeotropic mixed refrigerant are measured. The saturated liquid temperature is calculated by the saturated liquid temperature correlation formula, and the difference between the measured temperature and the saturated liquid temperature indicates the degree of supercooling by the cooling supercooling degree detector 14 during cooling or the heating supercooling degree detectors 15a and 15b during heating. To decide. Again 16
Is a superheat controller, which operates the indoor expansion valves 10a and 10b during cooling and operates the outdoor expansion valve 6 during heating so that the superheat determined by the superheat detector 13 falls within an appropriate range. Further, reference numeral 17 denotes a supercooling degree controller, which is a cooling supercooling degree detector 14 or a heating supercooling degree detector 15a,
The outdoor expansion valve 6 is operated during cooling or the indoor expansion valves 10a and 10b during heating so that the degree of supercooling determined by 15b falls within an appropriate range.

【0015】次に、冷房運転時の動作について説明す
る。
Next, the operation during the cooling operation will be described.

【0016】冷房運転時には、室外熱交換器3が凝縮
器、室内熱交換器9a、9bがともに蒸発器として作用
するように四方弁2を設定する。このとき圧縮機1で圧
縮されて高温高圧となったガス冷媒は四方弁2を経て室
外熱交換器3に導入され、室外の空気と熱交換して液冷
媒となる。そして室外膨張弁6、冷媒貯留器5を経て室
内膨張弁10a、10bで減圧されて低温低圧の2相冷
媒となり、室内熱交換器9a、9bで室内の空気と熱交
換して低温のガス冷媒となり、四方弁2、アキュムレー
タ7を経て再び圧縮機1で圧縮される。
During the cooling operation, the four-way valve 2 is set so that the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchangers 9a and 9b both act as evaporators. At this time, the gas refrigerant compressed in the compressor 1 and having a high temperature and high pressure is introduced into the outdoor heat exchanger 3 via the four-way valve 2 and exchanges heat with the outdoor air to become a liquid refrigerant. Then, after passing through the outdoor expansion valve 6 and the refrigerant reservoir 5, the indoor expansion valves 10a and 10b decompress to become a low-temperature low-pressure two-phase refrigerant, and the indoor heat exchangers 9a and 9b exchange heat with the indoor air to cool the gas refrigerant. Then, it is compressed by the compressor 1 again via the four-way valve 2 and the accumulator 7.

【0017】また、冷房運転時には室外熱交換器3のみ
を凝縮器として作用させるので、複数の室内熱交換器
(本実施例では9a、9bの2台)を凝縮器として作用
させる暖房運転時と比較して冷媒過多状態となり、凝縮
器として作用する室外熱交換器3出口での過冷却度が増
大するが、冷房時過冷却度検知器14で過冷却度を検知
して、過冷却度制御器17で過冷却度が適正な範囲内と
なるように室外膨張弁6を開方向に操作する。
Further, since only the outdoor heat exchanger 3 acts as a condenser during the cooling operation, a plurality of indoor heat exchangers (two units 9a and 9b in this embodiment) act as a condenser during heating operation. In comparison, the refrigerant becomes excessive and the degree of subcooling at the outlet of the outdoor heat exchanger 3 acting as a condenser increases, but the degree of subcooling during cooling is detected by the degree of supercooling detector 14 to control the degree of supercooling. The outdoor expansion valve 6 is operated in the opening direction so that the degree of supercooling of the device 17 is within an appropriate range.

【0018】同時に冷媒過多状態となると室内熱交換器
9a、9bで冷媒は十分に蒸発しきれずに圧縮機1吸入
部あるいはアキュムレータ7入口側での過熱度は減少す
るが、過熱度検知器13で過熱度を検知して、過熱度制
御器16で過熱度が適正な範囲内となるように室内膨張
弁10a、10bを閉方向に操作する。すなわち、冷媒
貯留器5の入口側に接続された室外膨張弁6を開方向、
出口側に接続された室内膨張弁10a、10bを閉方向
に操作することにより、冷媒貯留器5に流入する冷媒が
増大し、かつ冷媒貯留器5から流出する冷媒が減少する
ことにより、冷媒の一部が冷媒貯留器5内に貯留され
る。
At the same time, when the refrigerant becomes excessive, the refrigerant is not fully evaporated in the indoor heat exchangers 9a and 9b and the superheat degree at the suction portion of the compressor 1 or the inlet side of the accumulator 7 decreases, but the superheat detector 13 Detecting the degree of superheat, the superheat controller 16 operates the indoor expansion valves 10a, 10b in the closing direction so that the degree of superheat falls within an appropriate range. That is, the outdoor expansion valve 6 connected to the inlet side of the refrigerant reservoir 5 is opened,
By operating the indoor expansion valves 10a, 10b connected to the outlet side in the closing direction, the amount of refrigerant flowing into the refrigerant reservoir 5 increases and the amount of refrigerant flowing out of the refrigerant reservoir 5 decreases. A part is stored in the refrigerant reservoir 5.

【0019】このとき冷媒貯留器5の入口、出口となる
室外膨張弁6からの配管と室内膨張弁10a、10bか
らの配管がそれぞれ冷媒貯留器5内の底部にまで突出す
るように接続されているため、流入、流出する冷媒はと
もにほとんどの場合は液状態であるために蒸留作用は起
こらず、冷凍サイクル内を循環する冷媒と冷媒貯留器5
内に貯留される冷媒は同じ組成となり、すなわち封入組
成とほぼ一致するため、過熱度や過冷却度の検知も容易
となり、かつ冷媒組成変化による効率低下、吐出温度上
昇等の不具合も解消できる。さらに、過熱度検知器13
で検知される過熱度と、冷房時過冷却度検知器14で検
知される過冷却度がともに適正な範囲内となる(すなわ
ち冷凍サイクル内を循環する冷媒量が適正となる)まで
過熱度制御器16あるいは過冷却度制御器17で室内膨
張弁10a、10bあるいは室外膨張弁6を操作し続け
るので、余剰冷媒はすべて冷媒貯留器5に貯留されるこ
とができ、冷媒過多状態による効率低下や、吐出圧力上
昇などによる圧縮機負荷の異常増大といった問題も解消
できる。
At this time, the pipes from the outdoor expansion valve 6 and the pipes from the indoor expansion valves 10a and 10b, which serve as the inlet and the outlet of the refrigerant reservoir 5, are connected so as to project to the bottom of the refrigerant reservoir 5, respectively. Since most of the inflowing and outflowing refrigerants are in a liquid state in most cases, no distillation action occurs, and the refrigerant circulating in the refrigeration cycle and the refrigerant reservoir 5
Since the refrigerant stored therein has the same composition, that is, substantially matches the enclosed composition, it is easy to detect the degree of superheat or the degree of supercooling, and it is possible to eliminate problems such as a decrease in efficiency and an increase in discharge temperature due to a change in refrigerant composition. Furthermore, the superheat detector 13
Superheat control until both the degree of superheat detected by and the degree of supercool detected by the supercooling degree detector during cooling 14 are within proper ranges (that is, the amount of refrigerant circulating in the refrigeration cycle is proper). Since the indoor expansion valve 10a, 10b or the outdoor expansion valve 6 is continuously operated by the cooler 16 or the supercooling degree controller 17, all the excess refrigerant can be stored in the refrigerant reservoir 5, and the efficiency decrease due to the excessive refrigerant state and Also, the problem of abnormal increase of compressor load due to increase of discharge pressure can be solved.

【0020】次に暖房時の動作について説明する。Next, the operation during heating will be described.

【0021】暖房運転時には、室外熱交換器3が蒸発
器、室内熱交換器9a、9bがともに凝縮器として作用
するように四方弁2を設定する。このとき圧縮機1で圧
縮されて高温高圧となったガス冷媒は四方弁2を経て室
内熱交換器9a、9bに導入され、室内の空気と熱交換
して液冷媒となる。そして室内膨張弁10a、10b、
冷媒貯留器5を経て室外膨張弁6で減圧されて低温低圧
の2相冷媒となり、室外熱交換器3で室外の空気と熱交
換して低温のガス冷媒となり、四方弁2、アキュムレー
タ7を経て再び圧縮機1で圧縮される。
During the heating operation, the four-way valve 2 is set so that the outdoor heat exchanger 3 acts as an evaporator and the indoor heat exchangers 9a and 9b both act as condensers. At this time, the gas refrigerant that has been compressed by the compressor 1 and has a high temperature and high pressure is introduced into the indoor heat exchangers 9a and 9b through the four-way valve 2 and exchanges heat with the indoor air to become a liquid refrigerant. And the indoor expansion valves 10a, 10b,
After being decompressed by the outdoor expansion valve 6 via the refrigerant reservoir 5, it becomes a low-temperature low-pressure two-phase refrigerant, and by the outdoor heat exchanger 3 exchanging heat with the outdoor air to become a low-temperature gas refrigerant, passing through the four-way valve 2 and the accumulator 7. It is compressed by the compressor 1 again.

【0022】また、暖房運転時には室内機運転台数や暖
房負荷によって冷凍サイクル内の冷媒量が過多となると
きがあり、凝縮器として作用する室内熱交換器9a、9
b出口での過冷却度が増大するが、暖房時過冷却度検知
器15a、15bで過冷却度を検知して、過冷却度制御
器17で過冷却度が適正な範囲内となるように室内膨張
弁10a、10bを開方向に操作する。
Further, during the heating operation, the amount of refrigerant in the refrigeration cycle may become excessive due to the number of operating indoor units and the heating load, and the indoor heat exchangers 9a and 9a functioning as condensers.
Although the degree of supercooling at the b outlet increases, the degree of supercooling during heating is detected by the degree of supercooling detectors 15a and 15b, and the degree of supercooling is controlled by the degree of supercooling controller 17 to be within an appropriate range. The indoor expansion valves 10a and 10b are operated in the opening direction.

【0023】同時に冷媒過多状態となると室外熱交換器
3で冷媒は十分に蒸発しきれずに圧縮機1吸入部あるい
はアキュムレータ7入口側での過熱度は減少するが、過
熱度検知器13で過熱度を検知して、過熱度制御器16
で過熱度が適正な範囲内となるように室外膨張弁6を閉
方向に操作する。すなわち、冷媒貯留器5の入口側に接
続された室内膨張弁10a、10bを開方向、出口側に
接続された室外膨張弁6を閉方向に操作することによ
り、冷媒貯留器5に流入する冷媒が増大し、かつ冷媒貯
留器5から流出する冷媒が減少することにより、冷媒の
一部が冷媒貯留器5内に貯留される。
At the same time, when the refrigerant becomes overheated, the refrigerant cannot be fully evaporated in the outdoor heat exchanger 3 and the superheat degree at the suction part of the compressor 1 or the inlet side of the accumulator 7 decreases, but the superheat detector 13 shows the superheat degree. To detect the superheat degree controller 16
Then, the outdoor expansion valve 6 is operated in the closing direction so that the degree of superheat falls within an appropriate range. That is, the refrigerant flowing into the refrigerant reservoir 5 is operated by operating the indoor expansion valves 10a and 10b connected to the inlet side of the refrigerant reservoir 5 in the opening direction and operating the outdoor expansion valve 6 connected to the outlet side in the closing direction. Is increased and the refrigerant flowing out of the refrigerant reservoir 5 is decreased, so that a part of the refrigerant is stored in the refrigerant reservoir 5.

【0024】このとき冷媒貯留器5の入口、出口とも室
外膨張弁6からの配管と室内膨張弁10a、10bから
の配管がそれぞれ冷媒貯留器5内の底部付近まで突出す
るように接続されているため、流入、流出する冷媒はほ
とんどの場合に液状態あるいは2相状態であるために蒸
留作用は起こらず、冷凍サイクル内を循環する冷媒と冷
媒貯留器5内に貯留される冷媒は同じ組成となり、すな
わち封入組成とほぼ一致するため、過熱度や過冷却度の
検知も容易となり、かつ冷媒組成変化による凝縮器(室
内熱交換器9a、9b)内の飽和温度変化などによる能
力不足や効率低下、吐出温度上昇等の不具合も解消でき
る。さらに、過熱度検知器13で検知される過熱度と、
暖房時過冷却度検知器15a、15bで検知される過冷
却度がともに適正な範囲内となる(すなわち冷凍サイク
ル内を循環する冷媒量が適正となる)まで過熱度制御器
16あるいは過冷却度制御器17で室外膨張弁6あるい
は室内膨張弁10a、10bを操作し続けるので、余剰
冷媒はすべて冷媒貯留器5に貯留されることができ、冷
媒過多状態による効率低下や、吐出圧力上昇などによる
圧縮機負荷の異常増大といった問題も解消できる。
At this time, the piping from the outdoor expansion valve 6 and the piping from the indoor expansion valves 10a and 10b are connected to both the inlet and the outlet of the refrigerant reservoir 5 so as to project to the vicinity of the bottom of the refrigerant reservoir 5, respectively. Therefore, since the inflowing and outflowing refrigerants are in a liquid state or a two-phase state in most cases, the distillation action does not occur, and the refrigerant circulating in the refrigeration cycle and the refrigerant stored in the refrigerant reservoir 5 have the same composition. That is, since it substantially matches the enclosed composition, it is easy to detect the degree of superheat or supercooling, and the capacity is insufficient or the efficiency is reduced due to a change in the saturation temperature in the condenser (indoor heat exchanger 9a, 9b) due to a change in the refrigerant composition. It is also possible to eliminate problems such as increase in discharge temperature. Furthermore, the superheat detected by the superheat detector 13,
Until the supercooling degree detected by the heating supercooling degree detectors 15a and 15b is both within a proper range (that is, the amount of refrigerant circulating in the refrigeration cycle is proper), the superheat degree controller 16 or the supercooling degree Since the controller 17 continues to operate the outdoor expansion valve 6 or the indoor expansion valves 10a, 10b, all the surplus refrigerant can be stored in the refrigerant reservoir 5, resulting in a decrease in efficiency due to an excessive refrigerant state and an increase in discharge pressure. Problems such as abnormal increase of compressor load can be solved.

【0025】なお、本実施例では二台の室内機が接続さ
れた空気調和機として説明したが、室内機の台数にこだ
わるものでなく、また室外機に室内機とともに例えば給
湯機などが接続された装置などについても本発明に含ま
れる。
Although the air conditioner in which two indoor units are connected has been described in this embodiment, the number of indoor units does not matter, and the outdoor unit is connected with the indoor unit, such as a water heater. The present invention also includes such devices.

【0026】また、本実施例では圧縮機吸入部での冷媒
の過熱度が適正な範囲内となるように室内膨張弁あるい
は室外膨張弁を操作するとしたが、蒸発器として作用す
る熱交換器出口の過熱度を用いても同様の結果が得られ
ることは明らかであり、本発明に含まれる。
Further, in this embodiment, the indoor expansion valve or the outdoor expansion valve is operated so that the superheat degree of the refrigerant in the compressor suction part is within an appropriate range, but the heat exchanger outlet acting as an evaporator It is clear that the same result can be obtained by using the superheat degree of, and it is included in the present invention.

【0027】[0027]

【発明の効果】以上述べたことから明らかなように本発
明は、室外膨張弁と室内膨張弁の間に冷媒貯留器を設
け、室外膨張弁からの配管と室内膨張弁からの配管がそ
れぞれ冷媒貯留器内の底部付近にまで突出するように接
続して、非共沸混合冷媒を封入することにより、冷媒貯
留器内での蒸留作用の発生を防止して、冷凍サイクル内
を循環する冷媒と冷媒貯留器内に貯留される冷媒は同じ
組成となり、すなわち封入組成とほぼ一致するため、過
熱度や過冷却度の検知も容易となり、かつ冷媒組成変化
による熱交換器内の飽和温度変化などによる能力不足や
効率低下、吐出温度上昇等の不具合が解消できる。
As is apparent from the above description, the present invention provides the refrigerant reservoir between the outdoor expansion valve and the indoor expansion valve, and the piping from the outdoor expansion valve and the piping from the indoor expansion valve are refrigerants. By connecting to the vicinity of the bottom of the reservoir and enclosing a non-azeotropic mixed refrigerant, the occurrence of a distillation action in the refrigerant reservoir is prevented, and a refrigerant circulating in the refrigeration cycle is used. Since the refrigerant stored in the refrigerant reservoir has the same composition, that is, it almost matches the enclosed composition, it is easy to detect the degree of superheat or supercooling, and due to changes in the saturation temperature in the heat exchanger due to changes in the refrigerant composition, etc. Problems such as insufficient capacity, reduced efficiency, and increased discharge temperature can be resolved.

【0028】さらに本発明は、圧縮機の吸入部での冷媒
の過熱度と、冷房時には室外熱交換器出口あるいは暖房
時には室内熱交換器出口での冷媒の過冷却度を適正な範
囲内となるように、冷房時には室内膨張弁あるいは暖房
時には室外膨張弁を操作する過熱度制御器と、過冷却度
検知器によって検知された過冷却度が適正な範囲内とな
るように冷房時には室外膨張弁あるいは暖房時には室内
膨張弁を操作する過冷却度制御器を備えたことにより、
余剰冷媒が発生したときにもその余剰冷媒を冷媒貯留器
に貯留して、冷媒過多状態による効率低下や、吐出圧力
上昇などによる圧縮機負荷の異常増大といった問題も解
消できる。
Further, according to the present invention, the degree of superheat of the refrigerant at the suction portion of the compressor and the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger during cooling or at the outlet of the indoor heat exchanger during heating are within appropriate ranges. As described above, the superheat degree controller that operates the indoor expansion valve during cooling or the outdoor expansion valve during heating and the outdoor expansion valve or the outdoor expansion valve during cooling so that the degree of supercooling detected by the supercooling degree detector is within an appropriate range. By having a supercooling degree controller that operates the indoor expansion valve during heating,
Even when surplus refrigerant is generated, the surplus refrigerant is stored in the refrigerant reservoir, so that problems such as a decrease in efficiency due to an excessive refrigerant state and an abnormal increase in compressor load due to an increase in discharge pressure can be solved.

【0029】すなわちオゾン層を破壊しない非共沸混合
冷媒を用いた空気調和機を実現できるものである。
That is, an air conditioner using a non-azeotropic mixed refrigerant that does not destroy the ozone layer can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる一実施例の空気調和機の構成
図。
FIG. 1 is a configuration diagram of an air conditioner of an embodiment according to the present invention.

【図2】従来の空気調和機の構成図。FIG. 2 is a configuration diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 室外ファン 5 冷媒貯留器 6 室外膨張弁 7 アキュムレータ 8 室外機 9a、 9b 室内熱交換器 10a、10b 室内膨張弁 11a、11b 室内ファン 12a、12b 室内機 13 過熱度検知器 14 冷房時過冷却度検知器 15a、15b 暖房時過冷却度検知器 16 過熱度制御器 17 過冷却度検知器 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor fan 5 Refrigerant reservoir 6 Outdoor expansion valve 7 Accumulator 8 Outdoor unit 9a, 9b Indoor heat exchanger 10a, 10b Indoor expansion valve 11a, 11b Indoor fan 12a, 12b Indoor unit 13 Superheat Detector 14 Cooling Supercooling Detector 15a, 15b Heating Supercooling Detector 16 Superheat Controller 17 Supercooling Detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、室外膨張弁、室
外ファン等からなる室外機と、室内熱交換器、室内膨張
弁、室内ファン等からなる、複数台の室内機とを配管接
続し、前記室外膨張弁と前記室内膨張弁の間に冷媒貯留
器を設け、前記室外膨張弁からの配管と前記室内膨張弁
からの配管をそれぞれ前記冷媒貯留器内の底部付近まで
突出するように接続し、非共沸混合冷媒を封入したこと
を特徴とする空気調和機。
1. A pipe connection between an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an outdoor fan, and a plurality of indoor units including an indoor heat exchanger, an indoor expansion valve, an indoor fan, etc. Then, a refrigerant reservoir is provided between the outdoor expansion valve and the indoor expansion valve, and the pipe from the outdoor expansion valve and the pipe from the indoor expansion valve are respectively projected to the vicinity of the bottom of the refrigerant reservoir. An air conditioner that is connected and filled with a non-azeotropic mixed refrigerant.
【請求項2】 圧縮機の吸入部での冷媒の過熱度を検知
する過熱度検知器と、冷房時には前記室外熱交換器出口
あるいは暖房時には前記室内熱交換器出口での冷媒の過
冷却度を検知する過冷却度検知器と、前記過熱度検知器
によって検知された過熱度が適正な範囲内となるように
冷房時には前記室内膨張弁あるいは暖房時には前記室外
膨張弁を操作する過熱度制御器と、前記過冷却度検知器
によって検知された過冷却度が適正な範囲内となるよう
に冷房時には前記室外膨張弁あるいは暖房時には前記室
内膨張弁を操作する過冷却度制御器とを備えたことを特
徴とする請求項1記載の空気調和機。
2. A superheat detector for detecting the degree of superheat of the refrigerant at the suction part of the compressor, and a supercool degree of the refrigerant at the outlet of the outdoor heat exchanger during cooling or at the outlet of the indoor heat exchanger during heating. A supercooling degree detector for detecting, and a superheat degree controller for operating the indoor expansion valve during cooling or the outdoor expansion valve during heating so that the degree of superheat detected by the superheater detector is within an appropriate range. A subcooling degree controller that operates the outdoor expansion valve during cooling or the indoor expansion valve during heating so that the degree of subcooling detected by the subcooling degree detector is within an appropriate range. The air conditioner according to claim 1, which is characterized in that.
JP28513894A 1994-11-18 1994-11-18 Air conditioner Pending JPH08145483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28513894A JPH08145483A (en) 1994-11-18 1994-11-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28513894A JPH08145483A (en) 1994-11-18 1994-11-18 Air conditioner

Publications (1)

Publication Number Publication Date
JPH08145483A true JPH08145483A (en) 1996-06-07

Family

ID=17687599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28513894A Pending JPH08145483A (en) 1994-11-18 1994-11-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPH08145483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668564B2 (en) 2001-03-16 2003-12-30 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle
WO2023139700A1 (en) * 2022-01-19 2023-07-27 三菱電機株式会社 Refrigeration and air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668564B2 (en) 2001-03-16 2003-12-30 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle
WO2023139700A1 (en) * 2022-01-19 2023-07-27 三菱電機株式会社 Refrigeration and air-conditioning device

Similar Documents

Publication Publication Date Title
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
JP5709844B2 (en) Air conditioner
JP2006283989A (en) Cooling/heating system
JP2004183913A (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP2002054836A (en) Indoor multi-air conditioner
JP5487831B2 (en) Leakage diagnosis method and leak diagnosis apparatus
JP4090240B2 (en) Cooling system
JPH08145483A (en) Air conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
WO2021156901A1 (en) Refrigeration cycle device
JPH08145484A (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2800428B2 (en) Air conditioner
JP3168496B2 (en) Air conditioner
JP6350577B2 (en) Air conditioner
JP2018087693A (en) Refrigeration unit
JP2000065398A (en) Refrigerating cycle device
JP2000320916A (en) Refrigerating cycle
JP6840992B2 (en) Freezing system and freezing method
KR200362722Y1 (en) Refrigerant cycle system
KR200362726Y1 (en) Refrigerant cycle system
KR100639984B1 (en) Refrigerant cycle system
JPH0375475A (en) Refrigerator