JP2000065398A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JP2000065398A
JP2000065398A JP10237435A JP23743598A JP2000065398A JP 2000065398 A JP2000065398 A JP 2000065398A JP 10237435 A JP10237435 A JP 10237435A JP 23743598 A JP23743598 A JP 23743598A JP 2000065398 A JP2000065398 A JP 2000065398A
Authority
JP
Japan
Prior art keywords
refrigerant
load
heat exchanger
auxiliary heat
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10237435A
Other languages
Japanese (ja)
Inventor
Shozo Funakura
正三 船倉
Mitsuharu Matsuo
光晴 松尾
Norio Okakura
典穂 岡座
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10237435A priority Critical patent/JP2000065398A/en
Publication of JP2000065398A publication Critical patent/JP2000065398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of a refrigerating cycle device of secondary refrigerant system. SOLUTION: In a refrigerating cycle device for effecting heat exchange between heat source side refrigerant and load side refrigerant through the first auxiliary heat exchanger 4 of a heat source side cycle A and the second auxiliary heat exchanger 7 of a load side cycle B, a load betector 10 for detecting the amount of loaded condition in a load side heat exchanger 8, quantity of state refrigerant detecting means 11, 15, 19-21 for detecting the quantity of state of heat source side refrigerant and/or the quantity of state of load side refrigerant as the quantity of state of the refrigerant, and control means 12-14, 16-18, 22-24 for controlling the operation of a compressor 1 and/or a pressure reducer 3 and/or the operation of a refrigerant transporting pump 6 through the control amount of the amount of loaded condition and the quantity of state of the refrigerant, are provided to determine the handling method of the amount of loaded condition and the quantity of state of the refrigerant as the control amount through the control means 12-14, 16-18, 22-24 in accordance with the quantity of state of the refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2次冷媒システム
方式の冷凍サイクル装置に関するものであり、特に、地
球環境に悪影響を与えないが可燃性や毒性を有する冷媒
を用いる2次冷媒システム方式の冷凍サイクル装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus of a secondary refrigerant system type, and more particularly, to a secondary refrigerant system type using a flammable or toxic refrigerant which does not adversely affect the global environment. The present invention relates to a refrigeration cycle device.

【0002】[0002]

【従来の技術】電気(冷凍)冷蔵庫、空調機、カーエア
コン、冷蔵または冷凍倉庫、ショーケース等には、圧縮
機、熱源側熱交換器、減圧器、負荷側熱交換器等を接続
してなる冷凍サイクル装置が応用され、封入される冷媒
としてはフッ素原子を含有する炭化水素類が用いられて
きた。
2. Description of the Related Art Compressors, heat source side heat exchangers, pressure reducers, load side heat exchangers, etc. are connected to electric (refrigeration) refrigerators, air conditioners, car air conditioners, refrigerated or frozen warehouses, showcases, and the like. Refrigeration cycle devices have been applied, and hydrocarbons containing fluorine atoms have been used as the refrigerant to be enclosed.

【0003】特にフッ素原子と塩素原子をともに含有す
る炭化水素(HCFC、ハイドロクロロフルオロカーボ
ン)類は性能がよく、かつ不燃性、人体に対して無毒で
あることから、万一、閉空間に漏洩した場合にも爆発や
急性中毒等の可能性がないため、圧縮機や熱源側熱交換
器を経た冷媒が、負荷側熱交換器(電気(冷凍)冷蔵庫
の蒸発器や空調機の室内熱交換器に相当する)内にも直
接導入される直膨システム方式の冷凍サイクル装置が広
く用いられてきた。
In particular, hydrocarbons (HCFCs, hydrochlorofluorocarbons) containing both fluorine and chlorine atoms have good performance, are nonflammable, and are nontoxic to the human body. In this case, there is no possibility of explosion or acute poisoning, so the refrigerant that has passed through the compressor and the heat source-side heat exchanger is transferred to the load-side heat exchanger (evaporator of an electric (refrigeration) refrigerator or indoor heat exchanger of an air conditioner). Refrigeration cycle devices of the direct expansion system type, which are directly introduced into the refrigeration cycle, have been widely used.

【0004】しかし、HCFC(ハイドロクロロフルオ
ロカーボン)類は塩素原子を有しているがゆえに、大気
に放出されて成層圏に達してしまった場合にオゾン層を
破壊してしまうことが明らかになったため、近年その使
用が世界的に禁止または制限されている。
However, it has been revealed that HCFCs (hydrochlorofluorocarbons) have a chlorine atom and thus destroy the ozone layer when they are released into the atmosphere and reach the stratosphere. In recent years, its use has been banned or restricted worldwide.

【0005】これらに代わって塩素原子を含まないHF
C(ハイドロフルオロカーボン)が使用されつつある
が、オゾン層を破壊する性質は有しないものの大気中で
の寿命が長いために温室効果が大きく、近年問題になっ
ている地球温暖化を防止する上では必ずしも満足な冷媒
とはいえない。
[0005] Instead of these, HF containing no chlorine atom
Although C (hydrofluorocarbon) is being used, it does not have the property of destructing the ozone layer, but has a long greenhouse effect due to its long life in the atmosphere, and it is important in preventing global warming, which has recently become a problem. It is not always a satisfactory refrigerant.

【0006】上記ハロゲン原子を含有するHCFC類や
HFC類の代わりに、強燃性ではあるがオゾン破壊係数
がゼロでありかつ地球温暖化係数もハロゲン原子を含有
する炭化水素類に比べれば格段に小さいハロゲン原子を
含まない炭化水素を冷媒として用いる冷凍サイクル装置
は、冷蔵庫として一部実用化され、さらに大型の機器開
発の可能性が検討されつつある。
[0006] Instead of the above-mentioned halogen-containing HCFCs and HFCs, they are strongly flammable but have an ozone depletion potential of zero and a global warming potential much higher than hydrocarbons containing halogen atoms. A refrigeration cycle device using a small hydrocarbon containing no halogen atoms as a refrigerant has been partially put into practical use as a refrigerator, and the possibility of developing a larger device has been studied.

【0007】また、大型の冷凍倉庫などの一部には毒性
を有するアンモニアを用いた2次冷媒システム方式の冷
凍サイクル装置が用いられている。
[0007] A refrigerating cycle device of a secondary refrigerant system type using toxic ammonia is used in a part of a large freezing warehouse or the like.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、冷蔵庫
以外の機器では必要封入冷媒量が多くなるに伴い、万一
閉空間に漏洩した場合の爆発や急性中毒などの可能性が
高くなる。これらを回避するために負荷側熱交換器には
安全な負荷側冷媒(2次冷媒)を導入する2次冷媒シス
テム方式の冷凍サイクル装置が考えられるが、熱源側サ
イクルと負荷側サイクルとの間で熱交換を行う必要があ
るので、この熱の授受に起因する効率の低下が避けられ
ず、冷凍サイクル装置全体の効率も低下して、消費電力
が増大するため、電力発生時の二酸化炭素排出量増大に
よって地球温暖化が促進されてしまうといった課題があ
る。
However, in equipment other than refrigerators, as the required amount of refrigerant to be charged increases, the possibility of explosion or acute poisoning in the event of leakage into a closed space increases. In order to avoid these problems, a refrigeration cycle device of a secondary refrigerant system type that introduces a safe load-side refrigerant (secondary refrigerant) into the load-side heat exchanger can be considered. As a result, the efficiency of the refrigeration cycle equipment decreases, and the power consumption increases. There is a problem that global warming is promoted by the increase in the amount.

【0009】また、圧縮機、熱源側熱交換器、減圧器、
負荷側熱交換器を主構成要素とする直膨システム方式の
冷凍サイクル装置と比較して、熱源側サイクルと負荷側
サイクルとの間で熱交換させる補助熱交換器と負荷側サ
イクル内で負荷側冷媒を循環させる冷媒搬送手段が新た
に必要となる2次冷媒システム方式の冷凍サイクル装置
ではコストアップも避けられないといった課題もある。
Also, a compressor, a heat source side heat exchanger, a pressure reducer,
Compared with the direct expansion system type refrigeration cycle device mainly including the load side heat exchanger, the auxiliary heat exchanger that exchanges heat between the heat source side cycle and the load side cycle and the load side in the load side cycle There is also a problem that a cost increase is unavoidable in a refrigeration cycle device of a secondary refrigerant system type that requires a new refrigerant transport unit for circulating the refrigerant.

【0010】さらに、大型の冷凍倉庫などの一部にはア
ンモニアを用いた2次冷媒システム方式の冷凍サイクル
装置は、負荷側熱交換器での冷却作用、あるいは加熱作
用のみの単機能しか有しておらず、冷却作用と加熱作用
を適宜切り替えて効率よく運転できないといった課題も
ある。
Further, a refrigeration cycle apparatus of a secondary refrigerant system using ammonia in a part of a large refrigeration warehouse or the like has only a single function of cooling or heating only in the load side heat exchanger. However, there is also a problem that it is not possible to operate efficiently by appropriately switching the cooling function and the heating function.

【0011】本発明は、上述したこのような従来の2次
冷媒システム方式の冷凍サイクル装置が有する課題を考
慮して、効率向上および/またはコストアップ抑制が図
れる2次冷媒システム方式の冷凍サイクル装置を提供す
ることを目的とするものである。
The present invention provides a secondary refrigerant system-type refrigeration cycle apparatus capable of improving efficiency and / or suppressing cost increase in consideration of the above-mentioned problems of the conventional secondary refrigerant system-type refrigeration cycle apparatus. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、第1の本発明(請求項1に記載の本発明に対応)
は、少なくとも圧縮機、熱源側熱交換器、減圧器および
第1補助熱交換器を有する熱源側サイクルと、少なくと
も冷媒搬送手段、負荷側熱交換器および第2補助熱交換
器を有する負荷側サイクルとを備え、前記第1補助熱交
換器および前記第2補助熱交換器にて、熱源側冷媒と負
荷側冷媒との間で熱交換を行わせる冷凍サイクル装置に
おいて、前記熱源側サイクルの少なくとも前記熱源側熱
交換器、前記減圧器および前記第1補助熱交換器での前
記熱源側冷媒の流れ方向を切り替える熱源側流路切り替
え手段と、前記第2補助熱交換器内の前記負荷側冷媒の
流れ方向を切り替える負荷側流路切り替え手段とを備
え、前記負荷側流路切り替え手段が、前記熱源側サイク
ルの状態に応じて、前記第1補助熱交換器および前記第
2補助熱交換器での熱交換がより効率的に行われるよう
に、前記負荷側冷媒の前記流れ方向を選択して切り替え
ることを特徴とする冷凍サイクル装置である。
In order to solve the above-mentioned problems, a first invention (corresponding to the first invention) is provided.
Comprises a heat source side cycle having at least a compressor, a heat source side heat exchanger, a decompressor and a first auxiliary heat exchanger, and a load side cycle having at least refrigerant transfer means, a load side heat exchanger and a second auxiliary heat exchanger. In the refrigeration cycle apparatus, wherein the first auxiliary heat exchanger and the second auxiliary heat exchanger perform heat exchange between a heat source side refrigerant and a load side refrigerant, at least the heat source side cycle A heat-source-side heat exchanger, a heat-source-side flow switching unit that switches a flow direction of the heat-source-side refrigerant in the decompressor and the first auxiliary heat exchanger, and a load-side refrigerant in the second auxiliary heat exchanger. And a load-side flow switching means for switching a flow direction, wherein the load-side flow switching means is provided in the first auxiliary heat exchanger and the second auxiliary heat exchanger according to a state of the heat source side cycle. As exchange is performed more efficiently, a refrigeration cycle apparatus characterized by selecting and switching to the flow direction of the load-side refrigerant.

【0013】第2の本発明(請求項2に記載の本発明に
対応)は、前記負荷側流路切り替え手段が、前記熱源側
冷媒および前記負荷側冷媒が、少なくとも前記熱交換が
行われる経路上の全部または一部で、互いに対向する方
向に流れるように、前記負荷側冷媒の前記流れ方向を選
択して切り替えることを特徴とする第1の本発明の冷凍
サイクル装置である。
According to a second aspect of the present invention (corresponding to the second aspect of the present invention), the load-side flow switching means includes a path through which the heat source-side refrigerant and the load-side refrigerant exchange at least the heat. The refrigeration cycle apparatus according to the first aspect of the present invention is characterized in that the flow direction of the load-side refrigerant is selected and switched so that the whole or a part of the upper part flows in directions facing each other.

【0014】第3の本発明(請求項3に記載の本発明に
対応)は、前記負荷側熱交換器が、前記負荷側冷媒が負
荷対象に対して対向する方向に流れるように構成されて
おり、前記負荷側流路切り替え手段の切り替えによって
前記負荷側熱交換器内の前記負荷側冷媒の流れの方向は
変わらないことを特徴とする第1または第2の本発明の
冷凍サイクル装置である。
According to a third aspect of the present invention (corresponding to the third aspect of the present invention), the load-side heat exchanger is configured such that the load-side refrigerant flows in a direction facing a load object. The refrigeration cycle apparatus according to the first or second aspect of the present invention, wherein the direction of the flow of the load-side refrigerant in the load-side heat exchanger is not changed by the switching of the load-side flow switching means. .

【0015】第4の本発明(請求項4に記載の本発明に
対応)は、少なくとも圧縮機、熱源側熱交換器、減圧器
および第1補助熱交換器を有する熱源側サイクルと、少
なくとも冷媒搬送手段、負荷側熱交換器および第2補助
熱交換器を有する負荷側サイクルとを備え、前記第1補
助熱交換器および前記第2補助熱交換器にて、熱源側冷
媒と負荷側冷媒との間で熱交換を行わせる冷凍サイクル
装置において、前記負荷側熱交換器での負荷状態量を検
出する負荷状態量検出手段と、前記熱源側冷媒の状態量
および/または前記負荷側冷媒の状態量を冷媒状態量と
して検出する冷媒状態量検出手段と、前記負荷状態量お
よび前記冷媒状態量を制御量として、前記圧縮機の運転
および/または前記減圧器の運転および/または前記冷
媒搬送手段の運転を制御する制御手段とを備え、前記制
御手段が、前記冷媒状態量に応じて、前記負荷状態量お
よび前記冷媒状態量の前記制御量としての扱い方を決定
することを特徴とする冷凍サイクル装置である。
A fourth aspect of the present invention (corresponding to the fourth aspect of the present invention) comprises a heat source side cycle having at least a compressor, a heat source side heat exchanger, a pressure reducer and a first auxiliary heat exchanger, and at least a refrigerant. And a load side cycle having a load side heat exchanger and a second auxiliary heat exchanger. In the first auxiliary heat exchanger and the second auxiliary heat exchanger, a heat source side refrigerant, a load side refrigerant, A load state quantity detecting means for detecting a load state quantity in the load side heat exchanger, and a state quantity of the heat source side refrigerant and / or a state of the load side refrigerant. A refrigerant state quantity detecting means for detecting an amount as a refrigerant state quantity; and operating the compressor and / or operating the pressure reducer and / or operating the refrigerant conveying means, using the load state quantity and the refrigerant state quantity as control amounts. operation Control means for controlling, wherein the control means determines how to treat the load state amount and the refrigerant state amount as the control amount according to the refrigerant state amount. is there.

【0016】第5の本発明(請求項5に記載の本発明に
対応)は、前記冷媒状態量が、前記第1補助熱交換器を
含む側の前記減圧器と前記圧縮機との間の所定の位置で
の前記熱源側冷媒の圧力、および/または、前記第1補
助熱交換器出口もしくは前記熱源側熱交換器出口での前
記熱源側冷媒の過熱度もしくは過冷却度、および/また
は、前記第2補助熱交換器の入口側と出口側とでの前記
負荷側冷媒の温度差であり、前記制御手段が前記圧縮機
の運転を制御する場合は、前記負荷状態量および前記熱
源側冷媒の前記圧力を前記制御量とし、前記制御手段が
前記減圧器の運転を制御する場合は、前記負荷状態量、
および、前記熱源側冷媒の前記過熱度もしくは前記過冷
却度を、前記制御量とし、前記制御手段が前記冷媒搬送
手段の運転を制御する場合は、前記負荷状態量および前
記負荷側冷媒の前記温度差を前記制御量とすることを特
徴とする第4の本発明の冷凍サイクル装置である。
According to a fifth aspect of the present invention (corresponding to the fifth aspect of the present invention), the refrigerant state quantity is set between the pressure reducing device on the side including the first auxiliary heat exchanger and the compressor. The pressure of the heat-source-side refrigerant at a predetermined position, and / or the degree of superheat or supercooling of the heat-source-side refrigerant at the first auxiliary heat exchanger outlet or the heat source-side heat exchanger outlet, and / or The temperature difference of the load-side refrigerant between the inlet side and the outlet side of the second auxiliary heat exchanger, wherein when the control means controls the operation of the compressor, the load state amount and the heat-source-side refrigerant The pressure as the control amount, and when the control means controls the operation of the pressure reducer, the load state amount;
And, when the degree of superheat or the degree of supercooling of the heat source side refrigerant is the control amount, and when the control means controls the operation of the refrigerant conveying means, the load state amount and the temperature of the load side refrigerant A refrigeration cycle apparatus according to a fourth aspect of the present invention, wherein the difference is the control amount.

【0017】第6の本発明(請求項6に記載の本発明に
対応)は、前記冷媒状態量検出手段が、前記圧縮機の吐
出側での過熱度を測定することによって、前記熱源側冷
媒の前記過熱度を検出することを特徴とする第5の本発
明の冷凍サイクル装置である。
According to a sixth aspect of the present invention (corresponding to the sixth aspect of the present invention), the refrigerant state quantity detecting means measures the degree of superheat at the discharge side of the compressor, so that the heat source side refrigerant is measured. The refrigeration cycle apparatus according to a fifth aspect of the present invention, wherein the superheat degree is detected.

【0018】第7の本発明(請求項7に記載の本発明に
対応)は、前記制御手段が、前記冷媒状態量が所定の第
1の範囲内にない場合は、前記負荷状態量に優先して、
前記冷媒状態量が前記第1の範囲に収まるように制御を
行い、前記冷媒状態量が前記第1の範囲を含む第2の範
囲内にある場合は、前記冷媒状態量に優先して、前記負
荷状態量が所定の負荷範囲に収まるように制御を行い、
前記冷媒状態量が前記第1の範囲内にあり、前記第2の
範囲内にない場合は、前記冷媒状態量を制御量とする制
御と、前記負荷状態量を制御量とする制御とを、前記冷
媒状態量に応じて、それぞれに重みをつけて行うことを
特徴とする第4〜第6のいずれかの本発明の冷凍サイク
ル装置である。
According to a seventh aspect of the present invention (corresponding to the seventh aspect of the present invention), when the refrigerant state quantity is not within a first predetermined range, the control means gives priority to the load state quantity. do it,
The refrigerant state quantity is controlled so as to fall within the first range, and when the refrigerant state quantity is within a second range including the first range, the refrigerant state quantity is prioritized over the refrigerant state quantity. Control so that the load state quantity falls within a predetermined load range,
When the refrigerant state quantity is within the first range and is not within the second range, control that sets the refrigerant state quantity as a control amount, and control that sets the load state amount as a control amount, A refrigeration cycle apparatus according to any one of the fourth to sixth aspects of the present invention, wherein each of the refrigeration cycle apparatuses is weighted according to the refrigerant state quantity.

【0019】第8の本発明(請求項8に記載の本発明に
対応)は、少なくとも圧縮機、熱源側熱交換器、減圧器
および第1補助熱交換器を有する熱源側サイクルと、少
なくとも冷媒搬送手段、負荷側熱交換器および第2補助
熱交換器を有する負荷側サイクルとを備え、前記第1補
助熱交換器および前記第2補助熱交換器にて、熱源側冷
媒と負荷側冷媒との間で熱交換を行わせる冷凍サイクル
装置において、前記第2補助熱交換器の入口側と出口側
とでの前記負荷側冷媒の温度差を検出する冷媒状態量検
出手段と、前記温度差を制御量として前記冷媒搬送手段
の運転を制御する制御手段とを備えることを特徴とする
冷凍サイクル装置である。
An eighth aspect of the present invention (corresponding to the eighth aspect of the present invention) comprises a heat source side cycle having at least a compressor, a heat source side heat exchanger, a pressure reducer and a first auxiliary heat exchanger, and at least a refrigerant. And a load side cycle having a load side heat exchanger and a second auxiliary heat exchanger. In the first auxiliary heat exchanger and the second auxiliary heat exchanger, a heat source side refrigerant, a load side refrigerant, In a refrigeration cycle apparatus that performs heat exchange between the second auxiliary heat exchanger, a refrigerant state quantity detecting unit that detects a temperature difference of the load-side refrigerant between an inlet side and an outlet side of the second auxiliary heat exchanger, Control means for controlling the operation of the refrigerant transport means as a control amount.

【0020】第9の本発明(請求項9に記載の本発明に
対応)は、前記冷媒搬送手段が、前記負荷側熱交換器の
出口側の経路上に配置されていることを特徴とする第1
〜第8のいずれかの本発明の冷凍サイクル装置である。
A ninth aspect of the present invention (corresponding to the ninth aspect of the present invention) is characterized in that the refrigerant transfer means is disposed on a path on an outlet side of the load side heat exchanger. First
It is a refrigeration cycle apparatus of any one of the present invention.

【0021】第10の本発明(請求項10に記載の本発
明に対応)は、前記熱源側冷媒が、可燃性あるいは毒性
を有する冷媒を主成分とするものであることを特徴とす
る第1〜第9のいずれかの本発明の冷凍サイクル装置で
ある。
According to a tenth aspect of the present invention (corresponding to the tenth aspect of the present invention), the heat source side refrigerant is mainly composed of a flammable or toxic refrigerant. A refrigeration cycle apparatus according to any one of the present invention.

【0022】[0022]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施の形態)まず、本発明の第1
の実施の形態を図面を参照して説明する。図1は、本発
明の第1の実施の形態における冷凍サイクル装置を示す
の概略構成図である。図1において、1は圧縮機、2は
熱源側熱交換器、3は減圧器、4は第1補助熱交換器で
あり、これらを接続して熱源側サイクルAを構成してい
る。また、熱源側サイクルAの冷媒流れ方向を可逆でき
る四方弁5(本発明の熱源側流路切り替え手段に対応)
を備えており、可燃性あるいは毒性を有する冷媒(例え
ばプロパン)が熱源側冷媒として封入されている。ま
た、6は冷媒搬送ポンプ(本発明の冷媒搬送手段に対
応)、7は第2補助熱交換器、8は負荷側熱交換器であ
り、これらを接続して負荷側サイクルBを構成してい
る。また、第2補助熱交換器7の入口と出口を切り替え
る四方弁9(本発明の負荷側流路切り替え手段に対応)
を備えており、不燃性あるいは毒性の低い冷媒(例えば
水)が負荷側冷媒として封入されている。ここで第1補
助熱交換器4と第2補助熱交換器7とで熱交換を行う構
成となっており、図中の実線矢印は負荷側熱交換器8で
冷却作用を行う場合の冷媒流れ、点線矢印は加熱作用を
行う場合の冷媒流れを示している。
(First Embodiment) First, the first embodiment of the present invention will be described.
An embodiment will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating a refrigeration cycle device according to a first embodiment of the present invention. In FIG. 1, 1 is a compressor, 2 is a heat source side heat exchanger, 3 is a decompressor, 4 is a first auxiliary heat exchanger, and these are connected to form a heat source side cycle A. Also, a four-way valve 5 capable of reversing the refrigerant flow direction of the heat source side cycle A (corresponding to the heat source side flow switching means of the present invention)
And a flammable or toxic refrigerant (for example, propane) is sealed as a heat source side refrigerant. 6 is a refrigerant transfer pump (corresponding to the refrigerant transfer means of the present invention), 7 is a second auxiliary heat exchanger, 8 is a load side heat exchanger, and these are connected to form a load side cycle B. I have. Further, a four-way valve 9 for switching the inlet and outlet of the second auxiliary heat exchanger 7 (corresponding to the load-side flow path switching means of the present invention)
And a nonflammable or low-toxic refrigerant (for example, water) is sealed as a load-side refrigerant. Here, heat is exchanged between the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7, and the solid arrows in the figure indicate the refrigerant flow when the cooling operation is performed by the load side heat exchanger 8. , Dotted arrows indicate the flow of the refrigerant when the heating action is performed.

【0024】次に、本実施の形態における冷凍サイクル
装置の動作について説明する。
Next, the operation of the refrigeration cycle apparatus according to the present embodiment will be described.

【0025】まず、負荷側熱交換器8で冷却作用を行う
場合には、四方弁5、9をそれぞれ実線のように設定す
る。熱源側サイクルAにおいては、圧縮機1で圧縮され
た熱源側冷媒は高温高圧となり、四方弁5を経て熱源側
熱交換器2に導かれ、外気や河川などの熱源により冷却
されて高圧の液冷媒となり、減圧器3に導入されて、減
圧されて低温低圧の2相冷媒となり第1補助熱交換器4
に導入される。第1補助熱交換器4で第2補助熱交換器
7と熱交換を行い、すなわち第2補助熱交換器7を流れ
る負荷側冷媒から吸熱して蒸発ガス化し、四方弁5を経
て再び圧縮機1に吸入される。負荷側サイクルBにおい
ては、冷媒搬送ポンプ6によって負荷側冷媒が四方弁9
を経て第2補助熱交換器7に導入される。第2補助熱交
換器7内では、第1補助熱交換器4内の熱源側冷媒に吸
熱されることにより冷却されて低温となり、四方弁9を
経て負荷側熱交換器8に導入される。負荷側熱交換器8
では負荷対象(例えば空調の場合は室内空気、冷蔵、冷
凍用途の場合は庫内空気など)から吸熱(すなわち負荷
対象を冷却)して常温近くとなり、再び冷媒搬送ポンプ
6に導入される。
First, when the cooling operation is performed by the load side heat exchanger 8, the four-way valves 5 and 9 are respectively set as shown by the solid lines. In the heat source side cycle A, the heat source side refrigerant compressed by the compressor 1 has a high temperature and a high pressure, is guided to the heat source side heat exchanger 2 through the four-way valve 5, and is cooled by a heat source such as outside air or a river to be a high pressure liquid. The refrigerant is introduced into the decompressor 3 and decompressed to become a low-temperature and low-pressure two-phase refrigerant.
Will be introduced. The first auxiliary heat exchanger 4 exchanges heat with the second auxiliary heat exchanger 7, that is, absorbs heat from the load-side refrigerant flowing through the second auxiliary heat exchanger 7 to evaporate and evaporates, and passes through the four-way valve 5 to recompress the compressor. Inhaled into 1. In the load side cycle B, the load side refrigerant is supplied by the refrigerant transfer pump 6 to the four-way valve 9.
And is introduced into the second auxiliary heat exchanger 7. In the second auxiliary heat exchanger 7, the heat is absorbed by the heat source-side refrigerant in the first auxiliary heat exchanger 4 to be cooled to a low temperature, and is introduced into the load-side heat exchanger 8 via the four-way valve 9. Load side heat exchanger 8
Then, heat is absorbed from the load object (for example, indoor air for air conditioning, indoor air for refrigeration, and freezing use, etc.), and the load object is cooled down to near normal temperature, and then introduced into the refrigerant transport pump 6 again.

【0026】このように、本実施の形態における冷凍サ
イクル装置に冷却作用を行わせる場合には、負荷側熱交
換器8で負荷対象から吸熱した熱量を、第2補助熱交換
器7と第1補助熱交換器4との熱交換を介して、熱源側
熱交換器2で熱源へ排熱するのであるが、第2補助熱交
換器7内の負荷側冷媒流れと第1補助熱交換器4内の熱
源側冷媒流れとを対向流化させることにより、効率よく
熱交換が行われ、冷凍サイクル装置の効率が向上する。
As described above, when the refrigeration cycle apparatus according to the present embodiment performs a cooling operation, the amount of heat absorbed from the load target in the load side heat exchanger 8 is transferred to the second auxiliary heat exchanger 7 and the first Through the heat exchange with the auxiliary heat exchanger 4, the heat is exhausted to the heat source by the heat source side heat exchanger 2. The flow of the load side refrigerant in the second auxiliary heat exchanger 7 and the first auxiliary heat exchanger 4 By making the heat source side refrigerant flow in the counter flow, heat exchange is performed efficiently, and the efficiency of the refrigeration cycle device is improved.

【0027】また、負荷側熱交換器8は、負荷側冷媒流
れと負荷対象(例えば空調の場合は室内空気、冷蔵、冷
凍用途の場合は庫内空気など、図1中の斜線矢印は負荷
対象の流れを示す)の流れを対向流化させるように構成
されており、四方弁9の切り替えによって負荷側熱交換
器8内の負荷側冷媒の流れの方向は変わらないので、効
率よく熱交換が行われ、冷凍サイクル装置の効率が向上
するものである。
The load-side heat exchanger 8 is connected to the load-side refrigerant flow and the load object (eg, room air for air-conditioning, air inside the refrigerator for refrigeration, and refrigeration applications, etc.). The flow direction of the load-side refrigerant in the load-side heat exchanger 8 is not changed by switching the four-way valve 9, so that heat exchange can be performed efficiently. This is to improve the efficiency of the refrigeration cycle apparatus.

【0028】さらに、冷媒搬送ポンプ6を負荷側熱交換
器8の出口側に設けることにより、冷媒搬送ポンプ6を
流れる負荷側冷媒は第2補助熱交換器7出口〜負荷側熱
交換器8入口の間の負荷側冷媒よりも常温に近い状態と
なっているので、冷媒搬送ポンプ6の使用条件が厳しく
なく、特殊な材質や構成が不要となりコストアップを抑
えられる。
Further, by providing the refrigerant transfer pump 6 at the outlet side of the load-side heat exchanger 8, the load-side refrigerant flowing through the refrigerant transfer pump 6 is supplied from the second auxiliary heat exchanger 7 outlet to the load-side heat exchanger 8 inlet. Since the temperature of the refrigerant transfer pump 6 is closer to room temperature than that of the load side refrigerant, the use condition of the refrigerant transfer pump 6 is not strict, and a special material and configuration are not required, thereby suppressing an increase in cost.

【0029】一方、負荷側熱交換器8で加熱作用を行う
場合には、四方弁5、9をそれぞれ点線のように設定す
る。熱源側サイクルAにおいては、圧縮機1で圧縮され
た熱源側冷媒は高温高圧となり、四方弁5を経て第1補
助熱交換器4に導かれ、第2補助熱交換器7と熱交換を
行い、すなわち第2補助熱交換器7を流れる負荷側冷媒
へ放熱して凝縮液化して高圧の液冷媒となり、減圧器3
に導入されて、減圧されて低温低圧の2相冷媒となり熱
源側熱交換器2に導入される。熱源側熱交換器2で、外
気や河川などの熱源から吸熱して蒸発ガス化し四方弁5
を経て再び圧縮機1に吸入される。負荷側サイクルBに
おいては、冷媒搬送ポンプ6によって負荷側冷媒が四方
弁9を経て第2補助熱交換器7に導入される。第2補助
熱交換器7内では、第1補助熱交換器4内の熱源側冷媒
から放熱されることにより加熱されて高温となり、四方
弁9を経て負荷側熱交換器8に導入される。負荷側熱交
換器8では負荷対象(例えば空調の場合は室内空気、給
湯用途の場合は給湯水など)へ放熱(すなわち負荷対象
を加熱)して常温近くとなり、再び冷媒搬送ポンプ6に
導入される。
On the other hand, when the heating operation is performed by the load side heat exchanger 8, the four-way valves 5 and 9 are set as indicated by dotted lines. In the heat source side cycle A, the heat source side refrigerant compressed by the compressor 1 has a high temperature and a high pressure, is guided to the first auxiliary heat exchanger 4 through the four-way valve 5, and exchanges heat with the second auxiliary heat exchanger 7. That is, heat is released to the load-side refrigerant flowing through the second auxiliary heat exchanger 7 and condensed and liquefied to become a high-pressure liquid refrigerant.
And is reduced in pressure to become a low-temperature low-pressure two-phase refrigerant, and is introduced into the heat source side heat exchanger 2. The heat source side heat exchanger 2 absorbs heat from a heat source such as outside air or a river to evaporate and gasify it.
Is drawn into the compressor 1 again. In the load side cycle B, the load side refrigerant is introduced into the second auxiliary heat exchanger 7 via the four-way valve 9 by the refrigerant transfer pump 6. In the second auxiliary heat exchanger 7, it is heated to a high temperature by being radiated from the heat source side refrigerant in the first auxiliary heat exchanger 4, and is introduced into the load side heat exchanger 8 via the four-way valve 9. In the load side heat exchanger 8, heat is radiated (that is, heats the load target) to a load target (for example, indoor air in the case of air conditioning, hot water supply in the case of hot water supply), the temperature becomes close to normal temperature, and is introduced again into the refrigerant transport pump 6. You.

【0030】このように、本実施の形態における冷凍サ
イクル装置に加熱作用を行わせる場合には、熱源側熱交
換器2で熱源から吸熱した熱量を、第2補助熱交換器7
と第1補助熱交換器4との熱交換を介して、負荷側熱交
換器8で負荷対象を加熱するのであるが、第2補助熱交
換器7内の負荷側冷媒流れと第1補助熱交換器4内の熱
源側冷媒流れとを対向流化させることにより、効率よく
熱交換が行われ、冷凍サイクル装置の効率が向上する。
As described above, when the refrigeration cycle apparatus according to the present embodiment performs a heating operation, the amount of heat absorbed from the heat source in the heat source side heat exchanger 2 is converted into the second auxiliary heat exchanger 7.
The load target is heated by the load-side heat exchanger 8 through heat exchange between the first auxiliary heat exchanger 4 and the first auxiliary heat exchanger 4. The flow of the load-side refrigerant in the second auxiliary heat exchanger 7 and the first auxiliary heat By causing the flow of the heat source side refrigerant in the exchanger 4 to flow in the opposite direction, heat exchange is performed efficiently, and the efficiency of the refrigeration cycle apparatus is improved.

【0031】また、負荷側熱交換器8は、前述したよう
に、負荷側冷媒流れと負荷対象(例えば空調の場合は室
内空気、給湯用途の場合は給湯水など)の流れを対向流
化させるように構成されており、四方弁9の切り替えに
よって負荷側熱交換器8内の負荷側冷媒の流れの方向は
変わらないので、効率よく熱交換が行われ、冷凍サイク
ル装置の効率が向上するものである。
Further, as described above, the load-side heat exchanger 8 causes the flow of the load-side refrigerant and the flow of the load object (for example, room air in the case of air conditioning, hot water in the case of hot water supply) to be counter-flowed. Since the direction of the flow of the load-side refrigerant in the load-side heat exchanger 8 is not changed by switching the four-way valve 9, heat is efficiently exchanged and the efficiency of the refrigeration cycle device is improved. It is.

【0032】さらに、冷媒搬送ポンプ6を負荷側熱交換
器8の出口側に設けることにより、冷媒搬送ポンプ6を
流れる負荷側冷媒は第2補助熱交換器7出口〜負荷側熱
交換器8入口の間の負荷側冷媒よりも常温に近い状態と
なっているので、冷媒搬送ポンプ6の使用条件が厳しく
なく、特殊な材質や構成が不要となりコストアップを抑
えられる。
Further, by providing the refrigerant transfer pump 6 on the outlet side of the load side heat exchanger 8, the load side refrigerant flowing through the refrigerant transfer pump 6 is supplied from the second auxiliary heat exchanger 7 outlet to the load side heat exchanger 8 inlet. Since the temperature of the refrigerant transfer pump 6 is closer to room temperature than that of the load side refrigerant, the use condition of the refrigerant transfer pump 6 is not strict, and a special material and configuration are not required, thereby suppressing an increase in cost.

【0033】以上のように、図1に示すような本実施の
形態における冷凍サイクル装置においては、第1補助熱
交換器4内の熱源側冷媒流れと第2補助熱交換器7内の
負荷側冷媒流れとの対向流化と、負荷側熱交換器8内の
負荷側冷媒流れと負荷対象の流れとの対向流化が、冷却
作用時にも加熱作用時にも可能となり、冷凍サイクル装
置の効率向上が実現できるものである。さらに、冷却作
用時にも加熱作用時にも、冷媒搬送ポンプ6を流れる負
荷側冷媒は第2補助熱交換器7出口〜負荷側熱交換器8
入口の間の負荷側冷媒よりも常温に近い状態となってい
るので、冷媒搬送ポンプ6の使用条件が厳しくなく、特
殊な材質や構成が不要となりコストアップを抑えられる
ものである。
As described above, in the refrigeration cycle apparatus according to the present embodiment as shown in FIG. 1, the heat source side refrigerant flow in the first auxiliary heat exchanger 4 and the load side refrigerant in the second auxiliary heat exchanger 7 Counterflow with the refrigerant flow and counterflow between the load-side refrigerant flow in the load-side heat exchanger 8 and the flow of the load target can be performed both during the cooling operation and during the heating operation, thereby improving the efficiency of the refrigeration cycle device. Can be realized. Further, during both the cooling operation and the heating operation, the load-side refrigerant flowing through the refrigerant transfer pump 6 is discharged from the second auxiliary heat exchanger 7 to the load-side heat exchanger 8.
Since the temperature is closer to room temperature than the load-side refrigerant between the inlets, the use conditions of the refrigerant transport pump 6 are not strict, and a special material and configuration are not required, thereby suppressing an increase in cost.

【0034】また、第1補助熱交換器4と第2補助熱交
換器7を一体型のプレート式熱交換器あるいは積層熱交
換器とした場合には、熱源側サイクルAや負荷側サイク
ルBに封入される冷媒量を低減でき、第1補助熱交換器
4内の熱源側冷媒流れを冷却作用時には上昇流れ、加熱
作用時には下降流れとなるようにプレート式熱交換器あ
るいは積層熱交換器を設置し、第2補助熱交換器7内の
負荷側冷媒流れを冷却作用時には下降流れ、加熱作用時
には上昇流れとなるように対向流化させれば、第1補助
熱交換器4内で効率よく蒸発あるいは凝縮が行われ、さ
らに冷凍サイクル装置の効率が向上するものである。
When the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7 are integrated plate heat exchangers or stacked heat exchangers, the heat source side cycle A and the load side cycle B A plate-type heat exchanger or a stacked heat exchanger is installed so that the amount of refrigerant to be sealed can be reduced and the heat source side refrigerant flow in the first auxiliary heat exchanger 4 flows upward during the cooling operation and flows downward during the heating operation. If the load-side refrigerant flow in the second auxiliary heat exchanger 7 is made to flow counter-currently so as to flow downward during the cooling operation and to flow upward during the heating operation, the refrigerant efficiently evaporates in the first auxiliary heat exchanger 4. Alternatively, condensation is performed, and the efficiency of the refrigeration cycle device is further improved.

【0035】また、本実施の形態においては、第2補助
熱交換器7内の負荷側冷媒流れと第1補助熱交換器4内
の熱源側冷媒流れとを、熱交換が行われる経路上の全部
で対向流化するものとして説明したが、これに限るもの
でなく、例えば、第1補助熱交換器4および第2補助熱
交換器7で熱交換が行われる経路上の一部で互いに対向
する方向に流れるようにしてもよい。要するに、熱源側
サイクルの状態(例えば、第1補助熱交換器内の熱源側
冷媒の流れ方向)に応じて、第1補助熱交換器および第
2補助熱交換器での熱交換がより効率的に行われるよう
に、本発明の負荷側流路切り替え手段が、第2補助熱交
換器内の負荷側冷媒の流れ方向を選択して切り替えるも
のであればよい。負荷側熱交換器8で冷却作用を行う場
合には、第1補助熱交換器4は蒸発器として作用する
が、通常は第1補助熱交換器4出口では熱源側冷媒は過
熱ガスとなり、第1補助熱交換器4入口での熱源側冷媒
温度より高温となるので、上記説明のように、第1補助
熱交換器4入口での熱源側冷媒と第2補助熱交換器7で
の負荷側冷媒とを対向流化させるように負荷側流路切り
替え手段(四方弁9)を設定すればよい。しかし、例え
ば、熱源側冷媒の流量が非常に多い場合には、第1補助
熱交換器4内での圧力損失が大きくなり、すなわち、第
1補助熱交換器4内下流側ほど圧力損失による蒸発圧力
低下に伴う蒸発温度低下が大きくなり、第1補助熱交換
器4出口での熱源側冷媒の温度は、第1補助熱交換器4
入口での熱源側冷媒温度より低温となるので、第1補助
熱交換器4内での熱源側冷媒流れと第2補助熱交換器7
内での負荷側冷媒が並行流化するように負荷側流路切り
替え手段(四方弁9)を設定するほうが効率よく熱交換
が行える場合もあり得る。要するに、熱源側サイクルA
の状態(例えば、第1補助熱交換器4内での熱源側冷媒
の流れ方向や入口と出口での温度状態など)に応じて、
第1補助熱交換器4および第2補助熱交換器7での熱交
換がより効率的に行われるように、本発明の負荷側流路
切り替え手段(四方弁9)が、第2補助熱交換器7内の
負荷側冷媒の流れ方向を選択して切り替えるものであれ
ばよい。また、本実施の形態で説明したように、第2補
助熱交換器7内の負荷側冷媒流れと第1補助熱交換器4
内の熱源側冷媒流れとを対向流化するように、負荷側流
路切り替え手段(四方弁9)を設定することにより、通
常時の冷凍サイクル装置の効率向上とともに、新たに熱
源側冷媒の第1補助熱交換器4の入口と出口での温度状
態などを検出する手段を必要としないシンプルな冷凍サ
イクル装置が実現でき、すなわち、コストアップを抑え
て有効に効率向上を実現できる。
In this embodiment, the flow of the load-side refrigerant in the second auxiliary heat exchanger 7 and the flow of the heat-source-side refrigerant in the first auxiliary heat exchanger 4 are defined on a path through which heat is exchanged. Although the description has been made assuming that the flow is counter-flowed as a whole, the flow is not limited to this. It may be made to flow in the direction in which it does. In short, the heat exchange in the first auxiliary heat exchanger and the second auxiliary heat exchanger is more efficient depending on the state of the heat source side cycle (for example, the flow direction of the heat source side refrigerant in the first auxiliary heat exchanger). The load-side flow switching means of the present invention may be any one that selects and switches the flow direction of the load-side refrigerant in the second auxiliary heat exchanger. When the cooling operation is performed in the load side heat exchanger 8, the first auxiliary heat exchanger 4 acts as an evaporator, but the heat source side refrigerant usually becomes a superheated gas at the outlet of the first auxiliary heat exchanger 4, and Since the temperature becomes higher than the temperature of the heat source side refrigerant at the inlet of the first auxiliary heat exchanger 4, the heat source side refrigerant at the inlet of the first auxiliary heat exchanger 4 and the load side of the second auxiliary heat exchanger 7 as described above. What is necessary is just to set the load side flow path switching means (four-way valve 9) so that the refrigerant and the refrigerant are caused to flow in opposite directions. However, for example, when the flow rate of the heat-source-side refrigerant is very large, the pressure loss in the first auxiliary heat exchanger 4 becomes large, that is, the vaporization due to the pressure loss becomes more downstream in the first auxiliary heat exchanger 4. The temperature of the heat-source-side refrigerant at the outlet of the first auxiliary heat exchanger 4 is reduced by the first auxiliary heat exchanger 4.
Since the temperature is lower than the heat source side refrigerant temperature at the inlet, the heat source side refrigerant flow in the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7
In some cases, the heat exchange can be performed more efficiently by setting the load-side flow path switching means (four-way valve 9) so that the load-side refrigerant in the inside flows in parallel. In short, cycle A on the heat source side
(For example, the flow direction of the heat-source-side refrigerant in the first auxiliary heat exchanger 4, the temperature at the inlet and the outlet, etc.)
In order that the heat exchange in the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7 is performed more efficiently, the load-side flow path switching means (four-way valve 9) of the present invention is provided with the second auxiliary heat exchanger. What is necessary is just to select and switch the flow direction of the load-side refrigerant in the vessel 7. Further, as described in the present embodiment, the flow of the load-side refrigerant in the second auxiliary heat exchanger 7 and the flow of the first auxiliary heat exchanger 4
By setting the load-side flow switching means (four-way valve 9) so as to make the heat source-side refrigerant flow in the inside counter-flow, the efficiency of the refrigeration cycle device during normal operation is improved and the heat source-side refrigerant is newly added. (1) A simple refrigeration cycle apparatus that does not require a means for detecting a temperature state at the inlet and the outlet of the auxiliary heat exchanger 4 can be realized, that is, efficiency can be effectively improved while suppressing cost increase.

【0036】なお、冷媒搬送ポンプ6を設ける場所とし
て負荷側熱交換器8の出口側としたが、負荷側熱交換器
8の出口側近傍に制限するものではなく、負荷側熱交換
器8〜四方弁9の間であれば上述したのと同様な効果が
得られる。
The location where the refrigerant transfer pump 6 is provided is on the outlet side of the load-side heat exchanger 8, but is not limited to the vicinity of the outlet side of the load-side heat exchanger 8, and is not limited thereto. The same effect as described above can be obtained between the four-way valves 9.

【0037】(第2の実施の形態)次に、本発明の第2
の実施の形態を図面を参照して説明する。本実施の形態
において、特に説明のないものについては、第1の実施
の形態と同じとし、第1の実施の形態と同一符号を付与
している構成部材については、特に説明のない限り、第
1の実施の形態と同様の機能を持つものとする。
(Second Embodiment) Next, a second embodiment of the present invention will be described.
An embodiment will be described with reference to the drawings. In the present embodiment, components that are not particularly described are the same as those in the first embodiment, and components that are assigned the same reference numerals as those in the first embodiment are the same as those in the first embodiment unless otherwise described. It has the same function as that of the first embodiment.

【0038】図2は、本発明の第2の実施の形態におけ
る冷凍サイクル装置を示すの概略構成図である。図2で
示した冷凍サイクル装置は、負荷側熱交換器8で冷却作
用(吸熱作用)を行う構成であり、図中の実線矢印は冷
媒流れ、波線矢印は信号の流れを示している。なお、本
実施の形態における冷凍サイクル装置は、図2で示した
冷凍サイクル装置において、圧縮機1を逆に付け替えて
熱源側サイクルA内の熱源側冷媒の流れを逆方向にする
ことによって、負荷側熱交換器8で加熱作用(放熱作
用)を行う構成(図示省略)とすることができ、図1の
ように四方弁を挿入することによって、冷却作用/加熱
作用を切り替えることができる構成(図示省略)とする
ことができる。したがって、以下の説明においては、図
2の構成に対応する負荷側熱交換器8で冷却作用を行う
場合に加え、負荷側熱交換器8で加熱作用を行う場合に
ついても合わせて説明をする。なお、負荷側熱交換器8
で加熱作用を行う場合には、第1の実施の形態で説明し
たように、第2補助熱交換器7内の負荷側冷媒の流れ方
向を切り替えてやれば、より効率の高い冷凍サイクル装
置となる。
FIG. 2 is a schematic configuration diagram showing a refrigeration cycle apparatus according to a second embodiment of the present invention. The refrigeration cycle apparatus shown in FIG. 2 is configured to perform a cooling operation (endothermic operation) in the load-side heat exchanger 8, and a solid arrow in the drawing indicates a refrigerant flow, and a wavy arrow indicates a signal flow. The refrigeration cycle apparatus according to the present embodiment is different from the refrigeration cycle apparatus shown in FIG. 2 in that the flow of the heat-source-side refrigerant in the heat-source-side cycle A is reversed by replacing the compressor 1 with the load. A configuration (not shown) in which a heating action (radiation action) is performed by the side heat exchanger 8, and a cooling action / heating action can be switched by inserting a four-way valve as shown in FIG. 1 ( (Not shown). Therefore, in the following description, the case where the heating operation is performed by the load side heat exchanger 8 in addition to the case where the cooling operation is performed by the load side heat exchanger 8 corresponding to the configuration of FIG. 2 will be described. The load side heat exchanger 8
In the case where the heating action is performed, as described in the first embodiment, by switching the flow direction of the load-side refrigerant in the second auxiliary heat exchanger 7, a more efficient refrigeration cycle apparatus can be obtained. Become.

【0039】図2において、10は負荷側熱交換器8で
の負荷状態(例えば、冷凍サイクル装置が空調用に用い
られている場合には室温)を検出する負荷検出器(本発
明の負荷状態量検出手段に対応)、11は第1補助熱交
換器4の圧力を検出する圧力検出器(本発明の冷媒状態
量検出手段に対応)、12は負荷検出器10で検出され
る負荷状態が目標負荷状態(例えば設定温度)に一致す
るように圧縮機1の運転能力を決定する第1圧縮機制御
器、13は圧力検出器11で検出される圧力が目標圧力
に一致するように圧縮機1の運転能力を決定する第2圧
縮機制御器、14は圧力検出器11で検出される圧力に
応じて第1圧縮機制御器12で決定される圧縮機運転能
力と第2圧縮機制御器13で決定される圧縮機運転能力
の優先度を決定して圧縮機運転能力を制御する第3圧縮
機制御器である。なお、第1圧縮機制御器12、第2圧
縮機制御器13および第3圧縮機制御器14を合わせた
ものが、本発明の制御手段に対応する。
In FIG. 2, reference numeral 10 denotes a load detector (for example, a room temperature when the refrigeration cycle apparatus is used for air conditioning) at the load side heat exchanger 8 (the load state according to the present invention). 11 is a pressure detector (corresponding to the refrigerant state quantity detecting means of the present invention) for detecting the pressure of the first auxiliary heat exchanger 4, and 12 is a load state detected by the load detector 10. The first compressor controller 13 that determines the operating capacity of the compressor 1 so as to match the target load state (for example, the set temperature), the compressor controller 13 controls the compressor so that the pressure detected by the pressure detector 11 matches the target pressure. The second compressor controller 14 determines the operating capacity of the first compressor 14. The second compressor controller 14 determines the compressor operating capacity determined by the first compressor controller 12 according to the pressure detected by the pressure detector 11. 13 to determine the priority of the compressor operating capacity A third compressor controller for controlling the compressor operating capacity. The combination of the first compressor controller 12, the second compressor controller 13, and the third compressor controller 14 corresponds to the control means of the present invention.

【0040】また、15は第1補助熱交換器4出口での
過熱度を検出する過熱度/過冷却度検出器(本発明の冷
媒状態量検出手段に対応)である。16は負荷検出器1
0で検出される負荷状態が目標負荷状態に一致するよう
に減圧器3での減圧量を決定する第1減圧器制御器、1
7は過熱度/過冷却度検出器15で検出される過熱度あ
るいは過冷却度が目標過熱度に一致するように減圧器3
での減圧量を決定する第2減圧器制御器、18は過熱度
/過冷却度検出器15で検出される過熱度あるいは過冷
却度に応じて第1減圧器制御器16で決定される減圧器
減圧量と第2減圧器制御器17で決定される減圧器減圧
量の優先度を決定して減圧器3での減圧量を制御する第
3減圧器制御器である。なお、第1減圧器制御器16、
第2減圧器制御器17および第3減圧器制御器18を合
わせたものが、本発明の制御手段に対応する。
Reference numeral 15 denotes a superheat / supercool degree detector (corresponding to the refrigerant state quantity detection means of the present invention) for detecting the degree of superheat at the outlet of the first auxiliary heat exchanger 4. 16 is the load detector 1
The first pressure reducer controller that determines the amount of pressure reduction in the pressure reducer 3 so that the load state detected at 0 matches the target load state, 1
Reference numeral 7 denotes a depressurizer 3 so that the degree of superheat or the degree of supercooling detected by the degree of superheat / degree of supercooling detector 15 matches the target degree of superheat.
A second decompressor controller 18 for determining the amount of decompression at the pressure reducing device 18 is a decompression determined by the first decompressor controller 16 according to the degree of superheat or the degree of supercooling detected by the superheat / supercool degree detector 15. The third pressure reducer controller controls the pressure reduction amount in the pressure reducer 3 by determining the priority of the pressure reduction amount of the pressure reducer and the pressure reduction amount determined by the second pressure reducer controller 17. In addition, the first decompressor controller 16,
The combination of the second pressure reducer controller 17 and the third pressure reducer controller 18 corresponds to the control means of the present invention.

【0041】なお、過熱度/過冷却度検出器15は、図
2に示すように負荷側熱交換器8で冷却作用を行う場合
には、第1補助熱交換器4が蒸発器として作用するので
過熱度を検出するが、負荷側熱交換器8で加熱作用を行
う場合には、第1補助熱交換器4が凝縮器として作用す
るので過冷却度を検出する。
When the superheat / supercool detector 15 performs the cooling operation in the load side heat exchanger 8 as shown in FIG. 2, the first auxiliary heat exchanger 4 functions as an evaporator. Therefore, when the heating operation is performed in the load-side heat exchanger 8, the first auxiliary heat exchanger 4 acts as a condenser, so that the supercooling degree is detected.

【0042】また、19は第2補助熱交換器7の入口側
での温度を検出する第2補助熱交換器入口側温度検出
器、20は第2補助熱交換器7の出口側での温度を検出
する第2補助熱交換器出口側温度検出器、21は第2補
助熱交換器入口側温度検出器19と第2補助熱交換器出
口側温度検出器20とでそれぞれ検出された温度の差
(以下では単に温度差という)を演算する第2補助熱交
換器温度差演算器、22は負荷検出器10で検出される
負荷状態が目標負荷状態に一致するように冷媒搬送ポン
プ6での冷媒搬送量を決定する第1冷媒搬送ポンプ制御
器、23は第2補助熱交換器温度差演算器21で演算さ
れる温度差が目標温度差に一致するように冷媒搬送ポン
プ6での冷媒搬送量を決定する第2冷媒搬送ポンプ制御
器、24は第2補助熱交換器温度差演算器21で演算さ
れる温度差に応じて第1冷媒搬送ポンプ制御器22で決
定される冷媒搬送量と第2冷媒搬送ポンプ制御器23で
決定される冷媒搬送量の優先度を決定して冷媒搬送ポン
プ6での冷媒搬送量を制御する第3冷媒搬送ポンプ制御
器である。なお、第2補助熱交換器入口側温度検出器1
9、第2補助熱交換器出口側温度検出器20および第2
補助熱交換器温度差演算器21を合わせたものが、本発
明の冷媒状態量検出手段に対応し、第1冷媒搬送ポンプ
制御器22、第2冷媒搬送ポンプ制御器23および第3
冷媒搬送ポンプ制御器24を合わせたものが、本発明の
制御手段に対応する。
Reference numeral 19 denotes a second auxiliary heat exchanger inlet side temperature detector for detecting the temperature at the inlet side of the second auxiliary heat exchanger 7, and reference numeral 20 denotes a temperature at the outlet side of the second auxiliary heat exchanger 7. The second auxiliary heat exchanger outlet side temperature detector 21 detects the temperature detected by the second auxiliary heat exchanger inlet side temperature detector 19 and the second auxiliary heat exchanger outlet side temperature detector 20, respectively. A second auxiliary heat exchanger temperature difference calculator 22 for calculating a difference (hereinafter simply referred to as a temperature difference) 22 is provided at the refrigerant transfer pump 6 so that the load state detected by the load detector 10 matches the target load state. The first refrigerant transfer pump controller 23 for determining the refrigerant transfer amount is configured to transfer the refrigerant by the refrigerant transfer pump 6 such that the temperature difference calculated by the second auxiliary heat exchanger temperature difference calculator 21 matches the target temperature difference. The second refrigerant transfer pump controller for determining the amount, 24 is the second auxiliary heat The priority of the refrigerant transfer amount determined by the first refrigerant transfer pump controller 22 and the refrigerant transfer amount determined by the second refrigerant transfer pump controller 23 according to the temperature difference calculated by the exchanger temperature difference calculator 21 Is a third refrigerant transport pump controller that controls the amount of refrigerant transported by the refrigerant transport pump 6 by determining The second auxiliary heat exchanger inlet side temperature detector 1
9, the second auxiliary heat exchanger outlet side temperature detector 20 and the second auxiliary heat exchanger
The combination of the auxiliary heat exchanger temperature difference calculator 21 corresponds to the refrigerant state quantity detecting means of the present invention, and the first refrigerant transport pump controller 22, the second refrigerant transport pump controller 23, and the third
The combination of the refrigerant transport pump controller 24 corresponds to the control means of the present invention.

【0043】図3は、本実施の形態における制御手段
(第3圧縮機制御器14)が行う制御の手順を示すフロ
ーチャートである。まず圧力検出器11で検出された圧
力と第1圧力閾値(例えば圧縮機1の許容使用範囲上限
をもとに設定)との比較を行い(ステップ101)、圧
力が第1圧力閾値よりも大きい場合には圧力メンバシッ
プ値を0に設定し(ステップ102)、圧力が第1圧力
閾値より小さい場合には第1圧力閾値より小さい第2圧
力閾値(例えば圧縮機1の常用使用範囲上限をもとに設
定)と圧力検出器11で検出された圧力との比較を行い
(ステップ103)、圧力が第2圧力閾値よりも大きい
場合には圧力に応じて0から1までの範囲で単調で連続
した変化をする関数f1に圧力を代入して圧力メンバシ
ップ値を設定し(ステップ104)、圧力が第2圧力閾
値より小さい場合には第2圧力閾値より小さい第3圧力
閾値(例えば圧縮機1の常用使用範囲下限をもとに設
定)と圧力検出器11で検出された圧力との比較を行い
(ステップ105)、圧力が第3圧力閾値よりも大きい
場合には圧力メンバシップ値を1に設定し(ステップ1
06)、圧力が第3圧力閾値より小さい場合には第3圧
力閾値より小さい第4圧力閾値(例えば圧縮機1の許容
使用範囲下限をもとに設定)と圧力検出器11で検出さ
れた圧力との比較を行い(ステップ107)、圧力が第
4圧力閾値よりも大きい場合には圧力に応じて1から0
までの範囲で単調で連続した変化をする関数f2に圧力
を代入して圧力メンバシップ値を設定し(ステップ10
8)、圧力が第4圧力閾値より小さい場合には圧力メン
バシップ値を0に設定する(ステップ102)。それか
ら、第1圧縮機制御器12による運転能力と圧力メンバ
シップ値との積量と、第2圧力制御器13による運転能
力と1から圧力メンバシップ値を減じた値との積量の和
として圧縮機運転能力を決定して圧縮機1を制御する
(ステップ109)もので一定時間間隔で実行される。
FIG. 3 is a flowchart showing a control procedure performed by the control means (third compressor controller 14) in the present embodiment. First, the pressure detected by the pressure detector 11 is compared with a first pressure threshold (for example, set based on the upper limit of the allowable use range of the compressor 1) (Step 101), and the pressure is larger than the first pressure threshold. In this case, the pressure membership value is set to 0 (step 102), and when the pressure is smaller than the first pressure threshold, a second pressure threshold smaller than the first pressure threshold (for example, the upper limit of the normal use range of the compressor 1 is also set). (Step 103) and the pressure detected by the pressure detector 11 are compared (Step 103). If the pressure is larger than the second pressure threshold, the pressure is monotonously continuous in a range from 0 to 1 according to the pressure. The pressure is substituted into the function f1 which makes the change, and a pressure membership value is set (step 104). If the pressure is smaller than the second pressure threshold, a third pressure threshold smaller than the second pressure threshold (for example, the compressor 1) Common use range of (Set based on the pressure limit) and the pressure detected by the pressure detector 11 (step 105). If the pressure is larger than the third pressure threshold, the pressure membership value is set to 1 (step 105). 1
06) When the pressure is smaller than the third pressure threshold, the fourth pressure threshold smaller than the third pressure threshold (for example, set based on the lower limit of the allowable use range of the compressor 1) and the pressure detected by the pressure detector 11 (Step 107), and when the pressure is larger than the fourth pressure threshold, 1 to 0 depending on the pressure.
The pressure is substituted into the function f2 which changes monotonously and continuously in the range up to and a pressure membership value is set (step 10).
8) If the pressure is smaller than the fourth pressure threshold, the pressure membership value is set to 0 (step 102). Then, the sum of the product of the operating capacity of the first compressor controller 12 and the pressure membership value and the product of the operating capacity of the second pressure controller 13 and the value obtained by subtracting the pressure membership value from 1 The compressor operation capacity is determined to control the compressor 1 (step 109), which is executed at regular time intervals.

【0044】すなわち、第4圧力閾値〜第1圧力閾値の
範囲は、本発明の第1の範囲に対応するものであり、第
3圧力閾値〜第2圧力閾値の範囲は、本発明の第2の範
囲に対応するものである。
That is, the range of the fourth pressure threshold to the first pressure threshold corresponds to the first range of the present invention, and the range of the third pressure threshold to the second pressure threshold corresponds to the second range of the present invention. It corresponds to the range.

【0045】負荷側熱交換器8で冷却作用を行わせる場
合、圧力検出器11で検出される圧力(蒸発圧力≒吸入
圧力に相当)がステップ101で第1圧力閾値より大き
いと判断されたとき、あるいはステップ107で第4圧
力閾値より小さいと判断されたときには、圧力は圧縮機
1の許容使用範囲をはずれており圧縮機1の信頼性を著
しく損なう状態、あるいは効率が非常に低い状態である
ことから、ステップ109では第2圧縮機制御器13に
よる運転能力を最優先にして、圧力検出器11で検出さ
れる圧力がステップ101で第1圧力閾値より大きいと
判断されたときには圧縮機1の運転能力を増加させ圧力
を低下させ、あるいはステップ107で第4圧力閾値よ
り小さいと判断されたときには圧縮機1の運転能力を減
少させて圧力を上昇させ、圧力を圧縮機1の許容使用範
囲内に収めて圧縮機1の信頼性を確保し、あるいは効率
の非常に低い運転状態を改善する。
When the cooling operation is performed by the load side heat exchanger 8, when the pressure detected by the pressure detector 11 (evaporation pressure / suction pressure) is determined to be larger than the first pressure threshold value in step 101, Alternatively, when it is determined in step 107 that the pressure is smaller than the fourth pressure threshold, the pressure is out of the allowable use range of the compressor 1 and the reliability of the compressor 1 is significantly impaired, or the efficiency is extremely low. Accordingly, in step 109, the operation capability of the second compressor controller 13 is given top priority, and when it is determined in step 101 that the pressure detected by the pressure detector 11 is larger than the first pressure threshold, the compressor 1 The operating capacity is increased to reduce the pressure, or if it is determined in step 107 that the pressure is smaller than the fourth pressure threshold, the operating capacity of the compressor 1 is reduced to increase the pressure. It is allowed to ensure the reliability of the compressor 1 kept within allowable operating range of the compressor 1 the pressure, or to improve the very low operating state of efficiency.

【0046】また圧力検出器11で検出される圧力(蒸
発圧力≒吸入圧力に相当)がステップ103で第2圧力
閾値より小さいと判断され、かつステップ105で第3
圧力閾値より大きいと判断されたときには、圧力は圧縮
機1の常用使用範囲内であり圧縮機1の信頼性には問題
ない状態、あるいは効率が高い状態であることから、ス
テップ109では第1圧縮機制御器による運転能力を最
優先にして、負荷検出器10で検出される負荷状態(例
えば室温)が目標負荷状態(例えば設定温度)よりも高
いときには第1圧縮機制御器12により圧縮機1の運転
能力を増加方向に決定する。この結果、第1補助熱交換
器4内を流れる熱源側冷媒流量が増加し、第1補助熱交
換器4による第2補助熱交換器7への冷却量が増加し、
負荷側熱交換器8での負荷冷却量が増加し、負荷状態
(例えば室温)を目標負荷状態(例えば設定温度)に一
致させることができる。あるいは負荷検出器10で検出
された負荷状態(例えば室温)が目標負荷状態(例えば
設定温度)よりも低いときには、第1圧縮機制御器12
により圧縮機1の運転能力を減少方向に決定する。この
結果、第1補助熱交換器4内を流れる熱源側冷媒流量が
減少し、第1補助熱交換器4による第2補助熱交換器7
への冷却量が減少し、負荷側熱交換器8での負荷冷却量
が減少し、負荷状態(例えば室温)を目標負荷状態(例
えば設定温度)に一致させることができる。
The pressure detected by the pressure detector 11 (evaporation pressure / suction pressure) is determined to be smaller than the second pressure threshold value in step 103, and the third pressure value is determined in step 105.
When it is determined that the pressure is larger than the pressure threshold, the pressure is within the normal use range of the compressor 1 and there is no problem in the reliability of the compressor 1 or the efficiency is high. When the load state (for example, room temperature) detected by the load detector 10 is higher than the target load state (for example, set temperature), the first compressor controller 12 gives the compressor 1 Is determined in the increasing direction. As a result, the heat source-side refrigerant flow rate flowing in the first auxiliary heat exchanger 4 increases, and the amount of cooling by the first auxiliary heat exchanger 4 to the second auxiliary heat exchanger 7 increases,
The load cooling amount in the load side heat exchanger 8 increases, and the load state (for example, room temperature) can be made to match the target load state (for example, set temperature). Alternatively, when the load state (for example, room temperature) detected by the load detector 10 is lower than the target load state (for example, set temperature), the first compressor controller 12
Thus, the operating capacity of the compressor 1 is determined in the decreasing direction. As a result, the flow rate of the heat source side refrigerant flowing in the first auxiliary heat exchanger 4 decreases, and the second auxiliary heat exchanger 7
The amount of cooling to the load side decreases, the amount of load cooling in the load side heat exchanger 8 decreases, and the load state (for example, room temperature) can be matched with the target load state (for example, set temperature).

【0047】また圧力検出器11で検出される圧力(蒸
発圧力≒吸入圧力に相当)がステップ103で第2圧力
閾値より大きいと判断され、あるいはステップ107で
第4圧力閾値より大きいと判断されたときには、圧力は
圧縮機1の許容使用範囲内ではあるが常用使用範囲外で
あり圧縮機1の信頼性の面からはあまり好ましくない状
態、あるいは効率がやや低い状態であることから、ステ
ップ109では第1圧縮機制御器12による圧縮機1の
運転能力と第2圧縮機制御器13による圧縮機1の運転
能力とを混合して圧縮機1を制御することから、圧力を
圧縮機1の常用使用範囲内に収めつつ、あるいは効率が
高い状態へ移行させつつ、負荷状態(例えば室温)を目
標負荷状態(例えば設定温度)に一致させることができ
る。
The pressure detected by the pressure detector 11 (evaporation pressure / suction pressure) is determined in step 103 to be larger than the second pressure threshold, or in step 107 to be larger than the fourth pressure threshold. In some cases, the pressure is within the allowable use range of the compressor 1 but outside the normal use range, and is in a state that is not very preferable from the viewpoint of the reliability of the compressor 1 or a state in which the efficiency is slightly low. Since the operating capacity of the compressor 1 by the first compressor controller 12 and the operating capacity of the compressor 1 by the second compressor controller 13 are mixed to control the compressor 1, the pressure is used in the normal operation of the compressor 1. The load state (for example, room temperature) can be made to match the target load state (for example, set temperature) while keeping within the use range or shifting to a state of high efficiency.

【0048】以上のように、第1圧縮機制御器12、第
2圧縮機制御器13、第3圧縮機制御器14によって、
効率の高い状態を維持しながら負荷状態を目標負荷状態
に一致させることができるものである。
As described above, the first compressor controller 12, the second compressor controller 13, and the third compressor controller 14
The load state can be made to coincide with the target load state while maintaining a high efficiency state.

【0049】また、負荷側熱交換器8で加熱作用を行わ
せる場合にも、圧力検出器11で検出される圧力(凝縮
圧力≒吐出圧力に相当)をもとにして同様に、第1圧縮
機制御器12、第2圧縮機制御器13、第3圧縮機制御
器14によって、効率の高い状態を維持しながら負荷状
態を目標負荷状態に一致させることができるものであ
る。
Also, when the heating operation is performed by the load side heat exchanger 8, the first compression is similarly performed based on the pressure detected by the pressure detector 11 (corresponding to the condensing pressure / the discharge pressure). The load state can be matched with the target load state while maintaining a high efficiency state by the machine controller 12, the second compressor controller 13, and the third compressor controller 14.

【0050】なお、圧力検出器11は、第1補助熱交換
器4の圧力を検出するものとして説明したが、これにこ
だわるものではなく、冷却作用時には減圧器3から圧縮
機1の吸入側までの間の経路での圧力、加熱作用時には
圧縮機1の吐出側から減圧器3までの間の経路での圧力
を検出すれば、上述した効果が得られる。
The pressure detector 11 has been described as detecting the pressure of the first auxiliary heat exchanger 4. However, the pressure detector 11 is not limited to this, and the pressure detector 11 extends from the pressure reducer 3 to the suction side of the compressor 1 during the cooling operation. The above-mentioned effects can be obtained by detecting the pressure in the path between the compressor 1 and the pressure in the path from the discharge side of the compressor 1 to the pressure reducer 3 during the heating operation.

【0051】図4は、本実施の形態における制御手段
(第3減圧器制御器18)が行う、負荷側熱交換器8で
冷却作用を行わせる場合での、制御の手順を示すフロー
チャートである。まず過熱度/過冷却度検出器15で検
出された過熱度と第1過熱度閾値との比較を行い(ステ
ップ201)、過熱度が第1過熱度閾値よりも大きい場
合には過熱度メンバシップ値を0に設定し(ステップ2
02)、過熱度が第1過熱度閾値より小さい場合にはと
第1過熱度閾値より小さい第2過熱度閾値と過熱度/過
冷却度検出器15で検出された過熱度の比較を行い(ス
テップ203)、過熱度が第2過熱度閾値よりも大きい
場合には過熱度に応じて0から1までの範囲で単調で連
続した変化をする関数f1に過熱度を代入して過熱度メ
ンバシップ値を設定し(ステップ204)、過熱度が第
2過熱度閾値より小さい場合には第2過熱度閾値より小
さい第3過熱度閾値と過熱度/過冷却度検出器15で検
出された過熱度との比較を行い(ステップ205)、過
熱度が第3過熱度閾値よりも大きい場合には過熱度メン
バシップ値を1に設定し(ステップ206)、過熱度が
第3過熱度閾値より小さい場合には第3過熱度閾値より
小さい第4過熱度閾値と過熱度/過冷却度検出器15で
検出された過熱度との比較を行い(ステップ207)、
過熱度が第4過熱度閾値よりも大きい場合には過熱度に
応じて1から0までの範囲で単調で連続した変化をする
関数f2に過熱度を代入して過熱度メンバシップ値を設
定し(ステップ208)、過熱度が第4過熱度閾値より
小さい場合には過熱度メンバシップ値を0に設定する
(ステップ202)。それから、第1減圧器制御器16
による減圧器減圧量と過熱度メンバシップ値との積量
と、第2減圧器制御器17による減圧器減圧量と1から
過熱度メンバシップ値を減じた値との積量の和として減
圧器減圧量を決定して減圧器3を制御する(ステップ2
09)もので一定時間間隔で実行される。
FIG. 4 is a flowchart showing a control procedure performed by the control means (third decompressor controller 18) in the present embodiment when the cooling operation is performed in the load side heat exchanger 8. . First, the superheat degree detected by the superheat / supercool degree detector 15 is compared with the first superheat threshold value (step 201). When the superheat degree is larger than the first superheat threshold value, the superheat degree membership is determined. Set the value to 0 (Step 2
02), when the superheat degree is smaller than the first superheat degree threshold value, the second superheat degree threshold value smaller than the first superheat degree threshold value is compared with the superheat degree detected by the superheat / supercool degree detector 15 ( Step 203) If the superheat degree is larger than the second superheat degree threshold value, the superheat degree is substituted into a function f1 that changes monotonously and continuously in a range from 0 to 1 in accordance with the superheat degree, and the superheat degree membership. If the superheat degree is smaller than the second superheat degree threshold, a third superheat degree threshold smaller than the second superheat degree threshold and the superheat degree detected by the superheat / supercool degree detector 15 are set (step 204). (Step 205), and if the superheat is larger than the third superheat threshold, the superheat membership value is set to 1 (Step 206), and if the superheat is smaller than the third superheat threshold. Has a fourth superheat degree smaller than the third superheat threshold Makes a comparison between the value and the degree of superheating / subcooling detector 15 detected degree of superheat in (step 207),
When the superheat degree is larger than the fourth superheat degree threshold value, the superheat degree is substituted into a function f2 that changes monotonously and continuously in a range from 1 to 0 according to the superheat degree, and a superheat degree membership value is set. (Step 208) If the superheat is smaller than the fourth superheat threshold, the superheat membership value is set to 0 (Step 202). Then, the first decompressor controller 16
As the sum of the product of the decompressor depressurization amount and the superheat degree membership value by the pressure reducer and the value obtained by subtracting the superheat degree membership value from 1 by the depressurizer depressurization amount by the second depressurizer controller 17. The amount of pressure reduction is determined and the pressure reducer 3 is controlled (step 2).
09) is executed at regular time intervals.

【0052】すなわち、第4過熱度閾値〜第1過熱度閾
値の範囲は、本発明の第1の範囲に対応するものであ
り、第3過熱度閾値〜第2過熱度閾値の範囲は、本発明
の第2の範囲に対応するものである。
In other words, the range from the fourth superheat threshold to the first superheat threshold corresponds to the first range of the present invention, and the range from the third superheat threshold to the second superheat threshold is This corresponds to the second range of the invention.

【0053】負荷側熱交換器8で冷却作用を行わせる場
合、過熱度/過冷却度検出器15で検出される過熱度
(蒸発器出口過熱度≒圧縮機吸入過熱度に相当)がステ
ップ201で第1過熱度閾値より大きいと判断されたと
き、あるいはステップ207で第4過熱度閾値より小さ
いと判断されたときには、第1補助熱交換器での熱交換
の効率が非常に低い状態であることから、ステップ20
9では第2減圧器制御器17による減圧量を最優先にす
る。すなわち、過熱度/過冷却度検出器15で検出され
る過熱度がステップ201で第1過熱度閾値より大きい
と判断されたときには減圧器3の減圧量を減少させ過熱
度を低下させ、あるいはステップ207で第4過熱度閾
値より小さいと判断されたときには減圧器3の減圧量を
増加させて過熱度を上昇させ、第1補助熱交換器4での
熱交換の効率の非常に低い状態を改善する。
When the cooling operation is performed in the load side heat exchanger 8, the superheat degree detected by the superheat / supercool degree detector 15 (evaporator outlet superheat degree / compressor suction superheat degree) is determined in step 201. When it is determined that is smaller than the first superheat threshold in step 207, or when it is determined that it is smaller than the fourth superheat threshold in step 207, the efficiency of heat exchange in the first auxiliary heat exchanger is very low. Therefore, step 20
In step 9, the pressure reduction amount by the second pressure reducer controller 17 is given the highest priority. That is, when it is determined in step 201 that the degree of superheat detected by the degree of superheat / supercool degree detector 15 is larger than the first superheat degree threshold, the pressure reduction amount of the pressure reducer 3 is reduced to reduce the degree of superheat, or When it is determined in 207 that it is smaller than the fourth superheat degree threshold, the degree of pressure reduction of the pressure reducer 3 is increased to increase the degree of superheat, thereby improving the state in which the efficiency of heat exchange in the first auxiliary heat exchanger 4 is extremely low. I do.

【0054】また過熱度/過冷却度検出器15で検出さ
れる過熱度(蒸発器出口過熱度≒圧縮機吸入過熱度に相
当)がステップ203で第2過熱度閾値より小さいと判
断され、かつステップ205で第3過熱度閾値より大き
いと判断されたときには、第1補助熱交換器4での熱交
換の効率が高い状態であることから、ステップ209で
は第1減圧器制御器による減圧量を最優先にして、負荷
検出器10で検出される負荷状態(例えば室温)が目標
負荷状態(例えば設定温度)よりも高いときには第1減
圧器制御器16により減圧器3の減圧量を増加方向に決
定する。この結果、第1補助熱交換器4内を流れる熱源
側冷媒流量が増加し、第1補助熱交換器4による第2補
助熱交換器7への冷却量が増加し、負荷側熱交換器8で
の負荷冷却量が増加し、負荷状態(例えば室温)を目標
負荷状態(例えば設定温度)に一致させることができ
る。あるいは負荷検出器10で検出された負荷状態(例
えば室温)が目標負荷状態(例えば設定温度)よりも低
いときには、第1減圧器制御器16により減圧器3の減
圧量を減少方向に決定する。この結果、第1補助熱交換
器4内を流れる熱源側冷媒流量が減少し、第1補助熱交
換器4による第2補助熱交換器7への冷却量が減少し、
負荷側熱交換器8での負荷冷却量が減少し、負荷状態
(例えば室温)を目標負荷状態(例えば設定温度)に一
致させることができる。
Also, it is determined in step 203 that the superheat degree detected by the superheat / supercool detector 15 (evaporator exit superheat degree / compressor suction superheat degree) is smaller than the second superheat degree threshold value, and When it is determined in step 205 that it is larger than the third superheat degree threshold value, the efficiency of heat exchange in the first auxiliary heat exchanger 4 is high, and in step 209, the amount of pressure reduction by the first pressure reducer controller is reduced. First, when the load state (for example, room temperature) detected by the load detector 10 is higher than the target load state (for example, set temperature), the first pressure reducer controller 16 increases the pressure reduction amount of the pressure reducer 3 in the increasing direction. decide. As a result, the flow rate of the heat source-side refrigerant flowing in the first auxiliary heat exchanger 4 increases, the amount of cooling by the first auxiliary heat exchanger 4 to the second auxiliary heat exchanger 7 increases, and the load-side heat exchanger 8 , The load state (for example, room temperature) can be matched with the target load state (for example, set temperature). Alternatively, when the load state (for example, room temperature) detected by the load detector 10 is lower than the target load state (for example, set temperature), the first pressure reducer controller 16 determines the amount of pressure reduction of the pressure reducer 3 in a decreasing direction. As a result, the heat source-side refrigerant flow rate flowing in the first auxiliary heat exchanger 4 decreases, and the amount of cooling by the first auxiliary heat exchanger 4 to the second auxiliary heat exchanger 7 decreases,
The load cooling amount in the load-side heat exchanger 8 is reduced, and the load state (for example, room temperature) can be made to match the target load state (for example, set temperature).

【0055】また過熱度/過冷却度検出器15で検出さ
れる過熱度(蒸発器出口過熱度≒圧縮機吸入過熱度に相
当)がステップ203で第2過熱度閾値より大きいと判
断され、あるいはステップ207で第4過熱度閾値より
大きいと判断されたときには、第1補助熱交換器4での
熱交換の効率がやや低い状態であることから、ステップ
209では第1減圧器制御器16による減圧器3の減圧
量と第2減圧器制御器17による減圧器3の減圧量とを
混合して減圧器3を制御することから、第1補助熱交換
器4の熱交換の状態を効率が高い状態へ移行させつつ、
負荷状態(例えば室温)を目標負荷状態(例えば設定温
度)に一致させることができる。
In step 203, it is determined that the superheat degree detected by the superheat / supercool degree detector 15 (evaporator outlet superheat degree / compressor suction superheat degree) is larger than the second superheat degree threshold value, or If it is determined in step 207 that it is larger than the fourth superheat degree threshold value, the efficiency of heat exchange in the first auxiliary heat exchanger 4 is in a slightly low state. Since the pressure reduction amount of the first auxiliary heat exchanger 4 is controlled by controlling the pressure reduction device 3 by mixing the pressure reduction amount of the pressure reduction device 3 and the pressure reduction amount of the pressure reduction device 3 by the second pressure reduction device controller 17, the efficiency is high. While moving to the state,
The load state (for example, room temperature) can be matched with the target load state (for example, set temperature).

【0056】以上のように、第1減圧器制御器16、第
2減圧器制御器17、第3減圧器制御器18によって、
第1補助熱交換器4の熱交換の効率の高い状態(すなわ
ち冷凍サイクル装置の効率の高い運転状態)を維持しな
がら負荷状態を目標負荷状態に一致させることができる
ものである。
As described above, the first pressure reducer controller 16, the second pressure reducer controller 17, and the third pressure reducer controller 18
The load state can be made to coincide with the target load state while maintaining the state of high heat exchange efficiency of the first auxiliary heat exchanger 4 (that is, the operating state of the refrigeration cycle device with high efficiency).

【0057】また、負荷側熱交換器8で加熱作用を行わ
せる場合には、第1補助熱交換器4が凝縮器として作用
するので、冷却作用時の過熱度を過冷却度に置き換えれ
ば、この場合での、本実施の形態における制御手段(第
3減圧器制御器18)が行う制御の手順は、図5に示す
ようになり、冷却作用時と同様に、第1減圧器制御器1
6、第2減圧器制御器17、第3減圧器制御器18によ
って、第1補助熱交換器4の熱交換の効率の高い状態
(すなわち冷凍サイクル装置の効率の高い運転状態)を
維持しながら負荷状態を目標負荷状態に一致させること
ができるものである。
When the heating operation is performed in the load side heat exchanger 8, the first auxiliary heat exchanger 4 operates as a condenser. Therefore, if the degree of superheat during the cooling operation is replaced with the degree of supercooling, In this case, the control procedure performed by the control means (third depressurizer controller 18) in the present embodiment is as shown in FIG. 5, and the first depressurizer controller 1
6. The second decompressor controller 17 and the third decompressor controller 18 maintain a state in which the first auxiliary heat exchanger 4 has a high heat exchange efficiency (that is, an operation state in which the refrigeration cycle device has a high efficiency). The load state can be made to match the target load state.

【0058】なお、過熱度/過冷却度検出器15を、図
2の位置ではなく、熱源側熱交換器2の出口に配置し
て、負荷側熱交換器8で冷却作用を行わせる場合には同
位置での過冷却度を検出し、あるいは、負荷側熱交換器
8で加熱作用を行わせる場合には同位置での過熱度を検
出して、それぞれ図4、図3と同様な制御を行うとして
も、同様の効果が得られる。
When the superheat / supercool detector 15 is arranged at the outlet of the heat source side heat exchanger 2 and not at the position shown in FIG. Detects the degree of supercooling at the same position, or detects the degree of superheating at the same position when the load side heat exchanger 8 performs heating, and performs control similar to that shown in FIGS. , The same effect can be obtained.

【0059】さらに、冷凍サイクル装置に熱源側熱交換
器2出口で過熱度の検出が難しい場合には、圧縮機1の
吐出側での過熱度を検出する吐出過熱度/過冷却度検出
器(図示せず)を設けることにより、熱源側熱交換器2
出口での冷媒の状態(過熱度の大小や気液混合状態時の
乾き度の大小など)を推定(例えば吐出過熱度が大きい
ときには熱源側熱交換器2出口過熱度も大きい、吐出過
熱度が小さいときには熱源側熱交換器2出口過熱度も小
さいあるいは気液混合状態で乾き度が小さい、など)で
きるので、これによって、過熱度/過冷却度検出器15
の代用をさせることも可能である。
Further, when it is difficult for the refrigeration cycle apparatus to detect the degree of superheat at the outlet of the heat source side heat exchanger 2, a discharge superheat degree / supercool degree detector for detecting the degree of superheat at the discharge side of the compressor 1 ( (Not shown), the heat source side heat exchanger 2
Estimate the state of the refrigerant at the outlet (such as the degree of superheat or the degree of dryness in the gas-liquid mixed state) (for example, when the discharge superheat is large, the superheat degree at the outlet of the heat source side heat exchanger 2 is large, When it is small, the degree of superheat at the outlet of the heat source side heat exchanger 2 can be small or the degree of dryness can be small in a gas-liquid mixed state, etc.).
It is also possible to substitute for

【0060】図6は、本実施の形態における制御手段
(第3冷媒搬送ポンプ制御器24)が行う制御の手順を
示すフローチャートである。まず第2補助熱交換器温度
差演算器21で演算された温度差と第1温度差閾値との
比較を行い(ステップ401)、温度差が第1温度差閾
値よりも大きい場合には温度差メンバシップ値を0に設
定し(ステップ402)、温度差が第1温度差閾値より
小さい場合には、第1温度差閾値より小さい第2温度差
閾値と温度差との比較を行い(ステップ403)、温度
差が第2温度差閾値よりも大きい場合には温度差に応じ
て0から1までの範囲で単調で連続した変化をする関数
f1に温度差を代入して温度差メンバシップ値を設定し
(ステップ404)、温度差が第2温度差閾値より小さ
い場合には、第2温度差閾値より小さい第3温度差閾値
と温度差との比較を行い(ステップ405)、温度差が
第3温度差閾値よりも大きい場合には温度差メンバシッ
プ値を1に設定し(ステップ406)、温度差が第3温
度差閾値より小さい場合には、第3温度差閾値より小さ
い第4温度差閾値と温度差との比較を行い(ステップ4
07)、温度差が第4温度差閾値よりも大きい場合に
は、温度差に応じて1から0までの範囲で単調で連続し
た変化をする関数f2に温度差を代入して温度差メンバ
シップ値を設定し(ステップ408)、温度差が第4温
度差閾値より小さい場合には、温度差メンバシップ値を
0に設定する(ステップ402)。それから、第1冷媒
搬送ポンプ制御器22による負荷側冷媒搬送量と温度差
メンバシップ値との積量と、第2冷媒搬送ポンプ制御器
23による負荷側冷媒搬送量と1から温度差メンバシッ
プ値を減じた値との積量の和として負荷側冷媒搬送量を
決定して冷媒搬送ポンプ6を制御する(ステップ40
9)もので一定時間間隔で実行される。
FIG. 6 is a flowchart showing a control procedure performed by the control means (third refrigerant transport pump controller 24) in the present embodiment. First, the temperature difference calculated by the second auxiliary heat exchanger temperature difference calculator 21 is compared with the first temperature difference threshold (step 401), and when the temperature difference is larger than the first temperature difference threshold, the temperature difference is calculated. The membership value is set to 0 (step 402), and if the temperature difference is smaller than the first temperature difference threshold, the temperature difference is compared with a second temperature difference threshold smaller than the first temperature difference threshold (step 403). If the temperature difference is larger than the second temperature difference threshold value, the temperature difference is substituted into a function f1 that changes monotonously and continuously in a range from 0 to 1 according to the temperature difference, and the temperature difference membership value is set. If the temperature difference is smaller than the second temperature difference threshold (step 404), the third temperature difference threshold smaller than the second temperature difference threshold is compared with the temperature difference (step 405), and the temperature difference is set to the second temperature difference threshold. 3 If the difference is larger than the temperature difference threshold, Set Bashippu value to 1 (step 406), when the temperature difference is smaller than the third temperature difference threshold, it compares the temperature difference and the third temperature difference threshold smaller than the fourth temperature difference threshold (Step 4
07) If the temperature difference is larger than the fourth temperature difference threshold, the temperature difference is substituted into a function f2 that changes monotonously and continuously in the range from 1 to 0 according to the temperature difference, and the temperature difference membership is obtained. A value is set (step 408), and if the temperature difference is smaller than the fourth temperature difference threshold, the temperature difference membership value is set to 0 (step 402). Then, the product of the load-side refrigerant transfer amount and the temperature difference membership value by the first refrigerant transfer pump controller 22 and the load-side refrigerant transfer amount by the second refrigerant transfer pump controller 23 and the temperature difference membership value from 1 The load-side refrigerant transfer amount is determined as the sum of the product amount with the value obtained by subtracting the value, and the refrigerant transfer pump 6 is controlled (step 40).
9) It is executed at regular time intervals.

【0061】すなわち、第4温度差閾値〜第1温度差閾
値の範囲は、本発明の第1の範囲に対応するものであ
り、第3温度差閾値〜第2温度差閾値の範囲は、本発明
の第2の範囲に対応するものである。
That is, the range from the fourth temperature difference threshold to the first temperature difference threshold corresponds to the first range of the present invention, and the range from the third temperature difference threshold to the second temperature difference threshold is This corresponds to the second range of the invention.

【0062】負荷側熱交換器8で冷却作用を行わせる場
合、温度差がステップ401で第1温度差閾値より大き
いと判断されたときには、図7に示されるように、冷媒
搬送ポンプ6での負荷側冷媒搬送量が過小であり第1補
助熱交換器4と第2補助熱交換器7との熱交換の効率の
低い状態であり、かつ第2補助熱交換器7出口側(低温
側)で第1補助熱交換器4と熱交換を行うためには第1
補助熱交換器4の温度を低下させなければならないため
に熱源側サイクルの効率が低下した状態となる。あるい
は温度差がステップ407で第4温度差閾値より小さい
と判断されたときには冷媒搬送ポンプ6での負荷側冷媒
搬送量が過大、すなわち冷媒搬送ポンプ6の効率の低い
運転状態であることから、ステップ409では第2冷媒
搬送ポンプ制御器23による負荷側冷媒搬送量を最優先
にする。すなわち、第2補助熱交換器温度差演算器21
で演算される温度差がステップ401で第1温度差閾値
より大きいと判断されたときには冷媒搬送ポンプ6の負
荷側冷媒搬送量を増加させて第2補助熱交換器温度差を
減少させて第1補助熱交換器4と第2補助熱交換器7と
の熱交換の効率の高い状態で熱源側サイクル効率も高い
状態に移行させ、あるいは温度差がステップ407で第
4温度差閾値より小さいと判断されたときには冷媒搬送
ポンプ6の負荷側冷媒搬送量を低下させて冷媒搬送ポン
プ6の効率の高い運転状態に移行させることができる。
When the cooling operation is performed by the load side heat exchanger 8, if it is determined in step 401 that the temperature difference is larger than the first temperature difference threshold value, as shown in FIG. The load-side refrigerant transfer amount is too small, the efficiency of heat exchange between the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7 is low, and the second auxiliary heat exchanger 7 outlet side (low temperature side) In order to perform heat exchange with the first auxiliary heat exchanger 4,
Since the temperature of the auxiliary heat exchanger 4 has to be lowered, the efficiency of the heat source side cycle is reduced. Alternatively, when it is determined in step 407 that the temperature difference is smaller than the fourth temperature difference threshold value, the load-side refrigerant transfer amount in the refrigerant transfer pump 6 is excessive, that is, the operation state is such that the efficiency of the refrigerant transfer pump 6 is low. At 409, the load-side refrigerant transfer amount by the second refrigerant transfer pump controller 23 is given top priority. That is, the second auxiliary heat exchanger temperature difference calculator 21
When it is determined in step 401 that the temperature difference calculated in step 401 is larger than the first temperature difference threshold, the load-side refrigerant transfer amount of the refrigerant transfer pump 6 is increased to reduce the second auxiliary heat exchanger temperature difference, and In a state where the efficiency of heat exchange between the auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7 is high, the cycle efficiency on the heat source side is shifted to a high state, or it is determined that the temperature difference is smaller than the fourth temperature difference threshold value in step 407. When this is done, the load-side refrigerant transfer amount of the refrigerant transfer pump 6 can be reduced, and the operation of the refrigerant transfer pump 6 can be shifted to a highly efficient operation state.

【0063】また第2補助熱交換器温度差演算器21で
演算される温度差がステップ403で第2温度差閾値よ
り小さいと判断され、かつステップ405で第3温度差
閾値より大きいと判断されたときには、冷媒搬送ポンプ
6での負荷側冷媒搬送量がほぼ適量であり、第1補助熱
交換器4と第2補助熱交換器7との熱交換の効率の高い
状態であり、かつ熱源側サイクルの効率も高く、かつ冷
媒搬送ポンプ6の効率の高い運転状態であることから、
ステップ409では第1冷媒搬送ポンプ制御器22によ
る負荷側冷媒搬送量を最優先にする。すなわち、負荷検
出器10で検出される負荷状態(例えば室温)が目標負
荷状態(例えば設定温度)よりも高いときには第1冷媒
搬送ポンプ制御器22により冷媒搬送ポンプ6の負荷側
冷媒搬送量を増加方向に決定する。この結果、第2補助
熱交換器7内を流れる負荷側冷媒流量が増加し、第1補
助熱交換器4からの第2補助熱交換器7への冷却量が増
加し、負荷側熱交換器8での負荷冷却量が増加し、負荷
状態(例えば室温)を目標負荷状態(例えば設定温度)
に一致させることができる。あるいは負荷検出器10で
検出された負荷状態(例えば室温)が目標負荷状態(例
えば設定温度)よりも低いときには、第1冷媒搬送ポン
プ制御器22により冷媒搬送ポンプ6の負荷側冷媒搬送
量を減少方向に決定する。この結果、第2補助熱交換器
4内を流れる負荷側冷媒流量が減少し、第1補助熱交換
器4からの第2補助熱交換器7への冷却量が減少し、負
荷側熱交換器8での負荷冷却量が減少し、負荷状態(例
えば室温)を目標負荷状態(例えば設定温度)に一致さ
せることができる。
The temperature difference calculated by the second auxiliary heat exchanger temperature difference calculator 21 is determined in step 403 to be smaller than the second temperature difference threshold, and in step 405 to be larger than the third temperature difference threshold. The load-side refrigerant transfer amount in the refrigerant transfer pump 6 is substantially appropriate, the heat exchange efficiency between the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7 is high, and the heat source side Since the efficiency of the cycle is high and the operation state of the refrigerant transfer pump 6 is high,
In step 409, the load-side refrigerant transfer amount by the first refrigerant transfer pump controller 22 is given top priority. That is, when the load state (for example, room temperature) detected by the load detector 10 is higher than the target load state (for example, the set temperature), the first refrigerant transfer pump controller 22 increases the load-side refrigerant transfer amount of the refrigerant transfer pump 6. Determine the direction. As a result, the flow rate of the load-side refrigerant flowing in the second auxiliary heat exchanger 7 increases, the amount of cooling from the first auxiliary heat exchanger 4 to the second auxiliary heat exchanger 7 increases, and the load-side heat exchanger 8, the load cooling amount increases, and the load state (for example, room temperature) is changed to the target load state (for example, set temperature).
Can be matched. Alternatively, when the load state (for example, room temperature) detected by the load detector 10 is lower than the target load state (for example, set temperature), the first refrigerant transfer pump controller 22 decreases the load-side refrigerant transfer amount of the refrigerant transfer pump 6. Determine the direction. As a result, the flow rate of the load-side refrigerant flowing through the second auxiliary heat exchanger 4 decreases, the amount of cooling from the first auxiliary heat exchanger 4 to the second auxiliary heat exchanger 7 decreases, and the load-side heat exchanger 8, the load cooling amount is reduced, and the load state (for example, room temperature) can be matched with the target load state (for example, set temperature).

【0064】また第2補助熱交換器温度差演算器21で
演算される温度差がステップ403で第2温度差閾値よ
り大きいと判断され、あるいはステップ407で第4温
度差閾値より大きいと判断されたときには、第1補助熱
交換器4と第2補助熱交換器7との熱交換の効率のやや
低い状態であり、あるいは冷媒搬送ポンプ6の効率のや
や低い運転状態であることから、ステップ409では第
1冷媒搬送ポンプ制御器22による負荷側冷媒搬送量と
第2冷媒搬送ポンプ制御器23による負荷側冷媒搬送量
とを混合して冷媒搬送ポンプ6を制御することから、第
1補助熱交換器4と第2補助熱交換器7との熱交換の効
率の高い状態に移行させつつ、あるいは冷媒搬送ポンプ
6の効率の高い運転状態に移行させつつ、負荷状態(例
えば室温)を目標負荷状態(例えば設定温度)に一致さ
せることができる。
In step 403, it is determined that the temperature difference calculated by the second auxiliary heat exchanger temperature difference calculator 21 is larger than the second temperature difference threshold, or it is determined in step 407 that it is larger than the fourth temperature difference threshold. In this case, the efficiency of the heat exchange between the first auxiliary heat exchanger 4 and the second auxiliary heat exchanger 7 is slightly lower, or the operation of the refrigerant transfer pump 6 is slightly lower. Then, since the load-side refrigerant transfer amount by the first refrigerant transfer pump controller 22 and the load-side refrigerant transfer amount by the second refrigerant transfer pump controller 23 are mixed to control the refrigerant transfer pump 6, the first auxiliary heat exchange A load state (for example, room temperature) is set while shifting to a state in which the heat exchange between the heat exchanger 4 and the second auxiliary heat exchanger 7 is highly efficient, or shifting to a highly efficient operation state of the refrigerant transfer pump 6. It can be matched to a load state (e.g., the set temperature).

【0065】以上のように、第1冷媒搬送ポンプ制御器
22、第2冷媒搬送ポンプ制御器23、第3冷媒搬送ポ
ンプ制御器24によって、第2補助熱交換器7の熱交換
の効率の高い状態や冷媒搬送ポンプ6の効率の高い運転
状態(すなわち冷凍サイクル装置の効率の高い運転状
態)を維持しながら負荷状態を目標負荷状態に一致させ
ることができるものである。
As described above, the first refrigerant transfer pump controller 22, the second refrigerant transfer pump controller 23, and the third refrigerant transfer pump controller 24 increase the efficiency of heat exchange of the second auxiliary heat exchanger 7. The load state can be matched with the target load state while maintaining the state and the operation state of the refrigerant transport pump 6 with high efficiency (that is, the operation state of the refrigeration cycle device with high efficiency).

【0066】また、負荷側熱交換器8で加熱作用を行わ
せる場合にも、同様に、第1冷媒搬送ポンプ制御器2
2、第2冷媒搬送ポンプ制御器23、第3冷媒搬送ポン
プ制御器24によって、第2補助熱交換器7の熱交換の
効率の高い状態や冷媒搬送ポンプ6の効率の高い運転状
態(すなわち冷凍サイクル装置の効率の高い運転状態)
を維持しながら負荷状態を目標負荷状態に一致させるこ
とができるものである。
When the heating operation is performed in the load side heat exchanger 8, the first refrigerant transfer pump controller 2
2. The second refrigerant transfer pump controller 23 and the third refrigerant transfer pump controller 24 control the second auxiliary heat exchanger 7 in a state in which the heat exchange efficiency is high and the refrigerant transfer pump 6 in an efficient operation state (ie, refrigeration). Highly efficient operation of cycle equipment)
Can be made to match the load state with the target load state.

【0067】なお、図2のように、第2補助熱交換器入
口側温度検出器19を第2補助熱交換器入口近傍に、第
2補助熱交換器出口側温度検出器20を第2補助熱交換
器7出口近傍にそれぞれ配置するものとして説明した
が、これにこだわるものではなく、第2補助熱交換器入
口側温度検出器19が負荷側熱交換器8出口から第2補
助熱交換器7入口までの間の経路での温度を検出し、第
2補助熱交換器出口側温度検出器20が第2補助熱交換
器7出口から負荷側熱交換器8入口までの間の経路での
温度を検出するとしても、その温度差は第2補助熱交換
器7の入口近傍と出口近傍の温度差とほぼ同等となり、
上述の効果が得られる。
As shown in FIG. 2, the second auxiliary heat exchanger inlet-side temperature detector 19 is located near the second auxiliary heat exchanger inlet, and the second auxiliary heat exchanger outlet-side temperature detector 20 is connected to the second auxiliary heat exchanger. Although it has been described that they are arranged in the vicinity of the outlet of the heat exchanger 7, the present invention is not limited to this, and the second auxiliary heat exchanger inlet-side temperature detector 19 is connected to the second auxiliary heat exchanger 8 through the outlet of the load-side heat exchanger 8. The second auxiliary heat exchanger outlet side temperature detector 20 detects the temperature in the path from the second auxiliary heat exchanger 7 to the load side heat exchanger 8 in the path from the second auxiliary heat exchanger 7 to the load side heat exchanger 8. Even if the temperature is detected, the temperature difference is substantially equal to the temperature difference near the inlet and the outlet near the second auxiliary heat exchanger 7,
The above effects can be obtained.

【0068】また、図3〜図6で示した各制御器の制御
手順においては、各制御器とも共通の関数f1、f2を
用いるとして説明したが、これに限るものではなく、そ
れぞれ別の関数を用いるとしてもよい。要するに、本発
明の冷媒状態量を制御量とする制御と、本発明の負荷状
態量を制御量とする制御とを、前記冷媒状態量に応じ
て、それぞれに重みをつけて行うようなものであればよ
い。
In the control procedure of each controller shown in FIGS. 3 to 6, it has been described that common functions f1 and f2 are used for each controller. However, the present invention is not limited to this. May be used. In short, the control of the present invention in which the refrigerant state quantity is the control amount and the control of the present invention in which the load state quantity is the control amount are performed by weighting each of them according to the refrigerant state quantity. I just need.

【0069】なお、本実施の形態においては、第1補助
熱交換器を含む側の減圧器と圧縮機との間の所定の位置
での熱源側冷媒の圧力、第1補助熱交換器出口もしくは
熱源側熱交換器出口での熱源側冷媒の過熱度もしくは過
冷却度、第2補助熱交換器の入口側と出口側とでの負荷
側冷媒の温度差、それぞれを、本発明の冷媒状態量とし
て、それぞれの冷媒状態量に対して本発明の制御手段を
備えるとして説明したが、これに限るものではなく、例
えば、上記冷媒状態量のいずれか一つに対して、もしく
は二つに対してそれぞれ、本発明の制御手段を備えると
しても、従来の2次冷媒システム方式の冷凍サイクル装
置に比べて、効率向上および/またはコストアップ抑制
が図れる2次冷媒システム方式の冷凍サイクル装置を提
供することができる。
In the present embodiment, the pressure of the heat source side refrigerant at a predetermined position between the decompressor on the side including the first auxiliary heat exchanger and the compressor, the first auxiliary heat exchanger outlet or The degree of superheat or supercooling of the heat source side refrigerant at the heat source side heat exchanger outlet, the temperature difference of the load side refrigerant between the inlet side and the outlet side of the second auxiliary heat exchanger, and the refrigerant state quantity of the present invention, respectively. As described above, the control means of the present invention is provided for each refrigerant state quantity, but the present invention is not limited to this. For example, for any one of the refrigerant state quantities, or for two To provide a refrigeration cycle apparatus of a secondary refrigerant system type capable of improving efficiency and / or suppressing cost increase as compared with a conventional refrigeration cycle apparatus of a secondary refrigerant system, even if each of them has the control means of the present invention. Can .

【0070】また、本実施の形態における冷凍サイクル
装置から、負荷検出器10、圧力検出器11、第1圧縮
機制御器12、第2圧縮機制御器13、第3圧縮機制御
器14、過熱度/過冷却度検出器15、第1減圧器制御
器16、第2減圧器制御器17、第3減圧器制御器1
8、第1冷媒搬送ポンプ制御器22、第3冷媒搬送ポン
プ制御器24それぞれが有する機能を省略して、第2冷
媒搬送ポンプ制御器23が冷媒搬送ポンプ6を直接制御
する構成としても、従来の2次冷媒システム方式の冷凍
サイクル装置に比べて、効率向上が図れる2次冷媒シス
テム方式の冷凍サイクル装置を提供することができる。
Also, from the refrigeration cycle apparatus according to the present embodiment, the load detector 10, the pressure detector 11, the first compressor controller 12, the second compressor controller 13, the third compressor controller 14, Degree / subcooling degree detector 15, first pressure reducer controller 16, second pressure reducer controller 17, third pressure reducer controller 1
8, the function of each of the first refrigerant transfer pump controller 22 and the third refrigerant transfer pump controller 24 is omitted, and the second refrigerant transfer pump controller 23 directly controls the refrigerant transfer pump 6, Thus, a refrigeration cycle apparatus of the secondary refrigerant system type which can improve efficiency as compared with the refrigeration cycle apparatus of the secondary refrigerant system type can be provided.

【0071】なお、上述した第1および第2の実施の形
態においては、熱源側サイクルに封入される熱源側冷媒
としてプロパンを例に挙げて、オゾン破壊能力や冷媒自
身の地球温暖化能力がほとんどなく、効率の高い冷凍サ
イクル装置が実現できるものとして説明したが、これに
限るものではなく、例えば、可燃性や毒性を有する物質
(例えば他の炭化水素類(特に炭素数2〜4の炭化水素
類)やアンモニア)を主成分とする冷媒を熱源側サイク
ルに熱源側冷媒として封入した冷凍サイクル装置におい
ても、負荷側サイクルでの安全性を維持しながら、効率
の高い冷凍サイクル装置が実現できるのは明らかであ
る。また、二酸化炭素は一般には無毒とされるている
が、作動圧力が高圧力となるので、安全性を重視して熱
源側冷媒として熱源側サイクルにのみ封入した冷凍サイ
クル装置においても同様の効果が得られるものである。
In the first and second embodiments described above, propane is taken as an example of the heat source side refrigerant sealed in the heat source side cycle, and the ozone destruction ability and the global warming ability of the refrigerant itself are almost zero. However, it has been described that a highly efficient refrigeration cycle device can be realized. However, the present invention is not limited to this. For example, flammable or toxic substances (for example, other hydrocarbons (particularly hydrocarbons having 2 to 4 carbon atoms) Refrigeration cycle device in which a refrigerant mainly composed of (a) and ammonia) is sealed as a heat source side refrigerant in the heat source side cycle, and a high efficiency refrigeration cycle device can be realized while maintaining safety in the load side cycle. Is clear. In addition, carbon dioxide is generally non-toxic, but the operating pressure is high, so the same effect can be achieved in a refrigeration cycle device in which only the heat source side cycle is sealed as a heat source side refrigerant with emphasis on safety. It is obtained.

【0072】なお、上述した第1および第2の実施の形
態においては、負荷側熱交換器が一台のみである構成と
して説明したが、これに限るものではなく、例えば、図
1または図2において、負荷側熱交換器8の替わりに、
複数の負荷側熱交換器が並列的に接続された構成の冷凍
サイクル装置においても、第1および第2の実施の形態
と同様の効果が得られるものである。
In the above-described first and second embodiments, the configuration in which only one load-side heat exchanger is used has been described. However, the present invention is not limited to this. For example, FIG. 1 or FIG. , Instead of the load side heat exchanger 8,
In a refrigeration cycle apparatus having a configuration in which a plurality of load-side heat exchangers are connected in parallel, the same effect as in the first and second embodiments can be obtained.

【0073】[0073]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、効率向上および/またはコストアップ抑
制が図れる2次冷媒システム方式の冷凍サイクル装置を
提供することができる。
As is apparent from the above description, the present invention can provide a refrigeration cycle apparatus of a secondary refrigerant system type capable of improving efficiency and / or suppressing cost increase.

【0074】すなわち、請求項1〜3の本発明は、第1
補助熱交換器および第2補助熱交換器での熱交換効率の
向上が図れる2次冷媒システム方式の冷凍サイクル装置
を提供することができる。
That is, the present invention of claims 1 to 3
It is possible to provide a refrigeration cycle device of a secondary refrigerant system type capable of improving the heat exchange efficiency in the auxiliary heat exchanger and the second auxiliary heat exchanger.

【0075】さらに、請求項3の本発明は、上記効果に
加え、負荷側熱交換器での熱交換の効率向上が図れる2
次冷媒システム方式の冷凍サイクル装置を提供すること
ができる。
Further, according to the third aspect of the present invention, in addition to the above effects, the efficiency of heat exchange in the load side heat exchanger can be improved.
A refrigeration cycle device of the secondary refrigerant system type can be provided.

【0076】また、請求項4〜7の本発明は、圧縮機の
運転を制御することにより、および/または、減圧器の
運転を制御することにより、および/または、冷媒搬送
手段の運転を制御することにより、冷凍サイクル装置全
体の効率の向上が図れる2次冷媒システム方式の冷凍サ
イクル装置を提供することができる。ここで、圧縮機の
運転を制御することにより効率の向上が図れるのは、圧
力を圧縮機の常用使用範囲内に収めつつ、あるいは効率
が高い状態へ移行させつつ、負荷状態(例えば室温)を
目標負荷状態(例えば設定温度)に一致させることがで
きるためである。減圧器の運転を制御することにより効
率の向上が図れるのは、第1補助熱交換器の熱交換の効
率の高い状態(すなわち冷凍サイクル装置の効率の高い
運転状態)を維持しながら負荷状態を目標負荷状態に一
致させることができるためである。冷媒搬送手段の運転
を制御することにより効率の向上が図れるのは、第2補
助熱交換器の熱交換の効率の高い状態や冷媒搬送ポンプ
の効率の高い運転状態(すなわち冷凍サイクル装置の効
率の高い運転状態)を維持しながら負荷状態を目標負荷
状態に一致させることができるためである。
According to the present invention, the operation of the compressor is controlled and / or the operation of the pressure reducer is controlled, and / or the operation of the refrigerant conveying means is controlled. By doing so, it is possible to provide a refrigeration cycle device of the secondary refrigerant system type capable of improving the efficiency of the entire refrigeration cycle device. Here, the reason that the efficiency can be improved by controlling the operation of the compressor is that the load state (for example, room temperature) is reduced while keeping the pressure within the normal use range of the compressor or shifting to a state of high efficiency. This is because it can be made to match the target load state (for example, the set temperature). The reason that the efficiency can be improved by controlling the operation of the pressure reducer is that the load state is maintained while maintaining the high heat exchange efficiency of the first auxiliary heat exchanger (that is, the high efficiency operation of the refrigeration cycle device). This is because the target load state can be matched. The efficiency can be improved by controlling the operation of the refrigerant transfer means because the second auxiliary heat exchanger has a high heat exchange efficiency or the refrigerant transfer pump has a high efficiency operation state (that is, the efficiency of the refrigeration cycle device is low). This is because the load state can be made to match the target load state while maintaining the high operation state).

【0077】さらに、請求項6の本発明は、上記効果に
加え、熱源側熱交換器出口で過熱度の検出が難しい場合
にも、減圧器の運転を制御することにより効率の向上が
図れる2次冷媒システム方式の冷凍サイクル装置を提供
することができる。
Further, in addition to the above effects, the present invention of claim 6 can improve the efficiency by controlling the operation of the decompressor even when it is difficult to detect the degree of superheat at the heat source side heat exchanger outlet. A refrigeration cycle device of the secondary refrigerant system type can be provided.

【0078】また、請求項8の本発明は、冷媒搬送手段
の運転を制御することにより、冷凍サイクル装置全体の
効率の向上が図れる2次冷媒システム方式の冷凍サイク
ル装置を提供することができる。ここで、冷媒搬送手段
の運転を制御することにより効率の向上が図れるのは、
第2補助熱交換器の熱交換の効率の高い状態や冷媒搬送
ポンプの効率の高い運転状態(すなわち冷凍サイクル装
置の効率の高い運転状態)を維持させることができるた
めである。
The present invention according to claim 8 can provide a refrigeration cycle apparatus of the secondary refrigerant system type which can improve the efficiency of the entire refrigeration cycle apparatus by controlling the operation of the refrigerant conveying means. Here, the efficiency can be improved by controlling the operation of the refrigerant conveying means,
This is because it is possible to maintain a state in which the second auxiliary heat exchanger has a high heat exchange efficiency and an operation state in which the refrigerant transfer pump has a high efficiency (that is, an operation state in which the refrigeration cycle device has a high efficiency).

【0079】また、請求項9の本発明は、請求項1〜8
の本発明の効果に加え、冷媒搬送手段の使用条件が厳し
くなく、特殊な材質や構成が不要となるので、コストア
ップ抑制が図れる2次冷媒システム方式の冷凍サイクル
装置を提供することができる。
Further, the present invention of claim 9 provides the invention according to claims 1 to 8
In addition to the effects of the present invention, the use conditions of the refrigerant conveying means are not strict, and special materials and configurations are not required. Therefore, it is possible to provide a refrigeration cycle apparatus of a secondary refrigerant system type capable of suppressing cost increase.

【0080】また、請求項10の本発明は、請求項1〜
9の本発明の効果に加え、地球環境への影響が少なく、
負荷側サイクルでの安全性を維持できる2次冷媒システ
ム方式の冷凍サイクル装置を提供することができる。
The tenth aspect of the present invention relates to the first to fifth aspects.
9 In addition to the effects of the present invention, the impact on the global environment is small,
It is possible to provide a refrigeration cycle device of a secondary refrigerant system type capable of maintaining safety in a load side cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における冷凍サイク
ル装置を示すの概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a refrigeration cycle device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における冷凍サイク
ル装置を示すの概略構成図である。
FIG. 2 is a schematic configuration diagram illustrating a refrigeration cycle device according to a second embodiment of the present invention.

【図3】本発明の第2の実施の形態における制御手段
(第3圧縮機制御器14)が行う制御の手順を示すフロ
ーチャートである。
FIG. 3 is a flowchart showing a control procedure performed by control means (a third compressor controller 14) according to a second embodiment of the present invention.

【図4】本発明の第2の実施の形態における制御手段
(第3減圧器制御器18)が行う、負荷側熱交換器8で
冷却作用を行わせる場合での、制御の手順を示すフロー
チャートである。
FIG. 4 is a flowchart showing a control procedure performed by a control unit (third pressure reducer controller 18) according to the second embodiment of the present invention in a case where a cooling operation is performed in the load side heat exchanger 8; It is.

【図5】本発明の第2の実施の形態における制御手段
(第3減圧器制御器18)が行う、負荷側熱交換器8で
加熱作用を行わせる場合での、制御の手順を示すフロー
チャートである。
FIG. 5 is a flowchart showing a control procedure performed by the control means (third pressure reducer controller 18) in the second embodiment of the present invention in the case where the heating operation is performed in the load side heat exchanger 8; It is.

【図6】本発明の第2の実施の形態における制御手段
(第3冷媒搬送ポンプ制御器24)が行う制御の手順を
示すフローチャートである。
FIG. 6 is a flowchart illustrating a control procedure performed by a control unit (a third refrigerant transport pump controller 24) according to the second embodiment of the present invention.

【図7】冷媒搬送量と冷媒搬送ポンプ効率と第2補助熱
交換器温度差を示す模式図である。
FIG. 7 is a schematic diagram illustrating a refrigerant transfer amount, a refrigerant transfer pump efficiency, and a second auxiliary heat exchanger temperature difference.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 熱源側熱交換器 3 減圧器 4 第1補助熱交換器 5 四方弁 6 冷媒搬送ポンプ 7 第2補助熱交換器 8 負荷側熱交換器 9 四方弁 10 負荷検出器 11 圧力検出器 12 第1圧縮機制御器 13 第2圧縮機制御器 14 第3圧縮機制御器 15 過熱度/過冷却度検出器 16 第1減圧器制御器 17 第2減圧器制御器 18 第3減圧器制御器 19 第2補助熱交換器入口側温度検出器 20 第2補助熱交換器出口側温度検出器 21 第2補助熱交換器温度差演算器 22 第1冷媒搬送ポンプ制御器 23 第2冷媒搬送ポンプ制御器 24 第3冷媒搬送ポンプ制御器 A 熱源側サイクル B 負荷側サイクル REFERENCE SIGNS LIST 1 compressor 2 heat source side heat exchanger 3 decompressor 4 first auxiliary heat exchanger 5 four-way valve 6 refrigerant transport pump 7 second auxiliary heat exchanger 8 load side heat exchanger 9 four-way valve 10 load detector 11 pressure detector 12 First compressor controller 13 Second compressor controller 14 Third compressor controller 15 Superheat / subcool degree detector 16 First decompressor controller 17 Second decompressor controller 18 Third decompressor control Device 19 Second auxiliary heat exchanger inlet side temperature detector 20 Second auxiliary heat exchanger outlet side temperature detector 21 Second auxiliary heat exchanger temperature difference calculator 22 First refrigerant transport pump controller 23 Second refrigerant transport pump Controller 24 Third refrigerant transfer pump controller A Heat source side cycle B Load side cycle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡座 典穂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L092 AA02 AA14 BA06 BA26 DA19 EA02 EA04 EA06 EA20 FA03 FA13 FA22 FA26  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noriho Okaza 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. F term (reference) 3L092 AA02 AA14 BA06 BA26 DA19 EA02 EA04 EA06 EA20 FA03 FA13 FA22 FA26

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、熱源側熱交換器、減
圧器および第1補助熱交換器を有する熱源側サイクル
と、少なくとも冷媒搬送手段、負荷側熱交換器および第
2補助熱交換器を有する負荷側サイクルとを備え、前記
第1補助熱交換器および前記第2補助熱交換器にて、熱
源側冷媒と負荷側冷媒との間で熱交換を行わせる冷凍サ
イクル装置において、 前記熱源側サイクルの少なくとも前記熱源側熱交換器、
前記減圧器および前記第1補助熱交換器での前記熱源側
冷媒の流れ方向を切り替える熱源側流路切り替え手段
と、前記第2補助熱交換器内の前記負荷側冷媒の流れ方
向を切り替える負荷側流路切り替え手段とを備え、 前記負荷側流路切り替え手段は、前記熱源側サイクルの
状態に応じて、前記第1補助熱交換器および前記第2補
助熱交換器での熱交換がより効率的に行われるように、
前記負荷側冷媒の前記流れ方向を選択して切り替えるこ
とを特徴とする冷凍サイクル装置。
1. A heat source side cycle having at least a compressor, a heat source side heat exchanger, a decompressor and a first auxiliary heat exchanger, and at least a refrigerant conveying means, a load side heat exchanger and a second auxiliary heat exchanger. A refrigeration cycle apparatus comprising: a load-side cycle, wherein the first auxiliary heat exchanger and the second auxiliary heat exchanger perform heat exchange between a heat-source-side refrigerant and a load-side refrigerant. At least the heat source side heat exchanger,
Heat-source-side flow switching means for switching a flow direction of the heat-source-side refrigerant in the decompressor and the first auxiliary heat exchanger; and a load side for switching a flow direction of the load-side refrigerant in the second auxiliary heat exchanger. Flow path switching means, wherein the load side flow path switching means is more efficient in heat exchange in the first auxiliary heat exchanger and the second auxiliary heat exchanger according to the state of the heat source side cycle. As is done in
A refrigeration cycle apparatus wherein the flow direction of the load-side refrigerant is selected and switched.
【請求項2】 前記負荷側流路切り替え手段は、前記熱
源側冷媒および前記負荷側冷媒が、少なくとも前記熱交
換が行われる経路上の全部または一部で、互いに対向す
る方向に流れるように、前記流れ方向を選択して切り替
えることを特徴とする請求項1に記載の冷凍サイクル装
置。
2. The load-side flow switching means, wherein the heat-source-side refrigerant and the load-side refrigerant flow at least in whole or in part on a path in which the heat exchange is performed, in such a direction as to face each other. The refrigeration cycle apparatus according to claim 1, wherein the flow direction is selected and switched.
【請求項3】 前記負荷側熱交換器は、前記負荷側冷媒
が負荷対象に対して対向する方向に流れるように構成さ
れており、前記負荷側流路切り替え手段の切り替えによ
って前記負荷側熱交換器内の前記負荷側冷媒の流れの方
向は変わらないことを特徴とする請求項1または2に記
載の冷凍サイクル装置。
3. The load-side heat exchanger is configured such that the load-side refrigerant flows in a direction facing a load target, and the load-side heat exchange is performed by switching of the load-side flow switching unit. 3. The refrigeration cycle apparatus according to claim 1, wherein the flow direction of the load-side refrigerant in the vessel does not change.
【請求項4】 少なくとも圧縮機、熱源側熱交換器、減
圧器および第1補助熱交換器を有する熱源側サイクル
と、少なくとも冷媒搬送手段、負荷側熱交換器および第
2補助熱交換器を有する負荷側サイクルとを備え、前記
第1補助熱交換器および前記第2補助熱交換器にて、熱
源側冷媒と負荷側冷媒との間で熱交換を行わせる冷凍サ
イクル装置において、 前記負荷側熱交換器での負荷状態量を検出する負荷状態
量検出手段と、前記熱源側冷媒の状態量および/または
前記負荷側冷媒の状態量を冷媒状態量として検出する冷
媒状態量検出手段と、前記負荷状態量および前記冷媒状
態量を制御量として、前記圧縮機の運転および/または
前記減圧器の運転および/または前記冷媒搬送手段の運
転を制御する制御手段とを備え、 前記制御手段は、前記冷媒状態量に応じて、前記負荷状
態量および前記冷媒状態量の前記制御量としての扱い方
を決定することを特徴とする冷凍サイクル装置。
4. A heat source side cycle having at least a compressor, a heat source side heat exchanger, a decompressor and a first auxiliary heat exchanger, and at least a refrigerant conveying means, a load side heat exchanger and a second auxiliary heat exchanger. A refrigeration cycle apparatus including a load-side cycle, wherein the first auxiliary heat exchanger and the second auxiliary heat exchanger perform heat exchange between a heat source-side refrigerant and a load-side refrigerant. A load state quantity detecting means for detecting a load state quantity in the exchanger; a refrigerant state quantity detecting means for detecting a state quantity of the heat source side refrigerant and / or a state quantity of the load side refrigerant as a refrigerant state quantity; Control means for controlling the operation of the compressor and / or the operation of the pressure reducer and / or the operation of the refrigerant conveying means, using the state quantity and the refrigerant state quantity as control amounts, wherein the control means Depending on the refrigerant state quantity, the refrigeration cycle apparatus characterized by determining how to handle as the control amount of the load state quantity and the refrigerant state quantity.
【請求項5】 前記冷媒状態量は、前記第1補助熱交換
器を含む側の前記減圧器と前記圧縮機との間の所定の位
置での前記熱源側冷媒の圧力、および/または、前記第
1補助熱交換器出口もしくは前記熱源側熱交換器出口で
の前記熱源側冷媒の過熱度もしくは過冷却度、および/
または、前記第2補助熱交換器の入口側と出口側とでの
前記負荷側冷媒の温度差であり、 前記制御手段が前記圧縮機の運転を制御する場合は、前
記負荷状態量および前記熱源側冷媒の前記圧力を前記制
御量とし、 前記制御手段が前記減圧器の運転を制御する場合は、前
記負荷状態量、および、前記熱源側冷媒の前記過熱度も
しくは前記過冷却度を、前記制御量とし、 前記制御手段が前記冷媒搬送手段の運転を制御する場合
は、前記負荷状態量および前記負荷側冷媒の前記温度差
を前記制御量とすることを特徴とする請求項4に記載の
冷凍サイクル装置。
5. The refrigerant state quantity may be a pressure of the heat-source-side refrigerant at a predetermined position between the pressure reducer on a side including the first auxiliary heat exchanger and the compressor, and / or A degree of superheating or supercooling of the heat source side refrigerant at a first auxiliary heat exchanger outlet or the heat source side heat exchanger outlet, and / or
Or the temperature difference of the load side refrigerant between the inlet side and the outlet side of the second auxiliary heat exchanger, and when the control means controls the operation of the compressor, the load state amount and the heat source When the pressure of the side refrigerant is the control amount, and the control means controls the operation of the pressure reducer, the load state amount, and the degree of superheat or the degree of supercooling of the heat source side refrigerant are controlled by the control. The refrigeration according to claim 4, wherein, when the control unit controls the operation of the refrigerant transport unit, the load state amount and the temperature difference of the load-side refrigerant are set as the control amount. Cycle equipment.
【請求項6】 前記冷媒状態量検出手段は、前記圧縮機
の吐出側での過熱度を測定することによって、前記熱源
側冷媒の前記過熱度を検出することを特徴とする請求項
5に記載の冷凍サイクル装置。
6. The refrigerant state quantity detecting means according to claim 5, wherein the degree of superheat of the heat source side refrigerant is detected by measuring a degree of superheat on a discharge side of the compressor. Refrigeration cycle equipment.
【請求項7】 前記制御手段は、 前記冷媒状態量が所定の第1の範囲内にない場合は、前
記負荷状態量に優先して、前記冷媒状態量が前記第1の
範囲に収まるように制御を行い、 前記冷媒状態量が前記第1の範囲を含む第2の範囲内に
ある場合は、前記冷媒状態量に優先して、前記負荷状態
量が所定の負荷範囲に収まるように制御を行い、 前記冷媒状態量が前記第1の範囲内にあり、前記第2の
範囲内にない場合は、前記冷媒状態量を制御量とする制
御と、前記負荷状態量を制御量とする制御とを、前記冷
媒状態量に応じて、それぞれに重みをつけて行うことを
特徴とする請求項4〜6のいずれかに記載の冷凍サイク
ル装置。
7. The control unit, when the refrigerant state quantity is not within a predetermined first range, prior to the load state quantity, such that the refrigerant state quantity falls within the first range. When the refrigerant state quantity is within a second range including the first range, control is performed such that the load state quantity falls within a predetermined load range in preference to the refrigerant state quantity. Performing, when the refrigerant state quantity is within the first range and not within the second range, control that sets the refrigerant state quantity as a control amount and control that sets the load state amount as a control amount The refrigerating cycle apparatus according to any one of claims 4 to 6, wherein the weighting is performed in accordance with the refrigerant state quantity.
【請求項8】 少なくとも圧縮機、熱源側熱交換器、減
圧器および第1補助熱交換器を有する熱源側サイクル
と、少なくとも冷媒搬送手段、負荷側熱交換器および第
2補助熱交換器を有する負荷側サイクルとを備え、前記
第1補助熱交換器および前記第2補助熱交換器にて、熱
源側冷媒と負荷側冷媒との間で熱交換を行わせる冷凍サ
イクル装置において、 前記第2補助熱交換器の入口側と出口側とでの前記負荷
側冷媒の温度差を検出する冷媒状態量検出手段と、前記
温度差を制御量として前記冷媒搬送手段の運転を制御す
る制御手段とを備えることを特徴とする冷凍サイクル装
置。
8. A heat source side cycle having at least a compressor, a heat source side heat exchanger, a decompressor and a first auxiliary heat exchanger, and at least a refrigerant conveying means, a load side heat exchanger and a second auxiliary heat exchanger. A refrigeration cycle apparatus including a load-side cycle, wherein the first auxiliary heat exchanger and the second auxiliary heat exchanger perform heat exchange between a heat source-side refrigerant and a load-side refrigerant. A refrigerant state quantity detecting unit that detects a temperature difference of the load side refrigerant between an inlet side and an outlet side of a heat exchanger; and a control unit that controls operation of the refrigerant conveying unit using the temperature difference as a control amount. A refrigeration cycle device characterized by the above-mentioned.
【請求項9】 前記冷媒搬送手段は、前記負荷側熱交換
器の出口側の経路上に配置されていることを特徴とする
請求項1〜8のいずれかに記載の冷凍サイクル装置。
9. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant transfer means is disposed on a path on an outlet side of the load side heat exchanger.
【請求項10】 前記熱源側冷媒は、可燃性あるいは毒
性を有する冷媒を主成分とするものであることを特徴と
する請求項1〜9のいずれかに記載の冷凍サイクル装
置。
10. The refrigeration cycle apparatus according to claim 1, wherein the heat-source-side refrigerant is mainly composed of a flammable or toxic refrigerant.
JP10237435A 1998-08-24 1998-08-24 Refrigerating cycle device Pending JP2000065398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10237435A JP2000065398A (en) 1998-08-24 1998-08-24 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10237435A JP2000065398A (en) 1998-08-24 1998-08-24 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2000065398A true JP2000065398A (en) 2000-03-03

Family

ID=17015326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10237435A Pending JP2000065398A (en) 1998-08-24 1998-08-24 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2000065398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169942A (en) * 2002-11-18 2004-06-17 Ntt Power & Building Facilities Inc Air conditioning system
WO2010098072A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
WO2011092741A1 (en) * 2010-01-29 2011-08-04 ダイキン工業株式会社 Heat pump system
EP2375174B1 (en) 2010-04-07 2016-06-08 Wolf GmbH Heat pump assembly and method for controlling same
CN112303761A (en) * 2020-10-15 2021-02-02 珠海格力电器股份有限公司 Fluorine pump air conditioning system for adjusting central heating temperature and control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169942A (en) * 2002-11-18 2004-06-17 Ntt Power & Building Facilities Inc Air conditioning system
WO2010098072A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
US20110302947A1 (en) * 2009-02-24 2011-12-15 Daikin Europe N.V. Heat pump system
CN102326028A (en) * 2009-02-24 2012-01-18 大金工业株式会社 Heat pump
WO2011092741A1 (en) * 2010-01-29 2011-08-04 ダイキン工業株式会社 Heat pump system
CN102725598A (en) * 2010-01-29 2012-10-10 大金工业株式会社 Heat pump system
JPWO2011092741A1 (en) * 2010-01-29 2013-05-23 ダイキン工業株式会社 Heat pump system
JP5400177B2 (en) * 2010-01-29 2014-01-29 ダイキン工業株式会社 Heat pump system
CN102725598B (en) * 2010-01-29 2014-10-08 大金工业株式会社 Heat pump system
US9429343B2 (en) 2010-01-29 2016-08-30 Daikin Industries, Ltd. Heat pump system
EP2375174B1 (en) 2010-04-07 2016-06-08 Wolf GmbH Heat pump assembly and method for controlling same
CN112303761A (en) * 2020-10-15 2021-02-02 珠海格力电器股份有限公司 Fluorine pump air conditioning system for adjusting central heating temperature and control method

Similar Documents

Publication Publication Date Title
US9599395B2 (en) Refrigerating apparatus
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
EP2306122B1 (en) Refrigerating cycle apparatus, and air conditioning apparatus
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
US11175080B2 (en) Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection
US20040123608A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP5409715B2 (en) Air conditioner
JP2007278686A (en) Heat pump water heater
WO2003083381A1 (en) Refrigerating cycle device
JP5908183B1 (en) Air conditioner
JP2000234811A (en) Refrigerating cycle device
US11796212B2 (en) Air-conditioning apparatus
JP6161787B2 (en) Refrigeration cycle equipment
JP2000065398A (en) Refrigerating cycle device
CN113439188B (en) Air conditioner
US20220290900A1 (en) Method for controlling refrigerating system using non-azeotropic mixed refrigerant
JPH07190526A (en) Refrigerating cycle equipment using nonazeotropic mixture refrigerant
JP2003214743A (en) Refrigerator
CN114207363B (en) Refrigeration system using non-azeotropic mixed refrigerant
US20220357079A1 (en) Refrigerating apparatus using non-azeotropic mixed refrigerant
JPH08145484A (en) Air conditioner
JPH08145483A (en) Air conditioner
JP2004177084A (en) Refrigerating device using flammable gas, vending machine having refrigerating device using flammable gas, and refrigerator having refrigerating device using flammable gas
JPH07190528A (en) Heat pump type air conditioner
JP2001221524A (en) Air conditioner