JP2000320916A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JP2000320916A
JP2000320916A JP11125577A JP12557799A JP2000320916A JP 2000320916 A JP2000320916 A JP 2000320916A JP 11125577 A JP11125577 A JP 11125577A JP 12557799 A JP12557799 A JP 12557799A JP 2000320916 A JP2000320916 A JP 2000320916A
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
liquid
refrigeration cycle
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11125577A
Other languages
Japanese (ja)
Inventor
Kenji Matsumura
賢治 松村
Hiroshi Yasuda
弘 安田
Kazumiki Urata
和幹 浦田
Hiroshi Takenaka
寛 竹中
Masahiro Ito
将弘 伊藤
Keiji Tanaka
慶治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11125577A priority Critical patent/JP2000320916A/en
Publication of JP2000320916A publication Critical patent/JP2000320916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an operating efficiency of a refrigerating cycle by providing an opening communicating with a gas refrigerant of an upper portion of a liquid receiver through an upper portion of an introducing/discharging tube connected to a user side heat exchanger in the receiver and providing a circuit for by-passing the gas refrigerant from the upper portion of the receiver to the tube of the receiver. SOLUTION: A two-phase state refrigerant decompressed by an electronic expansion valve 4 flows from an introducing tube 5-1 to a liquid receiver 5, and flows out from a discharging tube 5-2. In this case, the two-phase refrigerant flowing from the tube 5-1 to the receiver 5 is gas-liquid separated in the receiver, a gas refrigerant flows out from an opening 5-3 provided at an upper portion of the tube 5-2 to the receiver 5, and a liquid side connecting tube 9 becomes the two-phase state. The gas refrigerant of the upper portion of the receiver is taken out by a bypass pipe 6, and hence a refrigerant dryness of an outlet of the receiver becomes large, that is, a gas refrigerant ratio of the refrigerant flowing out from the receiver 5 becomes large. Thus, the liquid refrigerant is forcibly stored in the receiver 5 due to a balance between inflowing liquid refrigerant to and outflowing liquid refrigerant from the receiver 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調用冷凍サイク
ルに係り、省電力化,代替冷媒化などの地球環境保護に
好適な冷凍サイクル構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle for air conditioning, and more particularly to a refrigeration cycle configuration suitable for protecting the global environment such as power saving and alternative refrigerant.

【0002】[0002]

【従来の技術】空調用冷凍サイクルの施工性及び信頼性
を向上させるために接続配管の最大配管長分の冷媒を予
め封入した冷凍サイクルシステムが広く用いられるよう
になってきている。このような冷凍サイクルでは必要冷
媒量の低減が課題であり、もう一つの重要課題として、
最大配管長以下で使用する場合に生じる余剰冷媒の貯留
がある。
2. Description of the Related Art In order to improve the workability and reliability of a refrigeration cycle for air conditioning, a refrigeration cycle system in which a refrigerant corresponding to a maximum pipe length of a connection pipe is filled in advance has been widely used. In such a refrigeration cycle, reducing the required amount of refrigerant is an issue, and as another important issue,
There is excess refrigerant storage that occurs when used below the maximum pipe length.

【0003】このような従来技術として特開昭62−1589
59号に示されているように冷房運転時は室外機内に設け
られたキャピラリチューブで減圧し、暖房運転時は室内
機内に設けられたキャピラリチューブで減圧し、室内外
機間の液接続配管内の冷媒流動状態を気液二相流状態と
して、低圧容器であるアキュームレータ内の導入出管
径、導入出管に設けられる油戻し穴径などのアキューム
レータ諸元を余剰冷媒が貯留するように構成した冷凍サ
イクルが知られている。
[0003] Such a prior art is disclosed in Japanese Patent Application Laid-Open No. 62-1589.
As shown in No. 59, the pressure is reduced by the capillary tube provided in the outdoor unit during the cooling operation, and the pressure is reduced by the capillary tube provided in the indoor unit during the heating operation. The refrigerant flow state is set to a gas-liquid two-phase flow state, so that the excess refrigerant stores the accumulator parameters such as the diameter of the inlet / outlet pipe in the accumulator, which is a low-pressure vessel, and the diameter of the oil return hole provided in the inlet / outlet pipe. Refrigeration cycles are known.

【0004】また、特開平6−137690 号に示されている
ように、室内機の運転範囲の拡大および他機種との共用
化を図るために室内機に電子膨張弁を設けた冷凍サイク
ルがある。この冷凍サイクルでは冷房運転時は室外機の
キャピラリチューブと室内機の電子膨張弁の二段で減圧
し、暖房運転時は室内機の電子膨張弁で減圧し、接続配
管を気液二相流状態として、余剰冷媒をアキュームレー
タに貯留するように構成されている。
As disclosed in Japanese Patent Application Laid-Open No. Hei 6-137690, there is a refrigeration cycle in which an electronic expansion valve is provided in an indoor unit in order to expand the operating range of the indoor unit and share it with other models. . In this refrigeration cycle, the pressure is reduced by the two stages of the capillary tube of the outdoor unit and the electronic expansion valve of the indoor unit during the cooling operation, and reduced by the electronic expansion valve of the indoor unit during the heating operation. It is configured to store excess refrigerant in the accumulator.

【0005】また特開平1−58964号に示されている非共
沸混合冷媒を用いたヒートポンプシステムによれば、熱
源側熱交換器と利用側熱交換器との間に気液分離器を設
け吸入ガス管と熱交換関係に設けた冷媒タンクを第1接
続管で気液分離器の上部に接続するとともに、冷媒タン
クを開閉弁が途中に設けられた第2接続管で気液分離機
の下部に接続して、冷房運転時に気液分離器の上部から
抽出した低沸点冷媒を冷媒タンクで液冷媒として貯留す
ることによって冷凍サイクル内を高沸点冷媒が循環する
ように構成されている。
According to the heat pump system using a non-azeotropic mixed refrigerant disclosed in JP-A-1-58964, a gas-liquid separator is provided between a heat source side heat exchanger and a use side heat exchanger. A refrigerant tank provided in a heat exchange relationship with the suction gas pipe is connected to the upper part of the gas-liquid separator by a first connection pipe, and the refrigerant tank is connected to the gas-liquid separator by a second connection pipe provided with an on-off valve in the middle. It is connected to the lower part, and is configured such that the high-boiling refrigerant is circulated in the refrigeration cycle by storing the low-boiling refrigerant extracted from the upper part of the gas-liquid separator during cooling operation as a liquid refrigerant in a refrigerant tank.

【0006】[0006]

【発明が解決しようとする課題】このような従来技術で
は以下のような問題点があった。
The above prior art has the following problems.

【0007】まず、アキュームレータに冷媒を貯留する
ように構成されている冷凍サイクルでは、運転中の圧縮
機の吸入状態は常に少量の液冷媒が含まれ、吸入状態の
エンタルピの上限は飽和蒸気エンタルピである。圧縮機
から冷媒と共に吐出される冷凍機油の流量が多い場合に
は、圧縮機へ適正な返油を行うためにアキュームレータ
内の油戻し穴径を大きくすることが必要となる。この場
合、液冷媒も同時に圧縮機へ吸入される状態となり、吸
入冷媒は液冷媒の混入量も増加するため、吸入エンタル
ピは飽和蒸気エンタルピよりかなり小さくなる。このた
め能力を確保するために蒸発器入口冷媒エンタルピを小
さくして、蒸発器での冷媒エンタルピ変化量を大きくす
ることが必要となり、凝縮器での冷媒過冷却度を大きく
設定することになる。
First, in a refrigeration cycle configured to store refrigerant in an accumulator, the suction state of the compressor during operation always contains a small amount of liquid refrigerant, and the upper limit of the enthalpy in the suction state is saturated vapor enthalpy. is there. When the flow rate of the refrigerating machine oil discharged together with the refrigerant from the compressor is large, it is necessary to increase the diameter of the oil return hole in the accumulator in order to properly return the oil to the compressor. In this case, the liquid refrigerant is also sucked into the compressor at the same time, and the amount of the liquid refrigerant mixed into the suction refrigerant increases, so that the suction enthalpy is considerably smaller than the saturated vapor enthalpy. For this reason, it is necessary to reduce the refrigerant enthalpy at the evaporator to increase the refrigerant enthalpy change amount at the evaporator in order to secure the capacity, and to set the refrigerant supercooling degree at the condenser to be large.

【0008】一定の大きさを有する凝縮器で過冷却度を
大きくすることは、凝縮器の一部に伝熱性能が良好でな
い液冷媒を貯留するため、冷媒が凝縮する面積が減少
し、冷凍サイクルの高圧側圧力が高い運転点となり、圧
縮機入力増加して冷凍サイクルの運転効率が低下すると
いう問題点があった。
[0008] Increasing the degree of subcooling by using a condenser having a certain size stores a liquid refrigerant having poor heat transfer performance in a part of the condenser. There has been a problem that the high-pressure side pressure of the cycle becomes a high operating point, the compressor input increases, and the operating efficiency of the refrigeration cycle decreases.

【0009】また、「代替冷媒R407C を用いたパッケー
ジエアコンの特性」(平成7年度日本冷凍協会学術講演
会講演論文集 p.13〜p.16)に記載されているように、R
22の代替冷媒としてR407C のような非共沸混合冷媒(HFC
32/125/134a:23/25/53wt%)を使用する場合には、アキュ
ームレータのようにかわき度が大きい状態で余剰冷媒を
貯留する構成では封入冷媒の組成と冷凍サイクル内を循
環する冷媒の差異が大きくなる問題点がある。すなわ
ち、貯留される冷媒はHFC134a のような低圧冷媒(高沸
点冷媒)の比率が大きくなり、冷凍サイクル内を循環す
る冷媒の組成はHFC32,125の高圧冷媒(低沸点冷媒)の
比率が大きくなる。この結果、R22の場合に比べて、冷
凍サイクルの高圧圧力が高い運転状態となり、圧縮機入
力が上昇し冷凍サイクルの運転効率が低下するという問
題点があった。
Further, as described in “Characteristics of Packaged Air Conditioner Using Alternative Refrigerant R407C” (Papers Collection of the Japanese Refrigeration Society Academic Lecture 1995, p.13 to p.16),
Non-azeotropic refrigerants such as R407C (HFC
(32/125 / 134a: 23/25 / 53wt%), the composition of the enclosed refrigerant and the refrigerant that circulates in the refrigeration cycle in a configuration where the excess refrigerant is stored in a state of high dryness like an accumulator There is a problem that the difference increases. In other words, the ratio of low-pressure refrigerant (high-boiling refrigerant) such as HFC134a in the stored refrigerant increases, and the composition of refrigerant circulating in the refrigeration cycle increases in the ratio of high-pressure refrigerant (low-boiling refrigerant) in HFC32,125. . As a result, compared to the case of R22, there is a problem that the high pressure of the refrigeration cycle becomes higher, the compressor input increases, and the operation efficiency of the refrigeration cycle decreases.

【0010】また、非共沸混合冷媒を用いた従来例では
必要とする冷媒容器の数が増えることによるコストアッ
プの問題、また冷媒は2つの容器に分散して貯留される
ので冷凍サイクルの安定性に問題が有る。また冷房運転
時は高沸点冷媒が主として冷凍サイクル内を循環する
が、暖房運転時には冷媒タンクでガス化する低圧冷媒も
循環するので運転モードによって冷媒組成が大きく変化
するという問題点があった。
Further, in the conventional example using the non-azeotropic refrigerant mixture, the number of required refrigerant containers increases, and the cost increases. Further, since the refrigerant is dispersed and stored in two containers, the refrigeration cycle is stabilized. There is a problem with gender. In the cooling operation, the high-boiling-point refrigerant mainly circulates in the refrigeration cycle, but in the heating operation, the low-pressure refrigerant gasified in the refrigerant tank also circulates, so that there is a problem that the refrigerant composition greatly changes depending on the operation mode.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明ではアキュームレータの場合に比べて冷媒
かわき度が小さい受液器を余剰冷媒貯留容器となるよう
に構成し、受液器内の利用側熱交換器に連なる導入出管
の上部に受液器上部のガス冷媒と連通する開孔部を設け
るとともに、受液器の上部からガス冷媒を受液器の導入
出管にバイパスする回路を設けることによって、受液器
出口の冷媒かわき度を制御し、簡素化された構成で広い
運転範囲に対応できる冷凍サイクルを提供する。室外機
に設けた抵抗可変の電子膨張弁と上記の受液器内導入出
管に設けた開孔部およびバイパス管とにより運転範囲の
拡大を図る構成とした。
In order to solve the above-mentioned problems, in the present invention, a liquid receiver having a smaller degree of refrigerant stiffness as compared with an accumulator is constituted as an excess refrigerant storage container, In the upper part of the inlet / outlet pipe connected to the use side heat exchanger in the inside, an opening communicating with the gas refrigerant at the upper part of the receiver is provided, and the gas refrigerant is bypassed from the upper part of the receiver to the inlet / outlet pipe of the receiver. A refrigeration cycle that controls the dryness of the refrigerant at the outlet of the liquid receiver by providing a circuit that performs a wide range of operation with a simplified configuration is provided. The operation range is expanded by the variable resistance electronic expansion valve provided in the outdoor unit and the opening and the bypass pipe provided in the inlet / outlet pipe in the liquid receiver.

【0012】[0012]

【発明の実施の形態】以下、図1〜図5に基づいて具体
的な実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment will be described below with reference to FIGS.

【0013】図1は第1の実施例を示す。図1におい
て、Aは室外機、Bは室内機、1は圧縮機、2は冷暖房
運転に応じて冷媒の流れ方向を切り替える四方弁、3は
熱源側熱交換器、4は電子膨張弁、5は受液器、5―
1,5―2は受液器内の導入出管、5―3は導入出管5
―2の上部に設けられた開孔部、5―4は受液器上部か
らのガス冷媒取出し口、6はバイパス管、7はバイパス
管に設けられた開閉弁、8は受液器の導入出管に設けら
れたパス接続口、9は室外機Aと室内機Bとを接続する
液側接続管、10は利用側熱交換器、11は室外機Aと
室内機Bとを接続するガス側接続管を示す。
FIG. 1 shows a first embodiment. In FIG. 1, A is an outdoor unit, B is an indoor unit, 1 is a compressor, 2 is a four-way valve for switching the flow direction of the refrigerant in accordance with the cooling and heating operation, 3 is a heat source side heat exchanger, 4 is an electronic expansion valve, 5 Is a receiver, 5-
1,5-2 is an inlet / outlet pipe in the receiver, 5-3 is an inlet / outlet pipe 5
The opening provided in the upper part of -2, 5-4 is a gas refrigerant outlet from the upper part of the receiver, 6 is a bypass pipe, 7 is an on-off valve provided in the bypass pipe, and 8 is introduction of the receiver. A path connection port provided in the outlet pipe, 9 is a liquid side connection pipe connecting the outdoor unit A and the indoor unit B, 10 is a use side heat exchanger, and 11 is a gas connecting the outdoor unit A and the indoor unit B. 3 shows a side connection pipe.

【0014】冷房運転時には、実線で示すように冷媒は
圧縮機1,四方弁2,熱源側熱交換器3,電子膨張弁
4,受液器5,液側接続配管9,利用側熱交換器10,
ガス側接続管11,四方弁2,圧縮機1の順に循環す
る。受液器に冷媒は電子膨張弁4で減圧された二相状態
冷媒が導入管5―1から流入し、導出管5―2から流出
する。この際、受液器に導入管5―1から流入する二相
冷媒は受液器内で気液分離され、液冷媒は導出管5―2
の下部から、またガス冷媒は導出管5−2の上部に設け
られた開孔部5―3から受液器5を流出し、液側接続管
9は二相状態となる。
During the cooling operation, the refrigerant is supplied to the compressor 1, the four-way valve 2, the heat source side heat exchanger 3, the electronic expansion valve 4, the liquid receiver 5, the liquid side connection pipe 9, and the use side heat exchanger as shown by the solid line. 10,
The gas circulates in the order of the gas connection pipe 11, the four-way valve 2, and the compressor 1. As for the refrigerant, the two-phase refrigerant whose pressure has been reduced by the electronic expansion valve 4 flows into the receiver from the inlet pipe 5-1 and flows out from the outlet pipe 5-2. At this time, the two-phase refrigerant flowing from the introduction pipe 5-1 into the receiver is separated into gas and liquid in the receiver, and the liquid refrigerant is discharged into the outlet pipe 5-2.
And the gas refrigerant flows out of the receiver 5 through the opening 5-3 provided in the upper part of the outlet pipe 5-2, and the liquid-side connection pipe 9 is in a two-phase state.

【0015】冷媒は最大配管長の場合を考慮して冷凍サ
イクル内にあらかじめ封入されており、最大配管長より
短い場合には余剰冷媒は受液器内にかわき度が小さい配
管途中の状態として貯留される。また、室外側空気温度
も室内側空気温度も高い過負荷運転条件で冷房運転を行
う場合に高圧圧力が過剰に上昇する場合がある。このよ
うな場合には、開閉弁7を開いて受液器の上部口5―4
から受液器上部のガス冷媒をバイパス管6によって受液
器5と液側接続配管9との間のバイパス接続口8に導
く。
The refrigerant is previously sealed in the refrigeration cycle in consideration of the maximum pipe length. If the refrigerant is shorter than the maximum pipe length, the surplus refrigerant is stored in the receiver as a pipe with a low degree of dryness in the middle of the pipe. Is done. In addition, when performing the cooling operation under the overload operation condition in which both the outdoor air temperature and the indoor air temperature are high, the high pressure may increase excessively. In such a case, the on-off valve 7 is opened to open the upper port 5-4 of the receiver.
, The gas refrigerant in the upper part of the receiver is guided to the bypass connection port 8 between the receiver 5 and the liquid-side connection pipe 9 by the bypass pipe 6.

【0016】バイパス管6によって受液器上部のガス冷
媒を取り出すことによって、受液器出口の冷媒かわき度
が大きく、すなわち受液器から流出するガス冷媒比率が
大きくなるように設定されたことになり、受液器への液
冷媒の流入流出のバランスから液冷媒が強制的に受液器
に貯留され、冷凍サイクル内の有効冷媒量を減少するる
ので、高圧側圧力の上昇を防止できる。幅広い運転状態
への対応は上記のバイパス管6による制御に加えて利用
側熱交換器の冷媒過熱度または圧縮機の吐出冷媒過熱度
を制御対象として電子膨張弁4の開度を制御することに
よって行える。
By taking out the gaseous refrigerant at the upper part of the receiver by the bypass pipe 6, the degree of cryogen at the outlet of the receiver, that is, the ratio of gas refrigerant flowing out of the receiver is set to be large. In other words, the liquid refrigerant is forcibly stored in the liquid receiver based on the balance of the flow of the liquid refrigerant into and out of the liquid receiver, and the amount of effective refrigerant in the refrigeration cycle is reduced. A wide range of operating conditions can be handled by controlling the degree of opening of the electronic expansion valve 4 with the degree of superheating of the refrigerant of the use side heat exchanger or the degree of superheating of the refrigerant discharged from the compressor being controlled in addition to the control by the bypass pipe 6 described above. I can do it.

【0017】受液器4はかわき度が小さい配管途中の余
剰冷媒を保有するのでR22 の代替冷媒として知られてい
る非共沸混合冷媒R407C を用いた場合でも循環する冷媒
組成と封入された冷媒組成とはほぼ同じとなり、高圧圧
力が異常に上昇することはない。また液側接続管9には
二相状態の冷媒が流れるため、配管内の冷媒保有量が減
少し必要冷媒量を低減できる。またアキュームレータに
余剰冷媒を保有する冷凍サイクルに較べて、圧縮機の入
口部(蒸発器出口部)の冷媒エンタルピを大きくできる
ので、熱源側熱交換器3で冷媒過冷却度を大きく取る必
要がないため、高圧圧力を低くでき、圧縮機入力の低減
が図れ、冷凍サイクルの成績係数(COP)が向上する。
また熱源側熱交換器3出口で冷媒過冷却度が小さくて良
いため、利用側熱交換器3内の冷媒保有量を低減でき、
さらに必要冷媒量を低減できる効果がある。
The liquid receiver 4 retains the excess refrigerant in the middle of the pipe with a small dryness. Therefore, even when the non-azeotropic mixed refrigerant R407C, which is known as an alternative refrigerant to R22, is used, the circulating refrigerant composition and the sealed refrigerant are included. The composition is almost the same, and the high pressure does not rise abnormally. Further, since the refrigerant in the two-phase state flows through the liquid side connection pipe 9, the amount of refrigerant held in the pipe is reduced, and the required refrigerant amount can be reduced. Also, the refrigerant enthalpy at the inlet (evaporator outlet) of the compressor can be made larger than in a refrigeration cycle in which the excess refrigerant is retained in the accumulator, so that the heat source side heat exchanger 3 does not need to have a large degree of refrigerant subcooling. Therefore, the high pressure can be reduced, the compressor input can be reduced, and the coefficient of performance (COP) of the refrigeration cycle improves.
Further, since the degree of subcooling of the refrigerant at the outlet of the heat source side heat exchanger 3 may be small, the amount of refrigerant retained in the use side heat exchanger 3 can be reduced,
Further, there is an effect that the required refrigerant amount can be reduced.

【0018】暖房運転時には破線で示すように冷媒は圧
縮機1,四方弁2,ガス側接続管11,利用側熱交換器
10,液側接続配管9,受液器5,電子膨張弁4,熱源
側熱交換器3,四方弁2,圧縮機1の順に循環する。液
側接続配管9は液冷媒で満たされる。通常、利用側熱交
換器10に較べて2倍程度の大きさの熱源側熱交換器3
が凝縮器となる冷房運転時に較べて、暖房運転時では余
剰となる冷媒を液側接続配管9内に保有される。このた
め、受液器の容積を小さくでき、受液器のコンパクト化
を図れる効果がある。種々の運転状態への対応は冷房運
転時と同様に電子膨張弁4の開度を制御することによっ
て行う。
During the heating operation, the refrigerant is supplied to the compressor 1, the four-way valve 2, the gas side connection pipe 11, the use side heat exchanger 10, the liquid side connection pipe 9, the liquid receiver 5, the electronic expansion valve 4, The heat source-side heat exchanger 3, the four-way valve 2, and the compressor 1 circulate in this order. The liquid connection pipe 9 is filled with a liquid refrigerant. Usually, the heat source side heat exchanger 3 which is about twice as large as the use side heat exchanger 10
The excess refrigerant is retained in the liquid-side connection pipe 9 during the heating operation as compared with the cooling operation in which the refrigerant becomes a condenser. For this reason, the capacity of the liquid receiver can be reduced, and there is an effect that the liquid receiver can be made compact. Correspondence to various operation states is performed by controlling the opening degree of the electronic expansion valve 4 as in the cooling operation.

【0019】暖房運転の場合も、冷房運転時の説明で述
べたようにアキュームレータに冷媒を貯留する冷凍サイ
クルに比べて、圧縮機入口部(蒸発器出口)の冷媒エン
タルピを大きくできるため、利用側熱交換器10での冷
媒過冷却度を小さくでき、冷凍サイクルの高圧圧力が低
下し冷凍サイクルの成績係数(COP)が向上する効果
がある。
In the heating operation, as described in the description of the cooling operation, the refrigerant enthalpy at the compressor inlet (evaporator outlet) can be larger than that in the refrigeration cycle in which the refrigerant is stored in the accumulator. The degree of subcooling of the refrigerant in the heat exchanger 10 can be reduced, and the high pressure of the refrigeration cycle is reduced, and the coefficient of performance (COP) of the refrigeration cycle is improved.

【0020】図2に第2の実施例を示す。1〜11まで
の記号の意味は第1の実施例と同じである。図2では液
側接続配管9と受液器5の導入出管に設けられたバイパ
ス接続口8の途中に第2の減圧機構12が設けられてい
る点が図1の実施例と異なっている。冷房運転時の冷媒
の流れを図中に実線で示す。熱源側熱交換器3を流出し
た冷媒は電子膨張弁4で減圧され、二相状態となって受
液器5に入り、二相状態で受液器から流出し、第2の減
圧機構12で絞られ、液側接続配管9,利用側熱交換器
10をとおって圧縮機1に戻る。この絞り12は冷房運
転時には電子膨張弁の開度に影響するのみで、第1の実
施例と運転点に差異はない。開閉弁7を開放場合の効果
も第1の実施例と同様である。
FIG. 2 shows a second embodiment. The meanings of the symbols 1 to 11 are the same as in the first embodiment. FIG. 2 differs from the embodiment of FIG. 1 in that a second pressure reducing mechanism 12 is provided in the middle of the bypass connection port 8 provided in the liquid-side connection pipe 9 and the inlet / outlet pipe of the receiver 5. . The flow of the refrigerant during the cooling operation is shown by a solid line in the figure. The refrigerant flowing out of the heat source side heat exchanger 3 is depressurized by the electronic expansion valve 4, enters the liquid receiver 5 in a two-phase state, flows out of the liquid receiver in the two-phase state, and is discharged by the second pressure reducing mechanism 12. It is squeezed and returns to the compressor 1 through the liquid side connection pipe 9 and the use side heat exchanger 10. The throttle 12 only affects the opening of the electronic expansion valve during the cooling operation, and there is no difference between the first embodiment and the operating point. The effect when the on-off valve 7 is opened is the same as in the first embodiment.

【0021】暖房運転時の冷媒の流れは破線で示すよう
に、利用側熱交換10,液側接続配管9,第2の減圧機
構,受液器5,電子膨張弁4の順に流れる。この際、本
実施例では利用側熱交換器10の出口では第2の減圧機
構12の絞りの効果のために、第1の実施例に較べて冷
媒過冷却度が大きくなり、暖房能力が増加する効果があ
る。
During the heating operation, the flow of the refrigerant flows through the use-side heat exchange 10, the liquid-side connection pipe 9, the second pressure reducing mechanism, the liquid receiver 5, and the electronic expansion valve 4 in the order indicated by the broken line. At this time, in this embodiment, the degree of subcooling of the refrigerant at the outlet of the use side heat exchanger 10 is larger than that of the first embodiment due to the effect of the restriction of the second pressure reducing mechanism 12, and the heating capacity is increased. Has the effect of doing

【0022】図3に第3の実施例を示す。1〜12まで
の記号の意味は第2の実施例と同じである。図3では第
2の減圧機構12が利用側熱交換器10と液側接続配管
9の間の室内機B内に設けられている点が図2の実施例
と異なっている。本実施例では第2の実施例と同様、第
1の実施例に較べて冷媒過冷却度が大きくなり、暖房能
力が増加する効果がある。
FIG. 3 shows a third embodiment. The meanings of the symbols 1 to 12 are the same as in the second embodiment. FIG. 3 differs from the embodiment of FIG. 2 in that the second pressure reducing mechanism 12 is provided in the indoor unit B between the use side heat exchanger 10 and the liquid side connection pipe 9. In this embodiment, as in the second embodiment, the degree of supercooling of the refrigerant is larger than in the first embodiment, and there is an effect that the heating capacity is increased.

【0023】図4に第4の実施例を示す。1〜12の記
号の意味は第3の実施例と同じである。図4では第2の
減圧機構12がバイパス接続口8と受液器5の導入管5
−2との間に設けられている点が第2の実施例と異なっ
ている。本実施例では実線で冷媒の流れをしめす冷房運
転時にバイパスを行った場合、バイパス接続口8が第2
の減圧機構12の後流側に取り付けられているため、バ
イパス前後の差圧が大きいためバイパスされるガス流量
が大きくなるので、受液器5内に保有する液冷媒量が増
加し、実施例1〜3に較べて過負荷条件時に高圧圧力低
下にさらに効果がある。
FIG. 4 shows a fourth embodiment. The meanings of the symbols 1 to 12 are the same as in the third embodiment. In FIG. 4, the second pressure reducing mechanism 12 includes the bypass connection port 8 and the introduction pipe 5 of the liquid receiver 5.
-2 is different from the second embodiment. In this embodiment, when the bypass is performed during the cooling operation in which the flow of the refrigerant is indicated by the solid line, the bypass connection port 8 is connected to the second port.
Since the pressure difference before and after the bypass is large, the amount of gas to be bypassed is large because the pressure difference before and after the bypass is large, so that the amount of the liquid refrigerant held in the receiver 5 increases. It is more effective in reducing the high pressure under the overload condition than in the case of 1-3.

【0024】第5の実施例は第1〜4の実施例において
開閉弁7を抵抗可変弁13に置き換えた構成である。図
5はその一例であり、図1に示す第1の実施例の開閉弁
7を抵抗可変弁13に置き換えたものである。抵抗可変
弁は13は連続的に抵抗が変化する弁でもよいし、段階
的に抵抗が変化する弁でもよい。この実施例では以上に
示した実施例より冷房運転時の圧力をよりきめ細かく制
御でき、運転の安定化を図れる効果がある。
The fifth embodiment has a configuration in which the on-off valve 7 is replaced with a variable resistance valve 13 in the first to fourth embodiments. FIG. 5 shows an example in which the on-off valve 7 of the first embodiment shown in FIG. The resistance variable valve 13 may be a valve whose resistance changes continuously or a valve whose resistance changes stepwise. In this embodiment, the pressure during the cooling operation can be controlled more finely than in the embodiment described above, and the operation can be stabilized.

【0025】以上の第1〜5の実施例では冷媒の種類に
ついては言及しなかったが、従来の技術の項で述べたよ
うに、余剰冷媒は冷媒かわき度の小さい受液器に貯留さ
れるので非共沸混合冷媒を用いた場合でも封入組成と循
環組成とがほぼ同一となり冷凍サイクルの運転安定化が
図れる。
In the first to fifth embodiments, the type of the refrigerant is not mentioned, but as described in the section of the prior art, the surplus refrigerant is stored in the receiver having a small degree of refrigerant dryness. Therefore, even when a non-azeotropic refrigerant mixture is used, the filling composition and the circulation composition are substantially the same, and the operation of the refrigeration cycle can be stabilized.

【0026】[0026]

【発明の効果】本発明によれば室外機に電子膨張弁を有
する冷凍サイクル構成において、冷媒かわき度が小さい
状態で冷凍サイクル内の余剰冷媒を受液器に保有するよ
うに構成し、受液器に保有できる冷媒量を制御できる構
成としたことによって、冷媒として非共沸混合冷媒を用
いた場合でも広い運転範囲で高圧圧力を適正な範囲に制
御でき、冷凍サイクルの運転効率を向上させる効果があ
る。また凝縮器での過冷却度を小さくでき、冷房運転時
の液側接続管内の冷媒状態を二相流とできるため、大幅
に必要冷媒量を低減できる効果がある。また、暖房時の
液接続管内が液冷媒で満たされるため、冷房運転時と暖
房運転時の余剰冷媒差が小さくなり、受液器を小形にで
きる効果がある。
According to the present invention, in a refrigeration cycle configuration having an electronic expansion valve in an outdoor unit, an excess refrigerant in the refrigeration cycle is held in a receiver in a state in which the refrigerant dryness is small, With the structure that can control the amount of refrigerant that can be held in the refrigerator, the high pressure can be controlled to an appropriate range over a wide operating range even when a non-azeotropic refrigerant mixture is used as the refrigerant, and the effect of improving the operating efficiency of the refrigeration cycle is improved. There is. In addition, the degree of supercooling in the condenser can be reduced, and the refrigerant state in the liquid side connection pipe during the cooling operation can be made into a two-phase flow, so that the required refrigerant amount can be greatly reduced. In addition, since the inside of the liquid connection pipe during heating is filled with the liquid refrigerant, the difference in surplus refrigerant between the cooling operation and the heating operation is reduced, and the liquid receiver can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す図。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す図。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す図。FIG. 3 is a diagram showing a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す図。FIG. 4 is a diagram showing a fourth embodiment of the present invention.

【図5】本発明の第5の実施例を示す図。FIG. 5 is a diagram showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…熱源側熱交換器、4…電
子膨張弁、5…受液器、5―1…受液器内の導入出管、
5―2…受液器内の導入出管、5―3…導入出管5―2
の上部に設けられた開孔部、5―4…受液器上部からの
ガス冷媒取出し口、6…バイパス管、7…バイパス管に
設けられた開閉弁、8…受液器の導入出管に設けられた
バイパス接続口、9…室外機Aと室内機Bとを接続する
液側接続管、10…利用側熱交換器、11…室外機Aと
室内機Bとを接続するガス側接続管、12…第2の減圧
機構、13…抵抗可変弁。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger, 4 ... Electronic expansion valve, 5 ... Liquid receiver, 5-1 ... Inlet / outlet pipe in liquid receiver,
5-2: Inlet / outlet in the receiver 5-3: Inlet / outlet 5-2
5-4: gas refrigerant outlet from the upper part of the receiver, 6: bypass pipe, 7: open / close valve provided on the bypass pipe, 8: inlet / outlet pipe of the receiver , A liquid side connection pipe connecting the outdoor unit A and the indoor unit B, 10 a use side heat exchanger, 11 a gas side connection connecting the outdoor unit A and the indoor unit B Pipe, 12: second pressure reducing mechanism, 13: variable resistance valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦田 和幹 静岡県清水市村松390番地 株式会社日立 空調システム内 (72)発明者 竹中 寛 静岡県清水市村松390番地 株式会社日立 空調システム内 (72)発明者 伊藤 将弘 静岡県清水市村松390番地 株式会社日立 空調システム内 (72)発明者 田中 慶治 静岡県清水市村松390番地 株式会社日立 空調システム内 Fターム(参考) 3L092 AA02 BA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuki Urata 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Hitachi Air Conditioning System Co., Ltd. (72) Inventor Hiroshi Takenaka 390 Muramatsu, Shimizu-shi Shizuoka Prefecture Inside Hitachi Air Conditioning System Co., Ltd. (72 ) Inventor Masahiro Ito 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Hitachi Air Conditioning System (72) Inventor Keiji Tanaka 390 Muramatsu, Shimizu-shi Shizuoka Prefecture Inside Hitachi Air Conditioning System F-term (Reference) 3L092 AA02 BA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】室外機内に収納された圧縮機,四方弁,熱
源側熱交換器,(第1の)抵抗可変減圧機構,受液器,
室内機に収納された利用側熱交換器およびこれら室外機
と室内機とを接続する接続配管を順次接続してなる冷凍
サイクルにおいて、受液器内に設けられている液側接続
配管および利用側熱交換器に繋がる導入出管の上部に受
液器内のガス冷媒と連通する開孔部を設けるとともに、
液側接続配管と受液器との間のバイパス接続口へ受液器
の上部取出し口から開閉弁を途中に設けたバイパス通路
を設けたことを特徴とする冷凍サイクル。
1. A compressor housed in an outdoor unit, a four-way valve, a heat source side heat exchanger, a (first) variable resistance pressure reducing mechanism, a liquid receiver,
In a refrigeration cycle in which a use-side heat exchanger housed in an indoor unit and a connection pipe connecting the outdoor unit and the indoor unit are sequentially connected, a liquid-side connection pipe and a use side provided in a liquid receiver are provided. At the top of the inlet / outlet connected to the heat exchanger, an opening is provided to communicate with the gas refrigerant in the receiver,
A refrigeration cycle, wherein a bypass passage is provided from an upper outlet of a receiver to a bypass connection port between the liquid-side connection pipe and the receiver.
【請求項2】請求項1の冷凍サイクルにおいて、前記の
バイパス接続口と液側接続配管との間に第2の減圧機構
を設けたことを特徴とする冷凍サイクル。
2. The refrigeration cycle according to claim 1, wherein a second pressure reducing mechanism is provided between the bypass connection port and the liquid-side connection pipe.
【請求項3】請求項1の冷凍サイクルにおいて、第2の
減圧機構を液側配管と利用側熱交換器との間に設けたこ
とを特徴とする冷凍サイクル。
3. The refrigeration cycle according to claim 1, wherein the second pressure reducing mechanism is provided between the liquid side pipe and the use side heat exchanger.
【請求項4】請求項2の冷凍サイクルにおいて、第2の
減圧機構を前記のバイパス接続口と受液器との間に設け
たことを特徴とする冷凍サイクル。
4. The refrigeration cycle according to claim 2, wherein a second pressure reducing mechanism is provided between the bypass connection port and the receiver.
【請求項5】請求項1〜4のいずれか1項に記載の冷凍
サイクルにおいて、受液器からバイパス接続口へのバイ
パス通路途中の開閉弁が抵抗可変弁であることを特徴と
する冷凍サイクル。
5. The refrigeration cycle according to claim 1, wherein the on-off valve in the middle of the bypass passage from the receiver to the bypass connection port is a variable resistance valve. .
【請求項6】請求項1〜5のいずれか1項に記載の冷凍
サイクルにおいて、冷凍サイクル内の冷媒は単一冷媒ま
たは、沸点の異なる2種類以上の冷媒であることを特徴
とする冷凍サイクル。
6. The refrigeration cycle according to claim 1, wherein the refrigerant in the refrigeration cycle is a single refrigerant or two or more refrigerants having different boiling points. .
JP11125577A 1999-05-06 1999-05-06 Refrigerating cycle Pending JP2000320916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11125577A JP2000320916A (en) 1999-05-06 1999-05-06 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11125577A JP2000320916A (en) 1999-05-06 1999-05-06 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2000320916A true JP2000320916A (en) 2000-11-24

Family

ID=14913636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11125577A Pending JP2000320916A (en) 1999-05-06 1999-05-06 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2000320916A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295915A (en) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp Air conditioner
CN106352624A (en) * 2016-08-19 2017-01-25 重庆美的通用制冷设备有限公司 Heat pump unit
US9733000B2 (en) * 2013-10-07 2017-08-15 Daikin Industries, Ltd. Refrigeration apparatus
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295915A (en) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp Air conditioner
US9733000B2 (en) * 2013-10-07 2017-08-15 Daikin Industries, Ltd. Refrigeration apparatus
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device
CN108139119B (en) * 2015-10-08 2020-06-05 三菱电机株式会社 Refrigeration cycle device
CN106352624A (en) * 2016-08-19 2017-01-25 重庆美的通用制冷设备有限公司 Heat pump unit
CN106352624B (en) * 2016-08-19 2019-04-02 重庆美的通用制冷设备有限公司 Heat pump unit

Similar Documents

Publication Publication Date Title
JP4069733B2 (en) Air conditioner
US5768902A (en) Refrigeration cycle and method of controlling the same
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
JP2000249413A (en) Refrigeration unit
JPH0634169A (en) Air conditioning device
JP4848608B2 (en) Refrigerant circuit
JP3731174B2 (en) Refrigeration cycle
JP2000179957A (en) Air conditioner
JP3161347B2 (en) Refrigeration equipment
JP2000320916A (en) Refrigerating cycle
JP3791090B2 (en) Heat pump equipment
JP4334818B2 (en) Cooling system
JPS6155562A (en) Refrigerator using mixed refrigerant
JP3336884B2 (en) Air conditioner
JP3055854B2 (en) Refrigeration cycle and control method thereof
JP3783153B2 (en) Air conditioner
CN210197764U (en) Adjusting device of refrigerating system
JP3334331B2 (en) Air conditioner
JPH10148412A (en) Refrigerating system
JP3168496B2 (en) Air conditioner
JPH06147677A (en) Air conditioner
JP2000320934A (en) Refrigerating cycle circuit
JPS63286676A (en) Air conditioner
CN214039017U (en) Air conditioner and outdoor unit
JP2003194426A (en) Cooling device