JPH08139344A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH08139344A
JPH08139344A JP30272294A JP30272294A JPH08139344A JP H08139344 A JPH08139344 A JP H08139344A JP 30272294 A JP30272294 A JP 30272294A JP 30272294 A JP30272294 A JP 30272294A JP H08139344 A JPH08139344 A JP H08139344A
Authority
JP
Japan
Prior art keywords
light
optical semiconductor
semiconductor device
recess
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30272294A
Other languages
Japanese (ja)
Inventor
Shoichi Machida
祥一 町田
Masaya Fukaura
正也 深浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30272294A priority Critical patent/JPH08139344A/en
Publication of JPH08139344A publication Critical patent/JPH08139344A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE: To simplify the structure of a resin sealed optical semiconductor device, and improve its resolution in light reception/emission. CONSTITUTION: An optical semiconductor device is formed by sealing an optical semiconductor device 1, such as a light detecting chip and light emitting chip, with transparent resin 4. The face of the sealing resin 4, opposed to the optical semiconductor device 1, is flattened, and a recess 5 the width of which is almost the same as that of the optical semiconductor device, is formed on the flat surface in the position of the optical semiconductor device's optical axis. Light incident upon the tapered face 5a, positioned on the side of the recess 5, is refracted or reflected sideways. Only the light passing through the flat bottom 5b of the recess 5 is received or emitted, which enables the enhancement of resolution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光素子や受光素子を備
える光半導体装置に関し、特に光の発光角度や受光角度
を微小角度に制限して高分解能が要求される半導体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device including a light emitting element and a light receiving element, and more particularly to a semiconductor device which requires a high resolution by limiting a light emitting angle or a light receiving angle of light to a minute angle.

【0002】[0002]

【従来の技術】従来の光半導体装置としてフォトインタ
ラプタがあり、発光素子から発光した光を受光素子で受
光することで、両素子間に位置される遮光物体の検出を
行っている。従来、この種の光半導体装置は、例えば受
光素子の場合、リード等に支持されて電気接続が施され
た受光チップを光透過率の高い封止樹脂により封止し、
この封止樹脂を通して入射される光を受光する構成とさ
れている。しかしながら、この構成では、受光チップの
受光面に向けて投射される光は全て受光チップにより受
光されるため、その受光角度、即ち分解能力は受光チッ
プの大きさに依存することになり、しかも受光チップの
面積の低減には限界があるために、その分解能も低いも
のとなっている。
2. Description of the Related Art There is a photo interrupter as a conventional optical semiconductor device, and a light-receiving element receives light emitted from a light-emitting element to detect a light-shielding object located between the two elements. Conventionally, this type of optical semiconductor device, for example, in the case of a light receiving element, a light receiving chip supported by a lead or the like and electrically connected is sealed with a sealing resin having a high light transmittance,
It is configured to receive the light incident through the sealing resin. However, in this configuration, all the light projected toward the light receiving surface of the light receiving chip is received by the light receiving chip, so that the light receiving angle, that is, the resolution, depends on the size of the light receiving chip. Since the reduction of the chip area is limited, the resolution is also low.

【0003】そこで、従来では図7に示すように、分解
能を高めたものが提案されている。即ち、リードフレー
ム2の一方のリード2Aのマウント部2aに受光チップ
1を搭載し、他方のリード2Bに金属ワイヤ3で電気接
続し、これらを透明な封止樹脂4で封止する。そして、
封止樹脂4を遮光性のカバー9で覆い、かつこのカバー
9には受光チップ1の正面に対応する位置に微細幅のス
リット10を開設している。或いは、スリットに代えて
窓を開設したものが提案されている。この構成では、ス
リット10や窓を透過した光のみが受光チップ1におい
て受光されるため、受光チップ1の受光面の面積に比較
して微小な受光角度の光を受光することにより、分解能
を上げる上では有効である。
Therefore, conventionally, as shown in FIG. 7, a device having a higher resolution has been proposed. That is, the light receiving chip 1 is mounted on the mount portion 2a of one lead 2A of the lead frame 2, electrically connected to the other lead 2B by the metal wire 3, and these are sealed by the transparent sealing resin 4. And
The sealing resin 4 is covered with a light-shielding cover 9, and a slit 10 having a fine width is formed in the cover 9 at a position corresponding to the front surface of the light receiving chip 1. Alternatively, it is proposed that a window is opened instead of the slit. In this configuration, since only the light that has passed through the slit 10 and the window is received by the light-receiving chip 1, the resolution is increased by receiving light having a small light-receiving angle as compared with the area of the light-receiving surface of the light-receiving chip 1. Effective above.

【0004】同様の趣旨から、実開昭62−10946
7号公報では、受光或いは発光素子を内装する遮光性ハ
ウジングにスリットを設けた構成が開示されており、こ
のような構成を採用しても分解能を高めることは可能で
ある。
From the same point of view, the actual construction of Sho 62-10946
Japanese Unexamined Patent Publication No. 7 discloses a configuration in which a slit is provided in a light-shielding housing that incorporates a light-receiving or light-emitting element, and even if such a configuration is adopted, the resolution can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この構
成では、封止樹脂の外側に遮光性のカバーを形成しなけ
ればならないため、構造が複雑になるとともに、製造工
数がかかりコスト高になるという問題がある。このこと
は、前記公報に記載されているものも、遮光性のハウジ
ングを形成しているため、封止樹脂で一体化したものに
比較すると構造が複雑になり、かつ製造工数が多く、コ
スト高になる。
However, in this structure, since a light-shielding cover has to be formed on the outside of the sealing resin, the structure becomes complicated, and the number of manufacturing steps is increased and the cost is increased. There is. This also means that the structure described in the above publication also forms a light-shielding housing, which makes the structure more complicated than the one integrated with a sealing resin, and requires a large number of manufacturing steps, resulting in high cost. become.

【0006】また、図7に示した従来の光半導体装置で
は、受光チップを封止樹脂で封止する工程と、遮光性カ
バーを被着する工程とが独立しているため、カバーに設
けたスリットを高精度に受光チップに対向位置させるこ
とが難しく、この位置に誤差が生じているときには、受
光の効率が低下され、高感度の受光ができなくなるとい
う問題がある。なお、このような問題は発光素子におい
ても同様である。
Further, in the conventional optical semiconductor device shown in FIG. 7, since the step of sealing the light receiving chip with the sealing resin and the step of applying the light shielding cover are independent, they are provided on the cover. It is difficult to accurately position the slit to face the light-receiving chip, and when an error occurs at this position, the efficiency of light reception is reduced, and high-sensitivity light reception cannot be performed. Note that such a problem also applies to the light emitting element.

【0007】[0007]

【発明の目的】本発明の目的は、遮光カバーを不要にし
て構造の簡略化を図るとともに、分解能力を向上させた
樹脂封止型の光半導体装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin-sealed type optical semiconductor device in which a light-shielding cover is not required and the structure is simplified and the disassembling ability is improved.

【0008】[0008]

【課題を解決するための手段】本発明は、樹脂封止型の
光半導体装置において、透明な樹脂内に封止された光半
導体素子が対向する側の封止樹脂の面を平坦面に形成す
るとともに、この平坦面における光半導体素子の光軸位
置に光半導体素子と略同じ幅寸法の凹部を設けた構成と
する。
According to the present invention, in a resin-sealed type optical semiconductor device, a surface of a sealing resin on a side facing an optical semiconductor element sealed in a transparent resin is formed into a flat surface. At the same time, the optical axis position of the optical semiconductor element on this flat surface is provided with a recess having substantially the same width dimension as the optical semiconductor element.

【0009】この凹部は、光半導体素子の光軸が通る底
面を平坦とし、その両側をテーパ面に形成する。あるい
は凹部は、平坦面に対して縦横方向にそれぞれテーパ面
を有する略正方形の凹部として形成する。更に、凹部
は、光半導体素子の光軸上に中心を有する半球状に形成
する。
The recess has a flat bottom surface through which the optical axis of the optical semiconductor element passes and both sides thereof are tapered. Alternatively, the recess is formed as a substantially square recess having tapered surfaces in the vertical and horizontal directions with respect to the flat surface. Further, the recess is formed in a hemispherical shape having the center on the optical axis of the optical semiconductor element.

【0010】[0010]

【作用】凹部内の側部に入射される光は側方に屈折或い
は反射されるため、光半導体素子の光軸上の光のみが受
光或いは発光されることになり、受光あるいは発光にお
ける分解能を高めることが可能となる。
Since the light incident on the side of the concave portion is refracted or reflected to the side, only the light on the optical axis of the optical semiconductor element is received or emitted. It is possible to raise it.

【0011】[0011]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第1実施例の斜視図であり、本発明
を受光素子に適用した例を示している。同図において、
1はフォトダイオード等の受光チップであり、導電板を
加工したリードフレーム2の一方のリード2Aに一体に
設けたマウント部2aに基板が電気接続された状態で固
着される。また、受光チップ1の電極パッドは対をなす
リード2Bに金属ワイヤ3により電気接続される。そし
て、前記受光ッチップ1を含むマウント部2aや金属ワ
イヤ3及び各リード2A,2Bの先端部は光を透過する
樹脂4により一体に封止されている。
Next, the present invention will be described with reference to the drawings. 1 is a perspective view of a first embodiment of the present invention, showing an example in which the present invention is applied to a light receiving element. In the figure,
Reference numeral 1 denotes a light receiving chip such as a photodiode, which is fixed in a state where the substrate is electrically connected to a mount portion 2a provided integrally with one lead 2A of a lead frame 2 having a conductive plate processed. In addition, the electrode pad of the light receiving chip 1 is electrically connected to the pair of leads 2B by the metal wire 3. The mount portion 2a including the light-receiving chip 1, the metal wire 3, and the tips of the leads 2A and 2B are integrally sealed with a resin 4 that transmits light.

【0012】そして、この封止樹脂4は、その外形が直
方体に形成され、特に前記受光チップ1の正面に対向す
る前面部は平坦に形成され、しかる上で前記受光チップ
1の直前の領域にはリードフレーム2の長さ方向に沿っ
て凹溝5を形成している。この凹溝5は、図2(a)お
よび(b)に断面構造を示すように、封止樹脂4の前面
から受光チップに向けて溝幅が徐々に狭められる角度が
θのテーパ面5aを両側に有し、これらテーパ面5aの
間に平坦な底面5bを有している。この場合、凹溝5の
開口部の幅は受光チップ1の幅寸法に略等しくされ、一
方底面5bは微小幅で受光チップ1の正面に対して平行
となるように形成される。
The outer shape of the sealing resin 4 is formed in a rectangular parallelepiped shape, and in particular, the front surface portion facing the front surface of the light receiving chip 1 is formed flat, and in the region immediately in front of the light receiving chip 1. Forms a groove 5 along the length direction of the lead frame 2. As shown in the sectional structures of FIGS. 2A and 2B, the concave groove 5 has a tapered surface 5a having an angle θ with which the groove width is gradually narrowed from the front surface of the sealing resin 4 toward the light receiving chip. It has on both sides and has a flat bottom surface 5b between these tapered surfaces 5a. In this case, the width of the opening of the concave groove 5 is made substantially equal to the width dimension of the light receiving chip 1, while the bottom surface 5b is formed with a minute width and parallel to the front surface of the light receiving chip 1.

【0013】したがって、この構成の受光素子では、図
2(a)に示すように、受光素子1に向けて封止樹脂4
の前面から入射される光は、凹溝5以外の領域の光はそ
のまま直進し、受光素子1において受光されることはな
い。また、凹溝5に入射された光のうち、テーパ面5a
に入射された光は外方向に向けて屈折されるため、受光
チップ1で受光されることはない。そして、凹溝5の底
面5bに入射された光のみが受光チップ1に向けて真っ
直ぐに進行され、受光チップ1において受光されること
になる。したがって、凹溝5の底面5bに相当する僅か
な光束幅の光のみが受光されることになり、高い分解能
を持つ光半導体装置として構成されることになる。
Therefore, in the light receiving element having this structure, as shown in FIG. 2A, the sealing resin 4 is directed toward the light receiving element 1.
In the light incident from the front surface of the above, the light in the region other than the concave groove 5 goes straight as it is, and is not received by the light receiving element 1. Also, of the light incident on the groove 5, the tapered surface 5a
Since the light incident on is refracted outward, the light is not received by the light receiving chip 1. Then, only the light incident on the bottom surface 5b of the concave groove 5 travels straight toward the light receiving chip 1 and is received by the light receiving chip 1. Therefore, only light having a small luminous flux width corresponding to the bottom surface 5b of the concave groove 5 is received, and the optical semiconductor device having a high resolution is configured.

【0014】ここで、前記した凹溝5のテーパ面5aの
テーパ角θと分解能の関係を考察する。一般にこの種の
光半導体装置の封止樹脂にはエポキシ樹脂が使用され、
その屈折率は約1.55であり、大気の屈折率は1であ
るので、sin θ×L=Aとなるようにテーパ角θを設定
すれば、テーパ面5aに入射された光が受光チップ1で
受光されることはない。ここで、Lは受光チップ1の受
光面から封止樹脂4の前面までの長さ、Aは受光チップ
1の幅寸法である。これにより、前記したように凹溝5
の底面5bの光のみを受光して分解能力を高めることが
可能となる。なお、実際には封止する樹脂の屈折率や受
光チップの受光面の寸法に応じて凹溝のテーパ角θは設
定されることになる。
Now, the relationship between the taper angle θ of the tapered surface 5a of the groove 5 and the resolution will be considered. Generally, epoxy resin is used as the sealing resin for this type of optical semiconductor device,
Its refractive index is about 1.55, and the refractive index of the atmosphere is 1. Therefore, if the taper angle θ is set so that sin θ × L = A, the light incident on the tapered surface 5a will receive light. No light is received at 1. Here, L is the length from the light receiving surface of the light receiving chip 1 to the front surface of the sealing resin 4, and A is the width dimension of the light receiving chip 1. Thereby, as described above, the groove 5
It is possible to enhance the decomposition ability by receiving only the light from the bottom surface 5b of the. Actually, the taper angle θ of the concave groove is set according to the refractive index of the resin to be sealed and the size of the light receiving surface of the light receiving chip.

【0015】なお、図1を発光素子に用いた場合には、
図2(b)のように、発光チップ1Aからの光を凹溝5
のテーパ面5aで全反射させるように構成すれば、凹溝
5の面5bを透過する光のみが射出されることになり、
光束の細い、高分解能の光を射出させることが可能とな
る。なお、エポキシ樹脂の屈折率は約1.55であり、
大気の屈折率は1であるので、全反射を生じさせるため
のテーパ角θはθ≧sin-1(1/1.55)≒40°
となる。よって、θ>40°にすれば凹溝の底面の光の
みを射出して分解能力を高めることが可能となる。
When FIG. 1 is used for a light emitting element,
As shown in FIG. 2B, the light from the light emitting chip 1A is recessed into
If the taper surface 5a of the above is configured to totally reflect, only the light transmitted through the surface 5b of the concave groove 5 is emitted,
It is possible to emit high-resolution light having a small luminous flux. The refractive index of the epoxy resin is about 1.55,
Since the refractive index of the atmosphere is 1, the taper angle θ for causing total reflection is θ ≧ sin −1 (1 / 1.55) ≈40 °
Becomes Therefore, if θ> 40 °, only the light on the bottom surface of the concave groove can be emitted to enhance the decomposition ability.

【0016】図3は本発明の第2実施例の斜視図であ
る。この実施例では、封止樹脂の前面には受光チップに
対向する位置に矩形の凹部6を形成し、この凹部6の縦
横方向の断面をいずれもテーパ面6aとして形成し、凹
部6の底面6bのみを受光チップ1に対して平行な平面
に形成したものである。
FIG. 3 is a perspective view of the second embodiment of the present invention. In this embodiment, a rectangular recess 6 is formed on the front surface of the encapsulating resin at a position facing the light-receiving chip, and each of the recesses 6 is formed as a tapered surface 6a in the vertical and horizontal directions, and the bottom surface 6b of the recess 6 is formed. Only the light receiving chip 1 is formed on a plane parallel to the light receiving chip 1.

【0017】この構成では、封止樹脂の前面に入射され
る光のうち、凹部6以外に入射される光は図2(a)に
おいて説明したように、封止樹脂4内を直進して受光チ
ップ1で受光されることはない。また凹部6内に入射さ
れた光でも、テーパ面6aに入射された光はここで屈折
されるため、受光チップ1で受光されることはない。し
たがって、凹部6の底面に入射された光のみが受光チッ
プ1で受光されることになり、受光の分解能を高めるこ
とが可能となる。これにより、この実施例では縦方向及
び横方向のいずれの方向の分解能を高めることができ
る。
In this structure, of the light incident on the front surface of the sealing resin, the light incident on the portions other than the concave portion 6 goes straight through the sealing resin 4 and is received as described in FIG. 2A. The light is not received by the chip 1. Further, even if the light is incident on the concave portion 6, the light incident on the tapered surface 6a is refracted here, so that it is not received by the light receiving chip 1. Therefore, only the light incident on the bottom surface of the concave portion 6 is received by the light receiving chip 1, and the resolution of light reception can be improved. As a result, in this embodiment, the resolution in both the vertical and horizontal directions can be increased.

【0018】図4は本発明を発光素子に適用した第3実
施例の斜視図とその発光経路を示す図である。この実施
例では、封止樹脂4の前面の発光チップ1Aに対向する
箇所に、中心が発光チップ1Aの光軸上に位置された半
球面状の凹部7を形成している。このため、発光チップ
1Aから発光された光のうち、凹部7と発光素子1Aを
結ぶ光軸に沿って発光された光はそのまま凹部7の底面
から封止樹脂4の外方に射出されるが、光軸上ではない
光は凹部7の球面で側方に反射され、そのまま後方に戻
され、或いは封止樹脂4の前面で全反射されるため、封
止樹脂4から射出されることはない。したがって、この
構成においては、微細な光束のみが射出されることにな
り、分解能を高めることができる。
FIG. 4 is a perspective view of a third embodiment in which the present invention is applied to a light emitting element and a view showing its light emitting path. In this embodiment, a semispherical concave portion 7 whose center is located on the optical axis of the light emitting chip 1A is formed on the front surface of the sealing resin 4 facing the light emitting chip 1A. Therefore, of the light emitted from the light emitting chip 1A, the light emitted along the optical axis connecting the recess 7 and the light emitting element 1A is directly emitted from the bottom surface of the recess 7 to the outside of the sealing resin 4. Light that is not on the optical axis is reflected laterally by the spherical surface of the concave portion 7 and returned to the rear as it is, or is totally reflected by the front surface of the sealing resin 4, so that it is not emitted from the sealing resin 4. . Therefore, in this configuration, only a minute light beam is emitted, and the resolution can be improved.

【0019】図5は本発明の第4実施例の断面図であ
り、この実施例では素子の前後方向の厚さに制限がある
場合の例を示している。図5(a)は発光素子1Aに本
発明を適用した場合、図5(b)は受光素子1に本発明
を適用した場合をそれぞれ示している。この実施例で
は、第1実施例あるいは第2実施例の凹溝や凹部のテー
パ面に相当するテーパ面を複数のn個に分割し、かつこ
れら分割したテーパ面を同一平面に配置した鋸歯状部8
として構成としている。
FIG. 5 is a sectional view of a fourth embodiment of the present invention, which shows an example in which the thickness of the element in the front-rear direction is limited. FIG. 5A shows a case where the present invention is applied to the light emitting element 1A, and FIG. 5B shows a case where the present invention is applied to the light receiving element 1. In this embodiment, a tapered surface corresponding to the tapered surface of the concave groove or the concave portion of the first embodiment or the second embodiment is divided into a plurality of n pieces, and the divided tapered surfaces are arranged on the same plane. Part 8
It is configured as.

【0020】したがって、図5(a)のように、発光チ
ップ1Aからの光が鋸歯状部8に投射されると、分割さ
れた複数の分割テーパ面8aによって光は側方に反射さ
れ、封止樹脂から射出されることがない。そして、発光
チップの光軸上の平坦面8bを透過する光のみが封止樹
脂から射出されることになる。
Therefore, as shown in FIG. 5A, when the light from the light emitting chip 1A is projected onto the sawtooth portion 8, the light is reflected to the side by the plurality of divided tapered surfaces 8a and is sealed. It is never injected from the stop resin. Then, only the light that passes through the flat surface 8b on the optical axis of the light emitting chip is emitted from the sealing resin.

【0021】また、図5(b)のように、受光チップ1
に対して入射される光は、分割テーパ面8aにより屈折
されるため、受光チップ1で受光されることはなく、受
光チップ1の光軸上の平坦面8bを透過する光のみが受
光されるため分解能を高めることができる。また、この
構成では、テーパ面を分割して同一面上に位置すること
で、凹溝や凹部の深さを1/nに低減することができ、
発光素子あるいは受光素子を薄く形成することが可能と
なる。
Further, as shown in FIG. 5B, the light receiving chip 1
The incident light is refracted by the split tapered surface 8a, so that it is not received by the light receiving chip 1, and only the light that passes through the flat surface 8b on the optical axis of the light receiving chip 1 is received. Therefore, the resolution can be increased. Further, in this configuration, by dividing the tapered surface and positioning it on the same surface, the depth of the concave groove or the concave portion can be reduced to 1 / n,
The light emitting element or the light receiving element can be formed thin.

【0022】因みに、本発明による発光素子と受光素子
を用いてフォトインタラプタを構成した例を図6に示
す。図6(a)はその斜視図であり、前記第2実施例の
発光素子11と受光素子12を対向配置してハウジング
13に一体的に収納し、発光素子11からの光を受光素
子12で受光できるようにする。そして、発光素子11
と受光素子12との間に画成された溝内に遮光板14を
進退可能に構成する。このため、遮光板14のエッジが
発光素子11と受光素子12を結ぶ光軸を遮断するとき
に、受光素子12の出力が変化され、遮光板14のエッ
ジ位置を検出することが可能となる。
Incidentally, FIG. 6 shows an example in which a photo interrupter is constructed by using the light emitting element and the light receiving element according to the present invention. FIG. 6A is a perspective view thereof, in which the light emitting element 11 and the light receiving element 12 of the second embodiment are arranged so as to face each other and are integrally housed in a housing 13, and the light from the light emitting element 11 is received by the light receiving element 12. Enable to receive light. Then, the light emitting element 11
The light shielding plate 14 is configured to be movable back and forth in a groove defined between the light receiving element 12 and the light receiving element 12. Therefore, when the edge of the light shielding plate 14 blocks the optical axis connecting the light emitting element 11 and the light receiving element 12, the output of the light receiving element 12 is changed, and the edge position of the light shielding plate 14 can be detected.

【0023】図6(b)は遮光板14の移動に伴う受光
素子12の出力の特性図であり、Aは本発明の特性、B
は従来の素子(図7に示したようなスリットを有してい
ないもの)を用いた特性である。Bのように、従来の素
子では発光チップや受光チップのサイズにより光束の幅
が大きいため、特性は緩やかな傾斜となり、遮光板の位
置の検出感度が低いものになっている。これに対し、本
発明では発光素子および受光素子の分解能が高められた
ことにより、特性は急峻な傾斜となり、遮光板の位置の
検出感度が高いものになっていることが判る。
FIG. 6B is a characteristic diagram of the output of the light receiving element 12 according to the movement of the light shielding plate 14, where A is the characteristic of the present invention and B is the characteristic.
Is a characteristic using a conventional element (which does not have a slit as shown in FIG. 7). As shown in B, in the conventional element, since the width of the light flux is large depending on the size of the light emitting chip or the light receiving chip, the characteristics have a gradual inclination and the detection sensitivity of the position of the light shielding plate is low. On the other hand, in the present invention, it is understood that the characteristics are steeply inclined and the detection sensitivity of the position of the light shielding plate is high because the resolution of the light emitting element and the light receiving element is increased.

【0024】[0024]

【発明の効果】以上説明したように本発明は、光半導体
素子を封止する封止樹脂の前面の光半導体素子の光軸位
置に光半導体素子と略同じ幅寸法の凹部を設けているの
で、凹部内の側部に入射される光は側方に屈折或いは反
射され、光半導体素子の光軸上の光のみが受光或いは発
光されることになる。これにより、遮光性カバーとスリ
ット等を設けなくとも受光あるいは発光における分解能
を高めることが可能となり、かつ構造の簡略化が可能と
なる。
As described above, according to the present invention, the concave portion having substantially the same width as the optical semiconductor element is provided at the optical axis position of the optical semiconductor element on the front surface of the sealing resin for sealing the optical semiconductor element. The light incident on the side of the recess is refracted or reflected laterally, and only the light on the optical axis of the optical semiconductor element is received or emitted. As a result, it is possible to improve the resolution in light reception or light emission without providing a light-shielding cover and slits, and it is possible to simplify the structure.

【0025】ここで、凹部を光半導体素子の光軸が通る
底面を平坦とし、その両側をテーパ面に形成すること
で、光軸上の光はそのまま直進し、テーパ面に入射され
た光は外方向に向けて屈折されるため、受光されること
がなく、その凹部の幅方向の分解能が向上される。
Here, the bottom of the optical semiconductor element through which the optical axis of the optical semiconductor element passes is made flat and both sides thereof are formed as tapered surfaces, so that the light on the optical axis goes straight on and the light incident on the tapered surface is Since the light is refracted toward the outside, it is not received and the resolution in the width direction of the recess is improved.

【0026】また、凹部を平坦面に対して縦横方向にそ
れぞれテーパ面を有する略正方形の凹部として形成する
ことで、縦横いずれの方向の分解能も向上することがで
きる。
Further, by forming the recess as a substantially square recess having tapered surfaces in the vertical and horizontal directions with respect to the flat surface, the resolution in both the vertical and horizontal directions can be improved.

【0027】同様に、凹部を光半導体素子の光軸上に中
心を有する半球状に形成することで、光軸を中心とした
所要範囲の光のみを受光させることができ、円周方向に
沿ってその分解能が向上されることになる。
Similarly, by forming the concave portion in a hemispherical shape having its center on the optical axis of the optical semiconductor element, it is possible to receive only light within a required range centered on the optical axis and to extend along the circumferential direction. The resolution will be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】第1実施例の発光素子および受光素子の光の経
路を示す図である。
FIG. 2 is a diagram showing light paths of a light emitting element and a light receiving element of the first embodiment.

【図3】本発明の第2実施例の斜視図である。FIG. 3 is a perspective view of a second embodiment of the present invention.

【図4】本発明の第3実施例の斜視図と発光素子の光の
経路を示す図である。
FIG. 4 is a perspective view of a third embodiment of the present invention and a diagram showing a light path of a light emitting device.

【図5】本発明の第4実施例の断面図とその発光素子お
よび受光素子の光の経路を示す図である。
FIG. 5 is a cross-sectional view of a fourth embodiment of the present invention and a diagram showing light paths of a light emitting element and a light receiving element thereof.

【図6】本発明をフォトインタラプタに適用した例の概
略構成図とその出力特性図である。
FIG. 6 is a schematic configuration diagram and an output characteristic diagram of an example in which the present invention is applied to a photo interrupter.

【図7】従来のスリットを設けた光半導体装置の斜視図
である。
FIG. 7 is a perspective view of an optical semiconductor device having a conventional slit.

【符号の説明】[Explanation of symbols]

1 受光素子 1A 発光素子 2 リードフレーム 4 封止樹脂 5 凹溝(5a テーパ面、5b 底面) 6 凹部(6a テーパ面、6b 底面) 7 凹部(半球状面) 8 鋸歯状部(8a 分割テーパ面、8b 平坦面) 1 Light receiving element 1A Light emitting element 2 Lead frame 4 Sealing resin 5 Recessed groove (5a tapered surface, 5b bottom surface) 6 Recessed portion (6a tapered surface, 6b bottom surface) 7 Recessed portion (semispherical surface) 8 Serrated portion (8a split tapered surface) , 8b flat surface)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発光チップや受光チップ等の光半導体素
子を光透過性の樹脂で封止した光半導体装置において、
前記光半導体素子が対向する側の封止樹脂の面を平坦面
に形成するとともに、この平坦面における前記光半導体
素子の光軸位置に光半導体素子と略同じ幅寸法の凹部を
設けたことを特徴とする光半導体装置。
1. An optical semiconductor device in which an optical semiconductor element such as a light emitting chip or a light receiving chip is sealed with a light transmissive resin,
The surface of the sealing resin on the side facing the optical semiconductor element is formed into a flat surface, and a recess having substantially the same width dimension as the optical semiconductor element is provided at the optical axis position of the optical semiconductor element on the flat surface. A characteristic optical semiconductor device.
【請求項2】 凹部を光半導体素子の光軸が通る底面を
平坦とし、その両側をテーパ面に形成してなる請求項1
の光半導体装置。
2. The bottom surface of the recess, through which the optical axis of the optical semiconductor element passes, is flat, and both sides thereof are tapered.
Optical semiconductor device.
【請求項3】 凹部を平坦面に対して一方向に延びる凹
溝として形成してなる請求項2の光半導体装置。
3. The optical semiconductor device according to claim 2, wherein the concave portion is formed as a concave groove extending in one direction with respect to the flat surface.
【請求項4】 凹部を平坦面に対して縦横方向にそれぞ
れテーパ面を有する略正方形の凹部として形成してなる
請求項2の光半導体装置。
4. The optical semiconductor device according to claim 2, wherein the recess is formed as a substantially square recess having tapered surfaces in the vertical and horizontal directions with respect to a flat surface.
【請求項5】 凹部を光半導体素子の光軸上に中心を有
する半球状に形成してなる請求項1の光半導体装置。
5. The optical semiconductor device according to claim 1, wherein the recess is formed in a hemispherical shape having a center on the optical axis of the optical semiconductor element.
JP30272294A 1994-11-14 1994-11-14 Optical semiconductor device Pending JPH08139344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30272294A JPH08139344A (en) 1994-11-14 1994-11-14 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30272294A JPH08139344A (en) 1994-11-14 1994-11-14 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH08139344A true JPH08139344A (en) 1996-05-31

Family

ID=17912385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30272294A Pending JPH08139344A (en) 1994-11-14 1994-11-14 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH08139344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7543965B2 (en) 2004-10-29 2009-06-09 Samsung Electronic Co., Ltd Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
JP2009130022A (en) * 2007-11-21 2009-06-11 Toshiba Corp Interrupter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220356B2 (en) * 1981-08-27 1990-05-09 Meizeru Gmbh Unto Co
JPH06169135A (en) * 1992-11-30 1994-06-14 Sumitomo Electric Ind Ltd Positioning structure for rectangular optical component
JP3099448B2 (en) * 1991-09-05 2000-10-16 ブラザー工業株式会社 Driving method of ink jet head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220356B2 (en) * 1981-08-27 1990-05-09 Meizeru Gmbh Unto Co
JP3099448B2 (en) * 1991-09-05 2000-10-16 ブラザー工業株式会社 Driving method of ink jet head
JPH06169135A (en) * 1992-11-30 1994-06-14 Sumitomo Electric Ind Ltd Positioning structure for rectangular optical component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7543965B2 (en) 2004-10-29 2009-06-09 Samsung Electronic Co., Ltd Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
JP2009130022A (en) * 2007-11-21 2009-06-11 Toshiba Corp Interrupter

Similar Documents

Publication Publication Date Title
US7102123B2 (en) Reflective imaging encoder
JPS61185980A (en) Light emitting diode
JPH0837339A (en) Semiconductor laser diode device of reflection prevention type
JPS62260384A (en) Semiconductor device
JPH1187782A (en) Light emitting diode
US4833318A (en) Reflection-type photosensor
JPH08139344A (en) Optical semiconductor device
JPWO2020166185A1 (en) Tactile and proximity sensors
JP2001156325A (en) Photo reflector
JP3617951B2 (en) Light reflection type sensor
JPH08286016A (en) Optical element and semiconductor laser device
JP4999596B2 (en) Reflective photo sensor
JPH05175614A (en) Optical semiconductor device
CN111508941B (en) Optical sensing chip packaging structure
JPH04252082A (en) Optically coupled device
WO2022255146A1 (en) Light emitting device, and distance measuring device
JPH05226691A (en) Optical semiconductor device
JPH10223926A (en) Photo-coupling device
JP2002350554A (en) Transmission type photoelectric sensor
JPS62133774A (en) Photosensor
US20220302094A1 (en) Optical sensor, and method for manufacturing optical sensor
JP2006147944A (en) Photo interrupter
JP2000266542A (en) Optical inclination sensor
JP3729725B2 (en) Optical coupling device
JPH08335710A (en) Semiconductor light receiving element and photointerrupter using the light receiving element