WO2022255146A1 - Light emitting device, and distance measuring device - Google Patents

Light emitting device, and distance measuring device Download PDF

Info

Publication number
WO2022255146A1
WO2022255146A1 PCT/JP2022/021112 JP2022021112W WO2022255146A1 WO 2022255146 A1 WO2022255146 A1 WO 2022255146A1 JP 2022021112 W JP2022021112 W JP 2022021112W WO 2022255146 A1 WO2022255146 A1 WO 2022255146A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
cover member
light emitting
laser
Prior art date
Application number
PCT/JP2022/021112
Other languages
French (fr)
Japanese (ja)
Inventor
秀倫 曽根
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2022255146A1 publication Critical patent/WO2022255146A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to a light-emitting device used in a distance measuring device.
  • LiDAR Light Detection And Ranging
  • a system called LiDAR Light Detection And Ranging
  • LiDAR emits light from a light source toward an object, measures reflected light from the object, and measures the distance and direction to the object.
  • a laser is known as a light source used for LiDAR.
  • Patent Document 1 discloses a VCSEL (Vertical Cavity Surface Emitting Laser) element composed of a compound semiconductor that emits light in the 980 nm band.
  • the VCSEL element described above there is a possibility that part of the laser light propagates inside the cover member and is emitted sideways from the side surface of the cover member. Therefore, glare may occur when the VCSEL element is used as a light source. Further, in a system in which a light receiving sensor is arranged adjacent to the side of the VCSEL element, there is a possibility that the light receiving sensor may make an erroneous detection due to the laser light emitted sideways from the side surface of the cover member.
  • the present invention has been made in view of such circumstances, and one of its purposes is to provide a new configuration for suppressing laser light emitted to the side of a light emitting device.
  • a light-emitting device includes a substrate, a light source mounted on the substrate and emitting laser light, a frame provided to surround the light source, a frame a cover member that covers an upper opening of the part and transmits laser light; and a joining member that joins the frame part and the cover member.
  • the joining member has a light reflecting substance that reflects laser light or a light absorbing substance that absorbs laser light, and covers the outer peripheral side surface of the cover member.
  • the light absorbing substance may be carbon black. Accordingly, even if a laser beam is emitted from the outer peripheral side surface of the cover member, the laser beam is absorbed by the carbon black of the joining member, so that the leakage of the laser beam to the outside of the light emitting device can be suppressed.
  • the light-reflecting substance may be metal solder. Accordingly, even if a laser beam is emitted from the outer peripheral side surface of the cover member, the laser beam is reflected by the metal solder of the joining member, so that leakage of the laser beam to the outside of the light emitting device can be suppressed.
  • the light source may emit infrared light. This facilitates use as a light source for an all-weather camera.
  • the light source may have a VCSEL element.
  • This distance measuring device includes the above-described light emitting device and a light receiving device that receives laser light emitted from the light emitting device and reflected by an object.
  • the laser light emitted sideways from the cover member of the light emitting device is suppressed, it is possible to reduce erroneous detection of the light receiving device caused by the laser light emitted from the light emitting device entering the light receiving device as it is. .
  • laser light emitted to the side of the light emitting device can be suppressed.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a light emitting device according to an embodiment
  • FIG. 1 is a schematic diagram showing a schematic configuration of a distance measuring device according to an embodiment
  • FIG. 1 is a schematic diagram showing a schematic configuration of a light emitting device according to an embodiment
  • FIG. 1 is a schematic diagram showing a schematic configuration of a distance measuring device according to an embodiment
  • FIG. 1 is a schematic diagram showing a schematic configuration of a light-emitting device according to this embodiment.
  • the light emitting device 10 includes a substrate 12 having a recess 12a formed thereon, a light source 14 placed on the bottom 12b of the recess 12a, a rectangular frame 12c provided so as to surround the light source 14, and the frame 12c.
  • a cover member 16 that covers the upper opening 12d and a joining member 18 that joins the frame portion 12c and the cover member 16 are provided.
  • the substrate 12 is preferably a sinterable ceramic substrate such as aluminum nitride or aluminum oxide. Further, the substrate 12 according to the present embodiment is a plate-shaped member with a recess formed in a part thereof, and the bottom portion 12b and the frame portion 12c are formed as one piece. Electrode patterns are formed on the front and rear surfaces of the bottom portion 12 b of the substrate 12 . This electrode pattern and the electrode of the light source 14 are connected by a power feeding wire 20 made of gold or the like.
  • the light source 14 is a semiconductor light emitting element that emits laser light, and is fixed at a predetermined position on the substrate 12 with a chip bonding material 15 .
  • the light source 14 emits infrared light with wavelengths from near infrared rays to infrared rays, specifically, infrared light with a peak wavelength in the range of 780 to 2000 nm, and for example, a VCSEL element is used.
  • a VCSEL element it is possible to realize a light-emitting device that can irradiate a laser beam to a long distance at a relatively low cost.
  • the light source 14 that emits infrared light is suitable for use as a light source for an all-weather camera.
  • What kind of peak wavelength the semiconductor light-emitting element is preferable to emit may vary depending on the application of the light-emitting device 10 .
  • the light-receiving device can be equipped with A relatively inexpensive silicon device can be used for the light receiving sensor.
  • a compound semiconductor light-emitting element capable of realizing light having a peak wavelength in the range of 1500 to 1600 nm may be used as the light source.
  • the cover member 16 is made of a material that transmits laser light.
  • a material with a transmittance of 80% or more, preferably 85% or more, for light with a wavelength in the range of 780 to 2000 nm is preferable.
  • materials that transmit near-infrared rays and infrared rays such as sapphire, quartz glass, and borosilicate glass, are preferred.
  • the joining member 18 joins the frame portion 12 c and the cover member 16 and covers at least a portion of the outer peripheral side surface 16 a of the cover member 16 .
  • the entire outer peripheral side surface 16 a is covered with the joining member 18 .
  • the joining member 18 covering the outer peripheral side surface 16a contains a light reflecting substance that reflects the laser light or a light absorbing substance that absorbs the laser light. Thereby, the laser beam emitted sideways from the cover member 16 can be suppressed.
  • the joining member 18 may be made by dispersing a light-absorbing substance in a base material.
  • the base material is epoxy resin, silicon resin, low-melting glass, or the like.
  • the light-absorbing substance is a material having a transmittance of 80% or less, preferably 50% or less, for light having a wavelength in the range of 780 to 2000 nm.
  • Indium Tin Oxide antimony-added tin oxide (ATO: Antimony Tin Oxide), lanthanum hexaboride (LaB 6 ), and the like.
  • the laser beam L2 is emitted from the outer peripheral side surface 16a of the cover member 16, it is absorbed by the carbon black or the like of the bonding member 18, so that the laser beam that leaks to the outside of the light emitting device 10 can be suppressed.
  • the joining member 18 may have metal solder as a light reflecting material.
  • the metal solder is, for example, gold-tin (Au--Sn) solder, tin-silver-copper (Sn--Ag--Cu) solder, or the like. Accordingly, even if the laser beam L2 is emitted from the outer peripheral side surface 16a of the cover member 16, it is reflected by the metal solder of the joining member 18, so that the leakage of the laser beam to the outside of the light emitting device 10 can be suppressed.
  • the bottom portion 12b and the frame portion 12c of the substrate 12 are configured as one component.
  • the electrode pattern on the bottom portion 12b of the substrate 12 it is necessary to bake the substrate after forming the cavity shape (recess). Therefore, there is a tendency for the dimensional accuracy to decrease due to shrinkage during firing of the substrate.
  • a light-emitting device may be formed by forming a plate-like substrate and then mounting a separate frame portion on the substrate to integrate the substrate.
  • the material of the plate-like substrate is preferably aluminum nitride or aluminum oxide
  • the material of the frame is preferably aluminum nitride, aluminum oxide, or silicon. Since the electrode pattern can be formed after firing by making the frame and the substrate separate parts, the dimensional accuracy of the electrode pattern is improved.
  • a distance measuring device is a LiDAR as an optical deflection device that deflects light to achieve scanning.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the distance measuring device according to this embodiment.
  • the scanning unit 34 has a mirror module 38 , a light blocking plate 40 and a motor 42 .
  • the mirror module 38 is a plate-like member having a pair of light-reflecting deflection mirrors attached to both sides thereof.
  • the mirror module 38 has its rotation center fixed along the rotation axis R of the motor 42 and rotates as the motor 42 is driven.
  • the scanning unit may be not only the rotating type mirror module 38 but also a rocking or vibrating type mechanism.
  • the light shielding plate 40 is a circular plate-shaped member provided near the center of the mirror module 38 in the vertical direction so as to be integrated with the mirror module 38 and have a plate surface perpendicular to the rotation axis R of the rotational movement. A material that blocks the transmission of light is used for the light shielding plate 40 .
  • the reflecting portion above the light shielding plate 40 is referred to as a light projecting deflection portion 40a
  • the reflecting portion below the light shielding plate 40 is referred to as a light receiving deflection portion 40b.
  • the reflecting surface of the mirror module 38 is formed such that the light receiving deflector 40b has a wider width than the light projecting deflector 40a. , and is set to about half that width.
  • the light projecting section 32 includes a light emitting module 44 .
  • the light emitting module 44 is arranged so that the light emitting device 10 and the lens 46 face each other.
  • the lens 46 is a lens that narrows the beam width of the laser light emitted from the light emitting device 10 .
  • the light emitting module 44 is arranged so that the laser light L emitted from the light emitting module 44 is directly incident on the light projecting deflection section 40a.
  • the light receiving section 36 includes a light receiving element 48 , a light receiving lens 50 and a folding mirror 52 .
  • the light receiving element 48 is formed by arranging a plurality of photodiodes in an array.
  • the light-receiving lens 50 is a lens that narrows down the laser light reflected by the light-receiving deflector 40b.
  • the folding mirror 52 is a mirror that changes the traveling direction of the laser beam.
  • the light receiving element 48 is arranged below the folding mirror 52 .
  • the folding mirror 52 is arranged to bend the path of the light downward by approximately 90° so that the light incident from the light receiving deflector 40b through the light receiving lens 50 reaches the light receiving element 48.
  • the light-receiving lens 50 is arranged between the light-receiving deflector 40 b and the folding mirror 52 .
  • the light-receiving lens 50 constricts so that the beam diameter of the light beam incident on the light-receiving element 48 is about the width of the photodiode.
  • Distance measuring device 30 is configured such that, in the interior space of housing 31, upper light projecting space 101 in which light projecting unit 32 is installed and light receiving unit 36 are separated by light shielding plate 40 of scanning unit 34. It is divided into a lower light receiving space 102 to be installed.
  • the laser light L emitted from the light emitting module 44 arranged in the light projection space 101 is incident on the light projection deflection section 40a.
  • the laser light L incident on the light projection deflector 40a is reflected in a direction corresponding to the rotation angle of the mirror module 38, and emitted in a direction toward the viewer from the plane of FIG.
  • the range irradiated with the laser light L via the mirror module 38 is the scanning range.
  • the laser beam L′ reflected by an object located in a predetermined direction (that is, the direction in which light is emitted from the light projecting deflector 40a) according to the rotational position of the mirror module 38 is reflected by the light receiving deflector 40b. and is received by the light receiving element 48 via the folding mirror 52 .
  • the laser beam L emitted from the light emitting module 44 is reflected by an object and reaches the light receiving element 48 as reflected light (laser beam L′).
  • the distance and direction to the object are calculated by performing calculations in the circuit. Therefore, if stray light is generated in the light emitting module 44 and part of the laser light L directly reaches the light receiving space 102 without being reflected by the mirror module 38, an object that does not actually exist will be detected at a close distance. Or, an object may be detected in a direction that does not actually exist, resulting in deterioration of detection performance.
  • the distance measuring device 30 of the present embodiment as shown in FIG. It is possible to reduce erroneous detection of the light receiving section 36 that occurs when the light enters the light receiving element 48 as it is. In other words, stray light can be prevented from going from the light projecting space 101 to the light receiving space 102 without providing a partition between the light projecting space 101 and the light receiving space 102 .
  • the present invention has been described with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments, and can be applied to any suitable combination or replacement of the configurations of the embodiments. It is included in the present invention. Further, it is also possible to appropriately rearrange the combinations and the order of processing in the embodiments based on the knowledge of a person skilled in the art, and to add modifications such as various design changes to the embodiments. Embodiments described may also fall within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Provided is a new configuration for suppressing the emission of laser light toward the side of a light emitting device. A light emitting device 10 comprises: a substrate 12; a light source 14 which is placed on the substrate and which emits laser light; a frame portion 12c provided surrounding the light source; a cover member 16 which covers an upper opening 12d in the frame portion and through which the laser light is transmitted; and a joining member 18 joining the frame portion 12c and the cover member 16. The joining member 18 includes a light reflecting substance that reflects the laser light or a light absorbing substance that absorbs the laser light, and covers an outer circumferential side surface 16a of the cover member.

Description

発光装置および測距装置Light-emitting device and ranging device
 本発明は、測距装置に用いられる発光装置に関する。 The present invention relates to a light-emitting device used in a distance measuring device.
 近年、周囲に存在する物体までの距離を測定する装置として、LiDAR(Light Detection And Ranging)と呼ばれるシステムが考案されている。LiDARは、光源から物体に向かって光を照射し、物体からの反射光を計測し、物体までの距離や方向を測定する。また、LiDARに用いられる光源としてはレーザが知られている。例えば、特許文献1には、980nm帯の波長の光を放出する化合物半導体により構成されたVCSEL(Vertical Cavity Surface Emitting Laser)素子が開示されている。 In recent years, a system called LiDAR (Light Detection And Ranging) has been devised as a device that measures the distance to surrounding objects. LiDAR emits light from a light source toward an object, measures reflected light from the object, and measures the distance and direction to the object. Also, a laser is known as a light source used for LiDAR. For example, Patent Document 1 discloses a VCSEL (Vertical Cavity Surface Emitting Laser) element composed of a compound semiconductor that emits light in the 980 nm band.
特開2021-64743JP 2021-64743
 しかしながら、前述のVCSEL素子は、カバー部材の内部をレーザ光の一部が伝播し、カバー部材の側面から側方に出射する可能性がある。そのため、VCSEL素子を光源として利用する場合にグレアが発生するおそれがある。また、VCSEL素子の側方に隣接して受光センサを配置したシステムでは、カバー部材の側面から側方に出射するレーザ光により受光センサの誤検知が発生するおそれがある。 However, in the VCSEL element described above, there is a possibility that part of the laser light propagates inside the cover member and is emitted sideways from the side surface of the cover member. Therefore, glare may occur when the VCSEL element is used as a light source. Further, in a system in which a light receiving sensor is arranged adjacent to the side of the VCSEL element, there is a possibility that the light receiving sensor may make an erroneous detection due to the laser light emitted sideways from the side surface of the cover member.
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところの一つは、発光装置の側方に出射するレーザ光を抑制する新たな構成を提供することにある。 The present invention has been made in view of such circumstances, and one of its purposes is to provide a new configuration for suppressing laser light emitted to the side of a light emitting device.
 上記課題を解決するために、本発明のある態様の発光装置は、基板と、基板上に載置された、レーザ光を発する光源と、光源を囲むように設けられている枠部と、枠部の上部開口を覆い、レーザ光を透過させるカバー部材と、枠部とカバー部材とを接合する接合部材と、を備える。接合部材は、レーザ光を反射する光反射物質又はレーザ光を吸収する光吸収物質を有し、カバー部材の外周側面を覆っている。 In order to solve the above problems, a light-emitting device according to one aspect of the present invention includes a substrate, a light source mounted on the substrate and emitting laser light, a frame provided to surround the light source, a frame a cover member that covers an upper opening of the part and transmits laser light; and a joining member that joins the frame part and the cover member. The joining member has a light reflecting substance that reflects laser light or a light absorbing substance that absorbs laser light, and covers the outer peripheral side surface of the cover member.
 この態様によると、カバー部材から側方に出射するレーザ光を抑制できる。 According to this aspect, it is possible to suppress the laser light emitted sideways from the cover member.
 光吸収物質は、カーボンブラックであってもよい。これにより、カバー部材の外周側面からレーザ光が出射したとしても、接合部材が有するカーボンブラックで吸収されるため、発光装置の外部に漏れ出るレーザ光を抑制できる。 The light absorbing substance may be carbon black. Accordingly, even if a laser beam is emitted from the outer peripheral side surface of the cover member, the laser beam is absorbed by the carbon black of the joining member, so that the leakage of the laser beam to the outside of the light emitting device can be suppressed.
 光反射物質は、金属ハンダであってもよい。これにより、カバー部材の外周側面からレーザ光が出射したとしても、接合部材が有する金属ハンダで反射されるため、発光装置の外部に漏れ出るレーザ光を抑制できる。 The light-reflecting substance may be metal solder. Accordingly, even if a laser beam is emitted from the outer peripheral side surface of the cover member, the laser beam is reflected by the metal solder of the joining member, so that leakage of the laser beam to the outside of the light emitting device can be suppressed.
 光源は、赤外光を発してもよい。これにより、全天候型のカメラの光源として利用し易くなる。 The light source may emit infrared light. This facilitates use as a light source for an all-weather camera.
 光源は、VCSEL素子を有してもよい。これにより、比較的安価でレーザ光を遠方まで照射できる発光装置を実現できる。 The light source may have a VCSEL element. As a result, it is possible to realize a light-emitting device that is relatively inexpensive and can irradiate a laser beam over a long distance.
 本発明の他の態様は測距装置である。この測距装置は、前述の発光装置と、発光装置から出射され、対象物で反射されたレーザ光を受光する受光装置と、を備えている。 Another aspect of the present invention is a rangefinder. This distance measuring device includes the above-described light emitting device and a light receiving device that receives laser light emitted from the light emitting device and reflected by an object.
 この態様によると、発光装置のカバー部材から側方に出射するレーザ光が抑制されるため、発光装置から出射したレーザ光がそのまま受光装置に入射することで発生する受光装置の誤検知を低減できる。 According to this aspect, since the laser light emitted sideways from the cover member of the light emitting device is suppressed, it is possible to reduce erroneous detection of the light receiving device caused by the laser light emitted from the light emitting device entering the light receiving device as it is. .
 以上の構成要素の任意の組合せ、本発明の表現を製造方法、灯具や照明などの装置、発光モジュール、光源などの間で変換したものもまた、本発明の態様として有効である。 Arbitrary combinations of the above constituent elements and expressions of the present invention converted between manufacturing methods, devices such as lamps and lighting, light emitting modules, light sources, etc. are also effective as aspects of the present invention.
 本発明によれば、発光装置の側方に出射するレーザ光を抑制できる。 According to the present invention, laser light emitted to the side of the light emitting device can be suppressed.
本実施の形態に係る発光装置の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a light emitting device according to an embodiment; FIG. 本実施の形態に係る測距装置の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a distance measuring device according to an embodiment; FIG.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Moreover, the embodiments are illustrative rather than limiting the invention, and not all features and combinations thereof described in the embodiments are necessarily essential to the invention.
 図1は、本実施の形態に係る発光装置の概略構成を示す模式図である。発光装置10は、凹部12aが形成された基板12と、凹部12aの底部12bに載置された光源14と、光源14を囲むように設けられている矩形の枠部12cと、枠部12cの上部開口12dを覆うカバー部材16と、枠部12cとカバー部材16とを接合する接合部材18と、を備える。 FIG. 1 is a schematic diagram showing a schematic configuration of a light-emitting device according to this embodiment. The light emitting device 10 includes a substrate 12 having a recess 12a formed thereon, a light source 14 placed on the bottom 12b of the recess 12a, a rectangular frame 12c provided so as to surround the light source 14, and the frame 12c. A cover member 16 that covers the upper opening 12d and a joining member 18 that joins the frame portion 12c and the cover member 16 are provided.
 基板12は、窒化アルミニウムや酸化アルミニウムといった焼成が可能なセラミック基板が好ましい。また、本実施の形態に係る基板12は、板状の部材の一部に凹部が形成されており、底部12bと枠部12cとが一部品で構成されている。また、基板12の底部12bの表面や裏面には電極パターンが形成されている。この電極パターンと光源14の電極とが金などの給電用ワイヤ20で結合されている。 The substrate 12 is preferably a sinterable ceramic substrate such as aluminum nitride or aluminum oxide. Further, the substrate 12 according to the present embodiment is a plate-shaped member with a recess formed in a part thereof, and the bottom portion 12b and the frame portion 12c are formed as one piece. Electrode patterns are formed on the front and rear surfaces of the bottom portion 12 b of the substrate 12 . This electrode pattern and the electrode of the light source 14 are connected by a power feeding wire 20 made of gold or the like.
 光源14は、レーザ光を発する半導体発光素子であり、チップ接合材15により基板12の所定位置に固定されている。本実施の形態では、近赤外線から赤外線の波長の赤外光、具体的には、ピーク波長が780~2000nmの範囲にある赤外光を発する光源14であり、例えば、VCSEL素子が用いられる。VCSEL素子を用いることで、比較的安価でレーザ光を遠方まで照射できる発光装置を実現できる。また、赤外光を発する光源14は、全天候型のカメラの光源としての利用に適している。 The light source 14 is a semiconductor light emitting element that emits laser light, and is fixed at a predetermined position on the substrate 12 with a chip bonding material 15 . In this embodiment, the light source 14 emits infrared light with wavelengths from near infrared rays to infrared rays, specifically, infrared light with a peak wavelength in the range of 780 to 2000 nm, and for example, a VCSEL element is used. By using a VCSEL element, it is possible to realize a light-emitting device that can irradiate a laser beam to a long distance at a relatively low cost. Also, the light source 14 that emits infrared light is suitable for use as a light source for an all-weather camera.
 どのようなピーク波長の光を出射する半導体発光素子が好ましいかは、発光装置10の用途によって変わり得る。例えば、後述する測距装置の受光装置と一緒に発光装置10を用いる場合、光源14が発するレーザ光のピーク波長が850~950nmの範囲にある半導体発光素子を採用することで、受光装置が備える受光センサに比較的安価なシリコンデバイスを採用できる。なお、ピーク波長が1500~1600nmの範囲にある光を実現できる化合物半導体発光素子を光源として用いてもよい。 What kind of peak wavelength the semiconductor light-emitting element is preferable to emit may vary depending on the application of the light-emitting device 10 . For example, when the light-emitting device 10 is used together with a light-receiving device of a distance measuring device, which will be described later, the light-receiving device can be equipped with A relatively inexpensive silicon device can be used for the light receiving sensor. A compound semiconductor light-emitting element capable of realizing light having a peak wavelength in the range of 1500 to 1600 nm may be used as the light source.
 カバー部材16は、レーザ光が透過する材料で構成されており、例えば、波長が780~2000nmの範囲にある光の透過率が80%以上、好ましくは85%以上の材料が好ましい。具体的には、サファイヤ、石英ガラス、ホウケイ酸ガラスといった近赤外線や赤外線に対して透光性の材料が好ましい。 The cover member 16 is made of a material that transmits laser light. For example, a material with a transmittance of 80% or more, preferably 85% or more, for light with a wavelength in the range of 780 to 2000 nm is preferable. Specifically, materials that transmit near-infrared rays and infrared rays, such as sapphire, quartz glass, and borosilicate glass, are preferred.
 接合部材18は、枠部12cとカバー部材16とを接合するとともに、カバー部材16の外周側面16aの少なくとも一部を覆っている。好ましくは、外周側面16aの全体が接合部材18に覆われているとよい。光源14から出射したレーザ光L1は、透光性のカバー部材16を透過する際に、一部のレーザ光L2がカバー部材16の内部を外周側面16aに向かって伝播する。そこで、外周側面16aを覆っている接合部材18は、レーザ光を反射する光反射物質又はレーザ光を吸収する光吸収物質を含有している。これにより、カバー部材16から側方に出射するレーザ光を抑制できる。 The joining member 18 joins the frame portion 12 c and the cover member 16 and covers at least a portion of the outer peripheral side surface 16 a of the cover member 16 . Preferably, the entire outer peripheral side surface 16 a is covered with the joining member 18 . When the laser beam L1 emitted from the light source 14 is transmitted through the translucent cover member 16, a part of the laser beam L2 propagates inside the cover member 16 toward the outer peripheral side surface 16a. Therefore, the joining member 18 covering the outer peripheral side surface 16a contains a light reflecting substance that reflects the laser light or a light absorbing substance that absorbs the laser light. Thereby, the laser beam emitted sideways from the cover member 16 can be suppressed.
 接合部材18は、光吸収物質を母材に分散させたものであってもよい。母材は、エポキシ樹脂、シリコン樹脂、低融点ガラス等である。また、光吸収物質は、波長が780~2000nmの範囲にある光の透過率が80%以下、好ましくは50%以下の材料であり、例えば、カーボンブラック、酸化タングステン、スズ添加酸化インジウム(ITO:Indium Tin Oxide)、アンチモン添加酸化スズ(ATO:Antimony Tin Oxide)、六ホウ化ランタン(LaB)等である。これにより、カバー部材16の外周側面16aからレーザ光L2が出射したとしても、接合部材18が有するカーボンブラック等で吸収されるため、発光装置10の外部に漏れ出るレーザ光を抑制できる。 The joining member 18 may be made by dispersing a light-absorbing substance in a base material. The base material is epoxy resin, silicon resin, low-melting glass, or the like. The light-absorbing substance is a material having a transmittance of 80% or less, preferably 50% or less, for light having a wavelength in the range of 780 to 2000 nm. Indium Tin Oxide), antimony-added tin oxide (ATO: Antimony Tin Oxide), lanthanum hexaboride (LaB 6 ), and the like. Accordingly, even if the laser beam L2 is emitted from the outer peripheral side surface 16a of the cover member 16, it is absorbed by the carbon black or the like of the bonding member 18, so that the laser beam that leaks to the outside of the light emitting device 10 can be suppressed.
 また、接合部材18は、光反射物質として金属ハンダを有してもよい。金属ハンダは、例えば、金スズ(Au-Sn)ハンダ、スズ銀銅(Sn-Ag-Cu)ハンダ等である。これにより、カバー部材16の外周側面16aからレーザ光L2が出射したとしても、接合部材18が有する金属ハンダで反射されるため、発光装置10の外部に漏れ出るレーザ光を抑制できる。 Also, the joining member 18 may have metal solder as a light reflecting material. The metal solder is, for example, gold-tin (Au--Sn) solder, tin-silver-copper (Sn--Ag--Cu) solder, or the like. Accordingly, even if the laser beam L2 is emitted from the outer peripheral side surface 16a of the cover member 16, it is reflected by the metal solder of the joining member 18, so that the leakage of the laser beam to the outside of the light emitting device 10 can be suppressed.
 なお、図1に示す発光装置10では、基板12の底部12bと枠部12cとが一部品で構成されている。この場合、電極パターンを基板12の底部12bに形成する必要があることから、キャビティ形状(凹部)を形成してから基板を焼成する必要がある。そのため、基板焼成時の収縮により寸法精度が低下する傾向がある。 In addition, in the light emitting device 10 shown in FIG. 1, the bottom portion 12b and the frame portion 12c of the substrate 12 are configured as one component. In this case, since it is necessary to form the electrode pattern on the bottom portion 12b of the substrate 12, it is necessary to bake the substrate after forming the cavity shape (recess). Therefore, there is a tendency for the dimensional accuracy to decrease due to shrinkage during firing of the substrate.
 そこで、発光装置10の変形例として、平板状の基板を作成した後に基板の上に別部品の枠部を搭載して一体化した発光装置としてもよい。この場合、平板状の基板の材料は、窒化アルミニウムや酸化アルミニウムが好ましく、枠部の材料は、窒化アルミニウムや酸化アルミニウム、シリコンが好ましい。枠部と基板を別部品とすることで、焼成後に電極パターンを形成できるので、電極パターンの寸法精度が向上する。 Therefore, as a modified example of the light-emitting device 10, a light-emitting device may be formed by forming a plate-like substrate and then mounting a separate frame portion on the substrate to integrate the substrate. In this case, the material of the plate-like substrate is preferably aluminum nitride or aluminum oxide, and the material of the frame is preferably aluminum nitride, aluminum oxide, or silicon. Since the electrode pattern can be formed after firing by making the frame and the substrate separate parts, the dimensional accuracy of the electrode pattern is improved.
 (測距装置)
 次に、前述の発光装置の用途の一例として測距装置について説明する。本実施の形態に係る測距装置は、光を偏向して走査を実現する光偏向デバイスとしてのLiDARである。図2は、本実施の形態に係る測距装置の概略構成を示す模式図である。
(ranging device)
Next, a distance measuring device will be described as an example of the application of the light emitting device described above. A distance measuring device according to the present embodiment is a LiDAR as an optical deflection device that deflects light to achieve scanning. FIG. 2 is a schematic diagram showing a schematic configuration of the distance measuring device according to this embodiment.
 図2に示す測距装置30は、筐体31の内部に、投光部32と、スキャン部34と、受光部36とを備える。スキャン部34は、ミラーモジュール38と、遮光板40と、モータ42とを有する。ミラーモジュール38は、光を反射する一対の偏向ミラーが両面に取り付けられた平板状の部材である。ミラーモジュール38は、回転中心がモータ42の回転軸Rに沿って固定されており、モータ42の駆動に従って回転する。なお、スキャン部は、回転タイプのミラーモジュール38だけでなく、揺動や振動するタイプの機構であってもよい。 A distance measuring device 30 shown in FIG. The scanning unit 34 has a mirror module 38 , a light blocking plate 40 and a motor 42 . The mirror module 38 is a plate-like member having a pair of light-reflecting deflection mirrors attached to both sides thereof. The mirror module 38 has its rotation center fixed along the rotation axis R of the motor 42 and rotates as the motor 42 is driven. Note that the scanning unit may be not only the rotating type mirror module 38 but also a rocking or vibrating type mechanism.
 遮光板40は、ミラーモジュール38の上下方向の中心付近に、ミラーモジュール38と一体、かつ、板面が回転運動の回転軸Rと直行するように設けられた円形かつ板状の部材である。遮光板40には、光の透過を阻止する材料が用いられる。 The light shielding plate 40 is a circular plate-shaped member provided near the center of the mirror module 38 in the vertical direction so as to be integrated with the mirror module 38 and have a plate surface perpendicular to the rotation axis R of the rotational movement. A material that blocks the transmission of light is used for the light shielding plate 40 .
 以下、ミラーモジュール38のうち、遮光板40より上側の反射部位を投光偏向部40a、遮光板40より下側の反射部位を受光偏向部40bという。また、ミラーモジュール38の反射面は、受光偏向部40bの方が投光偏向部40aより幅広に形成され、受光偏向部40bは、遮光板40の直径と等しい幅に、投光偏向部40aは、その半分程度の幅に設定されている。 Hereinafter, of the mirror module 38, the reflecting portion above the light shielding plate 40 is referred to as a light projecting deflection portion 40a, and the reflecting portion below the light shielding plate 40 is referred to as a light receiving deflection portion 40b. The reflecting surface of the mirror module 38 is formed such that the light receiving deflector 40b has a wider width than the light projecting deflector 40a. , and is set to about half that width.
 投光部32は、発光モジュール44を備える。発光モジュール44は、前述の発光装置10とレンズ46とが対向して配置されている。レンズ46は、発光装置10から発せられるレーザ光のビーム幅を絞るレンズである。発光モジュール44は、当該発光モジュール44から出力されるレーザ光Lが、直接、投光偏向部40aに入射されるように配置されている。 The light projecting section 32 includes a light emitting module 44 . The light emitting module 44 is arranged so that the light emitting device 10 and the lens 46 face each other. The lens 46 is a lens that narrows the beam width of the laser light emitted from the light emitting device 10 . The light emitting module 44 is arranged so that the laser light L emitted from the light emitting module 44 is directly incident on the light projecting deflection section 40a.
 受光部36は、受光素子48と、受光レンズ50と、折り返しミラー52とを備えている。受光素子48は、複数のフォトダイオードがアレイ状に配置されたものである。受光レンズ50は、受光偏向部40bで反射されたレーザ光を絞るレンズである。折り返しミラー52は、レーザ光の進行方向を変化させるミラーである。受光素子48は、折り返しミラー52の下部に配置される。 The light receiving section 36 includes a light receiving element 48 , a light receiving lens 50 and a folding mirror 52 . The light receiving element 48 is formed by arranging a plurality of photodiodes in an array. The light-receiving lens 50 is a lens that narrows down the laser light reflected by the light-receiving deflector 40b. The folding mirror 52 is a mirror that changes the traveling direction of the laser beam. The light receiving element 48 is arranged below the folding mirror 52 .
 折り返しミラー52は、受光偏向部40bから、受光レンズ50を介して入射する光が受光素子48に到達するように、光の経路を下方に略90°屈曲させるように配置されている。受光レンズ50は、受光偏向部40bと折り返しミラー52との間に配置される。受光レンズ50は、受光素子48に入射する光ビームのビーム径が、フォトダイオードの素子幅程度となるように絞る。 The folding mirror 52 is arranged to bend the path of the light downward by approximately 90° so that the light incident from the light receiving deflector 40b through the light receiving lens 50 reaches the light receiving element 48. The light-receiving lens 50 is arranged between the light-receiving deflector 40 b and the folding mirror 52 . The light-receiving lens 50 constricts so that the beam diameter of the light beam incident on the light-receiving element 48 is about the width of the photodiode.
 本実施の形態に係る測距装置30は、筐体31の内部空間において、スキャン部34の遮光板40により、投光部32が設置される上側の投光用空間101と、受光部36が設置される下側の受光用空間102とに区分けされている。 Distance measuring device 30 according to the present embodiment is configured such that, in the interior space of housing 31, upper light projecting space 101 in which light projecting unit 32 is installed and light receiving unit 36 are separated by light shielding plate 40 of scanning unit 34. It is divided into a lower light receiving space 102 to be installed.
 投光用空間101に配置されている発光モジュール44から出射したレーザ光Lは、投光偏向部40aに入射する。投光偏向部40aに入射したレーザ光Lは、ミラーモジュール38の回転角度に応じた方向に向けて反射し、図2の紙面から手前の方向に出射される。ミラーモジュール38を介してレーザ光Lが照射される範囲が走査範囲である。 The laser light L emitted from the light emitting module 44 arranged in the light projection space 101 is incident on the light projection deflection section 40a. The laser light L incident on the light projection deflector 40a is reflected in a direction corresponding to the rotation angle of the mirror module 38, and emitted in a direction toward the viewer from the plane of FIG. The range irradiated with the laser light L via the mirror module 38 is the scanning range.
 ミラーモジュール38の回転位置に応じた所定方向(即ち、投光偏向部40aからの光の出射方向)に位置する物体で反射したレーザ光L'は、受光偏向部40bで反射し、受光レンズ50及び折り返しミラー52を介して受光素子48で受光される。 The laser beam L′ reflected by an object located in a predetermined direction (that is, the direction in which light is emitted from the light projecting deflector 40a) according to the rotational position of the mirror module 38 is reflected by the light receiving deflector 40b. and is received by the light receiving element 48 via the folding mirror 52 .
 そして、発光モジュール44から出射したレーザ光Lが物体で反射し、反射光(レーザ光L')として受光素子48に到達するまでの時間や、ミラーモジュール38の回転位置の情報に基づいて、計測回路にて演算することで物体までの距離や方向が算出される。そのため、発光モジュール44において迷光が発生し、レーザ光Lの一部がミラーモジュール38で反射されずに受光用空間102に直接到達してしまうと、実際には存在しない物体が至近距離で検出されたり、実際に存在しない方向で物体が検出されたりすることによる、検出性能の低下が起こり得る。 Then, the laser beam L emitted from the light emitting module 44 is reflected by an object and reaches the light receiving element 48 as reflected light (laser beam L′). The distance and direction to the object are calculated by performing calculations in the circuit. Therefore, if stray light is generated in the light emitting module 44 and part of the laser light L directly reaches the light receiving space 102 without being reflected by the mirror module 38, an object that does not actually exist will be detected at a close distance. Or, an object may be detected in a direction that does not actually exist, resulting in deterioration of detection performance.
 しかしながら、本実施の形態に測距装置30は、図1に示すように、発光装置10のカバー部材16から側方に出射するレーザ光が抑制されるため、発光装置10から出射したレーザ光がそのまま受光素子48に入射することで発生する受光部36の誤検知を低減できる。換言すると、投光用空間101と受光用空間102との間に隔壁を設けなくても、投光用空間101から受光用空間102へ迷光が向かわないようにできる。 However, in the distance measuring device 30 of the present embodiment, as shown in FIG. It is possible to reduce erroneous detection of the light receiving section 36 that occurs when the light enters the light receiving element 48 as it is. In other words, stray light can be prevented from going from the light projecting space 101 to the light receiving space 102 without providing a partition between the light projecting space 101 and the light receiving space 102 .
 以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 Although the present invention has been described with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments, and can be applied to any suitable combination or replacement of the configurations of the embodiments. It is included in the present invention. Further, it is also possible to appropriately rearrange the combinations and the order of processing in the embodiments based on the knowledge of a person skilled in the art, and to add modifications such as various design changes to the embodiments. Embodiments described may also fall within the scope of the present invention.
 本国際出願は、2021年6月4日に出願された日本国特許出願である特願2021-094115号に基づく優先権を主張するものであり、当該日本国特許出願である特願2021-094115号の全内容は、本国際出願に援用される。 This international application claims priority based on Japanese Patent Application No. 2021-094115, which is a Japanese patent application filed on June 4, 2021. The entire contents of this International Application are incorporated by reference.
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。 The foregoing descriptions of specific embodiments of the invention have been presented for purposes of illustration. They are not intended to be exhaustive or to limit the invention to the precise forms described. Those skilled in the art will appreciate that many variations and modifications are possible in light of the above description.
 10 発光装置、 12 基板、 12a 凹部、 12b 底部、 12c 枠部、 12d 上部開口、 14 光源、 16 カバー部材、 16a 外周側面、 18 接合部材、 30 測距装置。 10 light emitting device, 12 substrate, 12a recess, 12b bottom, 12c frame, 12d upper opening, 14 light source, 16 cover member, 16a outer peripheral side, 18 joining member, 30 distance measuring device.

Claims (6)

  1.  基板と、
     基板上に載置された、レーザ光を発する光源と、
     前記光源を囲むように設けられている枠部と、
     前記枠部の上部開口を覆い、前記レーザ光を透過させるカバー部材と、
     前記枠部と前記カバー部材とを接合する接合部材と、を備え、
     前記接合部材は、レーザ光を反射する光反射物質又はレーザ光を吸収する光吸収物質を有し、前記カバー部材の外周側面を覆っている発光装置。
    a substrate;
    a light source that emits laser light and is placed on the substrate;
    a frame provided to surround the light source;
    a cover member that covers the upper opening of the frame and transmits the laser light;
    a joining member that joins the frame and the cover member,
    The light-emitting device, wherein the bonding member includes a light reflecting material that reflects laser light or a light absorbing material that absorbs laser light, and covers the outer peripheral side surface of the cover member.
  2.  前記光吸収物質は、カーボンブラックであることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the light-absorbing substance is carbon black.
  3.  前記光反射物質は、金属ハンダであることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the light reflecting substance is metal solder.
  4.  前記光源は、赤外光を発することを特徴とする請求項1乃至3のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the light source emits infrared light.
  5.  前記光源は、VCSEL素子を有することを特徴とする請求項1乃至4のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 4, wherein the light source has a VCSEL element.
  6.  請求項1乃至5のいずれか1項に記載の発光装置と、
     前記発光装置から出射され、対象物で反射されたレーザ光を受光する受光装置と、
     を備える測距装置。
    A light emitting device according to any one of claims 1 to 5;
    a light receiving device that receives laser light emitted from the light emitting device and reflected by an object;
    A rangefinder with a
PCT/JP2022/021112 2021-06-04 2022-05-23 Light emitting device, and distance measuring device WO2022255146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094115 2021-06-04
JP2021094115A JP2022186075A (en) 2021-06-04 2021-06-04 Light emitting device and distance measuring device

Publications (1)

Publication Number Publication Date
WO2022255146A1 true WO2022255146A1 (en) 2022-12-08

Family

ID=84323106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021112 WO2022255146A1 (en) 2021-06-04 2022-05-23 Light emitting device, and distance measuring device

Country Status (2)

Country Link
JP (1) JP2022186075A (en)
WO (1) WO2022255146A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
JP2015023215A (en) * 2013-07-22 2015-02-02 スタンレー電気株式会社 Semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
JP2015023215A (en) * 2013-07-22 2015-02-02 スタンレー電気株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2022186075A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US7102123B2 (en) Reflective imaging encoder
JP6737296B2 (en) Object detection device
JP6629688B2 (en) Optical module
CN110553218B (en) Lamp unit
US11620805B2 (en) Integrated electronic module for 3D sensing applications, and 3D scanning device including the integrated electronic module
JP6679472B2 (en) Object detection device
WO2022255146A1 (en) Light emitting device, and distance measuring device
JP7036236B2 (en) Tactile and proximity sensors
US11705691B2 (en) Light source device
JP2023135554A (en) Light-emitting device
JP7081607B2 (en) Optical module
WO2020022313A1 (en) Photodetection element and lidar device
JP7070199B2 (en) Photodetection and lidar equipment
JP2021093514A (en) Light source device
CN111630408A (en) Laser radar device
JP2019152588A (en) Object detection device
US20240219014A1 (en) Lens barrel-equipped lens and light source device
JP7265213B2 (en) Light source device
JP7056439B2 (en) Photodetection and lidar equipment
JP7367655B2 (en) light detection device
JP7418952B2 (en) optical module
WO2022196360A1 (en) Light-receiving element and measurement device
WO2022044774A1 (en) Light source device
JP5013472B2 (en) Photoelectric sensor
JP2022187581A (en) Distance measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815896

Country of ref document: EP

Kind code of ref document: A1