JP2022187581A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2022187581A
JP2022187581A JP2021095642A JP2021095642A JP2022187581A JP 2022187581 A JP2022187581 A JP 2022187581A JP 2021095642 A JP2021095642 A JP 2021095642A JP 2021095642 A JP2021095642 A JP 2021095642A JP 2022187581 A JP2022187581 A JP 2022187581A
Authority
JP
Japan
Prior art keywords
light
light projecting
receiving lens
distance measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021095642A
Other languages
Japanese (ja)
Inventor
典明 石原
Noriaki Ishihara
明人 山本
Akito Yamamoto
夢人 澁谷
Yumeto Sibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2021095642A priority Critical patent/JP2022187581A/en
Publication of JP2022187581A publication Critical patent/JP2022187581A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a distance measuring device that can suppress generation of variations in the accuracy of a distance measurement according to the direction of measurement and can reduce the size of a device.SOLUTION: A distance measuring device 2 includes: a light projection unit 3 with a light projection element 3a; a light reception unit 4 with a light receiving element 4a and a light receiving lens 7; and a scan unit 6 for scanning measurement light emitted from the light projection unit 3 to a measurement target space and guiding the reflected light of the measurement light from an object to the light receiving unit 4. The light projection unit 3 is supported by the light receiving lens 7, with the optical axis of the light projection element 3a being along the optical axis of the light receiving lens 7.SELECTED DRAWING: Figure 4

Description

本発明は、投光素子を備えた投光部と、受光素子および受光レンズを備えた受光部と、投光部から出射された測定光を測定対象空間に向けて走査し、測定光に対する物体からの反射光を受光部に導く走査部と、を備えた測距装置に関する。 The present invention comprises a light projecting section including a light projecting element, a light receiving section including a light receiving element and a light receiving lens, and a measurement light emitted from the light projecting section scanning a space to be measured, and scanning an object with respect to the measurement light. a scanning unit that guides reflected light from the light receiving unit to the light receiving unit.

特許文献1には、上述した測距装置の一例が開示されている。
当該測距装置100は、図11に示すように、投光部103と、受光部104と、偏向ミラー105と、走査部106と、受光レンズ107と、制御基板108などを備えている。
Patent Document 1 discloses an example of the rangefinder described above.
As shown in FIG. 11, the distance measuring device 100 includes a light projecting section 103, a light receiving section 104, a deflection mirror 105, a scanning section 106, a light receiving lens 107, a control board 108, and the like.

上部ケーシング100Cの上面内壁に設置されたモータ160と、モータ160の回転状態を検知するエンコーダ161とを備えて走査部106が構成され、モータ160の回転軸160aに45度の傾斜角度で偏向ミラー105が取り付けられている。 A scanning unit 106 is provided with a motor 160 installed on the inner wall of the upper surface of the upper casing 100C and an encoder 161 for detecting the rotation state of the motor 160. 105 is attached.

モータ160の回転軸と同軸心上に投光部103と受光部104とが配置されている。投光部103は、近赤外域の発光波長のレーザダイオードでなる発光素子103aと、投光レンズ103bとを備えている。受光部104は、フォトダイオードでなる受光素子104aと増幅回路104とを備えて構成され、下部ケーシング100Aの底部に配置された制御基板108に搭載されている。 A light projecting portion 103 and a light receiving portion 104 are arranged coaxially with the rotating shaft of the motor 160 . The light projecting unit 103 includes a light emitting element 103a, which is a laser diode emitting light having a wavelength in the near-infrared region, and a light projecting lens 103b. The light receiving section 104 includes a light receiving element 104a made of a photodiode and an amplifier circuit 104, and is mounted on a control substrate 108 arranged at the bottom of the lower casing 100A.

制御基板108には、エンコーダ161からの信号に基づいてモータ160を駆動制御するとともに、所定時期に発光素子103aを発光制御し、受光素子104aで受光された信号を処理する信号処理部などが設けられている。 The control board 108 is provided with a signal processing section that drives and controls the motor 160 based on the signal from the encoder 161, controls the light emission of the light emitting element 103a at a predetermined time, and processes the signal received by the light receiving element 104a. It is

四本の脚部171を備えたレンズホルダ170の鍔部172に受光レンズ107の周部が固定される。受光レンズ107の光軸中心に形成された円筒状の切欠き部107aに筒状の投光レンズホルダ103Bが挿入される。当該投光レンズホルダ103Bに投光レンズ103bが保持される。投光レンズ103bは、上方からレンズ押え103Cで固定されている。 A peripheral portion of the light receiving lens 107 is fixed to a collar portion 172 of a lens holder 170 having four legs 171 . A cylindrical projection lens holder 103B is inserted into a cylindrical notch 107a formed at the center of the optical axis of the light receiving lens 107. As shown in FIG. The projection lens 103b is held by the projection lens holder 103B. The projection lens 103b is fixed from above by a lens retainer 103C.

投光レンズホルダ103Bの下端部に発光素子103aが配置されるように、発光素子103aが搭載された基板103dの端部が、レンズホルダ170にボルトによって固定されている。 An end portion of the substrate 103d on which the light emitting element 103a is mounted is fixed to the lens holder 170 with bolts so that the light emitting element 103a is arranged at the lower end portion of the projection lens holder 103B.

発光素子103aから出力されたパルス状の測定光は、投光レンズ103bによりビーム整形されて、偏向ミラー105に入射する。当該測定光は、モータ160で回転駆動される偏向ミラー105で偏向され、光学窓100Bを透過する。そして、測定光は、監視エリアへ向けて走査される。 The pulsed measurement light output from the light emitting element 103 a is beam-shaped by the projection lens 103 b and enters the deflecting mirror 105 . The measurement light is deflected by a deflecting mirror 105 rotated by a motor 160 and transmitted through an optical window 100B. The measurement light is then scanned toward the monitored area.

測定光に対する反射光が、光学窓100Bから偏向ミラー105に入射し、さらに受光レンズ107によって受光素子104aに向けて集光され、受光素子14aで光信号が電気信号に変換されて信号処理部に入力される。 Reflected light with respect to the measurement light is incident on the deflection mirror 105 through the optical window 100B, and is condensed toward the light receiving element 104a by the light receiving lens 107. The light signal is converted into an electric signal by the light receiving element 14a and sent to the signal processing unit. is entered.

特開2017-083251号公報JP 2017-083251 A

特許文献1に記載された測距装置100は、受光レンズ107の下方に発光素子103aが搭載された基板130dが配されている。このため、偏向ミラー105で偏向され受光レンズ107を介して受光素子104aに導かれる反射光の一部が、基板103dで遮られる。そのため、偏向ミラー105の回転位相によって、受光素子104aでの受光光量が変動するという問題があった。 In the distance measuring device 100 described in Patent Document 1, a substrate 130d on which a light emitting element 103a is mounted is arranged below a light receiving lens 107. As shown in FIG. Therefore, part of the reflected light deflected by the deflecting mirror 105 and guided to the light receiving element 104a through the light receiving lens 107 is blocked by the substrate 103d. Therefore, there is a problem that the amount of light received by the light receiving element 104a fluctuates depending on the rotation phase of the deflecting mirror 105. FIG.

図10(a),(b)には、上述した従来の測距装置と同様の構成を備えた測距装置の内部構造が示されている。略円環状に形成された基板103dのうち、周部から中心に向けて延在する突出片130dに発光素子103aと発光素子103aとに対する駆動回路が搭載されるとともに、発光素子103aと駆動回路とに対する給電線や信号線の配線パターンが設けられている。 10(a) and 10(b) show the internal structure of a range finder having the same configuration as the conventional range finder described above. The light-emitting element 103a and a driving circuit for the light-emitting element 103a are mounted on the projecting piece 130d extending from the periphery toward the center of the substrate 103d formed in a substantially annular shape, and the light-emitting element 103a and the driving circuit are mounted on the projecting piece 130d. Wiring patterns for feeder lines and signal lines are provided for the

図9(a)~(c)は、左方から順に偏向ミラー5の回転位相、受光レンズを介して集光される受光素子104aの面上での照度分布、突出片130d、および測定光の位置関係を示す説明図が其々示されている。 9A to 9C show, from the left, the rotational phase of the deflection mirror 5, the illuminance distribution on the surface of the light receiving element 104a condensed through the light receiving lens, the projecting piece 130d, and the measurement light. An explanatory diagram showing the positional relationship is shown respectively.

図9(a)は、光学窓100Bの左側面から測定光が出射される場合を示す。図9(b)は、光学窓100Bの正面から測定光が出射される場合を示す。図9(c)は、光学窓100Bの右側面から測定光が出射される場合を示す。図8に示すグラフのうち、従来技術に対応する総受光パワーに示すように、光学窓100Bの正面から測定光が出射される場合に比べて、光学窓100Bの左右の側面から測定光が出射される場合、測定光の照度が低くなる。 FIG. 9(a) shows the case where the measurement light is emitted from the left side surface of the optical window 100B. FIG. 9B shows the case where the measurement light is emitted from the front of the optical window 100B. FIG. 9(c) shows the case where the measurement light is emitted from the right side surface of the optical window 100B. In the graph shown in FIG. 8, as shown in the total received light power corresponding to the conventional technology, the measurement light is emitted from the left and right side surfaces of the optical window 100B compared to the case where the measurement light is emitted from the front of the optical window 100B. If so, the illuminance of the measurement light will be low.

ところで、図10及び図11に示したような従来の測距装置は、たとえば、製造現場等で資材を搬送する搬送車に搭載される。このような搬送車に測距装置が搭載されやすいよう、測距装置の小型化が望まれている。そこで、たとえば、装置に焦点距離の短い受光レンズを採用すると、装置の高さを低減できる。しかしながら、測定光に対する反射光は、発光素子が搭載された基板による遮光の影響を大きく受ける。これにより、受光素子における反射光の感度が低下する。その結果、検出可能距離が短くなるという不都合が生じる。 By the way, the conventional distance measuring device as shown in FIGS. 10 and 11 is mounted, for example, on a transport vehicle for transporting materials at a manufacturing site or the like. It is desired to reduce the size of the distance measuring device so that the distance measuring device can be easily mounted on such a transport vehicle. Therefore, for example, if a light-receiving lens with a short focal length is employed in the device, the height of the device can be reduced. However, reflected light with respect to the measurement light is greatly affected by light shielding by the substrate on which the light emitting element is mounted. This reduces the sensitivity of the light receiving element to reflected light. As a result, there arises a problem that the detectable distance is shortened.

本発明の目的は、上述した問題に鑑み、測定方向によって測距測定の精度にバラツキが生じることを抑制し、さらに、装置の小型化を実現する測距装置を提供する点にある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a distance measuring device that suppresses variations in the accuracy of distance measurement depending on the measurement direction and realizes miniaturization of the device.

上述の目的を達成するため、本発明による測距装置の第一の特徴構成は、投光素子を備えた投光部と、受光素子および受光レンズを備えた受光部と、前記投光部から出射された測定光を測定対象空間に向けて走査し、前記測定光に対する物体からの反射光を前記受光部に導く走査部と、を備え、前記投光部は、前記投光素子の光軸が前記受光レンズの光軸に沿う姿勢で前記受光レンズに支持されている点にある。 In order to achieve the above-mentioned object, a first characteristic configuration of a distance measuring device according to the present invention comprises: a light projecting section having a light projecting element; a light receiving section having a light receiving element and a light receiving lens; a scanning unit that scans the emitted measurement light toward the space to be measured and guides reflected light from an object with respect to the measurement light to the light receiving unit; is supported by the light-receiving lens in a posture along the optical axis of the light-receiving lens.

受光レンズに支持された投光部から出射される測定光が受光レンズの光軸に沿って進むため、走査部を介して測定対象空間に向けて走査された測定光に対する反射光が受光レンズの光軸に沿って受光素子に適正に案内される。これにより、受光素子は反射光を無駄なく取り込めるため、測距測定を適切に行い得る。 Since the measurement light emitted from the light-projecting part supported by the light-receiving lens travels along the optical axis of the light-receiving lens, the reflected light of the measuring light scanned toward the space to be measured via the scanning part reaches the light-receiving lens. It is properly guided to the light receiving element along the optical axis. As a result, the light-receiving element can take in the reflected light without waste, so that distance measurement can be performed appropriately.

そして、投光部が受光レンズに支持されているので、投光部を支持するための別途の基板が不要となり、受光レンズを透過した反射光が基板によって遮光されることが無くなる。これにより、走査部の走査方向(すなわち、測定方向)による受光量のバラツキが抑制される。つまり、走査部による測定光の照射方向に依存することなく、受光素子上での照度分布の変動が抑制される。その結果、測定方向によって測距測定の精度にバラツキが生じることを抑制し、測距測定の精度を向上させることができる。 Further, since the light projecting part is supported by the light receiving lens, a separate substrate for supporting the light projecting part is not required, and the reflected light transmitted through the light receiving lens is not blocked by the substrate. This suppresses variations in the amount of received light depending on the scanning direction (that is, measurement direction) of the scanning unit. In other words, variations in the illuminance distribution on the light receiving element are suppressed regardless of the irradiation direction of the measurement light from the scanning unit. As a result, it is possible to suppress variation in the accuracy of distance measurement depending on the measurement direction, and improve the accuracy of distance measurement.

同第二の特徴構成は、上述の第一の特徴構成に加えて、前記投光部は、前記投光素子の光軸の姿勢を調節する姿勢調節機構を備え、前記姿勢調節機構とともに前記受光レンズに支持されている点にある。 In the second characteristic configuration, in addition to the above-described first characteristic configuration, the light projecting unit includes an attitude adjustment mechanism for adjusting the attitude of the optical axis of the light projecting element, and the attitude adjustment mechanism and the light receiving unit The point is that it is supported by the lens.

投光素子や受光レンズへの支持部材などの部品公差の影響により、投光素子から出射される測定光の光軸が受光レンズの光軸に沿うことなく、ずれが生じる場合がある。そのような場合であっても、姿勢調節機構により投光素子の光軸の姿勢を調節することで、測定光の光軸を受光レンズの光軸に沿わせることができる。 The optical axis of the measurement light emitted from the light projecting element may not be aligned with the optical axis of the light receiving lens due to the influence of component tolerances such as support members for the light projecting element and the light receiving lens. Even in such a case, the optical axis of the measurement light can be aligned with the optical axis of the light receiving lens by adjusting the attitude of the optical axis of the light projecting element with the attitude adjustment mechanism.

これにより、測定光は、受光レンズの光軸に沿って進み、その反射光は受光レンズの光軸に沿って受光素子に適正に案内される。その結果、受光素子は反射光を無駄なく取り込めるため、測距測定が適切に行われ得る。 Thereby, the measuring light travels along the optical axis of the light receiving lens, and the reflected light is properly guided to the light receiving element along the optical axis of the light receiving lens. As a result, the light-receiving element can take in the reflected light without waste, so that distance measurement can be performed appropriately.

同第三の特徴構成は、上述の第二の特徴構成に加えて、前記姿勢調節機構は、前記受光レンズの光軸に沿って前記受光レンズに貫通形成された切欠き部に固定され前記投光素子の収容部を備えたホルダと、前記収容部に収容される前記投光素子を下方から支持する付勢部材と、前記投光素子の上方から前記投光素子を支持する支持部材と、前記支持部材の周囲の複数個所で前記支持部材による前記投光素子の押圧状態を調整する調整部材と、を備えている点にある。 In addition to the above-described second characteristic configuration, the third characteristic configuration is that the attitude adjustment mechanism is fixed to a notch formed through the light receiving lens along the optical axis of the light receiving lens, and the projector is fixed to the notch. a holder having a housing for an optical element, a biasing member that supports the light projecting element housed in the housing from below, and a support member that supports the light projecting element from above; and an adjustment member that adjusts the pressing state of the light projecting element by the support member at a plurality of locations around the support member.

ホルダの収容部に付勢部材を介して収容された投光素子を上方から支持部材で支持し、支持部材の周囲の複数個所に備えた調整部材を用いて投光素子を押圧する。付勢部材から受ける反力に抗して個々の調整部材の押圧力を調整することにより投光素子の光軸の姿勢が調整される。受光レンズに貫通形成された切欠き部に姿勢調節機構を構成するホルダが固定され、ホルダに投光素子が収容されるので、投光部を受光レンズに形成された切欠き部に収まるように配置することができる。 The light projecting element accommodated in the accommodation portion of the holder via the urging member is supported from above by the support member, and the light projecting element is pressed using adjustment members provided at a plurality of locations around the support member. The posture of the optical axis of the light projecting element is adjusted by adjusting the pressing force of each adjusting member against the reaction force received from the biasing member. A holder that constitutes the attitude adjustment mechanism is fixed to a notch formed through the light receiving lens, and the light projecting element is accommodated in the holder, so that the light projecting part can be accommodated in the notch formed in the light receiving lens. can be placed.

同第四の特徴構成は、上述の第三の特徴構成に加えて、前記投光部は前記投光素子を駆動する駆動回路を含み、前記駆動回路は前記切欠き部に収容されている点にある。 The fourth characteristic configuration is, in addition to the third characteristic configuration described above, that the light projecting section includes a drive circuit for driving the light projecting element, and the drive circuit is accommodated in the notch. It is in.

駆動回路を切欠き部に収容することで、投光素子と駆動回路を近接配置することができ、長い信号線を介して接続する場合に問題となる輻射ノイズの発生や信号波形の鈍りを回避することができる。 By housing the drive circuit in the notch, it is possible to place the light emitting element and the drive circuit close to each other, avoiding the generation of radiation noise and dulling of the signal waveform, which are problems when connecting via a long signal line. can do.

同第五の特徴構成は、上述の第三または第四の特徴構成に加えて、前記調整部材は、接着剤で緩み止め固定されている点にある。 The fifth characteristic configuration is that, in addition to the third or fourth characteristic configuration described above, the adjustment member is fixed with an adhesive to prevent it from loosening.

押圧状態の調整後に調整部材が何らかの原因で緩むと、投光素子の光軸の姿勢が変化する。調整後に調整部材を接着剤により固定しておけば、調整部材の緩みを防止することができる。 If the adjustment member is loosened for some reason after the pressing state is adjusted, the posture of the optical axis of the light projecting element changes. By fixing the adjusting member with an adhesive after adjustment, the adjusting member can be prevented from loosening.

同第六の特徴構成は、上述の第三から第五の何れかの特徴構成に加えて、前記投光部は、前記切欠き部に対応する領域の仮想レンズ面から突出しない領域に収容されている点にある。 In the sixth characteristic configuration, in addition to any one of the third to fifth characteristic configurations described above, the light projecting section is accommodated in a region that does not protrude from the virtual lens surface in the region corresponding to the notch. in the point.

受光レンズの光軸方向に投光部が突出しないので、空間の使用効率を上げて小型化することができる。 Since the light projecting part does not protrude in the direction of the optical axis of the light receiving lens, it is possible to increase the space utilization efficiency and reduce the size.

同第七の特徴構成は、上述の第一から第六の何れかの特徴構成に加えて、前記受光レンズは、入射面の曲率が出射面の曲率より大となるように構成されている点にある。 The seventh characteristic configuration is, in addition to any one of the first to sixth characteristic configurations, that the light-receiving lens is configured such that the curvature of the entrance surface is larger than the curvature of the exit surface. It is in.

この構成によれば、測定光に対する反射光を効率よく取り込めることができる。このため、受光素子の受光量が低減することなく、測距測定を精度よく行い得る。 With this configuration, it is possible to efficiently capture reflected light with respect to the measurement light. Therefore, distance measurement can be accurately performed without reducing the amount of light received by the light receiving element.

同第八の特徴構成は、上述の第一から第七の何れかの特徴構成に加えて、前記投光素子は、フォトニック結晶面発光レーザである点にある。 The eighth characteristic configuration is that, in addition to any one of the first to seventh characteristic configurations, the light projecting element is a photonic crystal surface emitting laser.

投光素子にフォトニック結晶面発光レーザを用いると、投光部にビーム整形するための投光レンズを用いる必要がなく、投光部をそれだけコンパクトに構成できる。 When a photonic crystal surface-emitting laser is used as the light projecting element, it is not necessary to use a light projecting lens for beam shaping in the light projecting part, and the light projecting part can be configured more compactly.

以上説明した通り、本発明によれば、測定方向によって測距測定の精度にバラツキが生じることを抑制し、さらに、装置の小型化を実現する測距装置を提供することができるようになった。 As described above, according to the present invention, it is possible to provide a distance measuring device that suppresses variation in the accuracy of distance measurement depending on the direction of measurement and realizes miniaturization of the device. .

測距装置の斜視図である。1 is a perspective view of a rangefinder; FIG. (a)は測距装置の正面図、(b)は同平面図である。(a) is a front view of a distance measuring device, and (b) is a plan view of the same. (a)は図2(b)のBB線断面図、(b)は図3(a)のCC線断面図(a) is a cross-sectional view along line BB in FIG. 2(b), and (b) is a cross-sectional view along line CC in FIG. 3(a) 図2(a)のAA線断面図である。It is a sectional view on the AA line of Fig.2 (a). (a)は姿勢調節機構の平面図、(b)は受光レンズの切欠き部に収容された投光部の断面図である。(a) is a plan view of an attitude adjustment mechanism, and (b) is a cross-sectional view of a light projecting part accommodated in a notch of a light receiving lens. 姿勢調節機構の分解斜視図である。It is an exploded perspective view of a posture adjustment mechanism. (a)から(c)は、偏向ミラー5の回転位相と受光レンズを介して集光される受光素子の面上での照度分布の説明図である。(a) to (c) are explanatory diagrams of the rotation phase of the deflection mirror 5 and the illuminance distribution on the surface of the light-receiving element condensed via the light-receiving lens. 受光レンズを介して集光される受光素子の面上で受光総パワーを示し、本発明による測距装置と従来の測距装置との比較説明図である。FIG. 2 is an explanatory diagram for comparison between the distance measuring device according to the present invention and a conventional distance measuring device, showing the total received light power on the surface of the light receiving element condensed through the light receiving lens. (a)から(c)は、左方から順に偏向ミラーの回転位相、受光レンズを介して集光される受光素子の面上での照度分布、突出片(基板)と測定光の位置関係を示す説明図である。(a) to (c) show, from the left, the rotational phase of the deflection mirror, the illuminance distribution on the surface of the light receiving element condensed through the light receiving lens, and the positional relationship between the protruding piece (substrate) and the measurement light. It is an explanatory diagram showing. (a)は従来の測距装置の内部構造の説明図、(b)は投光素子が搭載された基板の説明図である。(a) is an explanatory diagram of the internal structure of a conventional distance measuring device, and (b) is an explanatory diagram of a substrate on which a light projecting element is mounted. 従来の測距装置の他の例を示す内部構造の説明図である。It is explanatory drawing of the internal structure which shows the other example of the conventional ranging device.

以下、本発明による測距装置を図面に基づいて説明する。
図1および図2(a),(b)には、測距装置2の外観が示され、図3(a),(b)および図4には、測距装置2の内部構造が示されている。当該測距装置2は、例えば製造現場などで資材などを搬送する無人搬送車のような移動体に搭載され、走行経路上の障害物を検出するための安全センサとして用いられる。
A distance measuring device according to the present invention will be described below with reference to the drawings.
1 and FIGS. 2(a) and (b) show the appearance of the distance measuring device 2, and FIGS. 3(a), (b) and 4 show the internal structure of the distance measuring device 2. ing. The distance measuring device 2 is mounted on a moving object such as an automatic guided vehicle that transports materials at a manufacturing site, for example, and is used as a safety sensor for detecting obstacles on the travel route.

図1および図2(a),(b)に示すように、測距装置2は、略直方体形状の下部ケーシング2Aと、逆円錐台形状の上部ケーシング2Cを備え、上部ケーシング2Cの周壁に測定光が透過する光学窓2Bを備えている。下部ケーシング2Aの背面の一側に、LAN用の通信用ケーブルS1が延出され、反対側に複数本の信号線で構成される入出力ケーブルS2が延出されている。 As shown in FIGS. 1 and 2(a) and (b), the distance measuring device 2 includes a substantially rectangular parallelepiped lower casing 2A and an inverted truncated cone-shaped upper casing 2C. It has an optical window 2B through which light passes. A LAN communication cable S1 extends from one side of the back surface of the lower casing 2A, and an input/output cable S2 composed of a plurality of signal lines extends from the other side.

図3(a),(b)および図4に示すように、測距装置2は、投光素子3aを備えた投光部3と、受光素子4aおよび受光レンズ7を備えた受光部4と、投光部3から出射された測定光を、光学窓2Bを介して測定対象空間に向けて走査し、光学窓2Bを介して入射した測定対象空間に存在する物体からの反射光を、受光部4に導く走査部6とを備えている。 As shown in FIGS. 3A, 3B, and 4, the distance measuring device 2 includes a light projecting section 3 having a light projecting element 3a, and a light receiving section 4 having a light receiving element 4a and a light receiving lens 7. , the measurement light emitted from the light projecting unit 3 is scanned toward the measurement target space through the optical window 2B, and the reflected light from the object existing in the measurement target space that is incident through the optical window 2B is received. and a scanning section 6 leading to the section 4 .

上部ケーシング2Cの天面内壁に設置されたモータ60と、モータ60の回転状態を検知するエンコーダ61と、モータ60の回転軸に対して45度の傾斜角度で取り付けられた偏向ミラー5により走査部6が構成されている。エンコーダ61はモータ60と一体に回転する円盤に印刷されたスリットパターンと、スリットパターンを読み取る反射型フォトセンサで構成されている。当該エンコーダ61から出力される信号は、モータ61の回転速度を制御するためのモニタ信号および測定光の走査角度を検出するためのモニタ信号となる。 The scanning unit is composed of a motor 60 installed on the inner wall of the top surface of the upper casing 2C, an encoder 61 for detecting the rotation state of the motor 60, and a deflection mirror 5 attached at an angle of 45 degrees to the rotation shaft of the motor 60. 6 is configured. The encoder 61 is composed of a slit pattern printed on a disc that rotates together with the motor 60 and a reflective photosensor that reads the slit pattern. A signal output from the encoder 61 serves as a monitor signal for controlling the rotational speed of the motor 61 and a monitor signal for detecting the scanning angle of the measurement light.

モータ60の回転軸と同軸心P上に投光素子3aと受光素子4aとが配置されている。投光素子3aとして、円筒形状の金属ケーシングの天面に出射窓が形成され、底面に端子が延出した缶タイプのフォトニック結晶面発光レーザが用いられている。受光素子4aとしては、アバランシェフォトダイオードが用いられている。 A light projecting element 3 a and a light receiving element 4 a are arranged coaxially with the rotating shaft of the motor 60 . As the light projecting element 3a, a can-type photonic crystal surface emitting laser is used in which an emission window is formed on the top surface of a cylindrical metal casing and terminals extend from the bottom surface. An avalanche photodiode is used as the light receiving element 4a.

フォトニック結晶面発光レーザとは、屈折率が周期的に変化するナノ構造体であるフォトニック結晶を活用することで、その光出射面積が大面積であっても、単一モード(ビームの形状が円形であり、パワーがその中心に集中しているモード)の動作を実現した面発光レーザである。フォトニック結晶面発光レーザは、コリメータレンズなどの光学素子を用いなくとも高光出力でビーム品質を劣化させることなく、極めて狭い拡がり角のビームが得られる素子である。 A photonic crystal surface-emitting laser uses a photonic crystal, which is a nanostructure whose refractive index changes periodically. is circular and the power is concentrated at its center). A photonic crystal surface-emitting laser is a device capable of obtaining a beam with an extremely narrow divergence angle without using an optical element such as a collimator lens and without degrading the beam quality at a high optical output.

なお、投光素子3aとして、フォトニック結晶面発光レーザ以外に、汎用の半導体レーザダイオードを用いることも可能であることは言うまでもない。この場合には、投光素子3aからの出射光をコリメートする投光レンズが必要である。 Needless to say, a general-purpose semiconductor laser diode can be used as the light projecting element 3a in addition to the photonic crystal surface emitting laser. In this case, a projection lens is required to collimate the light emitted from the projection element 3a.

投光素子3aから出射された測定光は、軸心Pに沿って偏向ミラー5に入射し、角度90°偏向されて光学窓2Bから測定対象空間に走査される。測定対象空間に存在する物体からの反射光が光学窓2Bから向ミラー5に入射し、受光レンズ7に向けて90°偏向され、受光レンズ7で集光された後に受光素子4aに入射する。 The measurement light emitted from the light projecting element 3a enters the deflection mirror 5 along the axis P, is deflected by an angle of 90°, and is scanned into the measurement target space through the optical window 2B. Reflected light from an object existing in the space to be measured enters the directional mirror 5 through the optical window 2B, is deflected by 90° toward the light receiving lens 7, is condensed by the light receiving lens 7, and then enters the light receiving element 4a.

受光レンズ7は、下部ケーシング2Aに備えたレンズホルダ70に鍔部7aが支持され、鍔部7aの上部を覆う固定具71で固定されている。 The light-receiving lens 7 has a collar portion 7a supported by a lens holder 70 provided in the lower casing 2A, and is fixed by a fixture 71 covering the upper portion of the collar portion 7a.

物体からの反射光が受光素子4aに入射すると、受光素子4aで光電変換された電気信号が前置増幅器で増幅されて信号処理回路に入力される。信号処理回路では、投光素子3aから測定光が出射された時点から受光素子4aで反射光が検出されるまでの時間に基づいて物体の反射点までの距離が算出され、エンコーダ61からの信号に基づいて物体の反射点の方向(=測定光の出射方向)が算出される測距演算が実行される。 When reflected light from an object is incident on the light receiving element 4a, an electrical signal photoelectrically converted by the light receiving element 4a is amplified by the preamplifier and input to the signal processing circuit. In the signal processing circuit, the distance to the reflection point of the object is calculated based on the time from when the measuring light is emitted from the light emitting element 3a until the reflected light is detected by the light receiving element 4a, and the signal from the encoder 61 is calculated. A distance measurement operation is performed to calculate the direction of the reflection point of the object (=the emission direction of the measurement light) based on .

上述した測距演算を実行する信号処理回路は、下部ケーシング2Aに収容された回路基板8に搭載されている。エンコーダ61からの信号に基づいてモータ60を駆動制御し、所定時期に投光素子3aを発光制御する測距装置2に対する制御回路も回路基板8に搭載されている。 A signal processing circuit for executing the above-described distance measurement calculation is mounted on a circuit board 8 accommodated in the lower casing 2A. Also mounted on the circuit board 8 is a control circuit for the distance measuring device 2 which drives and controls the motor 60 based on the signal from the encoder 61 and controls the light emission of the light projecting element 3a at a predetermined time.

平面視で上部ケーシング2Cの側方突出部20には、部品公差や経年劣化に起因する測距演算値を補正するための基準反射板20bが設けられている(図3(b)参照)。偏向ミラー5が1回転する度に、測定光が基準反射板20bに照射される。その反射光に対する距離演算値により、測定対象空間からの反射光に基づく距離演算値を補正する補正係数が算出される。 A reference reflector 20b is provided on the side projecting portion 20 of the upper casing 2C in a plan view for correcting the distance measurement value due to part tolerances and aged deterioration (see FIG. 3B). Each time the deflecting mirror 5 rotates once, the reference reflecting plate 20b is irradiated with the measurement light. A correction coefficient for correcting the distance calculation value based on the reflected light from the measurement target space is calculated from the distance calculation value for the reflected light.

図5(a),(b)に示すように、上述した投光素子3aを備えた投光部3は、投光素子3aの光軸が受光レンズ7の光軸P1に沿う姿勢で受光レンズ7に支持されている。投光部3は、投光素子3aの光軸の姿勢を調節する姿勢調節機構30を備え、姿勢調節機構30とともに受光レンズ7に支持されている。 As shown in FIGS. 5(a) and 5(b), the light projecting unit 3 having the light projecting element 3a described above is configured such that the optical axis of the light projecting element 3a is aligned with the optical axis P1 of the light receiving lens 7. 7 is supported. The light projecting unit 3 includes an attitude adjustment mechanism 30 that adjusts the attitude of the optical axis of the light projecting element 3a, and is supported by the light receiving lens 7 together with the attitude adjustment mechanism 30. As shown in FIG.

図6には、姿勢調節機構30の分解斜視図が示されている。姿勢調節機構30は、受光レンズ7の光軸に沿って受光レンズ7に貫通形成された切欠き部7hに固定されている。姿勢調節機構30は、投光素子3aの収容部32を備えたホルダ31と、収容部32に収容される投光素子3aを下方から支持する付勢部材33と、投光素子3aの上方から投光素子3aを支持する支持部材34と、支持部材34の周囲の複数個所で支持部材34による投光素子3aの押圧状態を調整する調整部材35と、を備えている。 FIG. 6 shows an exploded perspective view of the attitude adjustment mechanism 30. As shown in FIG. The attitude adjustment mechanism 30 is fixed to a notch portion 7h formed through the light receiving lens 7 along the optical axis of the light receiving lens 7. As shown in FIG. The posture adjustment mechanism 30 includes a holder 31 having a housing portion 32 for the light projecting element 3a, an urging member 33 supporting the light projecting element 3a housed in the housing portion 32 from below, and an urging member 33 supporting the light projecting element 3a from above. A support member 34 that supports the light projecting element 3a and an adjustment member 35 that adjusts the pressing state of the light projecting element 3a by the support member 34 at a plurality of locations around the support member 34 are provided.

姿勢調節機構30の構成について、具体的に説明する。切欠き部7hは、受光レンズ7の光軸P1を中心とする断面が円形の貫通孔で構成されている。当該貫通孔は、上部領域7uが下部領域7lに比べて大径に形成されている。上部領域7uに、円筒形状のホルダ31の周部が接するように収容され、上部領域7uと下部領域7lの間に形成される段差部7sでホルダ31の底部が支持されている。ホルダ31の周部には三カ所に凹部38が形成され、凹部38に接着用の接着剤Rが塗布されることで受光レンズ7に固定されている。 A configuration of the attitude adjustment mechanism 30 will be specifically described. The notch portion 7h is formed of a through hole having a circular cross section centered on the optical axis P1 of the light receiving lens 7. As shown in FIG. The through hole is formed such that the upper region 7u has a larger diameter than the lower region 7l. The upper region 7u accommodates the cylindrical holder 31 so that the peripheral portion thereof is in contact with the holder 31, and the bottom of the holder 31 is supported by the stepped portion 7s formed between the upper region 7u and the lower region 7l. Three concave portions 38 are formed in the periphery of the holder 31 , and the concave portions 38 are fixed to the light-receiving lens 7 by applying adhesive R for adhesion.

収容部32の底部に、付勢部材33であるウェーブワッシャまたはOリングが配置され、その上部に投光素子3aの金属ケーシングが収容され、さらにその上部に環状に形成された支持部材34が配置されている。付勢部材33として、板バネやコイルスプリングなどを含む弾性部材を好適に用いることができる。 A wave washer or an O-ring, which is an urging member 33, is arranged at the bottom of the accommodating portion 32, a metal casing of the light emitting element 3a is accommodated at the upper portion thereof, and a ring-shaped support member 34 is arranged at the upper portion thereof. It is As the biasing member 33, an elastic member including a leaf spring, a coil spring, or the like can be preferably used.

環状の支持部材34には、中心角120°の間隔で、径方向外方に三つの外側突片34O、径方向内方に三つの内側突片34Iが突出形成されている。外側突片34Oには支持部材34をホルダ31に固定するねじ孔36が形成され、内側突片34Iは投光素子3aの金属ケーシングに形成された周部段差部3fに接当している。このように、金属ケーシングは段付き形状を有するため、投光素子3aの姿勢を保持することができる。 The annular support member 34 has three radially outward projecting pieces 34O and three radially inwardly projecting inner projecting pieces 34I at intervals of a central angle of 120°. A screw hole 36 for fixing the support member 34 to the holder 31 is formed in the outer protruding piece 34O, and the inner protruding piece 34I is in contact with the peripheral stepped portion 3f formed in the metal casing of the light projecting element 3a. Since the metal casing has a stepped shape in this manner, the posture of the light projecting element 3a can be maintained.

三カ所のねじ孔36を介してホルダ31に調整部材35として機能するねじ35を締め付けることにより、投光素子3aの金属ケーシングが付勢部材33から反力を受けて姿勢が変化する。其々のねじ35の締め付け程度を調整することにより、投光素子3aの光軸を受光レンズ7の光軸P1と一致させることができる。 By tightening the screw 35 functioning as the adjustment member 35 to the holder 31 through the three screw holes 36, the metal casing of the light projecting element 3a receives a reaction force from the urging member 33 and changes its attitude. By adjusting the tightening degree of each screw 35, the optical axis of the light projecting element 3a can be aligned with the optical axis P1 of the light receiving lens 7. FIG.

なお、投光素子3aの光軸の調整を行うとき、作業者は、投光素子3aを駆動して測定光の出射方向を検知するセンサを備えた治具を用いて、投光素子3aの光軸の姿勢をモニタする。投光素子3aの光軸を調整して調整部材35をホルダ31に締め付けた後に、調整部材35が何らかの原因で緩むと、投光素子3aの光軸の姿勢が変化する虞がある。そこで、作業者は、投光素子3aの光軸の調整の後に、調整部材35を接着剤35rにより固定する。これにより、調整部材35の緩みを防止することができる。 When adjusting the optical axis of the light projecting element 3a, the operator uses a jig equipped with a sensor for driving the light projecting element 3a and detecting the emission direction of the measurement light to move the light projecting element 3a. Monitor the attitude of the optical axis. After adjusting the optical axis of the light projecting element 3a and tightening the adjusting member 35 to the holder 31, if the adjusting member 35 is loosened for some reason, the posture of the optical axis of the light projecting element 3a may change. Therefore, the operator fixes the adjustment member 35 with the adhesive 35r after adjusting the optical axis of the light projecting element 3a. Thereby, loosening of the adjustment member 35 can be prevented.

接着剤35rとして、天然ゴム、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂などを含む接着剤、あるいは、緩み止め剤を適宜用いることができる。そして、黒色の染料や顔料を混入した接着剤35rを用いると、接着剤35rの表面における光の反射を抑制でき、迷光によるノイズの発生を大きく低減できる。具体的に説明すると、ねじ35の頭部を覆い且つ周辺部材に及ぶ範囲にわたって接着剤35rで被覆すると、後にドライバを用いてねじ35を緩み操作できなくなり、外部から加わる振動によってもねじ35が緩み難くなるので、より確実に固定できる。なお、ねじ35の頭部の縁部と周辺部材とを接着剤35rで被覆すると、ねじ35の固定という所期の目的を達成することができ、後にドライバを用いてねじ35を緩み操作することにより再調整が容易になる。なお、本実施形態では、接着剤として、セメダインスーパーX(登録商標(セメダイン株式会社製))を使用している。 As the adhesive 35r, an adhesive containing natural rubber, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or an anti-loosening agent can be used as appropriate. By using the adhesive 35r mixed with a black dye or pigment, the reflection of light on the surface of the adhesive 35r can be suppressed, and the generation of noise due to stray light can be greatly reduced. Specifically, when the head of the screw 35 is covered with adhesive 35r over a range extending to the peripheral member, the screw 35 cannot be loosened later using a screwdriver, and the screw 35 can be loosened by external vibration. Since it becomes difficult, it can be fixed more reliably. By covering the edge of the head of the screw 35 and peripheral members with an adhesive 35r, the intended purpose of fixing the screw 35 can be achieved, and the screw 35 can be loosened later using a screwdriver. makes readjustment easier. In this embodiment, Cemedine Super X (registered trademark (manufactured by Cemedine Co., Ltd.)) is used as the adhesive.

上述の例では、支持部材34を環状に形成した例を説明したが、環状であることは必須ではなく、支持部材34は、個々に分離された部品として構成されていてもよい。たとえば、支持部材34は、光軸に対して周方向に均等な間隔で配置されてもよい。この場合、支持部材34は、上述した外側突片34O、内側突片34Iと同等の機能を備えていればよい。 In the above example, an example in which the support member 34 is formed in an annular shape has been described, but the annular shape is not essential, and the support member 34 may be configured as individual separated parts. For example, the support members 34 may be arranged at equal intervals in the circumferential direction with respect to the optical axis. In this case, the support member 34 may have functions equivalent to those of the outer projecting piece 34O and the inner projecting piece 34I described above.

上述の例では、ホルダ31の三か所に調整部材35が設けられた例を説明したが、少なくともホルダ31の二か所に調整部材35が設けられる構成であればよい。また、この場合、二か所のうち何れか一か所は、調整部材35がホルダ31に固定された態様であってもよい。 In the above example, an example in which the adjusting members 35 are provided at three positions on the holder 31 has been described, but a configuration in which the adjusting members 35 are provided at at least two positions on the holder 31 may be employed. In this case, the adjustment member 35 may be fixed to the holder 31 at one of the two positions.

投光素子3aを駆動するための駆動回路3eを備えた基板3pが貫通孔の下部領域7lに配置され、収容部32の底部中心に形成された開口32hを介して電線により投光素子3aと電気的に接続されている。また、基板3pから延出する電線Lが回路基板8に接続されている(図3(a)参照)。駆動回路3eの出力を長い信号線を介して投光素子3aに接続する場合に問題となる輻射ノイズの発生や信号波形の鈍りを回避することができる。 A substrate 3p having a drive circuit 3e for driving the light projecting element 3a is arranged in the lower region 7l of the through hole, and is connected to the light projecting element 3a by an electric wire through an opening 32h formed at the center of the bottom of the housing portion 32. electrically connected. An electric wire L extending from the board 3p is connected to the circuit board 8 (see FIG. 3(a)). It is possible to avoid the occurrence of radiation noise and blunting of the signal waveform, which are problems when the output of the driving circuit 3e is connected to the light projecting element 3a through a long signal line.

また、貫通孔の下部領域7lで投光素子3aと基板3pとの接続領域が樹脂39で封止されている。なお、電線Lは受光レンズ7を透過した反射光が大きく遮られることが無いように、例えばAWG20以上の番手の大きな電線や透明樹脂基板に配線パターンが施されたフラットケーブルなどを用いることが好ましい。 A connection region between the light emitting element 3a and the substrate 3p is sealed with a resin 39 in the lower region 7l of the through hole. In order that the reflected light transmitted through the light-receiving lens 7 is not largely blocked, it is preferable to use, for example, a large electric wire of AWG20 or more, or a flat cable having a wiring pattern on a transparent resin substrate. .

上述した例では、受光レンズ7の光軸P1を中心とする円筒形状の貫通孔で切欠き部7hが構成されている。しかしながら、受光レンズ7の光軸P1から離隔した位置で光軸P1に沿うように、つまり光軸P1と平行になるように貫通孔が形成されていてもよい。 In the example described above, the notch portion 7h is formed by a cylindrical through hole centered on the optical axis P1 of the light receiving lens 7. As shown in FIG. However, the through hole may be formed along the optical axis P1 at a position separated from the optical axis P1 of the light receiving lens 7, that is, parallel to the optical axis P1.

つまり、投光部3は、投光素子3aの光軸が受光レンズ7の光軸P1に沿う姿勢で受光レンズ7に支持されていればよい。受光レンズ7に支持された投光部3から出射される測定光は、受光レンズ7の光軸に沿って進む。このため、走査部6を介して測定対象空間に向けて走査された測定光に対する反射光が、受光レンズ7の光軸に沿って受光素子4aに適正に案内される。 In other words, the light projecting unit 3 may be supported by the light receiving lens 7 in such a manner that the optical axis of the light projecting element 3a is aligned with the optical axis P1 of the light receiving lens 7 . The measurement light emitted from the light projecting unit 3 supported by the light receiving lens 7 travels along the optical axis of the light receiving lens 7 . Therefore, reflected light of the measurement light scanned toward the space to be measured via the scanning unit 6 is properly guided along the optical axis of the light receiving lens 7 to the light receiving element 4a.

そして、投光部3が受光レンズ7に支持されているので、投光部3を支持するための別途の基板が不要である。そのため、受光レンズ7を透過した反射光が基板によって遮光されることが無くなる。つまり、走査部6による測定光の照射方向に依存することなく、受光素子4a上での反射光の照度分布の変動が抑制される。 Further, since the light projecting section 3 is supported by the light receiving lens 7, a separate substrate for supporting the light projecting section 3 is not required. Therefore, the reflected light transmitted through the light receiving lens 7 is not blocked by the substrate. In other words, variations in the illuminance distribution of the reflected light on the light receiving element 4a are suppressed regardless of the irradiation direction of the measurement light from the scanning unit 6. FIG.

図7(a),(b),(c)には、左方から順に偏向ミラー5の回転位相、受光レンズ7を介して集光される受光素子4aの面上での照度分布を示す説明図が其々示されている。 FIGS. 7A, 7B, and 7C show, from the left, the rotation phase of the deflecting mirror 5 and the illuminance distribution on the surface of the light receiving element 4a condensed through the light receiving lens 7. FIG. Figures are shown respectively.

図7(a)は、光学窓2Bの左側面から測定光が出射される場合を示す。図7(b)は、光学窓2Bの正面から測定光が出射される場合を示す。図7(c)は、光学窓2Bの右側面から測定光が出射される場合を示している。何れの場合でも、受光素子4aの面上で中心部の照度はほぼ一定となることが示されている。 FIG. 7(a) shows the case where the measurement light is emitted from the left side surface of the optical window 2B. FIG. 7(b) shows the case where the measurement light is emitted from the front of the optical window 2B. FIG. 7(c) shows the case where the measurement light is emitted from the right side surface of the optical window 2B. In either case, it is shown that the illuminance of the central portion on the surface of the light receiving element 4a is substantially constant.

図8に示すように、投光素子3aを基板で支持する従来構成と比較して、投光素子3aを受光レンズ7で支持する本発明の構成は、光学窓2Bの正面、左右の側面の何れから測定光が出射される場合でも、均一の照度分布が得られ、受光総パワーがほぼ均一となる。 As shown in FIG. 8, in comparison with the conventional structure in which the light projecting element 3a is supported by the substrate, the structure of the present invention in which the light projecting element 3a is supported by the light receiving lens 7 is superior to the front and left and right side surfaces of the optical window 2B. A uniform illuminance distribution is obtained and the total power of received light is substantially uniform regardless of which direction the measurement light is emitted from.

投光部3は、受光レンズ7の切欠き部7hに対応する領域の仮想レンズ面(図5(b)中、二点鎖線で示す)から突出しない領域に収容されていることが好ましい。受光レンズ7の光軸方向に投光部3が突出しないので、受光レンズ7の直上に走査部6を設けることができ、空間の使用効率を上げて測距装置2を小型化することができる。 It is preferable that the light projecting part 3 is accommodated in a region that does not protrude from the virtual lens surface (indicated by the two-dot chain line in FIG. 5B) in the region corresponding to the notch 7h of the light receiving lens 7 . Since the light projecting part 3 does not protrude in the direction of the optical axis of the light receiving lens 7, the scanning part 6 can be provided directly above the light receiving lens 7, so that the space efficiency can be improved and the size of the distance measuring device 2 can be reduced. .

仮想レンズ面は、切欠き部7hを形成する前の受光レンズ7の表面をいい、好ましくは切欠き部7hが形成された受光レンズ7の面を延長して形成される滑らかな曲面で規定することができる。受光レンズ7および仮想レンズ面は、直上に設ける走査部6に当接しない範囲で、それらの曲率を設定することができる。なお、投光部3は、その大部分が仮想レンズ面から突出しない領域に収容されていればよく、その一部が仮想レンズ面から突出しても走査部6に当接しなければよい。 The virtual lens surface refers to the surface of the light-receiving lens 7 before the notch 7h is formed, and is preferably defined by a smooth curved surface formed by extending the surface of the light-receiving lens 7 in which the notch 7h is formed. be able to. The curvatures of the light-receiving lens 7 and the virtual lens surface can be set within a range in which they do not come into contact with the scanning unit 6 provided directly above. It is sufficient that most of the light projecting section 3 is housed in a region that does not protrude from the virtual lens surface, and even if a portion thereof protrudes from the virtual lens plane, it does not come into contact with the scanning section 6 .

また、受光レンズ7は、入射面の曲率が出射面の曲率より大となるように構成されていることが好ましい。 Moreover, the light receiving lens 7 is preferably configured such that the curvature of the incident surface is larger than the curvature of the exit surface.

受光レンズ7は、光学ガラスやプラスチック素材を用いて構成してもよく、またフレンネルレンズを用いてもよい。 The light-receiving lens 7 may be configured using optical glass or plastic material, or may use a Fresnel lens.

上述した実施形態は、本発明による測距装置の一例を示すものであり、測距装置1の具体的構造は、本発明による作用効果を奏する範囲において適宜変更設計できることはいうまでもなく、本発明の技術的範囲が上述の例に限定されるものではない。 The above-described embodiment shows an example of the distance measuring device according to the present invention, and it goes without saying that the specific structure of the distance measuring device 1 can be appropriately changed and designed within the scope of the effect of the present invention. The technical scope of the invention is not limited to the above examples.

2:測距装置
2A:下部ケーシング
2B:光学窓
2C:上部ケーシング
3:投光部
3a:投光素子
3e:駆動回路
3f:段差部
3p:基板
4:受光部
4a:受光素子
5:偏向ミラー
6:走査部
7:受光レンズ
7a:唾部
7h:切欠き部
8:回路基板
30:姿勢調節機構
31:ホルダ
32:収容部
33:付勢部材
34:支持部材
34O:外側突片
34I:内側突片
35:調整部材(ねじ)
36:ねじ孔
38:凹部
39:樹脂
60:モータ
60a:回転軸
61:エンコーダ
70:レンズホルダ
71:固定具
R:接着剤
S1:通信用ケーブル
S2:入出力ケーブル
2: Distance measuring device 2A: Lower casing 2B: Optical window 2C: Upper casing 3: Light projecting part 3a: Light projecting element 3e: Drive circuit 3f: Step part 3p: Substrate 4: Light receiving part 4a: Light receiving element 5: Deflecting mirror 6: Scanning part 7: Light receiving lens 7a: Saliva part 7h: Notch part 8: Circuit board 30: Posture adjustment mechanism 31: Holder 32: Accommodating part 33: Biasing member 34: Supporting member 34O: Outer projecting piece 34I: Inner side Protruding piece 35: adjusting member (screw)
36: screw hole 38: recess 39: resin 60: motor 60a: rotating shaft 61: encoder 70: lens holder 71: fixture R: adhesive S1: communication cable S2: input/output cable

Claims (8)

投光素子を備えた投光部と、
受光素子および受光レンズを備えた受光部と、
前記投光部から出射された測定光を測定対象空間に向けて走査し、前記測定光に対する物体からの反射光を前記受光部に導く走査部と、
を備え、
前記投光部は、前記投光素子の光軸が前記受光レンズの光軸に沿う姿勢で前記受光レンズに支持されている測距装置。
a light projecting unit including a light projecting element;
a light-receiving unit including a light-receiving element and a light-receiving lens;
a scanning unit that scans the measuring light emitted from the light projecting unit toward the space to be measured and guides the light reflected from the object with respect to the measuring light to the light receiving unit;
with
The light-projecting unit is a distance measuring device supported by the light-receiving lens in a posture in which the optical axis of the light-projecting element is aligned with the optical axis of the light-receiving lens.
前記投光部は、前記投光素子の光軸の姿勢を調節する姿勢調節機構を備え、前記姿勢調節機構とともに前記受光レンズに支持されている請求項1記載の測距装置。 2. A distance measuring apparatus according to claim 1, wherein said light projecting unit has an attitude adjusting mechanism for adjusting the attitude of the optical axis of said light projecting element, and is supported by said light receiving lens together with said attitude adjusting mechanism. 前記姿勢調節機構は、
前記受光レンズの光軸に沿って前記受光レンズに貫通形成された切欠き部に固定され前記投光素子の収容部を備えたホルダと、
前記収容部に収容される前記投光素子を下方から支持する付勢部材と、
前記投光素子の上方から前記投光素子を支持する支持部材と、
前記支持部材の周囲の複数個所で前記支持部材による前記投光素子の押圧状態を調整する調整部材と、を備えている請求項2記載の測距装置。
The attitude adjustment mechanism is
a holder that is fixed to a notch formed through the light-receiving lens along the optical axis of the light-receiving lens and has a housing for the light projecting element;
a biasing member that supports the light projecting element housed in the housing from below;
a support member that supports the light projecting element from above;
3. The distance measuring device according to claim 2, further comprising an adjustment member for adjusting a pressing state of said light projecting element by said support member at a plurality of positions around said support member.
前記投光部は、前記投光素子を駆動する駆動回路を含み、
前記駆動回路は、前記切欠き部に収容されている請求項3記載の測距装置。
The light projecting unit includes a drive circuit that drives the light projecting element,
4. A distance measuring device according to claim 3, wherein said drive circuit is accommodated in said notch.
前記調整部材は、接着剤で緩み止め固定されている請求項3または4記載の測距装置。 5. The distance measuring device according to claim 3, wherein said adjusting member is fixed with an adhesive to prevent it from loosening. 前記投光部は、前記切欠き部に対応する領域の仮想レンズ面から突出しない領域に収容されている請求項3から5の何れかに記載の測距装置。 6. The distance measuring device according to claim 3, wherein the light projecting section is accommodated in a region that does not protrude from the virtual lens surface in the region corresponding to the notch. 前記受光レンズは、入射面の曲率が出射面の曲率より大となるように構成されている請求項1から6の何れかに記載の測距装置。 7. The distance measuring device according to claim 1, wherein the light receiving lens is constructed such that the curvature of the entrance surface is larger than the curvature of the exit surface. 前記投光素子は、フォトニック結晶面発光レーザである請求項1から7の何れかに記載の測距装置。 8. The distance measuring device according to claim 1, wherein said light projecting element is a photonic crystal surface emitting laser.
JP2021095642A 2021-06-08 2021-06-08 Distance measuring device Pending JP2022187581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021095642A JP2022187581A (en) 2021-06-08 2021-06-08 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021095642A JP2022187581A (en) 2021-06-08 2021-06-08 Distance measuring device

Publications (1)

Publication Number Publication Date
JP2022187581A true JP2022187581A (en) 2022-12-20

Family

ID=84531988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021095642A Pending JP2022187581A (en) 2021-06-08 2021-06-08 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2022187581A (en)

Similar Documents

Publication Publication Date Title
US5347605A (en) Optoelectronic component having spherical adjusting means
CN111656215B (en) Laser radar device, driving assistance system, and vehicle
KR101923724B1 (en) Transmitting integrated type optical structure and scanning LiDAR having the same
US7427748B2 (en) Reflection type photoelectric switch
CN110235025B (en) Distance detecting device
US20180172808A1 (en) Object detection device
US11199398B2 (en) Laser projection module, depth camera and electronic device
US20100002278A1 (en) Beam irradiation apparatus
JP2022187581A (en) Distance measuring device
CN114779267B (en) Laser ranging system and laser ranging device
CN110320614A (en) Lens subassembly and optical communication module
JP2020012953A (en) Lens unit, assembly method for lens unit, object detection device
US20210149026A1 (en) Optical distance measuring device
CN114858705A (en) Optical detection system for improved alignment
JP2000121725A (en) Distance measuring apparatus
WO2022255146A1 (en) Light emitting device, and distance measuring device
CN111656214A (en) Optical radar device
JP2005164649A (en) Optical apparatus and photoelectric sensor
CN220438538U (en) Beam splitting assembly and lidar system
JP4975978B2 (en) Laser beam emitting device
US20240219014A1 (en) Lens barrel-equipped lens and light source device
KR102645857B1 (en) Laser scanner
CN220323534U (en) Industrial safety laser radar
WO2023062987A1 (en) Lens with lens barrel and light source device
WO2020226065A1 (en) Optical module manufacturing apparatus and optical module manufacturing method