JPH08138820A - 化合物超電導線および導体の接合方法 - Google Patents

化合物超電導線および導体の接合方法

Info

Publication number
JPH08138820A
JPH08138820A JP6269336A JP26933694A JPH08138820A JP H08138820 A JPH08138820 A JP H08138820A JP 6269336 A JP6269336 A JP 6269336A JP 26933694 A JP26933694 A JP 26933694A JP H08138820 A JPH08138820 A JP H08138820A
Authority
JP
Japan
Prior art keywords
superconducting
compound
joining
conductor
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269336A
Other languages
English (en)
Inventor
Chie Satou
知絵 佐藤
Rikuo Kamoshita
陸男 鴨志田
Sumitaka Goto
純孝 後藤
Ryukichi Takahashi
龍吉 高橋
Yoshihide Wadayama
芳英 和田山
Katsuo Koriki
勝男 高力
Katsuhiko Asano
克彦 浅野
Akira Shigenaka
顕 重中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6269336A priority Critical patent/JPH08138820A/ja
Publication of JPH08138820A publication Critical patent/JPH08138820A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【目的】接続抵抗が低く、特性のばらつきが小さい高信
頼性の接合部であり、且つコンパクト形状の超電導体接
合部を得る。 【構成】超電導線または導体の突き合わせ接合におい
て、接合時の軸方向変形量lが80μm以上,300μ
m以下の範囲となるように制御することにより、接続抵
抗が低く、高信頼性の超電導接合部を得ることができ
る。 【効果】接続抵抗が低く、高電流通電が可能な超電導接
合体を得ることができ、これにより高磁場発生用コイル
あるいは減衰(損失)のない永久電流モード仕様のコイ
ルの製作等が可能になり、超電導応用分野を大幅に拡大
できる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は化合物超電導線の接合方
法、また、それにより得られる超電導線の接合体,接合
構造に係る。特に接続抵抗が小さく、しかも大電流通電
が可能な超電導線同士の接合体を得るための接合方法に
関する。さらに、種々の化合物超電導線に適用可能な信
頼性の高い超電導線の接合方法に関する。
【0002】
【従来の技術】超電導線を大型マグネットとして使用す
る場合、超電導線材の製造工程上、特性のばらつきや断
線がない超電導線として製造できる長さには限界があ
り、超電導線同士の接続は不可欠である。また、使用さ
れる装置の構造上の理由からも超電導線同士の接続が必
要となってくる。しかし、超電導線接合部では接続抵抗
の発生によるパワー損失及び電流容量の低下等の様々な
問題がある。
【0003】超電導線の接合方法としては、超電導体同
士の直接接触界面を形成できる突き合わせ接合が有効で
あると考えられる。突き合わせ接合方法としては、特開
平3−40382 号記載のような突き合わせ抵抗溶接の他
に、拡散接合,冷間圧接,熱間圧接,爆発圧接等が挙げ
られる。いずれも、接合端面に突き合わせ圧力を加えて
行う接合であり、加圧変形による歪導入は避けられな
い。化合物超電導線は、機械的歪による超電導特性の劣
化が大きいため、すでに超電導化合物が形成されている
線同士を接合する場合には、圧接時に導入される歪によ
り接合部の抵抗が高くなるという問題がある。その改善
方法として、特開昭56−112080号記載のように、線材に
化合物超電導層を形成させるための熱処理を施す前に接
続し、その後に全体を熱処理する方法がある。これによ
り、歪による特性劣化の問題は解決されるが、接合端面
に対して加えた突き合わせ圧力による変形は、接合界面
を挟んだ両側の超電導フィラメント間にマトリックスの
介在層またはフィラメントが屈曲し細かく分断した堆積
層等を生成することになり、この様な介在層により接続
抵抗が大きくなる問題がある。一方、小さい加圧力下で
固相状態の温度範囲で接合する場合には、歪および介在
層の問題は避けられるが、金属的接合が不十分となり、
継手品質の信頼性の点で問題が生じる。
【0004】また、変形量を制御せずに接合体を作製し
た場合には、接合特性のばらつきが大きく、100μm
〜数mmオーダーの変形量の範囲内で、2桁から3桁程度
の接続抵抗値の差が生じ、信頼性がないために製品適用
上大きな問題がある。特に、並列回路中の接合部におい
ては、接続抵抗値に差が生じると抵抗値の低い接合部に
電流が集中する結果となり、装置の安全性及び長期的信
頼性にも問題が生じてくる。
【0005】以上のことから、化合物超電導線突き合わ
せ接合部の接続抵抗低減及び信頼性向上のためには、超
電導化合物が既に形成されている線同士を接合する場合
及び化合物超電導層形成前に接合後熱処理する場合いず
れにおいても接合条件の最適化、特に接合時の加圧変形
量の制御が必要であった。
【0006】
【発明が解決しようとする課題】従来、化合物超電導線
の突き合わせ接合法において、接合条件の適正化がなさ
れておらず、接合時の歪導入、及び接合界面近傍での高
抵抗層の介在等による接続抵抗の増大、あるいは金属的
接合不良による機械的強度の低下など、変形量に由来す
る超電導特性のばらつきが大きく、信頼性の高い接合部
を得ることが困難であった。
【0007】本発明の目的は、上記従来技術の接合条件
の適正化により、接続抵抗が低く、信頼性の高い化合物
超電導線接合体及びそれを得るための接合方法を提供す
ることにある。
【0008】
【課題を解決するための手段】上記目的を達成するため
に、本発明は、接続抵抗特性を大きく支配する因子の一
つである、接合部の変形量を接合時に制御したものであ
る。
【0009】本発明の化合物超電導線の接合方法は、低
抵抗金属からなるマトリックス中に複数本の超電導フィ
ラメントが埋め込まれて構成された2本の化合物超電導
線を互いに一端面を対向させ突き合わせ接合する方法に
おいて、接合前後の線軸方向の変化量を80μm以上,
300μm以下、好ましくは100μm以上,200μ
m以下の範囲内とすることを特徴とする。この場合、接
合前後の線軸方向の変化量とは、加圧して接合した場合
の超電導線の縮んだ長さのことである。すなわち、この
変化量が多いということは、超電導線の変形量が大きい
ということである。換言すると、線軸方向の変形量が8
0μm以上,300μm以下、好ましくは100μm以
上,200μm以下の範囲であることを特徴としてい
る。
【0010】また、線軸方向の変形量は、線軸方向断面
からみたフィラメントの幾何学的変形幅としてもよい。
また、線軸方向の変形量は、線軸方向断面において、一
方の超電導線のフィラメントが他方の線のフィラメント
と重なりあっている場合、それらのフィラメントの重な
り長さとしてもよい。
【0011】さらに、本発明の化合物超電導線接合体
は、低抵抗金属からなるマトリックス中に複数本の超電
導フィラメントが埋め込まれて構成された化合物超電導
線の互いに一端面が対向しており、フィラメント構成元
素の周辺マトリックス内への軸線方向の拡散領域幅が8
0μm以上,300μm以下の範囲内にあることを特徴
とする。
【0012】超電導線の場合と同様、低抵抗金属からな
るマトリックス中に複数本の超電導フィラメントが埋め
込まれて構成された化合物超電導線の束からなる、化合
物超電導導体の接合方法,接合構造および接合体につい
ても適用できる。
【0013】本発明の接合方法,接合構造および接合体
は、公知の化合物超電導線材のうちNb3Sn超電導線
に適用でき、その他(Nb,Ti)3Sn,Nb3Al,V
3Ga超電導線等に適用できる。
【0014】超電導線または導体と継手部材との接合方
法としては、例えば、抵抗加熱溶接,電子ビーム,レー
ザー等を熱源とする圧接法などが挙げられる。
【0015】
【作用】発明者らは、抵抗加熱溶接により化合物超電導
線の突き合わせ接合する際、接続抵抗が最も小さく、か
つ接合強度も十分なものが得られるような突き合わせ接
合条件を検討し本発明に至ったものである。抵抗加熱溶
接の場合、接合条件としては、突き合わせ加圧力,溶接
電流が主なファクターである。この場合、接合部に加え
る加圧力,流す電流が大きいと、接合部の変形量が大き
い状態で接合される。すなわち、接合強度は大きくな
る。しかし、接合部の変形量が大きいということは、超
電導フィラメントに加わる歪みが大きいことを意味す
る。
【0016】いくつかの超電導線及び導体について、突
き合わせ接合部の軸方向変形量と接続抵抗の関係を検討
した結果を、図2に示す。いずれの場合も、変形量に対
して接続抵抗値には極小値が存在し、その値は、100
〜200μmでほぼ一致した。極小値の変形量範囲内に
ある接合体の断面を観察したところ、図1に示すような
構造であることがわかった。約200μmより大きい変
形量の範囲では、変形量とともに接続抵抗値は直線的に
増大した。また、径の異なる線及び導体接合体間の比較
のために、軸方向変形量を接続抵抗と線材断面積の積で
まとめ、図3で示す。変形量の大きい領域では、その関
係はほぼ一致した。よって、変形量の増大による接続抵
抗の増大は、いずれの場合も同じ理由によるものと考え
られる。変形量が大きい場合には、接合部における線
(導体)構造の乱れが大きく、この結果、機械的歪に弱
い化合物超電導体自身の特性劣化や、界面近傍での高抵
抗層の形成が起こる。超電導体の特性劣化については、
接合部がない超電導線に軸方向に変形を与えて、その前
後で臨界電流特性を比較した場合、変形量が大きくなる
に従って臨界電流が低下することから明らかになった。
変形を与えた超電導線のフィラメントには、多くのクラ
ックが観察された。従って、超電導体そのものの特性劣
化抑制のため、変形量をできるだけ小さくする必要があ
る。また、高抵抗層形成の例としては、図5に示すよう
に接合部のフィラメントが細かく分断され、高抵抗介在
層として、接合界面近傍に堆積する場合が挙げられる。
さらに、図4に示すように、フィラメントが放射状に大
きく屈曲し、周囲に排除されるために、接合界面におい
て超電導体同士の接触はなく、マトリックスだけの領域
が残る場合もある。
【0017】一方、変形量が100μm以下の範囲で
は、図6のように接合界面には未接合領域が多数みら
れ、真実接触面積は極めて小さくなるため、結果として
接続抵抗は高くなる。
【0018】上記軸方向変形量と接続抵抗の関係は、他
の超電導体においてもほぼ同様の結果が得られた。ただ
し、極小値を示す変形量範囲は、超電導線または導体の
径あるいは溶接時間等によってやや変動する。接合例お
よび断面観察結果から、ボイドのない接合部を得るため
には、すくなくとも80μm以上の長さでフィラメント
の重なりを有する接合が必要であり、また、接合界面近
傍で電流が完全に安定化マトリックス側を流れた場合
の、接続抵抗概算値より低い接続抵抗を得るためには、
300μm以下の変形量に抑えることが必要であること
がわかった。
【0019】以上のことから、80μm以上,300μ
m以下の範囲が、優れた接合特性を有する接合体を得る
ための接合部軸方向変形量の適正範囲である。さらに望
ましくは、100μm以上,200μm以下の変形量が
適正範囲である。これらの変形量は上記のように接合時
に変位を測定することによっても管理できるが、接合後
の接合部断面を切り出し、鏡面研摩して接合部付近を光
学顕微鏡または走査型電子顕微鏡で観察することによっ
ても調べることができる。すなわち、接合時に変形した
領域は図4,図5に示すように超電導フィラメントまた
は超電導線が変形するため、変形が起こっている領域の
大きさをもって変形量とすることができる。また、超電
導素線の外周部には、超電導体が部分的に常伝導状態に
なった場合、その常伝導領域の発熱による線の溶断等を
防ぐために熱的,電気的なバイパスとなり得る高導電性
の純銅の層が設けられている。この純銅の層に化合物の
組成成分であるSn等が拡散すると、この層の電気抵抗
が大きくなり、問題となる。そのため、前記純銅の層と
超電導線の間には、Sn等の拡散を防ぐための10μm
程度の厚さのTa等の拡散防止層が設けられている。接
合時の超電導線の変形量が大きくなるとこの拡散防止層
が破壊され、純銅層にSn等が拡散してしまう。変形量
の上限を確認する手法としてこのような、純銅層へのS
n等の拡散層の長さ(線軸方向での)をEPMA等の元
素分析装置を用いて測定することも可能となる。本発明
により、接続抵抗が低く、信頼性の高い化合物超電導接
合体を得ることができる。
【0020】
【実施例】以下、本発明の実施例を図面に基づいて説明
する。
【0021】(実施例1)図1は本発明の一実施例の化
合物超電導線の接合断面構造を示す図である。
【0022】本実施例で用いた化合物超電導線1は、フ
ィラメント2と、そのフィラメント2が埋め込まれたマ
トリックス3とからなる複合線である。この化合物超電
導線は、直径3μmのNbフィラメントがCu−Sn合
金からなるマトリックス中に約10,000 本埋め込ま
れた構造の外径1mmの複合線材を、約700℃で200時
間熱処理し、Cu−Sn合金とNbの界面に超電導体で
あるNb3Sn を形成したものである。この化合物超電
導線1(単に超電導線1という)同士を接続するため
に、まず、各超電導線1の端面をエメリーペーパー,ラ
ッピングテープを用いて研磨し、線材軸方向に直交する
端面を鏡面に仕上げた。これらの端面同士を突き合わせ
た状態で電極に固定し、軸方向に70MPaの加圧力で
加圧しながら0.3secの間通電して、加熱溶接した。溶
接前の導体の長さから溶接後の接合体の長さを差し引い
た値を軸方向の変形量とし、高精度レーザー式変位計に
より接合前後の軸方向変形量を測定した。これにより、
軸方向の変形量を100〜150μmである超電導線
1,1の数組の突き合わせ接合体を得た。
【0023】この接合体について接続抵抗を液体ヘリウ
ム中で測定した結果、接合部の電流方向に対して垂直方
向5Tの磁界中で、35Aを通電し、9×10-9〜2×
10-8Ωの抵抗値が得られた。
【0024】一方、比較例として、前記溶接条件のうち
溶接電流のみを変えて、変形量を60〜650μmの範
囲で変えた試料を作製した。図2(a)はこれらの接合
体について、接続抵抗を液体ヘリウム中で測定し、変形
量と接続抵抗の関係を調べた結果を示す。変形量が30
0μm以上では、接続抵抗は1×10-7Ω(5T垂直磁
場,35A通電時)以上の高い値を示し、変形量が増す
にしたがって、接続抵抗も増大した。また、変形量70
μm以下の場合も、接続抵抗は1×10-7Ω(5T垂直
磁場,35A通電時)以上に増大した。
【0025】変形量が60,120,500μmの各接
合体について、接合部の断面構造を観察した。変形12
0μmの接合体では、図1と同様な断面が得られた。ま
た、変形量500μm接合体では図5のような断面が観
察され、フィラメントが外周側に屈曲し、超電導体同士
の接続率は低かった。断面から測定したフィラメントの
変形領域幅は400μmであった。一方、変形量60μ
mの接合体では図6のような断面が観察された。断面で
はフィラメントの変形領域はほとんど認められず、10
μm以下であった。しかし、界面にボイドが多数観察さ
れ、これが高接続抵抗の原因となった。
【0026】(実施例2)本実施例で用いた化合物超電
導導体(以後、超電導導体と略す)は、Cu−Sn合金マ
トリックス中にNbフィラメントが約15,000 本埋
め込まれた構造の外径1mmの線材を素線とし、この素線
を133本束ねて、銅パイプで被覆したものであり、約
700℃で200時間の熱処理により、Cu−Sn合金
とNbの界面にNb3Sn を形成させたものである。こ
の超電導導体を長さ200mmに2本切り出し、この2本
を接続するために、まず、各超電導線の端部をエメリー
ペーパー,ラッピングテープにより研磨し、線材軸方向
に直角な端面を鏡面に仕上げた。これらの端面同士を突
き合わせ、各々を電極に取り付けた。電極間に電気絶縁
性のストッパーを設け、電極とストッパーとのギャップ
を100〜500μmで設定した。この状態で、加圧し
ながら通電し抵抗加熱溶接した。これにより、軸方向の
変形量が300μmである超電導線の突き合わせ接合体
を3本作製した。一方、比較例として、接合電極間のス
トッパーをとりはずし接合することにより変形量2mmの
接合体を3本作製した。
【0027】これらの接合体について、液体ヘリウム中
における接続抵抗を測定した。接合部に対して垂直方向
に印加した5Tの磁場中、3000Aの通電で得られた
各接合体の接続抵抗値を表1にまとめた。
【0028】
【表1】
【0029】変形量2mmの接合体では接続抵抗値が高く
且つばらつきが大きかった。これらの接合体の一つを断
面観察した結果、図5のような断面構造が得られた。接
合界面近傍には、細かく分断され特性劣化したフィラメ
ントの堆積層が存在していた。フィラメント堆積層の最
大幅は1.5mm であった。
【0030】(実施例3)本実施例で用いた化合物超電
導線は、フィラメントと、そのフィラメントが埋め込ま
れたマトリックスとからなる複合線である。この化合物
超電導線は、直径3μmのNbフィラメントがCu−S
n合金からなるマトリックス中に約10,000本埋め込まれ
た構造の外径1mmの複合線材であり、超電導化熱処理前
の状態にある。まず、長さ80mmの複合線材2本の一端
面を、エメリーペーパー,ラッピングテープを用いて研
磨し、線材軸方向に直角な端面を鏡面に仕上げた。これ
らの端面同士を突き合わせ、抵抗溶接により接続した。
高精度レーザー式変位計により接合前後の軸方向変形量
を測定した。溶接電流を変えることによって、軸方向変
形量が100μmおよび700μmの2種の接合体を作
製した。その後、接合体全体を約700℃で200時間
熱処理し、Cu−Sn合金とNbの界面にNb3Sn を
形成させた。
【0031】これらの接合体について、液体ヘリウム中
における接続抵抗を測定した。接合部に対して垂直方向
に印加した5Tの磁場中、200Aの通電で得られた各
接合体の接続抵抗値を表2に示す。
【0032】
【表2】
【0033】各接合体の断面を観察した結果、変形量1
00μmの接合体では図1と同様な断面構造が得られた
のに対し、変形量700μmの接合体では図7のような
構造が得られた。接合界面近傍には、細かく分断され特
性劣化したフィラメントの堆積層が存在していた。
【0034】
【発明の効果】本発明によれば、化合物超電導線および
その化合物超電導線の束からなる化合物超電導導体同士
を適正な条件で接合できるため、接続抵抗が低く、高電
流通電可能な超電導体の接合体を高い信頼性で得ること
ができる。変形量の制御により、接続抵抗のばらつき範
囲を、少なくとも従来の10分の1程度に抑えることが
できる。これにより、突き合わせ接合の製品への応用が
可能になり、しかも、高磁場発生用大型コイル作製を可
能にする。また、それに付随するコイル冷却システムへ
の熱負荷軽減が可能になり、経済性の点からも有用であ
り、超電導応用分野の拡大等、社会的波及効果は極めて
大きい。
【図面の簡単な説明】
【図1】本発明の一実施例の化合物超電導線の接合断面
構造を示す図。
【図2】本発明の接合部変形量と接続抵抗の関係を示す
図。
【図3】本発明の接合部変形量と接続抵抗の関係を示す
図。
【図4】本発明に対する比較例の化合物超電導線の接合
断面構造を示す図。
【図5】本発明に対する比較例の化合物超電導線の接合
断面構造を示す図。
【図6】本発明に対する比較例の化合物超電導線の接合
断面構造を示す図。
【図7】本発明に対する比較例の化合物超電導線の接合
断面構造を示す図。
【符号の説明】
1…超電導線、2…超電導フィラメント、3…マトリッ
クス。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 龍吉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 和田山 芳英 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高力 勝男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 浅野 克彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 重中 顕 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】金属からなるマトリックス中に複数本の超
    電導フィラメントが埋め込まれて構成される化合物超電
    導線同士、または複数本の前記超電導線から成る超電導
    導体同士を、互いに一端面を対向させて接合する方法に
    おいて、 前記化合物超電導線同士、または超電導導体同士の接合
    前後の軸線方向長さの変化量が80μm以上,300μ
    m以下であることを特徴とする化合物超電導線及び導体
    の接合方法。
  2. 【請求項2】金属からなるマトリックス中に複数本の超
    電導フィラメントが埋め込まれて構成される化合物超電
    導線同士、または複数本の前記超電導線から成る超電導
    導体同士を、互いに一端面を対向させて接合する方法に
    おいて、 前記化合物超電導線同士、または超電導導体同士の接合
    前後の軸線方向長さの変化量が100μm以上,200
    μm以下であることを特徴とする化合物超電導線及び導
    体の接合方法。
  3. 【請求項3】金属からなるマトリックス中に複数本の超
    電導フィラメントが埋め込まれて構成される化合物超電
    導線、または複数本の前記超電導線から成る超電導導体
    において、 前記化合物超電導線同士、または超電導導体同士の接合
    部が、軸線方向断面から見て、前記フィラメントが突き
    合わせ接合時に変形した領域の幅が、80μm以上,3
    00μm以下の範囲であることを特徴とする化合物超電
    導線または超電導導体。
  4. 【請求項4】金属からなるマトリックス中に複数本の超
    電導フィラメントが埋め込まれて構成される化合物超電
    導線、または複数本の前記超電導線から成る超電導導体
    において、 前記化合物超電導線同士、または超電導導体同士の接合
    部が、軸線方向断面から見て、前記フィラメントが突き
    合わせ接合時に変形した領域の幅が、100μm以上,
    200μm以下の範囲であることを特徴とする化合物超
    電導線または超電導導体。
  5. 【請求項5】金属からなるマトリックス中に複数本の超
    電導フィラメントが埋め込まれて構成される化合物超電
    導線、または複数本の前記超電導線から成る超電導導体
    において、 前記化合物超電導線同士、または超電導導体同士の接合
    部が、軸線方向断面から見て、80μm以上,300μ
    m以下の範囲で前記フィラメントが重なっていることを
    特徴とする化合物超電導線または超電導導体。
  6. 【請求項6】金属からなるマトリックス中に複数本の超
    電導フィラメントが埋め込まれて構成される化合物超電
    導線、または複数本の前記超電導線から成る超電導導体
    において、 前記化合物超電導線同士、または超電導導体同士の接合
    部が、軸線方向断面から見て、100μm以上,200
    μm以下の範囲で前記フィラメントが重なっていること
    を特徴とする化合物超電導線または超電導導体。
JP6269336A 1994-11-02 1994-11-02 化合物超電導線および導体の接合方法 Pending JPH08138820A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269336A JPH08138820A (ja) 1994-11-02 1994-11-02 化合物超電導線および導体の接合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269336A JPH08138820A (ja) 1994-11-02 1994-11-02 化合物超電導線および導体の接合方法

Publications (1)

Publication Number Publication Date
JPH08138820A true JPH08138820A (ja) 1996-05-31

Family

ID=17470954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269336A Pending JPH08138820A (ja) 1994-11-02 1994-11-02 化合物超電導線および導体の接合方法

Country Status (1)

Country Link
JP (1) JPH08138820A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000269A3 (en) * 2007-06-22 2009-05-14 Nkt Cables Ultera As A superconducting element joint, a process for providing a superconducting element joint and a superconducting cable system
US8594756B2 (en) 2007-06-22 2013-11-26 Nkt Cables Ultera A/S Superconducting element joint, a process for providing a superconducting element joint and a superconducting cable system
KR101484739B1 (ko) * 2013-08-26 2015-01-20 (주)메탈링크 폐알루미늄선재의 재생방법
JP2019091591A (ja) * 2017-11-14 2019-06-13 株式会社東芝 超電導線の接続部及びその接続方法、超電導磁石装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000269A3 (en) * 2007-06-22 2009-05-14 Nkt Cables Ultera As A superconducting element joint, a process for providing a superconducting element joint and a superconducting cable system
US8463341B2 (en) 2007-06-22 2013-06-11 Nkt Cables Ultera A/S Superconducting element joint, a process for providing a superconducting element joint and a superconducting cable system
US8594756B2 (en) 2007-06-22 2013-11-26 Nkt Cables Ultera A/S Superconducting element joint, a process for providing a superconducting element joint and a superconducting cable system
KR101484739B1 (ko) * 2013-08-26 2015-01-20 (주)메탈링크 폐알루미늄선재의 재생방법
JP2019091591A (ja) * 2017-11-14 2019-06-13 株式会社東芝 超電導線の接続部及びその接続方法、超電導磁石装置

Similar Documents

Publication Publication Date Title
US5398398A (en) Method of producing a superconducting joint with niobium-tin
US5801124A (en) Laminated superconducting ceramic composite conductors
JP5770947B2 (ja) 高温超伝導体層の直接接触による部分微細溶融拡散圧接を用いた2世代ReBCO高温超伝導体の接合及び酸素供給アニーリング熱処理による超伝導回復方法
JP5118990B2 (ja) 超電導テープ線材及び欠陥部の補修方法
US5358929A (en) Method of joining superconducting wire using oxide high-temperature superconductor
JP5097044B2 (ja) 金属コーティング層を用いた超伝導薄膜線材およびその接合方法
JP2007012582A (ja) Re系酸化物超電導線材の接合方法
JP5695803B2 (ja) 酸化物超電導線材、その接続構造、および超電導機器
JP2018170173A (ja) 接続構造体
US4673774A (en) Superconductor
US5082164A (en) Method of forming superconducting joint between superconducting tapes
JPH08138820A (ja) 化合物超電導線および導体の接合方法
JP5268805B2 (ja) 超電導線材の接続構造および超電導コイル装置
JP5100533B2 (ja) 超伝導導体の接続方法、接続構造、接続部材
JP3051078B2 (ja) 超電導導体の接続方法
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
JP3783518B2 (ja) 超電導線材の接続構造
JPH07254446A (ja) 化合物超電導線および導体の接合構造および接合方法
JP4354856B2 (ja) 超電導導体装置およびその製造方法
Banno et al. Novel Pb-Free Superconducting Joint Between NbTi and Nb 3 Sn Wires Using High-Temperature-Tolerable Superconducting Nb–3Hf Intermedia
JPH08190945A (ja) 超電導導体の接続方法
CN114619131B (zh) 一种无焊料焊接接头及其焊接制造方法
JPH1027707A (ja) 超電導磁石
JPS62123669A (ja) 超電導線の接続方法
JP3154572B2 (ja) 超電導線の接続構造