JPH0812338A - 薄片状レピドクロサイト粒子粉末及びその製造法 - Google Patents

薄片状レピドクロサイト粒子粉末及びその製造法

Info

Publication number
JPH0812338A
JPH0812338A JP6176014A JP17601494A JPH0812338A JP H0812338 A JPH0812338 A JP H0812338A JP 6176014 A JP6176014 A JP 6176014A JP 17601494 A JP17601494 A JP 17601494A JP H0812338 A JPH0812338 A JP H0812338A
Authority
JP
Japan
Prior art keywords
titanium
particles
lepidocrocite
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6176014A
Other languages
English (en)
Other versions
JP3427854B2 (ja
Inventor
Tsutomu Katamoto
勉 片元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP17601494A priority Critical patent/JP3427854B2/ja
Priority to EP95304631A priority patent/EP0691308B1/en
Priority to US08/498,277 priority patent/US5686378A/en
Priority to DE69504595T priority patent/DE69504595T2/de
Publication of JPH0812338A publication Critical patent/JPH0812338A/ja
Application granted granted Critical
Publication of JP3427854B2 publication Critical patent/JP3427854B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

(57)【要約】 【目的】 組成が均一であると共に、比表面積値が大き
く、殊に150〜350m2 /gであって、しかも、耐
熱性に優れた薄片状レピドクロサイト粒子粉末を工業的
に得る。 【構成】 BET比表面積値が150〜350m2 /g
であって、チタンをTi/(Ti+Fe)換算で10〜
30原子%含有する薄片状レピドクロサイト粒子粉末。
この薄片状レピドクロサイト粒子粉末は、第一鉄塩水溶
液と該第一鉄塩水溶液中のFeに対しTi/(Ti+F
e)換算で10〜30原子%の割合のチタン水溶液と炭
酸アルカリ水溶液とを反応させてチタンを含む鉄含有沈
殿物を生成させ、次いで、該沈殿物を含む懸濁液のpH
値を8.0〜10.0に維持しながら、5〜40℃の温
度範囲において酸素含有ガスを通気して酸化することに
より得られる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、組成が均一であると共
に、比表面積値が大きく、殊に150〜350m2 /g
であって、しかも、耐熱性に優れた薄片状レピドクロサ
イト(γ−FeOOH)粒子粉末及びその製造法に関す
るものである。
【0002】本発明に係る薄片状レピドクロサイト粒子
粉末の主な用途は、廃水処理酸化触媒用等の鉄原料粉末
である。
【0003】
【従来の技術】業種の種類により、工場からは異なる各
種成分を含む大量の廃水が排出されている。廃水の処理
方法の一つとしてチンマーマン法と呼ばれる湿式酸化処
理方法が知られており、この方法は、活性汚泥法と呼ば
れている生物化学的方法に比べ、有機物の分解が比較的
短時間でできることやバクテリアの生育に適した濃度に
廃水を希釈する必要がないため処理施設の小型化が可能
であること等から実用化がされている。
【0004】即ち、湿式酸化処理方法は、廃水の液相状
態を保持することができる高温、高圧下で廃水を酸素含
有ガスを通気しながら処理して、廃水中の有機物を分解
させる方法である。
【0005】上記、湿式酸化処理において、有機物を分
解させる反応の速度を早めることを目的として各種酸化
触媒が使用されている。
【0006】酸化触媒としては、パラジウム、白金等の
貴金属化合物をアルミナ、シリカ、シリカゲル、活性炭
等の担体に担持させたもの、鉄とチタン、ケイ素および
ジルコニウムよりなる群から選ばれる少なくとも1種の
元素(以下、チタン等という。)とを含む酸化物(以
下、A成分という。)90〜99.95重量%とコバル
ト、ニッケル、セシウム、銀、金、白金、パラジウム、
ロジウム、ルテニウムおよびイリジウムよりなる群から
選ばれる少なくとも1種の元素(以下、B成分とい
う。)0.05〜10重量%とからなり、A成分中の鉄
が酸化物として4.95〜95重量%であって、チタン
等が酸化物として4.95〜95重量%(但し、鉄の酸
化物とチタン等の酸化物の合計は90〜99.95重量
%である。)であるもの(以下、A成分とB成分とを含
む酸化触媒という。)(特開平5−138027号公
報)等が実用化されている。
【0007】後者は、前者に比べ、アミン化合物、アミ
ド化合物、アミノ酸化合物等の窒素含有化合物を含まな
い廃水はもちろん、これらを含む廃水においても使用す
ることができ、COD(Cr)除去率、全窒素量除去率
等において十分な処理能力を有するものである。
【0008】各種産業の発達に伴って、工場から排出さ
れる廃水量は益々増加する傾向にあり、廃水を効率よく
処理することが強く要求されている。そして、この要求
に応えるために、A成分とB成分とを含む酸化触媒の性
能の向上が強く要求されている。
【0009】即ち、A成分とB成分とを含む酸化触媒の
性能の向上にあたっては、組成ができるだけ均一であ
り、廃水との接触面積をできるだけ大きくするために比
表面積値ができるだけ大きいことが必要である。
【0010】A成分とB成分とを含む酸化触媒は、鉄の
酸化物粉末とチタンの酸化物粉末とを所定の重量比で含
む混合物粉末を300〜750℃程度の温度範囲で焼成
して鉄及びチタンを含む酸化物粉末を得、該鉄及びチタ
ンを含む酸化物粉末に成形助剤を加え、適量の水を添加
しつつ混合、混練した後、所定の形状に成形し、次い
で、該成形物を乾燥した後、300〜750℃の温度範
囲で焼成して成形体を得、該成形体にB成分である金属
塩の水溶液を含浸させた後、更に、乾燥、焼成すること
により製造される。
【0011】上記製造法に詳述した通り、A成分とB成
分とを含む酸化触媒の性状は、B成分を含浸させるため
の被処理物である成形体を構成する鉄及びチタンを含む
酸化物粉末の性状と密接な関係があり、組成ができるだ
け均一であって、比表面積ができるだけ大きいA成分と
B成分とを含む酸化触媒を得るためには、鉄及びチタン
を含む酸化物粉末の組成ができるだけ均一であって、比
表面積値ができるだけ大きいことが必要である。
【0012】従来、鉄及びチタンを含む酸化物粉体は、
鉄の酸化物粉末とチタンの酸化物粉末とを乾式で混合し
た混合物粉末を乾燥後、300〜750℃で焼成する方
法、第二鉄塩を含む水溶液とチタンを含む水溶液との混
合溶液にアルカリ水溶液を添加して水溶液中から共沈物
を生成させ、該共沈物を濾別、水洗後、乾燥し、次い
で、300〜750℃で焼成する方法等が知られてい
る。
【0013】上記鉄の酸化物粉末とチタンの酸化物粉末
との混合粉末を得る場合に鉄原料として用いられる鉄の
酸化物粉末は、通常、第一鉄塩水溶液とアルカリ水溶液
とを反応させて得られる鉄含有沈殿物を含む懸濁液に酸
素含有ガスを通気することにより製造され、温度、pH
値、添加剤の有無等により種々の鉄化合物が生成する。
【0014】第一鉄水溶液にリン酸塩、オキシカルボン
酸塩、EDTA等の添加剤を加えて中性乃至弱酸性条件
下で酸化反応をさせた場合には、レピドクロサイト(γ
−FeOOH)が生成することが知られている。
【0015】
【発明が解決しようとする課題】組成ができるだけ均一
であって、比表面積値ができるだけ大きい鉄及びチタン
を含む酸化物粉末は、現在、最も要求されているところ
であるが、このような要求を十分満たす鉄及びチタンを
含む酸化物粉体は未だ得られていない。
【0016】即ち、前出公知の鉄の酸化物粉末とチタン
の酸化物粉末とを乾式で混合した混合物粉末を乾燥後、
300〜750℃で焼成する方法による場合には、原料
である鉄の酸化物粉末とチタンの酸化物粉末との均一混
合が困難である為、得られる鉄及びチタンを含む酸化物
粉末の組成は不均一になりやすいものである。そして、
原料である鉄の酸化物粉末の比表面積は一般に粒状形態
のマグネタイト粒子やヘマタイト粒子の場合、2〜20
2 /g程度、針状形態の含水酸化第二鉄粒子の場合、
10〜100m2 /g程度、針状形態のマグネタイト粒
子、マグヘマイト粒子、ヘマタイト粒子の場合、10〜
60m2 /g程度と小さいものであり、300〜750
℃、殊に、500℃以上の高温で加熱すると粒子及び粒
子相互間で焼結が生起し、更に、比表面積が低下してし
まうのである。
【0017】前出公知の水溶液中から生成した共沈物を
濾別、水洗後、乾燥し、次いで、300〜750℃で焼
成する方法による場合には、鉄およびチタンを含む共沈
物を水溶液中から生成させるものであるから、乾式によ
る混合方法に比べ、組成が均一なものが得られやすい
が、一方、周知の通り、共沈物は粒状微細粒子として沈
殿する為、該粒状微細粒子を300〜750℃、殊に、
500℃以上の高温で加熱すると、粒状微細粒子は粒子
相互の接触点が大きいため粒子及び粒子相互間で焼結が
生起しやすくなって、比表面積が大幅に低下してしま
い、比表面積が大きな鉄及びチタンを含む酸化物粉末は
得られない。
【0018】前出公知のレピドクロサイト粒子を生成さ
せる方法においては、比表面積が大きい粒子が得られる
が、上記共沈物と同様に粒状微細粒子である為、300
〜750℃、殊に、500℃以上の高温で加熱すると、
粒子及び粒子相互間で焼結が生起しやすくなって、比表
面積が大幅に低下してしまい、比表面積が大きな鉄及び
チタンを含む酸化物粉末は得られない。
【0019】そこで、本発明は、組成ができるだけ均一
であると共に、比表面積値ができるだけ大きく、しか
も、耐熱性が優れていることによって、300〜750
℃、殊に、500℃以上の高温において焼成しても比表
面積が大きい、殊に、95m2/g以上を有する鉄原料
を得ることを技術的課題とする。
【0020】
【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明により達成できる。
【0021】即ち、本発明は、BET比表面積値が15
0〜350m2 /gであって、チタンをTi/(Ti+
Fe)換算で10〜30原子%含有する薄片状レピドク
ロサイト粒子粉末及び第一鉄塩水溶液と該第一鉄塩水溶
液中のFeに対しTi/(Ti+Fe)換算で10〜3
0原子%の割合のチタン水溶液と炭酸アルカリ水溶液と
を反応させてチタンを含む鉄含有沈殿物を生成させ、次
いで、該沈殿物を含む懸濁液のpH値を8.0〜10.
0に維持しながら、5〜40℃の温度範囲において酸素
含有ガスを通気して酸化することによりチタンを含有す
る薄片状レピドクロサイト粒子を生成させることからな
る前記レピドクロサイト粒子粉末の製造法である。
【0022】本発明の構成をより詳しく説明すれば、次
の通りである。
【0023】先ず、本発明に係るレピドクロサイト粒子
粉末について述べる。
【0024】本発明に係るレピドクロサイト粒子粉末
は、BET比表面積値が150〜350m2 /gであっ
て、薄片状を呈している。BET比表面積値が150m
2 /g未満のレピドクロサイト粒子粉末も得られるが、
高温、殊に500℃で加熱焼成した場合BET比表面積
値が95m2 /g以下となってしまう為、酸化触媒用鉄
原料粉末としては好ましくない。350m2 /gを越え
るレピドクロサイト粒子粉末も得られるが、あまりに微
細である為、反応母液中からレピドクロサイト粒子を分
離する際の濾別、水洗が困難であり工業的ではない。
【0025】薄片状粒子は、板面形状がほぼ長方形を呈
しており、平均長軸径は0.05〜0.2μm、平均短
軸径は0.01〜0.05μmであって、厚みは30〜
100Åである。薄片状粒子のBET比表面積の大き
さ、耐熱性を考慮すれば、平均長軸径は0.08〜0.
15μm、平均短軸径は0.02〜0.05μmであっ
て、厚みは30〜70Åが好ましい。
【0026】本発明に係るレピドクロサイト粒子粉末
は、チタンをTi/(Ti+Fe)換算で10〜30原
子%含有している。本発明に係るレピドクロサイト粒子
は、後出実施例1のX線回折の結果に示される通り、γ
−FeOOH型のピークのみしか認められないことから
チタンが均一に含有されており、組成が均一なものであ
る。
【0027】チタン含有量がTi/(Ti+Fe)換算
で10原子%未満の場合には、耐熱性が劣り好ましくな
い。30原子%を越える場合には、チタン含有レピドク
ロサイト粒子以外に、TiO2 ・H2 O粒子が大量に副
生し混在する為、組成が均一なものとは言い難い。
【0028】次に、前記の通りの本発明に係るレピドク
ロサイト粒子粉末の製造法について述べる。
【0029】本発明における第一鉄塩水溶液としては、
硫酸第一鉄水溶液、塩化第一鉄水溶液等を使用すること
ができる。
【0030】本発明におけるチタン水溶液としては、硫
酸チタニル水溶液、四塩化チタン水溶液、三塩化チタン
水溶液等を使用することができる。
【0031】チタン水溶液の使用量は、第一鉄塩水溶液
中のFeに対しTi/(Ti+Fe)換算で10〜30
原子%である。10原子%未満の場合には、比表面積の
大きな、殊に、150m2 /g以上のチタン含有レピド
クロサイト粒子を得ることができない。30原子%を越
える場合には、チタン含有レピドクロサイト粒子以外
に、TiO2 ・H2 O粒子が大量に副生し混在する。
【0032】本発明における炭酸アルカリ水溶液として
は、炭酸ナトリウム水溶液、炭酸カリウム水溶液等を使
用することができる。
【0033】本発明における第一鉄塩水溶液、チタン水
溶液及び炭酸アルカリ水溶液の添加順序は、いずれが先
でも又は同時であってもよい。チタン化合物は、pH値
が8.0以上では溶解しにくいものであるので、組成の
均一性を考慮すれば、チタン水溶液と第一鉄塩水溶液と
をあらかじめ混合した後、該混合溶液を炭酸アルカリ水
溶液に添加するのが最も好ましい。
【0034】本発明におけるチタンを含む鉄含有沈殿物
が生成されている懸濁液のpH値は8.0〜10.0の
範囲に調整する。pH値が8.0未満の場合には、反応
液中のCO3 2-イオンの濃度が小さくなり、チタンを含
有するレピドクロサイト粒子が得られない。pH値が1
0.0を越える場合には、チタンを含有するレピドクロ
サイト粒子以外に針状ゲータイト粒子が副生し混在す
る。
【0035】本発明におけるチタンを含む鉄含有沈殿物
が生成されている懸濁液の温度は5〜40℃の範囲であ
る。5℃未満の場合にもチタンを含有するレピドクロサ
イト粒子が生成するが、工業的、経済的ではない。40
℃を越える場合には、チタンを含有するレピドクロサイ
ト粒子以外に針状ゲータイト粒子が副生し混在してく
る。
【0036】本発明におけるチタンを含む鉄含有沈殿物
からなる懸濁液の酸化は、酸素含有ガス(例えば、空
気)を液中に通気することにより行う。
【0037】空気の通気量は、反応液の容量、鉄濃度、
反応温度、空気通気方式等により種々異なる。反応液の
容量及び空気通気方式を同一条件とした場合は、鉄濃度
が大きくなる程、また、反応温度が高くなる程チタン含
有レピドクロサイト粒子を生成させる為に、空気の通気
量を大きくする必要がある。
【0038】本発明における第一鉄の酸化反応速度は、
0.05〜0.25mol/時間が好ましい。酸化反応
速度があまりに大きくなるとチタンを含有するレピドク
ロサイト粒子以外にハイドロタルサイト型構造の粒子が
副生しやすくなる。酸化反応速度が著しく小さくなると
チタンを含有するレピドクロサイト粒子以外に針状ゲー
タイト粒子が生成しやすくなる。
【0039】本発明における酸化反応中におけるpH値
は、8.0〜10.0の範囲である。pH値が8.0未
満の場合には、反応液中のCO3 2-イオンの濃度が小さ
くなり、チタンを含有するレピドクロサイト粒子が得ら
れない。pH値が10.0を越える場合には、チタンを
含有するレピドクロサイト粒子以外に針状ゲータイト粒
子が副生し混在する。
【0040】本発明におけるCO3 2-濃度は、Na2
3 /(Ti+Fe)がモル比で1.5以上であること
が好ましい。CO3 2-濃度が高い程チタンを含有するレ
ピドクロサイト粒子の生成領域が広がる傾向にある。経
済性を考慮すれば、その上限は4.0程度が好ましい。
【0041】本発明における酸化反応中における温度
は、5〜40℃の範囲である。5℃未満の場合にもチタ
ンを含有するレピドクロサイト粒子が生成するが、工業
的、経済的ではない。40℃を越える場合には、チタン
を含有するレピドクロサイト粒子以外に針状ゲータイト
粒子が副生し混在してくる。
【0042】
【作用】先ず、本発明において最も重要な点は、第一鉄
塩水溶液と該第一鉄塩水溶液中のFeに対しTi/(T
i+Fe)換算で10〜30原子%の割合のチタン水溶
液と炭酸アルカリ水溶液とを反応させてチタンを含む鉄
含有沈殿物を生成させ、次いで、該沈殿物を含む懸濁液
のpH値が8.0〜10.0に調整維持しながら、5〜
40℃の温度範囲において酸素含有ガスを通気して酸化
した場合には、BET比表面積値が150〜350m2
/gであって、チタンをTi/(Ti+Fe)換算で1
0〜30原子%含有する薄片状レピドクロサイト粒子粉
末を得ることができ、該レピドクロサイト粒子は、組成
が均一であると共に、比表面積が大きく、しかも、耐熱
性が優れているという事実である。
【0043】本発明に係るレピドクロサイト粒子は、後
出実施例に示す通り、水溶液中からチタンを含有したレ
ピドクロサイト粒子を生成させるものであるから、組成
が均一であると共に、板面のサイズが前出公知の共沈物
やレピドクロサイト粒子の粒子サイズに比べ大きいにも
かかわらず、粒子厚みが薄いものであることによって比
表面積が大きいものであり、しかも、もともと比表面積
が大きいことに加えて薄片状粒子という形状に起因して
粒子相互間の接触点が少ないことにより、耐熱性が優れ
たものであるから、300〜750℃、殊に、500℃
の高温で加熱しても比表面積の大きい鉄及びチタンを含
む酸化物(ヘマタイト)粒子粉末を得ることができる。
【0044】尚、本発明に係るチタンを含有するレピド
クロサイト粒子は、250℃程度で脱水・変態してヘマ
タイト粒子となる。
【0045】今、本発明者が行った数多くの実験例から
一部を抽出して説明すれば、以下の通りである。
【0046】図1は、添加するチタン量をTi/(Ti
+Fe)換算で0〜30原子%の範囲内で種々変化させ
る共に反応温度を種々変化させた以外は、後出実施例1
の条件に準じて、即ち、(Ti+Fe)濃度が0.3m
ol/l、Na2 CO3 /(Ti+Fe)がモル比で
3.0、酸化時の空気通気量が40l/分の条件下にお
いて反応させた場合に得られる生成物の種類を記載した
ものである。
【0047】図1中、●印はレピドクロサイト(γ−F
eOOH)粒子、○印はチタンを含有する板状ハイドロ
タルサイト粒子、△印はチタンを含有する針状ゲータイ
ト(α−FeOOH)粒子とチタンを含有するレピドク
ロサイト(γ−FeOOH)粒子の混合物、□印はチタ
ンを含有する針状ゲータイト(α−FeOOH)粒子の
生成領域である。
【0048】図1に示される通り、チタンを含有するレ
ピドクロサイト粒子は、チタンの添加量がTi/(Ti
+Fe)換算で約10原子%以上で生成される。
【0049】
【実施例】次に、実施例及び比較例により、本発明を説
明する。
【0050】尚、以下の実施例及び比較例における粒子
の形状及び板面の長軸径、短軸径は、透過型電子顕微鏡
写真から測定した数値で示したものであり、厚みはX線
回折線(020)面の半値巾からシェラーの式を用いて
求めた数値で示した。
【0051】粒子の比表面積は、BET法による測定値
で示した。
【0052】レピドクロサイト粒子中に含有されるTi
量は、蛍光X線分析法により測定した値で示した。
【0053】<薄片状レピドクロサイト粒子粉末の製造
> 実施例1〜9、比較例1〜3
【0054】実施例1 34℃の1.8mol/lの炭酸ナトリウム水溶液5l
に、32℃の硫酸第一鉄0.51mol/lと硫酸チタ
ニル0.09mol/l〔Ti/(Ti+Fe)に換算
して15原子%に該当する。〕との混合水溶液5l〔N
2 CO3 /(Ti+Fe)がモル比で3.0に該当す
る。〕を5分間かけて加え、チタンを含む鉄含有沈殿物
からなる懸濁液を得た。この時の懸濁液のpH値は9.
6であった。
【0055】この懸濁液の反応温度を32℃に保持しな
がら40l/分で空気酸化を行って、黄茶色沈殿物を生
成させた。酸化反応中のpH値は9.6〜8.8の間に
あった。
【0056】反応終了後、この黄茶色沈殿物を十分に洗
浄し、120℃で12時間乾燥させ、黄茶色の粉末を得
た。得られた粉末は、図1の電子顕微鏡写真(×500
00)に示す通り、板面の長軸径は0.1μm、短軸径
は0.03μmの薄片いかだ状であり、その厚みは40
Åであった。また、図2のX線回折図に示す通り、γ−
FeOOH型の構造であり、レピドクロサイト粒子粉末
であることが認められた。また、このレピドクロサイト
粒子粉末のBET比表面積は230m2 /gであり、蛍
光X線分析の結果、チタンをTi/(Ti+Fe)換算
で15.1原子%含有していた。
【0057】上記レピドクロサイト粒子粉末は、チタン
を含有しているにもかかわらず、図2に示すX線回折図
によれば、レピドクロサイト(γ−FeOOH)のピー
クのみが認められ、チタンのピークが認められないこと
から、組成が均一な粒子であることが認められた。
【0058】上記レピドクロサイト粒子粉末は、300
℃で60分間加熱焼成した時のBET比表面積が150
2 /g、500℃で60分間加熱焼成した時のBET
比表面積が112m2 /gといずれの場合にも95m2
/g以上と大きい比表面積を有しており、耐熱性に優れ
たものであった。
【0059】実施例2〜9、比較例1〜3 炭酸アルカリ水溶液の種類、濃度及び温度、第一鉄塩水
溶液の種類、濃度及び温度、チタン水溶液の種類、濃度
及び温度、懸濁液のpH及び温度並びに酸化反応の速度
及びpHの種類を種々変化させた以外は、実施例1と同
様に反応させて生成物を得た。
【0060】この時の主要生成条件及び生成物の諸特性
は表1及び表2に示す。
【0061】実施例2〜9の各実施例で得られた粒子粉
末は、いずれもX線回折の結果、γ−FeOOHのピー
クのみが認められレピドクロサイト粒子であることが認
められた。また、レピドクロサイト粒子の形状は、電子
顕微鏡観察の結果、薄片いかだ状粒子であった。
【0062】比較例1で得られた粒子粉末は、X線回折
の結果、α−FeOOHのピークが認められ、また、電
子顕微鏡観察の結果、針状粒子が認められたことから、
針状α−FeOOH粒子であることが確認された。
【0063】比較例2で得られた粒子粉末は、X線回折
の結果、α−FeOOHとγ−FeOOHのピークが認
められ、また、電子顕微鏡観察の結果、針状粒子と薄片
いかだ状粒子が認められたことから、針状α−FeOO
H粒子と薄片いかだ状γ−FeOOH粒子の混合物であ
ることが確認された。
【0064】比較例3で得られた粒子粉末は、X線回折
の結果、ハイドロタルサイト型のピークが認められ、ま
た、電子顕微鏡観察の結果、薄片状粒子が認められたこ
とから、薄片状ハイドロタルサイト粒子であることが確
認された。尚、比較例3で得られた粒子粉末は60℃で
乾燥したものである。
【0065】
【表1】
【0066】
【表2】
【0067】
【発明の効果】本発明に係る薄片状レピドクロサイト粒
子粉末は、前出実施例に示した通り、組成が均一である
と共に、比表面積が大きく、殊に、150〜350m2
/gであって、しかも、耐熱性に優れたものであるか
ら、廃水処理酸化触媒用鉄原料として好適である。
【0068】本発明に係るレピドクロサイト粒子粉末
は、上記諸特性を有するものであるから、該レピドクロ
サイト粒子粉末を加熱焼成して得られる鉄及びチタンを
含む酸化物(ヘマタイト、α−Fe2 3 )粉末もま
た、組成が均一であると共に、比表面積が大きいもので
あるから、この粉末を用いて成形体を製造し、該成形体
にB成分を含浸させることにより得られた触媒もまた、
組成が均一であると共に、比表面積が大きいものである
から、COD(Cr)除去率、全窒素量除去率等の触媒
性能の向上、触媒寿命の向上(耐久性)が期待できる。
【0069】尚、本発明に係る薄片状レピドクロサイト
粒子粉末は、酸化物であることによって空気等による酸
化に対して安定であると共に、黄茶色を呈し、しかも、
粒子サイズが微細であることによって透明性を有するの
で、塗料用、樹脂着色用、印刷インキ用、化粧品用着色
材料としての用途が期待できる。
【0070】また、本発明に係る薄片状レピドクロサイ
ト粒子粉末は、チタンと鉄とが固溶した酸化物であるた
め、粒子表面に強酸点が多く、その強酸度が強いためブ
テン等の異性化触媒等としての用途が期待できる。
【図面の簡単な説明】
【図1】 チタン添加量と反応温度を種々変化させた以
外は、実施例1に準じて行った実験例により得られた生
成物の種類を示したものである。
【図2】 本発明の実施例1で得られたチタンを含有す
るレピドクロサイト粒子粉末の粒子構造を示す電子顕微
鏡写真(×50000)である。
【図3】 本発明の実施例1で得られたチタンを含有す
るレピドクロサイト粒子粉末のX線回折図である。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 BET比表面積値が150〜350m2
    /gであって、チタンをTi/(Ti+Fe)換算で1
    0〜30原子%含有する薄片状レピドクロサイト粒子粉
    末。
  2. 【請求項2】 第一鉄塩水溶液と該第一鉄塩水溶液中の
    Feに対しTi/(Ti+Fe)換算で10〜30原子
    %の割合のチタン水溶液と炭酸アルカリ水溶液とを反応
    させてチタンを含む鉄含有沈殿物を生成させ、次いで、
    該沈殿物を含む懸濁液のpH値を8.0〜10.0に維
    持しながら、5〜40℃の温度範囲において酸素含有ガ
    スを通気して酸化することによりチタンを含有する薄片
    状レピドクロサイト粒子を生成させることを特徴とする
    請求項1記載のレピドクロサイト粒子粉末の製造法。
JP17601494A 1994-07-04 1994-07-04 薄片状レピドクロサイト粒子粉末及びその製造法 Expired - Fee Related JP3427854B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17601494A JP3427854B2 (ja) 1994-07-04 1994-07-04 薄片状レピドクロサイト粒子粉末及びその製造法
EP95304631A EP0691308B1 (en) 1994-07-04 1995-07-03 Lamella lepidocrocite particles and process for producing the same
US08/498,277 US5686378A (en) 1994-07-04 1995-07-03 Lamella lepidocrocite particles and process for producing the same
DE69504595T DE69504595T2 (de) 1994-07-04 1995-07-03 Lamellenlepidocrocitteilchen und Verfahren zu ihrer Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17601494A JP3427854B2 (ja) 1994-07-04 1994-07-04 薄片状レピドクロサイト粒子粉末及びその製造法

Publications (2)

Publication Number Publication Date
JPH0812338A true JPH0812338A (ja) 1996-01-16
JP3427854B2 JP3427854B2 (ja) 2003-07-22

Family

ID=16006218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17601494A Expired - Fee Related JP3427854B2 (ja) 1994-07-04 1994-07-04 薄片状レピドクロサイト粒子粉末及びその製造法

Country Status (4)

Country Link
US (1) US5686378A (ja)
EP (1) EP0691308B1 (ja)
JP (1) JP3427854B2 (ja)
DE (1) DE69504595T2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040043A (en) * 1996-03-21 2000-03-21 Dowa Mining Co., Ltd. Particles for lower layer of coating type magnetic recording medium
DE69703521T2 (de) * 1996-08-09 2001-05-17 Toda Kogyo Corp., Hiroshima Rechteckige, parallelopipedale Lepidokrokitteilchen und Verfahren zu ihrer Herstellung
FR2764399A1 (fr) * 1997-06-05 1998-12-11 Eastman Kodak Co Depollution d'un effluent photographique par traitement avec un alumino-silicate polymere fibreux
US6800260B2 (en) * 2002-02-11 2004-10-05 Millennium Inorganic Chemicals, Inc. Processes for treating iron-containing waste streams
US7358211B2 (en) * 2004-11-24 2008-04-15 E.I. Du Pont De Nemours And Company Catalyst for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
US7709541B2 (en) * 2006-07-14 2010-05-04 Headwaters Technology Innovation, Llc Fischer-Tropsch catalysts incorporating promoter for increasing yields of C5+ hydrocarbons and methods for making and using same
CN113106433B (zh) * 2021-03-11 2022-07-05 同济大学 一种铁离子促进铁屑表面快速形成γ-FeOOH层的改性方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2963816B2 (ja) * 1991-05-14 1999-10-18 株式会社日本触媒 廃水処理用触媒、その製造方法、および、その触媒を用いた廃水の処理方法
US5399541A (en) * 1991-05-14 1995-03-21 Nippon Shokubai Co., Ltd. Catalyst for treating wastewater

Also Published As

Publication number Publication date
EP0691308B1 (en) 1998-09-09
DE69504595T2 (de) 1999-01-28
JP3427854B2 (ja) 2003-07-22
DE69504595D1 (de) 1998-10-15
US5686378A (en) 1997-11-11
EP0691308A1 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
EP0797481B1 (en) Restructured iron oxide
EP1663855B1 (en) High temperature shift catalyst prepared with a high purity iron precursor
JP3226436B2 (ja) 触 媒
CN1655870A (zh) 用高纯度铁前体制备的费-托催化剂
CN106732509A (zh) 改性氧化铝载体的制备方法、催化臭氧氧化催化剂及其应用
KR20150095133A (ko) 질산성 질소의 제거효율과 질소 선택도가 높은 이중금속 촉매의 제조방법 및 그 촉매
JP3427854B2 (ja) 薄片状レピドクロサイト粒子粉末及びその製造法
CN113677626B (zh) 钴铁氧体颗粒的制造方法和由该方法制造的钴铁氧体颗粒
JPH0629137B2 (ja) 金超微粒子固定化酸化チタンの製造法
JP3427856B2 (ja) 粒状ゲータイト微粒子粉末及びその製造法並びに該微粒子粉末を用いた粒状酸化鉄微粒子粉末の製造法
EP1509323B1 (en) Fischer-tropsch catalyst prepared with a high purity iron precursor method of preparation
US3840479A (en) Catalyst preparation
JP4365168B2 (ja) 多孔質光触媒複合粉体の製造方法
JPH0623054B2 (ja) ヘマタイト粒子粉末の製造法
JP2994065B2 (ja) 金属複合酸化物粉末の製造方法
JP2004082114A (ja) 光触媒複合粉体
JP2727187B2 (ja) 板状ヘマタイト粒子粉末の製造方法
JPH05262529A (ja) 酸化鉄粒子粉末の製造法
JPH08183617A (ja) レピドクロサイト微粒子粉末の製造法
JP3638654B2 (ja) フェライト粉末の製造方法
CN108772068B (zh) 一种表面活性剂修饰金属氧化物催化剂的制备方法和应用
JPH06224020A (ja) 磁性酸化物粉末の製造方法
JP2644707B2 (ja) 金属微粒子又は金属酸化物微粒子を含有するセラミックスの製造方法
JPH05310431A (ja) α−オキシ水酸化鉄およびこれを用いた磁気記録用磁性金属粉末の製造方法
Batakliev et al. Gas phase ozone decomposition over co-precipitated Ni-based catalysts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees