JPH08122024A - Thickness measuring apparatus of coating film - Google Patents

Thickness measuring apparatus of coating film

Info

Publication number
JPH08122024A
JPH08122024A JP6257964A JP25796494A JPH08122024A JP H08122024 A JPH08122024 A JP H08122024A JP 6257964 A JP6257964 A JP 6257964A JP 25796494 A JP25796494 A JP 25796494A JP H08122024 A JPH08122024 A JP H08122024A
Authority
JP
Japan
Prior art keywords
coating
film thickness
wavelength
image
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6257964A
Other languages
Japanese (ja)
Other versions
JP3327000B2 (en
Inventor
Kiyoshi Yoshida
清 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25796494A priority Critical patent/JP3327000B2/en
Publication of JPH08122024A publication Critical patent/JPH08122024A/en
Application granted granted Critical
Publication of JP3327000B2 publication Critical patent/JP3327000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a thickness measuring apparatus with which a film thickness can be detected with high accuracy by picking up an undried coating surface immediately after a coating operation so as to be image-processed, finding the wavelength distribution of an uneven waveform on the coating surface on the basis of processed data, and computing the thickness of a coating film on the basis of the wavelength distribution. CONSTITUTION: While an object 1 to be coated is being moved at a prescribed speed on a coating line, it is coated. An image pickup part 2 picks up the image of the surface of a wet state after about one to two minutes from a coating operation, and its image data is processed such as binary-coded or the like by an image processing part 3. The processed data is inputted to a wavelength arithmetic part 4, a power spectrum frequency is analyzed, the power spectrum of the unevenness of a coating surface is computed, and a peak wavelength in a long-wavelength region is found. A film-thickness arithmetic part 7 operates a coating film thickness on the basis of the peak wavelength. The value of the film thickness is displayed on a display device 8, it is sent to a coating- condition control system 9, it is fed back to the operating condition of a coating gun 10, and a desired film thickness is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗料を塗布した直後の
未乾燥状態で塗装の膜厚を計測することの出来る塗装膜
厚計測技術に関し、特に、ごく薄い膜厚の計測に適した
塗装膜厚計測技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film thickness measuring technique capable of measuring a coating film thickness in an undried state immediately after applying a coating, and particularly to a coating film suitable for measuring a very thin film thickness. Regarding film thickness measurement technology.

【0002】[0002]

【従来の技術】塗装直後の未乾燥状態で塗装膜厚を計測
する装置としては、例えば針ゲージを利用した接触式の
装置、或いは電磁式や渦電流式の非接触式の装置があ
る。図21は、上記のごとき従来装置のうち、磁気を用
いた計測装置の一例の原理を示す断面図である。図21
においては、まず(a)に示すように、鋼板の被塗装体
81の塗装表面に対向して非接触膜厚センサ82を近接
距離h0に予め位置決めする。そして非接触膜厚センサ
82内に設けられた送受信コイル(図示省略)によって
被塗装体81と非接触膜厚センサ82との間に磁界を生
成する。この状態で、被塗装体81の表面にウェット状
態の塗料83を塗布すると、塗装後の被塗装体81と非
接触膜厚センサ82との間の磁界は、塗装膜厚による電
磁気抵抗によって減衰し、塗装前よりも低下した状態で
送受信コイルに感知される。このように膜厚hに比例し
て減衰する磁束の変化を検出することにより、塗装膜厚
を測定することが出来る。しかし、上記のごとき従来の
膜厚測定装置においては、塗装前に被塗装体81と非接
触膜厚センサ82との距離を所定の近接距離に設定し、
塗装前後を通じてその位置関係を精密に保つ必要がある
ため、塗装中でもセンサを近接距離に設定したままにし
ておく必要があり、実用的でない。また、測定を塗装前
と塗装後との2回行なう必要があるので手間がかかると
共に、測定精度も悪い、等の問題があった。また、前記
針ゲージを用いた接触式の装置では、塗装面に傷を付け
るので、塗装品質が低下するという問題があった。
2. Description of the Related Art As an apparatus for measuring the coating film thickness in a non-dried state immediately after coating, there are, for example, a contact type apparatus utilizing a needle gauge, or an electromagnetic or eddy current type non-contact type apparatus. FIG. 21 is a cross-sectional view showing the principle of an example of a measuring device using magnetism in the above conventional devices. FIG.
First, as shown in (a), first, the non-contact film thickness sensor 82 is preliminarily positioned at the short distance h 0 so as to face the coating surface of the object 81 to be coated of a steel plate. A transmission / reception coil (not shown) provided in the non-contact film thickness sensor 82 generates a magnetic field between the object 81 to be coated and the non-contact film thickness sensor 82. In this state, when the wet coating material 83 is applied to the surface of the coating object 81, the magnetic field between the coating object 81 and the non-contact film thickness sensor 82 after coating is attenuated by the electromagnetic resistance due to the coating film thickness. , It is detected by the transmitting and receiving coil in a state where it is lower than before painting. In this way, the coating film thickness can be measured by detecting the change in the magnetic flux that attenuates in proportion to the film thickness h. However, in the conventional film thickness measuring device as described above, the distance between the object to be coated 81 and the non-contact film thickness sensor 82 is set to a predetermined close distance before coating,
Since it is necessary to maintain the positional relationship precisely before and after painting, it is necessary to keep the sensor set to the close distance even during painting, which is not practical. In addition, since it is necessary to perform the measurement twice before and after coating, it is troublesome and the measurement accuracy is poor. Further, the contact type device using the needle gauge has a problem that the coating quality is deteriorated because the coated surface is scratched.

【0003】上記のごとき問題を解決するため、本出願
人は、塗料を塗布した直後の未乾燥塗装表面の粗さに基
づいて、非接触で塗装膜厚を測定する装置を既に出願
(特願平4−306966号)している。上記の測定装
置は、光学的な表面粗さ計や撮像装置によって塗装直後
の未乾燥塗装表面の粗さと、塗装表面の凹凸波形の波長
とを計測し、それらに基づいて未乾燥状態における膜厚
(ウェット膜厚)を測定し、さらに乾燥後の膜厚(ドラ
イ膜厚)を予測するものである。
In order to solve the above problems, the present applicant has already applied for a device for measuring the coating film thickness in a non-contact manner based on the roughness of the undried coating surface immediately after coating with the coating material (Japanese Patent Application No. 2000-242242). No. 4-306966). The above measuring device measures the roughness of the undried coating surface immediately after coating with an optical surface roughness meter or an imaging device, and the wavelength of the uneven waveform of the coating surface, and based on them, the film thickness in the undried state. It measures the (wet film thickness) and predicts the film thickness after drying (dry film thickness).

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来の
接触式の装置では、塗装面に傷を付けるので、塗装品質
が低下するという問題があり、また、磁気を利用した非
接触の装置では測定に手間がかかると共に測定精度が悪
いという問題があった。また、上記のごとき従来装置の
問題を解決した本出願人の先行出願においては、非接触
で、しかも容易に正確な測定を行なうことが可能である
が、自動車車体塗装の上塗りベース塗装のような非常に
薄い塗装、すなわち膜厚が数十μm程度の極めて薄い塗
装においては、次のごとき問題がある。すなわち、上記
の先行出願においては、未乾燥塗装表面の粗さの時間変
化量から膜厚を求めているが、上記のごとく膜厚が極め
て薄い場合には、塗料の揮発成分の揮発速度が大きいの
で、粘度が急激に大きくなり、そのため粗さの時間変化
量が極めて小さくなるので、正確な測定が困難となり、
したがって塗装膜厚の測定精度が大幅に低下してしま
う、という問題があった。
As described above, the conventional contact type apparatus has a problem that the coating quality is deteriorated because the coated surface is scratched, and the non-contact apparatus utilizing magnetism is used. However, there is a problem that the measurement is troublesome and the measurement accuracy is poor. Further, in the prior application of the present applicant, which has solved the problem of the conventional apparatus as described above, it is possible to perform accurate measurement easily in a non-contact manner. Very thin coating, that is, extremely thin coating having a film thickness of about several tens of μm, has the following problems. That is, in the above-mentioned prior application, the film thickness is obtained from the amount of change over time of the roughness of the undried coating surface, but when the film thickness is extremely thin as described above, the volatilization rate of the volatile components of the paint is high. Therefore, the viscosity rapidly increases, so the amount of change in roughness over time becomes extremely small, making accurate measurement difficult,
Therefore, there is a problem that the measurement accuracy of the coating film thickness is significantly reduced.

【0005】本発明は、上記のごとき本出願人の先行出
願をさらに改良し、自動車車体塗装の上塗りベース塗装
のような数十μm程度の非常に薄い塗装であっても高精
度で膜厚を計測することの出来る塗装膜厚計測装置を提
供することを目的とする。
The present invention is a further improvement of the applicant's prior application as described above. Even if it is a very thin coating of about several tens of μm such as an overcoat base coating for automobile body coating, the film thickness can be accurately adjusted. An object is to provide a coating film thickness measuring device capable of measuring.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明は、
図1(a)に示すごとく、塗料を塗布した直後の未乾燥
塗装表面を撮像する撮像手段100と、上記撮像手段か
らの画像情報を画像処理する画像処理手段101と、上
記画像処理手段で処理された画像処理データに基づい
て、塗装表面の凹凸波形の波長分布を算出する波長演算
手段102と、上記波長演算手段で算出された波長分布
に基づいて、塗装の膜厚を算出する膜厚演算手段103
と、を備えている。なお、上記の各手段は、例えば後記
図3の実施例における下記の手段にそれぞれ対応する。
すなわち、撮像手段100は撮像部2に、画像処理手段
101は画像処理部3に、波長演算手段102は波長演
算部4に、膜厚演算手段103は膜厚演算部7に、それ
ぞれ相当する。また、請求項2に記載のごとく、上記の
波長演算手段102は、塗装表面の凹凸波形のパワース
ペクトラムにおける長波長領域のピーク波長を求めるも
のであり、上記の膜厚演算手段103は、上記長波長領
域のピーク波長の値と予め実験で求めた塗装膜厚との関
係から、ウエット状態における膜厚を算出し、それを膜
厚値として出力するものである。
In order to achieve the above object, the present invention is constructed as described in the claims. That is, the invention described in claim 1 is
As shown in FIG. 1A, an image pickup means 100 for picking up an image of the undried coating surface immediately after applying the paint, an image processing means 101 for image-processing the image information from the image pickup means, and a processing by the image processing means. The wavelength calculation means 102 for calculating the wavelength distribution of the corrugated waveform on the coating surface based on the image processing data, and the film thickness calculation for calculating the coating film thickness based on the wavelength distribution calculated by the wavelength calculation means. Means 103
And Each of the above means corresponds to, for example, the following means in the embodiment shown in FIG.
That is, the image pickup unit 100 corresponds to the image pickup unit 2, the image processing unit 101 corresponds to the image processing unit 3, the wavelength calculation unit 102 corresponds to the wavelength calculation unit 4, and the film thickness calculation unit 103 corresponds to the film thickness calculation unit 7. Further, as described in claim 2, the wavelength calculating means 102 obtains a peak wavelength in a long wavelength region in the power spectrum of the corrugated waveform on the coating surface, and the film thickness calculating means 103 calculates the long wavelength. The film thickness in the wet state is calculated from the relationship between the value of the peak wavelength in the wavelength region and the coating film thickness obtained by experiments in advance, and this is output as the film thickness value.

【0007】次に、請求項3に記載の発明は、図1
(b)に示すごとく、上記請求項1に記載の発明に下記
の構成を追加したものである。すなわち、上記撮像手段
100では、塗装表面の複数個所を撮像し、上記波長演
算手段102では上記複数個所の塗装表面に対応した複
数個の波長分布を算出し、かつ、上記複数個の波長分布
を平均処理する波長平均処理手段105と、少なくとも
塗料の種類を含む塗装条件を入力する塗装条件入力手段
104と、を備え、また、上記膜厚演算手段103は、
上記波長平均処理手段105で求めた波長分布の平均値
と上記塗装条件とに基づいて塗装膜厚を算出するもので
ある。なお、上記の構成は、例えば後記図12の実施例
に相当する。
Next, the invention described in claim 3 is as shown in FIG.
As shown in (b), the following configuration is added to the invention described in claim 1. That is, the imaging means 100 images a plurality of locations on the coating surface, the wavelength calculating means 102 calculates a plurality of wavelength distributions corresponding to the plurality of coating surfaces, and the plurality of wavelength distributions are calculated. A wavelength averaging means 105 for averaging and a coating condition input means 104 for inputting coating conditions including at least the type of coating material are provided, and the film thickness calculating means 103 is
The coating film thickness is calculated based on the average value of the wavelength distribution obtained by the wavelength averaging means 105 and the coating conditions. The above configuration corresponds to, for example, the embodiment shown in FIG.

【0008】次に、請求項4に記載の発明は、図1
(c)に示すごとく、上記請求項3に記載の発明に下記
の構成を追加してものである。すなわち、少なくとも塗
料の塗着後の非揮発性成分情報(含有率または含有量)
を含む塗装条件を入力する塗装条件入力手段104と、
上記膜厚演算手段103で求めたウエット状態における
膜厚と上記塗装条件とに基づいてドライ状態の膜厚を演
算するドライ膜厚演算手段106と、を追加している。
なお、塗装条件入力手段104は、非揮発性成分の代わ
りに揮発性分量を入力するものでも同等である。上記の
構成は、例えば後記図13の実施例に相当する。
Next, the invention described in claim 4 is as shown in FIG.
As shown in (c), the following configuration may be added to the invention described in claim 3 above. That is, at least the non-volatile component information (content rate or content) after coating of the paint
Coating condition input means 104 for inputting coating conditions including
A dry film thickness calculating unit 106 for calculating the film thickness in the dry state based on the film thickness in the wet state obtained by the film thickness calculating unit 103 and the coating condition is added.
It should be noted that the coating condition input means 104 is also equivalent to one that inputs a volatile amount instead of a non-volatile component. The above configuration corresponds to, for example, the embodiment shown in FIG. 13 described later.

【0009】次に、請求項5に記載の発明は、請求項3
または請求項4において、塗料を塗布した直後の未乾燥
塗装表面を、塗装面の異なった個所についてそれぞれ撮
像する複数の撮像手段を備え、それらの撮像手段で撮像
した複数個所の画像情報を順次処理するものである。な
お、図1(d)においては、請求項4に対応したブロッ
ク図を示している。上記の構成は、例えば後記図14の
実施例に相当する。
Next, the invention described in claim 5 is the invention according to claim 3.
Further, in claim 4, a plurality of image pickup means are provided for picking up images of the undried coating surface immediately after the coating is applied, respectively, at different points on the coating surface, and image information of the plurality of points picked up by these image pickup means is sequentially processed. To do. Note that FIG. 1D shows a block diagram corresponding to claim 4. The above configuration corresponds to, for example, the embodiment shown in FIG.

【0010】次に、請求項6に記載の発明は、図2
(a)に示すごとく、塗料を塗布した直後の未乾燥塗装
表面を、塗装面の異なった個所についてそれぞれ撮像す
る複数の撮像手段100と、上記複数の撮像手段からの
画像情報をそれぞれ画像処理する画像処理手段101
と、上記画像処理手段で処理された画像処理データに基
づいて、塗装表面の凹凸波形の波長分布を上記各個所毎
にそれぞれ算出する波長演算手段102と、少なくとも
塗料の種類を含む塗装条件を入力する塗装条件入力手段
104と、上記波長演算手段で算出された複数の波長分
布と、上記塗装条件入力手段からの塗装条件とに基づい
て、塗装の膜厚を上記各個所毎にそれぞれ算出する膜厚
演算手段103と、上記膜厚演算手段の演算結果に基づ
いて、塗装面の平均膜厚を算出する平均膜厚演算手段1
07と、を備え、複数の撮像手段で撮像した複数個所の
画像情報を並行処理するように構成している。なお、図
2(a)においては、画像処理手段101、波長演算手
段102および膜厚演算手段103として、それぞれ複
数個を備えた場合を例示しているが、複数の撮像手段か
らの画像情報を、それぞれ独立に処理できる装置であれ
ば、それぞれ1個の手段でも構わない。上記の構成は、
例えば後記図15の実施例に相当する。
Next, the invention according to claim 6 is shown in FIG.
As shown in (a), a plurality of image pickup means 100 for picking up an image of the undried coating surface immediately after applying the coating material at different points on the coating surface, and image processing of the image information from the plurality of image pickup means, respectively. Image processing means 101
And a wavelength calculation means 102 for calculating the wavelength distribution of the corrugated waveform on the coating surface for each of the above points based on the image processing data processed by the image processing means, and a coating condition including at least the type of coating material is input. A film for calculating the coating film thickness at each of the above-mentioned locations based on the coating condition inputting means 104, the plurality of wavelength distributions calculated by the wavelength calculating means, and the coating condition from the coating condition inputting means. Average thickness calculating means 103 and average thickness calculating means 1 for calculating the average thickness of the coated surface based on the calculation results of the above thickness calculating means.
07, and is configured to perform parallel processing on image information at a plurality of locations imaged by a plurality of imaging means. Although FIG. 2A illustrates the case where a plurality of image processing means 101, a plurality of wavelength calculation means 102, and a plurality of film thickness calculation means 103 are provided, image information from a plurality of image pickup means is displayed. As long as it is a device that can process each independently, only one means may be used. The above configuration
For example, it corresponds to the embodiment of FIG. 15 described later.

【0011】次に、請求項7に記載の発明は、図2
(b)に示すごとく、上記請求項1〜請求項6に記載の
発明に、下記の構成を追加したものである。すなわち、
画像処理手段101で処理された画像処理データと波長
演算手段102で算出された波長分布との少なくとも一
方に基づいて塗装面の曲面情報を求める曲面演算手段1
08と、波長演算手段102で算出された波長分布に対
して、上記曲面演算手段108で求めた結果に応じた曲
面補正処理を行なう曲面補正演算手段109と、を追加
している。なお、図2(b)においては、図1(a)の
構成に追加した場合を例示している。上記の構成は、例
えば後記図16の実施例に相当する。
Next, the invention according to claim 7 is as shown in FIG.
As shown in (b), the following configurations are added to the invention described in claims 1 to 6. That is,
Curved surface calculation means 1 for obtaining curved surface information of a coated surface based on at least one of the image processing data processed by the image processing means 101 and the wavelength distribution calculated by the wavelength calculation means 102.
08, and a curved surface correction calculation unit 109 that performs curved surface correction processing according to the result obtained by the curved surface calculation unit 108 with respect to the wavelength distribution calculated by the wavelength calculation unit 102. Note that FIG. 2B illustrates the case where the configuration is added to the configuration of FIG. The above configuration corresponds to, for example, the embodiment shown in FIG. 16 described later.

【0012】[0012]

【作用】請求項1に記載の発明は、未乾燥塗装表面の画
像情報から塗装表面の凹凸波形の波長分布を算出し、そ
の波長分布に基づいて、塗装の膜厚を算出するものであ
る。具体的には、請求項2に記載のように、塗装表面の
凹凸波形のパワースペクトラムにおける長波長領域のピ
ーク波長を求め、そのピーク波長の値と予め実験で求め
た塗装膜厚との関係から、ウエット状態における膜厚を
算出する。上記のように、本発明においては、前記先行
出願のような粗さ測定を行なわず、凹凸波形のパワース
ペクトラムにおける長波長領域のピーク波長のみを演算
し、その値と予め実験で求めた塗装膜厚との関係から膜
厚を求めるように構成している。したがって塗装後の塗
膜の粘度に影響されないので、膜厚が数十μm程度と極
めて薄い場合でも正確な膜厚計測を行なうことが出来
る。なお、上記のようにして求めた膜厚は、その数値を
そのまま表示して利用することも出来るし、或いは塗装
ラインの自動制御用の数値として与えることも出来る。
According to the first aspect of the present invention, the wavelength distribution of the uneven waveform of the coating surface is calculated from the image information of the undried coating surface, and the coating film thickness is calculated based on the wavelength distribution. Specifically, as described in claim 2, the peak wavelength of the long wavelength region in the power spectrum of the corrugated waveform of the coating surface is obtained, and from the relationship between the value of the peak wavelength and the coating film thickness obtained in advance by the experiment. , Calculate the film thickness in the wet state. As described above, in the present invention, the roughness measurement as in the prior application is not performed, only the peak wavelength of the long wavelength region in the power spectrum of the uneven waveform is calculated, and the value and the coating film obtained in advance by an experiment The film thickness is determined from the relationship with the thickness. Therefore, since it is not affected by the viscosity of the coating film after coating, accurate film thickness measurement can be performed even when the film thickness is as thin as several tens of μm. The film thickness obtained as described above can be used by displaying the numerical value as it is, or can be given as a numerical value for automatic control of the coating line.

【0013】また、請求項3に記載の発明は、塗装表面
の複数個所を撮像し、それら複数個の波長分布を平均し
た値を用いて膜厚を演算するものである。このように複
数個所の値を平均することにより、さらに正確な膜厚を
計測することが出来る。
The third aspect of the present invention is to image a plurality of locations on the coating surface and calculate the film thickness using the average value of the wavelength distributions of the plurality of locations. By averaging the values at a plurality of points in this way, a more accurate film thickness can be measured.

【0014】なお、塗装条件入力手段104によって塗
料の種類等の情報を与えることにより、演算精度を向上
させることが出来る。次に、請求項4に記載の発明は、
塗装条件入力手段104から塗料の非揮発性成分の含有
量情報を入力し、その情報と計測したウエット膜厚とに
よって乾燥後のドライ膜厚を演算するものである。すな
わち、ウエット状態の塗膜から揮発性成分が揮発した後
の状態がドライ膜厚となるから、塗料の非揮発性成分の
含有量とウエット膜厚が判ればドライ膜厚を演算で求め
ることが出来る。
The calculation accuracy can be improved by giving information such as the type of paint by the coating condition input means 104. Next, the invention according to claim 4 is
The content information of the non-volatile component of the coating material is input from the coating condition input means 104, and the dry film thickness after drying is calculated from the information and the measured wet film thickness. That is, since the dry film thickness is the state after the volatile components have evaporated from the wet coating film, the dry film thickness can be calculated by knowing the content of the non-volatile component of the paint and the wet film thickness. I can.

【0015】次に、請求項5に記載の発明は、複数の撮
像手段を備え、それらの撮像手段で撮像した複数個所の
画像情報を順次処理するように構成したものである。こ
のように複数の撮像手段を設ければ、塗装表面の複数個
所を短時間で撮像できるので、正確な膜厚演算を迅速に
行なうことが出来る。次に、請求項6に記載の発明は、
画像処理手段101、波長演算手段102および膜厚演
算手段103における処理も並行して行ない、求められ
た複数個の膜厚を平均化した値を最終的な膜厚値とする
ものである。このように、複数の撮像手段で撮像した複
数個所の画像情報を並行処理することにより、正確な膜
厚演算をさらに迅速に行なうことが出来る。次に、請求
項7に記載の発明は、被塗装面が曲面であった場合にお
ける曲面補正機能を設けたものである。これにより、曲
面の場合でも正確な膜厚計測を行なうことが出来る。
Next, the invention according to claim 5 is provided with a plurality of image pickup means, and is configured to sequentially process image information of a plurality of places imaged by these image pickup means. By providing a plurality of imaging means in this way, a plurality of locations on the coating surface can be imaged in a short time, so that accurate film thickness calculation can be performed quickly. Next, the invention according to claim 6 is
The image processing means 101, the wavelength calculation means 102, and the film thickness calculation means 103 also perform the processing in parallel, and the value obtained by averaging the obtained plurality of film thicknesses is used as the final film thickness value. In this way, by accurately processing the image information of a plurality of positions imaged by a plurality of imaging means, an accurate film thickness calculation can be performed more quickly. Next, the invention according to claim 7 is provided with a curved surface correction function when the surface to be coated is a curved surface. As a result, accurate film thickness measurement can be performed even on a curved surface.

【0016】[0016]

【実施例】図3は本発明の第1の実施例図であり、本発
明を自動塗装ラインに適用した場合のブロック図を示
す。まず、図3に基づいて全体の構成の概略を説明す
る。1は被塗装体(例えば車体)であり、塗装ライン上
を所定の速度で移動しながら塗装されるものである。2
は塗装直後におけるウエット状態の塗装表面を撮像する
撮像部(詳細後述)である。なお、撮像する時点は、塗
料を吹き付けたのち所定時間(例えば1〜2分)後に行
なう。そのため、撮像部2は塗装ラインの移動速度に合
わせて、例えば1〜2分後に被塗装体1が到達する位置
に設置されている。上記の撮像部2で撮像された塗装表
面の画像は、画像処理部3で2値化等の画像処理され
る。なお、この画像処理部3は画像情報を記憶する画像
メモリとコンピュータ等の演算装置で構成される。上記
の画像処理部3で処理された画像処理データは、波長演
算部4に送られる。波長演算部4では、入力した画像処
理データのパワースペクトル周波数分析(例えば高速フ
ーリエ変換:FFT)を行ない、入力した画像データか
ら塗装表面の凹凸のパワースペクトルPS(詳細後述)
を算出する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a first embodiment of the present invention and is a block diagram when the present invention is applied to an automatic coating line. First, the outline of the entire configuration will be described with reference to FIG. Reference numeral 1 is a body to be coated (for example, a vehicle body), which is coated while moving on a coating line at a predetermined speed. Two
Is an image pickup unit (details will be described later) for picking up an image of the wet coating surface immediately after coating. The image is taken after a predetermined time (for example, 1 to 2 minutes) after spraying the paint. Therefore, the imaging unit 2 is installed at a position where the object to be coated 1 arrives after 1 to 2 minutes, for example, according to the moving speed of the coating line. The image of the painted surface captured by the image capturing unit 2 is subjected to image processing such as binarization by the image processing unit 3. The image processing unit 3 is composed of an image memory that stores image information and a computing device such as a computer. The image processing data processed by the image processing unit 3 is sent to the wavelength calculation unit 4. The wavelength calculation unit 4 performs power spectrum frequency analysis (for example, fast Fourier transform: FFT) of the input image processing data, and from the input image data, a power spectrum PS of unevenness on the coating surface (details described later).
To calculate.

【0017】また、膜厚演算部7は、波長演算部4で求
めたパワースペクトルPSに基づいて未乾燥のウエット
状態における膜厚hを算出する(詳細後述)。上記の波
長演算部4および膜厚演算部7は、例えばコンピュータ
のような演算装置で構成される。上記のようにして求め
られた塗装膜厚hは、液晶表示装置やCRT表示装置等
の表示器8で表示して作業員に提示すると共に、塗装条
件制御システム9へ送られ、塗装ガン10の作動条件
(塗料の吐出量、ベル回転数、エア圧等)を所望の塗装
膜厚を達成するための最適条件に保つように制御する。
Further, the film thickness calculation unit 7 calculates the film thickness h in the wet state based on the power spectrum PS obtained by the wavelength calculation unit 4 (details will be described later). The wavelength calculation unit 4 and the film thickness calculation unit 7 are configured by a calculation device such as a computer. The coating film thickness h obtained as described above is displayed on the display device 8 such as a liquid crystal display device or a CRT display device and presented to the worker, and is also sent to the coating condition control system 9 to be transferred to the coating gun 10. The operating conditions (paint discharge rate, bell rotation speed, air pressure, etc.) are controlled so as to be kept at the optimum conditions for achieving the desired coating film thickness.

【0018】次に、各部の詳細構成と作用について説明
する。最初に、撮像部2について説明する。図4は、撮
像部2の一例を示す断面図である。図4に示すように、
撮像部の基本的構成は、光源31、明暗パタン板32、
反射鏡33、レンズ34およびCCDカメラ35から成
る。上記の明暗パタン板32は、所定間隔(例えば1m
m間隔)で直線状のスリットが設けられた不透明板(ま
たは透明板に所定間隔で不透明なストライプパタンを印
刷したもの)である。そして光源31からの平行光線を
上記明暗パタン板32と反射鏡33とレンズ34とを介
して塗装面に斜め方向から照射することにより、被塗装
体上にスリットに対応した縞模様をつくる。この縞模様
は、被塗装体上の凹凸に応じて歪んだ波形(後記図17
に示すごとき波形)となる。その反射光をCCDカメラ
35で撮像し、上記の歪んだ縞模様、すなわち表面の凹
凸の情報を入力するようになっている。上記のごとき縞
模様の画像情報を画像処理部3で画像処理し、パワース
ペクトル周波数分析(例えば高速フーリエ変換処理:F
FT)を行なってパワースペクトルPS(特に長波長領
域のピーク波長λp)を求める。
Next, the detailed structure and operation of each part will be described. First, the image pickup unit 2 will be described. FIG. 4 is a cross-sectional view showing an example of the image pickup unit 2. As shown in FIG.
The basic structure of the image pickup unit includes a light source 31, a light / dark pattern plate 32,
It is composed of a reflecting mirror 33, a lens 34 and a CCD camera 35. The light / dark pattern plate 32 has a predetermined interval (for example, 1 m).
It is an opaque plate (or a transparent plate on which opaque stripe patterns are printed at predetermined intervals) provided with linear slits at m intervals). Then, a parallel light beam from the light source 31 is radiated onto the coating surface from an oblique direction through the light-dark pattern plate 32, the reflecting mirror 33, and the lens 34 to form a striped pattern corresponding to the slit on the object to be coated. This striped pattern is a waveform that is distorted according to the irregularities on the object to be coated (see FIG.
The waveform is as shown in. The reflected light is imaged by the CCD camera 35, and the distorted striped pattern, that is, information on the surface irregularities is input. The image information of the striped pattern as described above is subjected to image processing by the image processing unit 3, and power spectrum frequency analysis (for example, fast Fourier transform processing: F
FT) to obtain the power spectrum PS (especially the peak wavelength λp in the long wavelength region).

【0019】図5は、上記パワースペクトルPSの周波
数特性図であり、縦軸はパワースペクトルPS、横軸は
周波数f(波長λの逆数 f=1/λ)である。図5に
おいて、第1のピーク波形は、前記スリットに対応し
た基本縞による基本波形のパワースペクトル、第2のピ
ーク波形は、塗装表面の凹凸波形の長波長領域(10
〜1mm程度)に対応したパワースペクトル、第3のピ
ーク波形は、凹凸波形の中波長領域(1〜0.1mm
程度)に対応したパワースペクトル、第4のピーク波形
は、凹凸波形の短波長領域(0.1mm以下)に対応
したパワースペクトルを示す。上記のパワースペクトル
波形において、凹凸波形の長波長領域のピーク波長、す
なわち第2のピーク波形のピーク値に対応した波長λ
pは、後記のごとく塗装の膜厚と相関性があるので、上
記の波長λpを求めることによって塗装膜厚を計測する
ことが出来る。
FIG. 5 is a frequency characteristic diagram of the power spectrum PS, in which the vertical axis represents the power spectrum PS and the horizontal axis represents the frequency f (the reciprocal of the wavelength λ f = 1 / λ). In FIG. 5, the first peak waveform is the power spectrum of the basic waveform formed by the basic stripes corresponding to the slits, and the second peak waveform is the long wavelength region (10) of the uneven waveform on the coating surface.
Power spectrum corresponding to ~ 1 mm), the third peak waveform is the uneven wavelength waveform in the middle wavelength region (1 to 0.1 mm).
The fourth peak waveform shows the power spectrum corresponding to the short wavelength region (0.1 mm or less) of the uneven waveform. In the above power spectrum waveform, the peak wavelength in the long wavelength region of the uneven waveform, that is, the wavelength λ corresponding to the peak value of the second peak waveform.
Since p has a correlation with the coating film thickness as described later, the coating film thickness can be measured by obtaining the wavelength λp.

【0020】次に、膜厚演算部7における膜厚演算処理
について説明する。図6(詳細後述)に示すような塗料
粒子の付着メカニズムの基礎実験、具体的には塗料の吹
き付け時間を制御することによって膜厚を変化させ、そ
のときの塗装膜面の波長分布を測定した実験の結果によ
れば、被塗装面への付着粒子は、粒子結合によって粒子
径が図9に示すように成長することが確認された。さら
に、塗装膜厚hと塗装面の凹凸の波長λとの関係は、下
記(数1)式または(数2)式の関係があり、図11に
示すようになることが導出された。
Next, the film thickness calculation processing in the film thickness calculation unit 7 will be described. A basic experiment of the adhesion mechanism of paint particles as shown in FIG. 6 (described later in detail), specifically, the film thickness was changed by controlling the paint spraying time, and the wavelength distribution on the paint film surface at that time was measured. According to the result of the experiment, it was confirmed that the particles adhering to the surface to be coated grow due to particle bonding as shown in FIG. Further, it has been derived that the relationship between the coating film thickness h and the wavelength λ of the unevenness of the coating surface has the relationship of the following (Equation 1) or (Equation 2), and is as shown in FIG. 11.

【0021】[0021]

【数1】 [Equation 1]

【0022】h=k'×λ−k" …(数2) ただし、k、k'、k"、α:塗料に応じて定まる定数 上記の数式および図の特性から判るように、付着粒子径
(すなわち塗装面の凹凸の波長)は、膜厚が厚いほど粒
子の結合数が多くなるため、大きくなる。すなわち、塗
膜面の成長は塗装条件である膜厚値に依存することを示
しており、膜厚値の推定を行なう場合には、上記(数
1)式または(数2)式を用いて、塗膜面の凹凸の波長
から膜厚値の算出を行なうことが可能である。
H = k '× λ-k "(Equation 2) However, k, k', k", α: constant determined depending on the paint, as can be seen from the above formulas and the characteristics of the figure, the particle size of the adhered particles (That is, the wavelength of the unevenness of the coated surface) increases as the film thickness increases, because the number of bonded particles increases. That is, it is shown that the growth of the coating film surface depends on the film thickness value which is a coating condition. When estimating the film thickness value, the above equation (1) or equation (2) is used. It is possible to calculate the film thickness value from the wavelength of the unevenness of the coating film surface.

【0023】以下、本発明における塗装膜厚測定の原理
について詳細に説明する。まず、図6に基づいて、塗装
時における塗装面への塗料粒子の付着と塗装膜面の形成
過程について説明する。図6(a)に示すように、塗装
ガンから塗装面へ向けて微粒化した塗料粒子を吹き付け
る。この際、塗料粒子の平均粒子径は、基本的には、塗
装条件である塗料速度(下記、、)と空気速度
(下記)と塗料物性(下記)によって決まる。ただ
し、上記の〜は次の通りである。 塗装ガンの吐出量 塗装ガンのベル回転数 印加電圧 エア圧 塗料物性(粘度、表面張力、密度) なお、ベル回転数とは塗料を微粒化する回転体の回転数
であり、印加電圧とは塗料粒子に静電気を付加するため
に印加する静電圧(50kV程度)であり、エア圧と
は、塗料粒子が周辺に飛散しないように周囲に気流の壁
を作るための気圧である。上記のようにして吹き付けら
れた塗料粒子は、塗装面に衝突し、つぶれた形で付着す
る。
The principle of coating film thickness measurement in the present invention will be described in detail below. First, with reference to FIG. 6, a process of adhering paint particles to a coating surface and forming a coating film surface during coating will be described. As shown in FIG. 6 (a), atomized paint particles are sprayed from the paint gun toward the paint surface. At this time, the average particle size of the paint particles is basically determined by the paint conditions such as paint velocity (below), air velocity (below) and paint physical properties (below). However, the above-mentioned items are as follows. Discharge rate of coating gun Bell rotation speed of coating gun Applied voltage Air pressure Paint physical properties (viscosity, surface tension, density) Bell rotation speed is the rotation speed of the rotating body that atomizes the paint, and applied voltage is the paint It is a static voltage (about 50 kV) applied to add static electricity to the particles, and the air pressure is an atmospheric pressure for creating a wall of airflow around the paint particles so that the paint particles do not scatter around. The paint particles sprayed as described above collide with the painted surface and adhere in a crushed form.

【0024】次に、図6(b)に示すように、塗膜形成
の初期には、付着した小さな塗料粒子が大きな塗料粒子
に結合され、より大きな粒子を形成する。そして、さら
に粒子の結合が進み、表面張力と境界張力とによって初
期の塗膜面が形成される。上記のように粒子の付着と結
合によって塗膜が形成されていくため、初期の塗膜表面
状況は大きな塗装粒子の粒子径r、粒子衝突速度vx、
塗料物性(表面張力γ、粘度η)等に依存する。例え
ば、上塗り塗料の場合、初期塗膜表面の凹凸の高さは数
〜数十μm程度であり、また、凹凸の波長分布は3〜6
mm程度の長波長領域が支配的であることが確認され
た。そして上記の長波長領域のピーク波長λpと大きな
塗料粒子の粒子径rとには相関性があることが実験によ
って確認された。次に、図6(c)に示すように、上記
の初期塗膜形成後の塗膜表面は、レベリング力(表面張
力γと重力gとの合成力)によって次第に平坦化して行
く。この平坦化速度は上記のレベリング力と塗料物性
(表面張力γ、粘度η)および膜厚hによって決定され
る。例えば、上塗り塗料の場合、平坦化速度は時定数で
数十秒〜数百秒であることが確認されている。
Next, as shown in FIG. 6B, in the initial stage of coating film formation, the small paint particles that have adhered are combined with the large paint particles to form larger particles. Then, the bonding of particles further progresses, and the initial coating film surface is formed by the surface tension and the boundary tension. As described above, since the coating film is formed by the adhesion and bonding of the particles, the initial coating film surface condition is the particle diameter r of the large coating particles, the particle collision velocity vx,
It depends on the physical properties of the coating (surface tension γ, viscosity η) and the like. For example, in the case of a top coating, the height of the unevenness on the surface of the initial coating film is about several to several tens of μm, and the wavelength distribution of the unevenness is 3 to 6 μm.
It was confirmed that the long wavelength region of about mm is dominant. Experiments have confirmed that there is a correlation between the peak wavelength λp in the long wavelength region and the particle diameter r of large paint particles. Next, as shown in FIG. 6C, the coating film surface after the initial coating film formation is gradually flattened by the leveling force (composite force of surface tension γ and gravity g). This flattening speed is determined by the above-mentioned leveling force, coating material properties (surface tension γ, viscosity η) and film thickness h. For example, in the case of a topcoat paint, it has been confirmed that the flattening speed is a time constant of several tens of seconds to several hundreds of seconds.

【0025】次に、塗料粒子径と塗膜面の凹凸との関係
について図7〜図10に基づいて詳細に説明する。図7
に示すように、塗装ガンから吹き付けられた塗料粒子の
粒子径をrとし、それが付着した付着粒子の幅をλ/
2、厚さ(ピーク値)をhとすれば、波長λの凹凸を持
つ塗膜面が形成される。なお、上記付着粒子の幅λ/2
と波長λとの関係は、実験的に求められたものであり、
ほぼこの程度の値になることが確認されている。上記の
場合における塗料粒子径rは、下記(数3)式で示され
る。
Next, the relationship between the paint particle size and the unevenness of the coating film surface will be described in detail with reference to FIGS. Figure 7
As shown in, the particle diameter of the paint particles sprayed from the coating gun is r, and the width of the adhered particles attached to it is λ /
2. If the thickness (peak value) is h, a coating film surface having irregularities of wavelength λ is formed. The width of the adhered particles λ / 2
The relationship between the wavelength and the wavelength λ is experimentally obtained,
It has been confirmed that the value is almost this level. The paint particle diameter r in the above case is expressed by the following equation (3).

【0026】[0026]

【数3】 (Equation 3)

【0027】上記の理論式をグラフに示すと、図8の破
線で示すごとき曲線となる。しかし、実際には、付着粒
子の結合があるため、図8の実線で示すような特性とな
る。この実験で求めた特性を数式で示すと、下記(数
4)式のようになる。
When the above theoretical formula is shown in a graph, a curve as shown by the broken line in FIG. 8 is obtained. However, in reality, since the adhered particles are bonded, the characteristics shown by the solid line in FIG. 8 are obtained. The characteristic obtained in this experiment is expressed by a mathematical expression as shown in the following (Equation 4).

【0028】[0028]

【数4】 [Equation 4]

【0029】上記のごとき実験で求めた凹凸のピーク波
長λpと塗料粒子径rとの関係を、付着粒子の結合を考
慮して解析する。まず、図9に示すように、付着粒子径
Rは、塗布時間が大きくなるに従って順次大きくなる。
この関係を数式で示すと下記(数5)式のようになる。
The relationship between the peak wavelength λp of the unevenness and the paint particle diameter r obtained in the above-mentioned experiment is analyzed in consideration of the bond of the adhered particles. First, as shown in FIG. 9, the adhered particle diameter R increases sequentially as the coating time increases.
When this relationship is shown by a mathematical expression, it becomes as shown in the following (Equation 5).

【0030】[0030]

【数5】 (Equation 5)

【0031】なお、図9において、塗布時間とは1ヶ所
に塗布する持続時間であり、初期粒子径とは付着前の塗
料粒子径であり、付着粒子径とは最初に付着したときの
粒子径である。この付着粒子径Rは塗布時間が長くなる
に従って順次塗布される粒子が結合するので次第に大き
くなる。
In FIG. 9, the application time is the duration of application at one location, the initial particle size is the paint particle size before adhesion, and the adhered particle size is the particle size when first applied. Is. The diameter R of the adhered particles gradually increases as the coating time increases because the particles that are sequentially coated combine.

【0032】また、図10は、塗布時間と塗膜面の凹凸
波長との関係を、実測値(破線)と周波数解析によるパ
ワースペクトルから求めた結果とについて比較した特性
図である。図10から判るように、パワースペクトルか
ら求めた値は実測値によく一致している。したがってパ
ワースペクトルから求めた凹凸波長(前記長波長のピー
ク波長λp)を用いて付着粒子径Rを求めることが出来
る。さらに、自動塗装機においては、塗布時間は一定で
あるから、下記(数6)式によって塗料粒子径rも求め
ることが出来る。 2r(t)=λp(t) …(数6) 上記のごとき考察により、基本的には前記(数4)式に
より、パワースペクトルから求めた凹凸の長波長領域の
ピーク波長λpを用いて、塗料粒子径rを求めることが
出来る。具体的には、実験で前記図8の特性を求め、そ
れから(数4)式の各係数ks、aを予め求めておけ
ば、撮像画像から求めたピーク波長λpを用いて塗料粒
子径rを求めることが出来る。なお、塗料粒子の粒子径
rは塗料の微粒化の程度に対応しているから、塗料粒子
の粒子径rをそのまま用いて微粒化度を表してもよい
し、或いはrの逆数、もしくは基準値との百分率などを
用いて微粒化度を表すことも出来る。
Further, FIG. 10 is a characteristic diagram comparing the relationship between the coating time and the uneven wavelength of the coating surface with the measured value (broken line) and the result obtained from the power spectrum by frequency analysis. As can be seen from FIG. 10, the value obtained from the power spectrum is in good agreement with the actually measured value. Therefore, the particle diameter R of the adhered particles can be obtained by using the uneven wavelength (peak wavelength λp of the long wavelength) obtained from the power spectrum. Furthermore, in an automatic coating machine, the coating time is constant, so the paint particle diameter r can also be determined by the following equation (6). 2r (t) = λp (t) (Equation 6) Based on the above consideration, the peak wavelength λp of the long wavelength region of the unevenness obtained from the power spectrum is basically used by the equation (Equation 4). The paint particle diameter r can be obtained. Specifically, if the characteristics shown in FIG. 8 are obtained by an experiment and then the respective coefficients ks and a of the equation (4) are obtained in advance, the paint particle diameter r can be calculated by using the peak wavelength λp obtained from the captured image. You can ask. Since the particle size r of the paint particles corresponds to the degree of atomization of the paint, the particle size r of the paint particles may be used as it is to represent the degree of atomization, or the reciprocal of r or a reference value. It is also possible to express the degree of atomization by using the percentage and the like.

【0033】また、図9に示すように、付着粒子径Rは
塗布時間すなわち膜厚が大きくなるに従って順次大きく
なっている。この関係を、さらに塗布時間ではなく膜厚
値を実測しながら、膜厚と付着粒子径の関係、すなわち
膜厚と塗膜面の凹凸の波長との関係を解析すると、膜厚
と波長(前記ピーク波長λp)との関係は、図11に示
すようになる。すなわち、膜厚が大きくなるとピーク波
長λpも大きくなり、前記(数1)式、(数2)式に示
したごとき関係が実験的に得られた。したがって塗膜表
面の凹凸波形の長波長領域のピーク波長λpを求めるこ
とにより、ウエット状態の膜厚を算出することが出来
る。
Further, as shown in FIG. 9, the adhered particle diameter R gradually increases as the coating time, that is, the film thickness increases. This relationship is further analyzed by measuring the film thickness value, not the coating time, and analyzing the relationship between the film thickness and the adhered particle size, that is, the relationship between the film thickness and the wavelength of the irregularities on the coating surface. The relationship with the peak wavelength λp) is as shown in FIG. That is, as the film thickness increases, the peak wavelength λp also increases, and the relations shown in the equations (1) and (2) are experimentally obtained. Therefore, the film thickness in the wet state can be calculated by obtaining the peak wavelength λp in the long wavelength region of the corrugated waveform on the surface of the coating film.

【0034】図3の実施例においては、波長演算部4
で、入力した画像処理データから塗装表面の凹凸波形の
パワースペクトルPSを求め、前記の長波長領域のピー
ク波長λpを算出する。そして膜厚演算部7では、予め
実験で求めた前記図11の特性(数1式または数2式)
を用いて上記ピーク波長λpから塗装の膜厚値を演算す
る。なお、上記の演算において、図11の特性は、正確
には塗料の種類に応じて異なるので、塗装条件入力部6
(図3では図示せず、以下の実施例で説明する)から入
力した中塗り、上塗りベース、上塗りクリア等の塗料の
種類に応じて(数1)式、(数2)式の係数値を変更す
る。
In the embodiment of FIG. 3, the wavelength calculator 4
Then, the power spectrum PS of the corrugated waveform on the coating surface is obtained from the input image processing data, and the peak wavelength λp in the long wavelength region is calculated. Then, in the film thickness calculation unit 7, the characteristics of FIG. 11 previously obtained by experiments (Equation 1 or Equation 2)
Is used to calculate the coating film thickness value from the peak wavelength λp. Note that, in the above calculation, the characteristics of FIG.
The coefficient values of the formulas (1) and (2) are calculated according to the type of paint such as intermediate coat, top coat base, and clear top coat (not shown in FIG. 3 and described in the following embodiment). change.

【0035】上記のように、本実施例においては、塗装
後の未乾燥塗装表面の画像から、凹凸波形のパワースペ
クトラムにおける長波長領域のピーク波長のみを演算
し、その値と予め実験で求めた塗装膜厚との関係から膜
厚を求めるように構成している。したがって塗装後の塗
膜の粘度に影響されないので、膜厚が数十μm程度と極
めて薄い場合でも正確な膜厚計測を行なうことが出来
る。そのため自動車ボディのベース塗装のような極めて
薄い塗装面に対しても、塗装直後に非接触で容易に計測
することが出来、塗装条件を直ちにフィードバック制御
することが出来るので、塗装品質を維持、向上させるこ
とができると共に、塗装膜厚計測の工数を大幅に低減す
ることが出来る。
As described above, in this embodiment, only the peak wavelength in the long wavelength region in the power spectrum of the uneven waveform was calculated from the image of the undried coating surface after coating, and the value and the value were obtained in advance by experiments. The film thickness is determined from the relationship with the coating film thickness. Therefore, since it is not affected by the viscosity of the coating film after coating, accurate film thickness measurement can be performed even when the film thickness is as thin as several tens of μm. Therefore, even on an extremely thin coating surface such as the base coating of an automobile body, it is possible to easily measure without contact immediately after coating, and feedback control of coating conditions can be performed immediately, thus maintaining and improving coating quality. It is possible to significantly reduce the number of coating film thickness measurement steps.

【0036】次に、図12は本発明の第2の実施例のブ
ロック図である。一般に、自動車の車体塗装のような塗
装自動化ラインでは、上塗り、中塗り、或いは塗装色の
違い等のように、色々な塗料を用いるため、その塗料の
種類に応じた条件を入力する必要がある。また、車体の
ような大型の被塗装体の場合には、吹き付け面積が大き
いため、塗装部位によっては塗装条件が必ずしも均一に
ならない場合がある。したがって精度のよい計測を行な
うためには、塗装表面の複数個所を撮像し、それらの各
部位におけるピーク波長λpの平均値を用いて膜厚演算
を行なうことが望ましい。図12の実施例は、上記の理
由により、撮像部2では塗装面の複数個所の撮像を行な
ってその画像情報を順次演算処理し、求められた複数の
ピーク波長λpを波長平均処理部5で平均化し、また、
塗装条件入力部6を設けて塗装の種類等に応じた情報を
入力し、膜厚演算部7では、上記の平均化したピーク波
長λpの値と塗装条件とに応じて膜厚を演算するように
構成している。なお、塗装条件入力部6は、例えばキー
ボード等の入力手段であり、作業員の操作によって塗料
の種類等に応じた必要な情報(前記した数式の係数等)
を入力する。
Next, FIG. 12 is a block diagram of a second embodiment of the present invention. Generally, in an automated coating line such as car body painting, various paints are used such as topcoat, middlecoat, or difference in paint color, so it is necessary to enter conditions according to the type of paint. . Further, in the case of a large body to be coated such as a vehicle body, since the sprayed area is large, the coating conditions may not always be uniform depending on the coating site. Therefore, in order to perform accurate measurement, it is desirable to image a plurality of locations on the coated surface and calculate the film thickness using the average value of the peak wavelength λp at each of those locations. In the embodiment of FIG. 12, for the above reason, the image pickup unit 2 picks up an image of a plurality of locations on the painted surface, sequentially processes the image information, and the wavelength averaging unit 5 determines the obtained peak wavelengths λp. Averaging
The coating condition input unit 6 is provided to input information according to the type of coating, and the film thickness calculation unit 7 calculates the film thickness according to the averaged peak wavelength λp value and the coating condition. Is configured. The painting condition input unit 6 is, for example, an input means such as a keyboard, and is necessary information according to the type of paint by the operator's operation (coefficients of the above-mentioned mathematical formula, etc.).
Enter

【0037】次に、図13は本発明の第3の実施例のブ
ロック図である。この実施例は、前記図12の実施例の
構成に、乾燥した後のドライ膜厚を演算するドライ膜厚
演算部11を付加したものである。ドライ膜厚の演算に
は、塗料中の非揮発性分すなわち乾燥後に残る成分の含
有量情報が必要である。そのため、この実施例において
は塗装条件入力部6から塗料の非揮発性分含有量N.V
を入力し、前記の演算で求めたウエット膜厚hと非揮発
性分含有量N.Vから、下記(数7)式によってドライ
膜厚Hを演算する。 H=N.V×h …(数7) なお、非揮発性分含有量N.Vの代わりに揮発性成分含
有量(=1−N.V)を用いても同様にドライ膜厚Hを
演算することが出来る。
Next, FIG. 13 is a block diagram of a third embodiment of the present invention. In this embodiment, a dry film thickness calculator 11 for calculating the dry film thickness after drying is added to the structure of the embodiment shown in FIG. Calculation of the dry film thickness requires information on the content of the non-volatile components in the coating material, that is, the components remaining after drying. Therefore, in this embodiment, the content of non-volatile components NV of the paint is input from the paint condition input unit 6.
Then, the dry film thickness H is calculated by the following equation (7) from the wet film thickness h and the non-volatile content NV which are obtained by the above calculation. H = NV × h (Equation 7) Even if the volatile component content (= 1-NV) is used instead of the nonvolatile content N.V, the dry film thickness H is similarly obtained. It can be calculated.

【0038】次に、図14は本発明の第4の実施例のブ
ロック図である。前記図12および図13の実施例にお
いては、1個の撮像部2を用いて複数個所の撮像を順次
行なうので、計測時間が長くなると共に計測手順が複雑
になるという問題がある。そのため、本実施例において
は、複数の撮像部2−1、2−2を設け、同時に複数個
所の画像情報を入力するように構成したものである。こ
れにより、計測時間を短縮できると共に計測手順を簡略
化することが出来る。
Next, FIG. 14 is a block diagram of a fourth embodiment of the present invention. In the embodiments shown in FIGS. 12 and 13, since the image pickup unit 2 is used to sequentially pick up images at a plurality of locations, there is a problem that the measurement time becomes long and the measurement procedure becomes complicated. Therefore, in this embodiment, a plurality of image pickup units 2-1 and 2-2 are provided, and image information of a plurality of places is input at the same time. As a result, the measurement time can be shortened and the measurement procedure can be simplified.

【0039】次に、図15は、本発明の第5の実施例図
である。この実施例は、図14の実施例において、撮像
部以外に画像処理部、波長演算部および膜厚演算部も並
列に設け、各撮像部で撮像した画像情報を並列演算処理
し、求められた複数の膜厚値を平均膜厚演算部12で平
均化した値を膜厚値とするものである。このように各演
算も並列化することにより、膜厚計測処理をさらに高速
化することが出来る。
Next, FIG. 15 shows a fifth embodiment of the present invention. In this embodiment, in addition to the image pickup unit, an image processing unit, a wavelength calculation unit, and a film thickness calculation unit are provided in parallel in the embodiment of FIG. 14, and the image information picked up by the respective image pickup units is subjected to parallel calculation processing and is obtained. A value obtained by averaging a plurality of film thickness values by the average film thickness calculation unit 12 is used as a film thickness value. By parallelizing each calculation in this way, the film thickness measurement process can be further speeded up.

【0040】次に、被塗装面が曲面であった場合におけ
る曲面補正演算について説明する。これまで説明した実
施例においては、塗装表面の画像情報から凹凸波長のピ
ーク値を求め、それによって膜厚値を演算している。し
かし、自動車の車体のように、塗装面に曲面が存在する
場合には、撮像した画像が曲率に応じて湾曲するので、
表面の凹凸波長を正確に測定することが困難になり、そ
のため計測結果に誤差を生じることがある。図16は、
本発明の第6の実施例のブロック図であり、上記の曲面
補正機能を付加した実施例を示す。なお、この実施例
は、前記図13の実施例に曲面補正を付加した場合を示
すが、他の実施例と組み合わせることも勿論可能であ
る。図16において、曲面演算部19は、画像処理部3
で処理された画像処理データと波長演算部4で算出され
た波長分布との少なくとも一方に基づいて塗装面の曲面
情報を求める。また、曲面補正演算部20は、波長演算
部4で算出された波長分布に対して、曲面演算部19で
求めた結果に応じた曲面補正処理を行なう。なお、上記
の曲面演算部19および曲面補正演算部20は、コンピ
ュータ等の演算装置で構成される。その他の構成は、前
記図13と同様である。
Next, the curved surface correction calculation when the surface to be coated is a curved surface will be described. In the embodiments described so far, the peak value of the uneven wavelength is obtained from the image information of the coated surface, and the film thickness value is calculated from this. However, when there is a curved surface on the painted surface, as in the case of a car body, the captured image is curved according to the curvature,
It becomes difficult to accurately measure the uneven wavelength of the surface, which may cause an error in the measurement result. 16
It is a block diagram of the 6th Example of this invention, and shows the Example which added the said curved surface correction function. Note that this embodiment shows a case where the curved surface correction is added to the embodiment of FIG. 13, but it is of course possible to combine it with other embodiments. In FIG. 16, the curved surface calculation unit 19 is the image processing unit 3.
Curved surface information of the painted surface is obtained based on at least one of the image processing data processed in step 1 and the wavelength distribution calculated by the wavelength calculator 4. Further, the curved surface correction calculation unit 20 performs curved surface correction processing on the wavelength distribution calculated by the wavelength calculation unit 4 according to the result obtained by the curved surface calculation unit 19. The curved surface calculation unit 19 and the curved surface correction calculation unit 20 are configured by a calculation device such as a computer. Other configurations are the same as those in FIG.

【0041】次に、本実施例における曲面補正について
詳細に説明する。図17は、撮像部2で撮像した画像の
一例図であり、(a)は塗装面が平面の場合、(b)は
塗装面が曲面の場合(x軸方向で湾曲)の画像を示す。
塗装面が平坦な場合は、(a)に示すように、画像の外
形は前記図4の撮像部2から投射した画像と同じ円形に
なり、明暗パタン板32の縞模様が塗装表面の凹凸に応
じて歪んだ形で現われる。これに対して曲面の場合は、
(b)に示すように、曲面方向が縮んだ楕円形状にな
る。なお、図17においては、縞模様の断続方向をx
軸、それと直角方向をy軸としている。
Next, the curved surface correction in this embodiment will be described in detail. 17A and 17B are examples of images captured by the image capturing unit 2. FIG. 17A shows an image when the coated surface is a flat surface, and FIG. 17B shows an image when the coated surface is a curved surface (curved in the x-axis direction).
When the coated surface is flat, as shown in (a), the outer shape of the image becomes the same circle as the image projected from the image pickup unit 2 in FIG. 4, and the striped pattern of the light-dark pattern plate 32 becomes uneven on the coated surface. Appears in a distorted form accordingly. On the other hand, in the case of a curved surface,
As shown in (b), the curved surface has an elliptical shape with a contracted direction. In FIG. 17, the intermittent direction of the striped pattern is x
The axis is the y-axis, which is the direction perpendicular to the axis.

【0042】曲率演算部19では、上記のごとき画像デ
ータを用い下記の手順で塗装表面の曲率rを導出する。
まず、図17(b)に示すように楕円形状をした画像エ
リアのx軸、y軸方向の最大長(明部エリア)x、yを
画像上で導出する。導出方法は2値化された各軸上の初
期明点位置を左右から検索することによって最大長を算
出する。次に、凸曲率をもつ塗膜面は一般に凹レンズ相
当の作用をするため、図4の撮像部2と凸曲面の塗膜面
の光学系は図18に示すようになる。このような光学系
の距離定数より、塗膜表面のx方向の曲率rは下記(数
8)式で与えられる。なお、y方向も同様に算出でき
る。
The curvature calculation unit 19 derives the curvature r of the coating surface by the following procedure using the image data as described above.
First, as shown in FIG. 17B, the maximum lengths (bright area) x and y in the x-axis and y-axis directions of an elliptical image area are derived on the image. The derivation method calculates the maximum length by searching the binarized initial bright point position on each axis from the left and right. Next, since the coating surface having a convex curvature generally acts as a concave lens, the image pickup unit 2 of FIG. 4 and the optical system of the coating surface having a convex curved surface are as shown in FIG. From the distance constant of such an optical system, the curvature r in the x direction of the coating film surface is given by the following (Equation 8). The y direction can be calculated in the same manner.

【0043】[0043]

【数8】 (Equation 8)

【0044】ただし、 x:計測されたx軸最大長 x0:塗装面が平面の場合のx軸最大長(既知の値) L1:CCDカメラ35と塗膜面との距離 L2:光源31と塗膜面との距離 次に、図19に示される曲率rと補正係数Kの関係よ
り、波長λについての曲率rによる補正係数Kを求め
る。なお、図19は実験よって求めた関係式であり、縦
軸は補正係数K、横軸は曲率rの逆数(1/r=R:曲
面)を示す。上記のようにして求めた補正係数Kによっ
て、前記の膜厚演算における長波長領域のピーク波長λ
pの値を補正する。すなわち、曲面部における実測波長
がλpであった場合、それを補正した平面相当の実波長
λp'は、下記(数9)式で示される。
However, x: measured x-axis maximum length x 0 : x-axis maximum length when coating surface is flat (known value) L 1 : distance between CCD camera 35 and coating surface L 2 : light source Distance between 31 and coating surface Next, the correction coefficient K by the curvature r for the wavelength λ is obtained from the relationship between the curvature r and the correction coefficient K shown in FIG. Note that FIG. 19 is a relational expression obtained by experiments, in which the vertical axis represents the correction coefficient K and the horizontal axis represents the reciprocal of the curvature r (1 / r = R: curved surface). Based on the correction coefficient K obtained as described above, the peak wavelength λ in the long wavelength region in the above film thickness calculation.
Correct the value of p. That is, when the measured wavelength in the curved surface portion is λp, the actual wavelength λp ′ corresponding to the plane corrected for it is shown by the following (Formula 9).

【0045】[0045]

【数9】 [Equation 9]

【0046】ただし a:定数 R=1/r 上記のようにして算出した実波長λp'を用いて前記のよ
うにして膜厚演算を行なえば、曲面においても正確に膜
厚を計測することが出来る。図16の実施例において
は、曲面演算部19で上記の補正係数Kを求める演算を
行ない、曲面補正演算部20で上記の実波長λp'を求め
る演算を行なう。なお、表示器8にはウエット膜厚hの
他に、波長λp、補正後の実波長λp'、塗膜面の曲率r
等を表示してもよい。また、上記の説明においては、x
軸方向についてのみ曲率rを求めて補正を行なってい
る。これは図17に示すように縞模様の断続方向をx軸
としているためであるが、y軸方向についても同様に曲
率を求め、曲率の大きい方の値を用いて補正係数Kを求
めるように構成してもよい。
However, a: constant R = 1 / r If the film thickness is calculated as described above using the actual wavelength λp ′ calculated as described above, the film thickness can be accurately measured even on a curved surface. I can. In the embodiment shown in FIG. 16, the curved surface calculation unit 19 performs the calculation for obtaining the correction coefficient K, and the curved surface correction calculation unit 20 performs the calculation for obtaining the actual wavelength λp ′. In addition to the wet film thickness h, the display 8 shows the wavelength λp, the corrected actual wavelength λp ′, and the curvature r of the coating surface.
Etc. may be displayed. Also, in the above description, x
The curvature r is obtained and corrected only in the axial direction. This is because the intermittent direction of the striped pattern is set as the x-axis as shown in FIG. 17, but the curvature is similarly obtained in the y-axis direction, and the correction coefficient K is obtained using the larger value of the curvature. You may comprise.

【0047】次に、曲面補正の他の方法について説明す
る。前記図5に示したように、パワースペクトルPSの
周波数特性において、第1のピーク波形は、撮像部2
のスリットに対応した基本縞による基本波形のパワース
ペクトル、ピーク波形は、塗装表面の凹凸波形の長波
長領域(10〜1mm程度)に対応したパワースペクト
ルである。これらのパワースペクトルのピーク値は、塗
装面の曲率の応じて変化するが、本発明者らの実験によ
ると、基本縞のピーク周波数fと長波長領域のピーク周
波数f'(=1/λp)には、塗装面の曲率に関わりなく
一定の関係があることが判明した。図20は、パワース
ペクトルPSの周波数特性の曲面依存性を示す特性図で
ある。図20において、縦軸はパワースペクトルPS、
横軸は周波数f(1/λ)を示し、実線(A)は塗装面
が平面の特性、点線(B)は塗装面が曲率r1の場合の
特性、破線(C)は塗装面が曲率r2(r1<r2)の場
合の特性を示す。
Next, another method of curved surface correction will be described. As shown in FIG. 5, in the frequency characteristic of the power spectrum PS, the first peak waveform is the image pickup unit 2
The power waveform and the peak waveform of the basic waveform by the basic stripes corresponding to the slit are the power spectrum corresponding to the long wavelength region (about 10 to 1 mm) of the uneven waveform of the coating surface. Although the peak values of these power spectra change according to the curvature of the coated surface, according to the experiments by the present inventors, the peak frequency f of the basic fringe and the peak frequency f ′ (= 1 / λp) of the long wavelength region are shown. Have been found to have a certain relationship regardless of the curvature of the painted surface. FIG. 20 is a characteristic diagram showing the curved surface dependence of the frequency characteristic of the power spectrum PS. 20, the vertical axis represents the power spectrum PS,
The horizontal axis represents the frequency f (1 / λ), the solid line (A) shows the characteristics of the painted surface being flat, the dotted line (B) shows the characteristics when the painted surface has a curvature r 1 , and the broken line (C) shows the curvature of the painted surface. The characteristics in the case of r 2 (r 1 <r 2 ) are shown.

【0048】図20から判るように、曲率が大きくなる
に従ってピーク周波数は大きく(ピーク波長λpは小さ
く)なるが、曲率に関わりなく、下記(数10)式の関
係が成立することが判明した。
As can be seen from FIG. 20, the peak frequency increases (peak wavelength λp decreases) as the curvature increases, but it has been found that the relationship of the following (Equation 10) holds regardless of the curvature.

【0049】[0049]

【数10】 [Equation 10]

【0050】ただし f0 :平面時の基本縞ピーク周波
数 f0':平面時の長波長ピーク周波数 fr :曲率r時の基本縞ピーク周波数 fr':曲率r時の長波長ピーク周波数 上記(数10)式から、平面時の長波長ピーク周波数f
0'は下記(数11)式で求められる。
However, f 0 : basic fringe peak frequency on a plane f 0 ′: long wavelength peak frequency on a plane f r : basic fringe peak frequency on a curvature r f r ′: long wavelength peak frequency on a curvature r From equation 10), the long wavelength peak frequency f in the plane
0 'is determined by the following equation (11).

【0051】[0051]

【数11】 [Equation 11]

【0052】(数11)式において、平面時の基本縞ピ
ーク周波数f0の値は、予め測定可能な既知の値であ
る。また、曲率rのときの基本縞ピーク周波数frと長
波長ピーク周波数fr'とは前記の画像処理によって実測
値として求められる。したがって曲率rのときの長波長
ピーク周波数fr'を平面時の値f0'に換算するには、f
r'にf0/frを乗算してやればよい。なお、前記の膜厚
演算で説明したように波長λで表現する場合には、下記
(数12)式のように補正すればよい。
In the equation (11), the value of the basic fringe peak frequency f 0 in the plane is a known value that can be measured in advance. Further, the basic fringe peak frequency fr and the long wavelength peak frequency fr 'when the curvature is r are obtained as actual measurement values by the image processing described above. Therefore, in order to convert the long-wavelength peak frequency f r ′ with the curvature r to the value f 0 ′ on the plane, f
to r 'may do it by multiplying the f 0 / f r. In the case of expressing with the wavelength λ as described in the above film thickness calculation, it may be corrected as in the following (Equation 12).

【0053】[0053]

【数12】 (Equation 12)

【0054】ただし λ0 :平面時の基本縞ピーク波長 λ0':平面時の長波長ピーク波長 λr :曲率r時の基本縞ピーク波長 λr':曲率r時の長波長ピーク波長 この方法によれば、基本縞ピーク波長λrと長波長ピー
ク波長λr'とを求めるだけで簡単に曲面補正を行なうこ
とが出来る。上記の方法を前記図4の実施例に適用する
場合には、画像処理部3の画像処理データから曲面演算
部19でλrとλr'を求める演算を行ない、曲面補正演
算部20では、それらの値と予め記憶しておいたλ0
値からλ0'を求める演算を行なうように構成すればよ
い。
Where λ 0 : basic fringe peak wavelength on a plane λ 0 ′: long wavelength peak wavelength on a plane λ r : basic fringe peak wavelength on a curvature r λ r ′: long wavelength peak wavelength on a curvature r According to the method, the curved surface can be easily corrected only by obtaining the basic fringe peak wavelength λ r and the long wavelength peak wavelength λ r '. When the above method is applied to the embodiment of FIG. 4, the curved surface calculation unit 19 performs a calculation to obtain λ r and λ r ′ from the image processing data of the image processing unit 3, and the curved surface correction calculation unit 20 the calculation from the values of lambda 0 which has been previously stored their values determine the lambda 0 'may be configured to perform.

【0055】[0055]

【発明の効果】以上説明したごとく本発明においては、
未乾燥塗装表面の画像情報から塗装表面の凹凸波形の波
長分布を算出し、その波長分布に基づいて、塗装の膜厚
を算出する、具体的には塗装表面の凹凸波形のパワース
ペクトラムにおける長波長領域のピーク波長を求め、そ
のピーク波長の値と予め実験で求めた塗装膜厚との関係
から、ウエット状態における膜厚を算出するように構成
したことにより、膜厚が数十μm程度と極めて薄い場合
でも正確な膜厚計測を行なうことが出来る。また、塗装
表面の複数個所を撮像し、それら複数個の波長分布を平
均した値を用いて膜厚を演算することにより、さらに正
確な膜厚を計測することが出来る。また、計測したウエ
ット膜厚から乾燥後のドライ膜厚を演算することもでき
る。 また、複数の撮像手段を備え、それらの撮像手段
で撮像した複数個所の画像情報を順次処理するものにお
いては、塗装表面の複数個所を短時間で撮像できるの
で、正確な膜厚演算を迅速に行なうことが出来る。さら
に、複数の撮像手段で撮像した複数個所の画像情報を並
行処理するものにおいては、正確な膜厚演算をさらに迅
速に行なうことが出来る。また、被塗装面が曲面であっ
た場合における曲面補正を設けたものにおいては、被塗
装体が曲面の場合でも正確な膜厚計測を行なうことが出
来る、等の効果が得られる。
As described above, according to the present invention,
Calculate the wavelength distribution of the uneven waveform of the coating surface from the image information of the undried coating surface, and calculate the coating film thickness based on the wavelength distribution. Specifically, the long wavelength in the power spectrum of the uneven waveform of the coating surface The peak wavelength of the area is obtained, and the film thickness in the wet state is calculated from the relationship between the value of the peak wavelength and the coating film thickness obtained in advance by an experiment. Even if it is thin, accurate film thickness measurement can be performed. Further, more accurate film thickness can be measured by imaging a plurality of locations on the coating surface and calculating the film thickness using the average value of the wavelength distributions of the plurality. Further, the dry film thickness after drying can be calculated from the measured wet film thickness. Further, in the case of including a plurality of image pickup means and sequentially processing image information of a plurality of places picked up by those image pickup means, since a plurality of places on the coating surface can be picked up in a short time, accurate film thickness calculation can be performed quickly. You can do it. Further, in the case of parallel processing of image information at a plurality of positions imaged by a plurality of imaging means, accurate film thickness calculation can be performed more quickly. Further, in the case where the curved surface correction is provided in the case where the surface to be coated is a curved surface, it is possible to obtain an effect that the film thickness can be accurately measured even when the object to be coated is a curved surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の機能ブロックの一部を示す図。FIG. 1 is a diagram showing a part of functional blocks of the present invention.

【図2】本発明の機能ブロックの他の一部を示す図。FIG. 2 is a diagram showing another part of the functional blocks of the present invention.

【図3】本発明の第1の実施例のブロック図。FIG. 3 is a block diagram of a first embodiment of the present invention.

【図4】撮像部2の一例を示す断面図。FIG. 4 is a cross-sectional view showing an example of an imaging unit 2.

【図5】パワースペクトルPSの周波数特性図。FIG. 5 is a frequency characteristic diagram of a power spectrum PS.

【図6】塗装時における塗装面への塗料粒子の付着と塗
装膜面の形成過程を示す図。
FIG. 6 is a diagram showing a process of adhering paint particles to a coated surface and forming a coated film surface during coating.

【図7】飛行中の塗料粒子と付着粒子との関係を示す
図。
FIG. 7 is a diagram showing a relationship between paint particles and adhered particles during flight.

【図8】塗料粒子の平均径と凹凸波形の波長との関係を
示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between the average diameter of paint particles and the wavelength of a corrugated waveform.

【図9】塗料の粒子径と塗布時間との関係を示す特性
図。
FIG. 9 is a characteristic diagram showing the relationship between the particle size of the coating material and the coating time.

【図10】波長λと塗布時間との関係を示す特性図。FIG. 10 is a characteristic diagram showing the relationship between wavelength λ and coating time.

【図11】波長λとウエット膜厚hとの関係を示す特性
図。
FIG. 11 is a characteristic diagram showing the relationship between the wavelength λ and the wet film thickness h.

【図12】本発明の第2の実施例のブロック図。FIG. 12 is a block diagram of a second embodiment of the present invention.

【図13】本発明の第3の実施例のブロック図。FIG. 13 is a block diagram of a third embodiment of the present invention.

【図14】本発明の第4の実施例のブロック図。FIG. 14 is a block diagram of a fourth embodiment of the present invention.

【図15】本発明の第5の実施例のブロック図。FIG. 15 is a block diagram of a fifth embodiment of the present invention.

【図16】本発明の第6の実施例のブロック図。FIG. 16 is a block diagram of a sixth embodiment of the present invention.

【図17】撮像部2で撮像した画像の一例図であり、
(a)は塗装面が平面の場合、(b)は塗装面が曲面の
場合(x軸方向で湾曲)の画像を示す図。
FIG. 17 is an example diagram of an image captured by the image capturing unit 2,
FIG. 9A is a diagram showing an image when the coating surface is a flat surface, and FIG. 9B is a diagram showing an image when the coating surface is a curved surface (curved in the x-axis direction).

【図18】撮像部2と凸曲面の塗膜面の光学系を示す
図。
FIG. 18 is a diagram showing an imaging system 2 and an optical system for a coating surface having a convex curved surface.

【図19】曲率rと補正係数Kの関係を示す特性図。FIG. 19 is a characteristic diagram showing the relationship between the curvature r and the correction coefficient K.

【図20】パワースペクトルPSの周波数特性の曲面依
存性を示す特性図。
FIG. 20 is a characteristic diagram showing curved surface dependence of frequency characteristics of the power spectrum PS.

【図21】従来装置の一例の断面図。FIG. 21 is a sectional view of an example of a conventional device.

【符号の説明】[Explanation of symbols]

1…被塗装体(ボディ) 7…膜厚演算部 2…撮像部 8…表示器 3…画像処理部 9…塗装条件制御
システム 4…波長演算部 10…塗装ガン 5…波長平均処理部 19…曲面演算部 6…塗装条件入力部 20…曲面補正演算
部 100…撮像手段 105…波長平均
処理手段 101…画像処理手段 106…ドライ膜
厚演算手段 102…波長演算手段 107…平均膜厚
演算手段 103…膜厚演算手段 108…曲面演算
手段 104…塗装条件入力手段 109…曲面補正
演算手段
DESCRIPTION OF SYMBOLS 1 ... Body to be coated (body) 7 ... Film thickness calculation part 2 ... Imaging part 8 ... Indicator 3 ... Image processing part 9 ... Coating condition control system 4 ... Wavelength calculation part 10 ... Coating gun 5 ... Wavelength average processing part 19 ... Curved surface calculation unit 6 ... Painting condition input unit 20 ... Curved surface correction calculation unit 100 ... Imaging unit 105 ... Wavelength average processing unit 101 ... Image processing unit 106 ... Dry film thickness calculation unit 102 ... Wavelength calculation unit 107 ... Average film thickness calculation unit 103 ... Film thickness calculation means 108 ... Curved surface calculation means 104 ... Painting condition input means 109 ... Curved surface correction calculation means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】塗料を塗布した直後の未乾燥塗装表面を撮
像する撮像手段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の凹凸波形の波長分布を算出する波長演算
手段と、 上記波長演算手段で算出された波長分布に基づいて、塗
装の膜厚を算出する膜厚演算手段と、 を備えたことを特徴とする塗装膜厚計測装置。
1. An image pickup means for picking up an image of the undried coating surface immediately after applying a paint, an image processing means for image-processing the image information from the image pickup means, and image processing data processed by the image processing means. A wavelength calculating means for calculating the wavelength distribution of the corrugated waveform on the coating surface, and a film thickness calculating means for calculating the coating film thickness based on the wavelength distribution calculated by the wavelength calculating means. A coating film thickness measuring device characterized by.
【請求項2】上記波長演算手段は、塗装表面の凹凸波形
のパワースペクトラムにおける長波長領域のピーク波長
を求めるものであり、上記膜厚演算手段は、上記長波長
領域のピーク波長の値と予め実験で求めた塗装膜厚との
関係から、ウエット状態における膜厚を算出し、それを
膜厚値として出力するものである、ことを特徴とする請
求項1に記載の塗装膜厚計測装置。
2. The wavelength calculating means obtains a peak wavelength in a long wavelength region in a power spectrum of a corrugated waveform on a coating surface, and the film thickness calculating means calculates in advance a peak wavelength value in the long wavelength region. The coating film thickness measuring device according to claim 1, wherein the film thickness in a wet state is calculated from the relationship with the coating film thickness obtained by an experiment, and the calculated film thickness value is output.
【請求項3】上記撮像手段では、塗装表面の複数個所を
撮像し、上記波長演算手段では上記複数個所の塗装表面
に対応した複数個の波長分布を算出し、 かつ、上記複数個の波長分布を平均処理する波長平均処
理手段と、少なくとも塗料の種類を含む塗装条件を入力
する塗装条件入力手段と、を備え、 また、上記膜厚演算手段は、上記波長平均処理手段で求
めた波長分布の平均値と上記塗装条件とに基づいて塗装
膜厚を算出するものである、ことを特徴とする請求項1
または請求項2に記載の塗装膜厚計測装置。
3. The image pickup means images a plurality of locations on the coating surface, the wavelength calculating means calculates a plurality of wavelength distributions corresponding to the plurality of coating surfaces, and the plurality of wavelength distributions. A wavelength averaging means for averaging, and a coating condition input means for inputting coating conditions including at least the type of paint, and the film thickness calculating means is a wavelength distribution calculated by the wavelength averaging means. The coating film thickness is calculated based on an average value and the coating conditions.
Alternatively, the coating film thickness measuring device according to claim 2.
【請求項4】少なくとも塗料の塗着後の非揮発性成分情
報を含む塗装条件を入力する塗装条件入力手段と、 上記膜厚演算手段で求めたウエット状態における膜厚と
上記塗装条件とに基づいてドライ状態の膜厚を演算する
ドライ膜厚演算手段と、 を備えたことを特徴とする請求項1乃至請求項3の何れ
かに記載の塗装膜厚計測装置。
4. A coating condition input means for inputting a coating condition including at least the non-volatile component information after the coating of the coating material, based on the film thickness in a wet state obtained by the film thickness calculating means and the coating condition. 4. The coating film thickness measuring device according to claim 1, further comprising: a dry film thickness calculating unit that calculates a film thickness in a dry state.
【請求項5】塗料を塗布した直後の未乾燥塗装表面を、
塗装面の異なった個所についてそれぞれ撮像する複数の
撮像手段を備え、それらの撮像手段で撮像した複数個所
の画像情報を順次処理することを特徴とする請求項3ま
たは請求項4に記載の塗装膜厚計測装置。
5. The undried coated surface immediately after the coating is applied,
The coating film according to claim 3 or 4, further comprising a plurality of image pickup means for picking up images of different portions of the painted surface, and sequentially processing image information of the plurality of portions picked up by these image pickup means. Thickness measuring device.
【請求項6】塗料を塗布した直後の未乾燥塗装表面を、
塗装面の異なった個所についてそれぞれ撮像する複数の
撮像手段と、 上記複数の撮像手段からの画像情報をそれぞれ画像処理
する画像処理手段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の凹凸波形の波長分布を上記各個所毎にそ
れぞれ算出する波長演算手段と、 少なくとも塗料の種類を含む塗装条件を入力する塗装条
件入力手段と、 上記波長演算手段で算出された複数の波長分布と、上記
塗装条件入力手段からの塗装条件とに基づいて、塗装の
膜厚を上記各個所毎にそれぞれ算出する膜厚演算手段
と、 上記膜厚演算手段の演算結果に基づいて、塗装面の平均
膜厚を算出する平均膜厚演算手段と、 を備え、上記複数の撮像手段で撮像した複数個所の画像
情報を並行処理することを特徴とする塗装膜厚計測装
置。
6. The undried coated surface immediately after the coating is applied,
Based on the image processing data processed by the image processing means, the image processing means for respectively image processing the image information from the plurality of imaging means, respectively, a plurality of imaging means for imaging different parts of the painted surface, Wavelength calculation means for calculating the wavelength distribution of the uneven waveform of the coating surface at each of the above points, coating condition input means for inputting the coating conditions including at least the type of paint, and a plurality of wavelengths calculated by the wavelength calculation means Based on the distribution and the coating conditions from the coating condition inputting means, the film thickness calculating means for calculating the coating film thickness at each of the above points, and the coating surface based on the calculation result of the film thickness calculating means. A coating film thickness measuring device, comprising: an average film thickness calculating means for calculating the average film thickness of; and parallel processing of image information of a plurality of locations imaged by the plurality of imaging means.
【請求項7】上記画像処理手段で処理された画像処理デ
ータと上記波長演算手段で算出された波長分布との少な
くとも一方に基づいて塗装面の曲面情報を求める曲面演
算手段と、 上記波長演算手段で算出された波長分布に対して、上記
曲面演算手段で求めた結果に応じた曲面補正処理を行な
う曲面補正演算手段と、 を備えたことを特徴とする請求項1乃至請求項6の何れ
かに記載の塗装膜厚計測装置。
7. A curved surface calculating means for obtaining curved surface information of a painted surface based on at least one of image processing data processed by the image processing means and a wavelength distribution calculated by the wavelength calculating means, and the wavelength calculating means. 7. The curved surface correction calculation means for performing curved surface correction processing according to the result obtained by the curved surface calculation means with respect to the wavelength distribution calculated in step 4. The coating film thickness measuring device described in.
JP25796494A 1994-10-24 1994-10-24 Paint film thickness measuring device Expired - Fee Related JP3327000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25796494A JP3327000B2 (en) 1994-10-24 1994-10-24 Paint film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25796494A JP3327000B2 (en) 1994-10-24 1994-10-24 Paint film thickness measuring device

Publications (2)

Publication Number Publication Date
JPH08122024A true JPH08122024A (en) 1996-05-17
JP3327000B2 JP3327000B2 (en) 2002-09-24

Family

ID=17313663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25796494A Expired - Fee Related JP3327000B2 (en) 1994-10-24 1994-10-24 Paint film thickness measuring device

Country Status (1)

Country Link
JP (1) JP3327000B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266343A (en) * 1987-04-24 1988-11-02 Nippon Paint Co Ltd Method and device for measuring surface property
JPH0437404A (en) * 1990-05-31 1992-02-07 Kawasaki Steel Corp Evaluation method of pretreatment steel sheet for painting and pretreatment steel sheet superior in image clarity of coating film
JPH05256773A (en) * 1992-03-11 1993-10-05 Nissan Motor Co Ltd Device for inspecting properties of coating surface
JPH06160300A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Wet vividity measuring equipment
JPH06160029A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Film thickness measuring device
JPH06160071A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Apparatus for measuring thickness of wet paint film
JPH06265316A (en) * 1993-03-16 1994-09-20 Nissan Motor Co Ltd Measuring device for wet paint film thickness
JPH0783852A (en) * 1993-09-17 1995-03-31 Nissan Motor Co Ltd Measuring instrument for run of painted surface and measuring instrument for thickness of paint film
JPH07306017A (en) * 1994-05-12 1995-11-21 Nissan Motor Co Ltd Measurement device of thickness of coating film
JPH07306016A (en) * 1994-05-12 1995-11-21 Nissan Motor Co Ltd Measurement device of thickness of coating film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266343A (en) * 1987-04-24 1988-11-02 Nippon Paint Co Ltd Method and device for measuring surface property
JPH0437404A (en) * 1990-05-31 1992-02-07 Kawasaki Steel Corp Evaluation method of pretreatment steel sheet for painting and pretreatment steel sheet superior in image clarity of coating film
JPH05256773A (en) * 1992-03-11 1993-10-05 Nissan Motor Co Ltd Device for inspecting properties of coating surface
JPH06160300A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Wet vividity measuring equipment
JPH06160029A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Film thickness measuring device
JPH06160071A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Apparatus for measuring thickness of wet paint film
JPH06265316A (en) * 1993-03-16 1994-09-20 Nissan Motor Co Ltd Measuring device for wet paint film thickness
JPH0783852A (en) * 1993-09-17 1995-03-31 Nissan Motor Co Ltd Measuring instrument for run of painted surface and measuring instrument for thickness of paint film
JPH07306017A (en) * 1994-05-12 1995-11-21 Nissan Motor Co Ltd Measurement device of thickness of coating film
JPH07306016A (en) * 1994-05-12 1995-11-21 Nissan Motor Co Ltd Measurement device of thickness of coating film

Also Published As

Publication number Publication date
JP3327000B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US9316491B2 (en) Methods and instruments to measure the volume solids of a paint sample
US20030234941A1 (en) Method of measuring a part with a wide range of surface reflectivities
KR20170053901A (en) Apparatus and method for measuring transfer efficiency of spray paint
JP3326962B2 (en) Paint quality analyzer
JP3327000B2 (en) Paint film thickness measuring device
JP3326960B2 (en) Paint film thickness measuring device
JP3478443B2 (en) Control device for automatic coating machine
JP3353494B2 (en) Paint quality analyzer
JPH08334320A (en) Apparatus for analyzing painting quality
JPH09113462A (en) Printing-quality analytical instrument
JP3322034B2 (en) Paint quality analyzer
JPH09105612A (en) Coating-film-thickness measuring apparatus
JP3358434B2 (en) Paint quality analyzer
JP3321982B2 (en) Paint film thickness measuring device
JPH08327340A (en) Painting quality analyzer
JP3326961B2 (en) Paint film thickness measuring device
JP2964800B2 (en) Wet film thickness measuring device
JP3511764B2 (en) Control device for automatic coating machine
JPH095053A (en) Coating quality analysing device
JPH09262534A (en) Coating quality analysis device
JPH09187694A (en) Method for controlling automatic coating machine and its device
JPH09210990A (en) Coating quality analyzing device
JP3252555B2 (en) Paint surface dripping measuring device and paint film thickness measuring device
JPH06160029A (en) Film thickness measuring device
JP2950084B2 (en) Wet film thickness measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees