JP3478443B2 - Control device for automatic coating machine - Google Patents

Control device for automatic coating machine

Info

Publication number
JP3478443B2
JP3478443B2 JP30091495A JP30091495A JP3478443B2 JP 3478443 B2 JP3478443 B2 JP 3478443B2 JP 30091495 A JP30091495 A JP 30091495A JP 30091495 A JP30091495 A JP 30091495A JP 3478443 B2 JP3478443 B2 JP 3478443B2
Authority
JP
Japan
Prior art keywords
coating
paint
value
atomization
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30091495A
Other languages
Japanese (ja)
Other versions
JPH09141149A (en
Inventor
田 清 吉
木 裕 鈴
辺 正 実 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30091495A priority Critical patent/JP3478443B2/en
Publication of JPH09141149A publication Critical patent/JPH09141149A/en
Application granted granted Critical
Publication of JP3478443B2 publication Critical patent/JP3478443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spray Control Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被塗装物を自動的
に塗装するのに用いられる自動塗装機の制御装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an automatic coating machine used for automatically coating an object to be coated.

【0002】[0002]

【従来の技術】従来において、例えば自動車の車体塗装
では、自動塗装機により塗装を行い、塗装後に長時間を
かけて塗料を乾燥させたのち、乾燥後の塗装の鮮映性
(平滑性、肉持ち性、光沢度)を検査して塗装品質を評
価することが行われている。そして、自動塗装機の制御
としては、図20に示すように、ブロック101に示す
自動車ボディ等である被塗装物の鮮映性(平滑性)をブ
ロック102における平滑性計測手段で評価した後、ブ
ロック103における塗装品質判定手段において鮮映値
と所定の基準値とを比較し、鮮映値と基準値がずれてい
る場合には、ブロック104における塗装条件制御手段
により、鮮映性が基準値となるようにブロック105の
自動塗装機の塗装制御条件(吐出量など)を補正するこ
ととなっていた。
2. Description of the Related Art Conventionally, for example, in car body painting of automobiles, painting is performed by an automatic painting machine, and after the painting, the paint is dried over a long period of time, and then the sharpness (smoothness, meat) It has been conducted to evaluate the coating quality by inspecting the durability and gloss). Then, as the control of the automatic coating machine, as shown in FIG. 20, after evaluating the sharpness (smoothness) of the object to be coated such as the automobile body shown in block 101 by the smoothness measuring means in block 102, The coating quality judgment means in block 103 compares the sharpness value with a predetermined reference value. If the sharpness value and the reference value are deviated, the coating condition control means in block 104 determines the sharpness as the reference value. Therefore, the coating control conditions (discharging amount, etc.) of the automatic coating machine in block 105 are to be corrected.

【0003】この場合、被塗装物の塗装を行う塗装ブー
スの空調精度がある程度大まかであっても、被塗装物の
塗装面の鮮映性(平滑性)の品質を一定に維持すること
ができる。
In this case, even if the air conditioning accuracy of the coating booth for coating the object to be coated is somewhat rough, the quality of the image clarity (smoothness) of the surface of the object to be coated can be kept constant. .

【0004】[0004]

【発明が解決しようとする課題】ところで、一般に、被
塗装物の塗装品質の良否を決める品質要因としては、塗
料吹付け後の塗料の非揮発性成分(以下、「塗着N.
V」とする)または塗着粘度、塗膜厚、塗粒子の微粒化
度、さらに各種塗装ガンの吹付け条件や塗装の焼き付け
条件等が挙げられる。そして、これらの品質要因のう
ち、塗着N.V(塗着粘度)、塗膜厚および塗粒子の微
粒化度は重要な品質要因であり、これらの品質要因をで
きるだけ塗布直後に精度良く定量的に把握する必要があ
り、とくに、自動化ラインで次々に塗装を行うような場
合には、塗装状態の良否をできるだけ精度良く計測し、
速やかに塗装機にフィードバックして次の塗装条件を改
善し、常に最良の塗装状態に保つ必要がある。
By the way, in general, a non-volatile component (hereinafter referred to as “coating N.N.
V ”) or coating viscosity, coating thickness, degree of atomization of coating particles, spraying conditions of various coating guns, baking conditions of coating, and the like. Among these quality factors, the coating N.E. V (coating viscosity), coating thickness and degree of atomization of coating particles are important quality factors, and it is necessary to quantitatively grasp these quality factors as accurately as possible immediately after coating, especially on an automated line. When painting one after another, measure the quality of the coating as accurately as possible,
It is necessary to promptly feed back to the coating machine to improve the next coating condition and always maintain the best coating condition.

【0005】しかしながら、上記したような従来の自動
塗装機の制御にあっては、被塗装物の塗装品質として鮮
映性(平滑性)のみを計測し、その測定した鮮映値が所
定の基準値からずれている場合に、鮮映性が基準値とな
るように自動塗装機の塗装制御条件を補正することとな
っていたため、 (1)被塗装物の塗装品質の鮮映性(平滑性)が不良の
場合、その原因が塗着N.Vの高過ぎによるものなのか
塗膜厚の薄過ぎによるものなのか等が不明であって、不
良の塗装状態に合わせた正確なフィードバック制御をす
ることができない。
However, in controlling the conventional automatic coating machine as described above, only the sharpness (smoothness) is measured as the coating quality of the object to be coated, and the measured sharpness value is a predetermined standard. When the deviation from the value, it was necessary to correct the coating control condition of the automatic coating machine so that the sharpness becomes the reference value. (1) The sharpness (smoothness of the coating quality of the object to be coated) ) Is bad, the cause is the coating N. Since it is unclear whether V is too high or the film thickness is too thin, it is not possible to perform accurate feedback control according to the defective coating state.

【0006】(2)塗装品質の鮮映性(平滑性)が良好
の場合でも塗膜の厚すぎによる過剰品質、塗着N.Vの
低過ぎによる塗膜の垂れ、微粒化度の小さすぎによる塗
着効率の低下等が生じていることがあり、この点につい
ても現状では塗装状態に合わせた正確なフィードバック
制御をすることができない。
(2) Excessive quality due to excessively thick coating film, coating N.C. There are cases where the coating film drips due to V being too low, and the coating efficiency is reduced due to the atomization degree being too small. In this respect as well, it is currently possible to perform accurate feedback control according to the coating state. Can not.

【0007】という問題があり、これらの問題点を解決
することが課題であった。
[0007] There is a problem, and it has been a problem to solve these problems.

【0008】[0008]

【発明の目的】本発明は、上記のごとき従来の課題に着
目して成されたもので、塗装品質である鮮映性と、これ
を左右する品質要因である塗着N.V、微粒化度および
塗膜厚を計測することにより、被塗装物の塗装状態に合
わせた正確なフィードバック制御をすることができ、安
定した塗装品質の確保および塗着効率の向上を実現する
ことができる自動塗装機の制御装置を提供することを目
的としている。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above-mentioned conventional problems, and it is clear that the coating quality is clear and coating N.V. By measuring V, the degree of atomization and the coating thickness, it is possible to perform accurate feedback control according to the coating state of the object to be coated, to secure stable coating quality and to improve coating efficiency. It is an object of the present invention to provide a control device for an automatic coating machine that can perform

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

【0010】本発明に係わる自動塗装機の制御装置は、
図1に基づいて説明すると、空調された塗装ブース内に
搬入した被塗装物を、塗装ガンを備えた自動塗装機によ
り塗装する際の制御装置において、自動塗装機(ブロッ
ク5)により所定の塗装条件下で塗装された被塗装物
(ブロック1)の塗装面の塗装品質である鮮映性とこれ
を左右する品質要因である塗料吹き付け時の塗料の微粒
化度、塗膜厚および塗膜の非揮発性成分を検知する塗装
状態計測手段(ブロック2)と、塗装状態計測手段によ
って検知された鮮映性の計測値を予め設定された品質基
準値と比較して鮮映性の良否判定を行い、鮮映性の計測
値が品質基準値よりも小さく鮮映性が不良である場合
に、塗装状態計測手段によって検知された微粒化度の計
測値を予め設定された微粒化度の基準値と比較して微粒
化度の良否判定を行い、微粒化度の計測値が不良である
場合に、その計測値と予め設定された微粒化度の所定値
の差を用いて決定した塗装ガンのベル回転数の補正値を
指令し、微粒化度の計測値が良である場合に、塗装状態
計測手段によって検知された塗膜厚の計測値を予め設定
された塗膜厚の基準値と比較して塗膜厚の良否判定を行
い、塗膜厚の計測値が不良である場合に、その計測値と
予め設定された塗膜厚の所定値の差を用いて決定した塗
料吹き付け時の塗料の吐出量の補正値を指令し、塗膜厚
の計測値が良である場合に、塗装状態計測手段によって
検知された塗膜の非揮発性成分の計測値を予め設定され
た非揮発性成分の基準値と比較して非揮発性成分の良否
判定を行い、非揮発性成分の計測値が不良である場合
に、その計測値と予め設定された非揮発性成分の所定値
の差を用いて決定した塗料のシンナー条件の補正値を指
令し、一方、鮮映性の計測値が品質基準値以上であり鮮
映性が良である場合に、塗装状態計測手段によって検知
された微粒化度の計測値を予め設定された微粒化度の基
準値と比較して微粒化度の良否判定を行い、微粒化度の
計測値が不良である場合に、鮮映性の計測値と予め設定
された鮮映性の所定値の差、および微粒化度の計測値と
予め設定された微粒化度の所定値の差を用いて決定した
塗装ガンのベル回転数の補正値を指令し、微粒化度の計
測値が良である場合に、塗装状態計測手段によって検知
された塗膜厚の計測値を予め設定された塗膜厚の基準値
と比較して塗膜厚の良否判定を行い、塗膜厚の計測値が
不良である場合に、鮮映性の計測値と予め設定された鮮
映性の所定値の差、および塗膜厚の計測値と予め設定さ
れた塗膜厚の所定値の差を用いて決定した塗料吹き付け
時の塗料の吐出量の補正値を指令し、塗膜厚の計測値が
良である場合に、塗装状態計測手段によって検知された
塗膜の非揮発性成分の計測値を予め設定された非揮発性
成分の基準値と比較して非揮発性成分の良否判定を行
い、非揮発性成分の計測値が不良である場合に、鮮映性
の計測値と予め設定された鮮映性の所定値の差、および
塗膜の非揮発性成分の計測値と予め設定された非揮発性
成分の所定値の差を用いて決定した塗料のシンナー条件
の補正値を指令する塗装条件判定手段(ブロック3)
と、塗装条件判定手段からの補正指令に基づいて塗装面
の鮮映性が基準となるように自動塗装機を制御する塗装
条件制御手段(ブロック4)を備えたことを構成として
おり、上記の構成を課題を解決するための手段としてい
る。
The control device of the automatic coating machine according to the present invention is
Explaining with reference to FIG. 1, in a control device when an object to be coated which has been carried into an air-conditioned coating booth is coated by an automatic coating machine equipped with a coating gun, a predetermined coating is performed by the automatic coating machine (block 5). The sharpness, which is the coating quality of the coating surface of the object (block 1) coated under the conditions, and the quality factors that affect this, the degree of atomization of the coating material when sprayed, the coating thickness and the coating film A coating state measuring unit (block 2) for detecting a non-volatile component and a measured value of the image clarity detected by the coating state measurement unit are compared with a preset quality reference value to judge whether the image clarity is good or bad. When the measured value of the image clarity is smaller than the quality reference value and the image clarity is poor, the measurement value of the atomization degree detected by the coating state measuring means is set to the preset reference value of the atomization degree. The quality of the atomization degree is compared with When the measurement value of atomization degree is defective, the correction value of the bell rotation speed of the coating gun determined by using the difference between the measured value and the preset value of atomization degree is commanded to When the measured value of is good, the measured value of the coating film thickness detected by the coating state measuring means is compared with a preset reference value of the coating film thickness to determine whether the coating film thickness is good or not. When the measured thickness is defective, the correction value of the paint discharge amount at the time of spraying the paint determined by using the difference between the measured thickness and the preset value of the coating thickness is commanded to If the measured value of the non-volatile component is good, the measured value of the non-volatile component of the coating film detected by the coating state measuring means is compared with the preset reference value of the non-volatile component. When the judgment is made and the measured value of the non-volatile component is defective, the measured value and the preset non-volatile The correction value of the thinner condition of the paint determined by using the difference of the predetermined value of the minute is commanded, and on the other hand, when the measured value of the sharpness is equal to or higher than the quality reference value and the sharpness is good, the coating condition is measured. The measured value of the atomization degree detected by the means is compared with a preset reference value of the atomization degree to judge whether the atomization degree is good or bad. Of the bell speed of the coating gun determined using the difference between the measured value of the sprayability and the predetermined value of the preset sharpness, and the difference between the measured value of the atomization degree and the predetermined value of the preset atomization degree. When the correction value is commanded and the measured value of the atomization degree is good, the measured value of the coating film thickness detected by the coating state measuring means is compared with a preset reference value of the coating film thickness If the thickness is judged to be good or bad and the measured value of the coating thickness is bad, the measured value of the sharpness and the preset sharpness Measure the paint film thickness by instructing the correction value of the paint discharge amount when the paint is sprayed, which is determined by using the difference between the predetermined values and the difference between the measured value of the paint film thickness and the preset value of the paint film thickness set in advance. When the value is good, the measured value of the non-volatile component of the coating film detected by the coating state measuring means is compared with the preset reference value of the non-volatile component to judge the non-volatile component. If the measured value of the non-volatile component is defective, the difference between the measured value of the clearness and the preset value of the sharpness, and the measured value of the non-volatile component of the coating film are preset. Coating condition determining means (block 3) for instructing a correction value of the thinner condition of the paint determined by using the difference between the predetermined values of the nonvolatile components
And a coating condition control means (block 4) for controlling the automatic coating machine based on the correction command from the coating condition determination means so that the sharpness of the coated surface becomes a reference. The structure is used as a means for solving the problem.

【0011】また、本発明に係わる自動塗装機の制御装
置は、請求項2として、請求項1に記載の塗装状態計測
手段が、塗料の非揮発性成分等の塗料条件を入力する塗
料条件入力手段と、塗装ガン吹き付け時の塗料の微粒化
度を演算する微粒化演算手段と、塗料のシンナー蒸発量
を入力するシンナー蒸発量入力手段と、塗料条件入力手
段からの非揮発性成分、微粒化演算手段からの微粒化
度、およびシンナー蒸発量入力手段からのシンナー蒸発
量に基づいて自動塗装機により所定の塗装条件下で塗装
された被塗装物の塗布直後の非揮発性成分を算出する第
1の塗着N.V演算手段と、第1の塗着N.V演算手段
で算出された塗布直後の塗膜面の非揮発性成分と塗料条
件入力手段からの塗料種情報に基づいて塗布直後の塗膜
面の塗料密度を算出する塗料密度演算手段と、測定まで
の時間を入力する測定時間入力手段と、塗膜面の膜厚を
入力する膜厚入力手段と、膜厚入力手段からの膜厚情
報、シンナー蒸発量入力手段からのシンナー蒸発量およ
び測定時間入力手段からの測定時間情報に基づいて塗布
後の塗膜面の非揮発性成分を算出する第2の塗着N.V
演算手段を備えている構成とし、請求項3として、請求
項1に記載の塗装状態計測手段が、塗料を塗布した直後
の未乾燥塗装表面を撮像する撮像手段と、撮像手段から
の画像情報を画像処理する画像処理手段と、画像処理手
段で処理された画像処理データに基づいて塗装表面の凹
凸波形の波長分布を算出する波長分布演算手段と、波長
分布演算手段で算出された波長分布に基づいて塗料粒子
の微粒化度を算出する微粒化度演算手段とを備えた構成
とし、請求項4として、請求項1に記載の塗装状態計測
手段が、塗料の粘度等を入力する塗装条件入力手段と、
塗料を塗布した直後の未乾燥塗装表面を撮像する撮像手
段と、撮像手段からの画像情報を画像処理する画像処理
手段と、画像処理手段で処理された画像処理データに基
づいて塗装表面の粗さを算出する表面粗さ演算手段を備
え、表面粗さ演算手段で算出された粗さ度と粗さ度の時
間変化量と波長分布演算手段で算出された波長と塗装条
件入力手段からの塗装条件から塗装膜厚を算出する手段
である構成とし、請求項5として、請求項1に記載の塗
装状態計測手段が、塗料を塗布した直後の未乾燥塗装表
面を撮像する撮像手段と、撮像手段からの画像情報を画
像処理する画像処理手段と、画像処理手段で処理された
画像処理データに基づいて塗装表面の粗さを算出する表
面粗さ演算手段を備え、表面粗さ演算手段で演算された
粗さ度から塗膜表面の鮮映性を算出する手段である構成
とし、請求項6として、請求項2に記載の塗着N.V演
算手段が、塗料条件入力手段の塗料の非揮発性成分とシ
ンナー蒸発量入力手段の塗料のシンナー蒸発量と微粒化
演算手段の塗料粒子径から求めた塗料粒子の表面積の関
係から塗布直後の塗膜面の非揮発性成分を算出する手段
である構成とし、請求項7として、請求項3に記載の波
長分布演算手段が、塗装表面の凹凸波形のパワースペク
トルにおける長波長領域のピーク波長を求める手段であ
り、微粒化演算手段が、長波長領域のピーク波長の値と
予め定めた塗料粒子径との関係から塗料粒子径を算出し
てそれを微粒化度とする手段である構成とし、請求項8
として、請求項1に記載の塗装状態計測手段が、塗装表
面の鮮映性と、これを左右する品質要因である塗膜の非
揮発性成分と付着粒子の微粒化度と塗膜厚等を同一の撮
像手段および同一の画像処理手段で計測する手段である
構成とし、請求項9として、請求項1〜4および8のい
ずれかに記載の塗装状態計測手段を複数備え、これらの
塗装状態計測手段を被塗装物の塗装面の複数箇所に配置
した構成とし、請求項10として、塗装中に被塗装物を
移動させるコンベアと、コンベアスピード制御手段を備
え、鮮映性の計測値と予め設定された品質基準値の差お
よび塗膜厚の計測値と予め設定された塗膜厚の基準値の
差に基づいてコンベアスピードを制御する構成としてお
り、上記の構成を課題を解決するための手段としてい
る。
Further, in the control device of the automatic coating machine according to the present invention, as the second aspect, the coating condition measuring means according to the first aspect inputs the paint condition inputting the paint condition such as the non-volatile component of the paint. Means, atomization calculation means for calculating the degree of atomization of the paint when spraying the coating gun, thinner evaporation amount input means for inputting the thinner evaporation amount of the paint, non-volatile components from the paint condition input means, atomization A non-volatile component immediately after application of an object coated under predetermined coating conditions by an automatic coating machine is calculated based on the degree of atomization from the calculation means and the amount of thinner evaporation from the thinner evaporation amount input means. 1 coating N. V computing means and the first coating N.V. A paint density calculation means for calculating the paint density of the paint film surface immediately after application based on the non-volatile components of the paint film surface immediately after application calculated by the V calculation means and the paint type information from the paint condition input means; Until the measurement time input means, the film thickness input means for inputting the film thickness of the coating film, the film thickness information from the film thickness input means, the thinner evaporation amount and the measurement time from the thinner evaporation amount input means The second coating N.V. for calculating the non-volatile component of the coating film surface after coating based on the measurement time information from the input means. V
A coating state measuring means according to claim 1 is provided with an arithmetic means, and an image pickup means for picking up an image of the undried coating surface immediately after applying the paint, and image information from the image pickup means. Image processing means for performing image processing, wavelength distribution calculating means for calculating the wavelength distribution of the uneven waveform of the coating surface based on the image processing data processed by the image processing means, and based on the wavelength distribution calculated by the wavelength distribution calculating means And a fineness degree calculating means for calculating the fineness degree of the paint particles, and the coating condition measuring means according to claim 1 inputs the viscosity and the like of the paint. When,
Imaging means for imaging the undried coating surface immediately after applying the coating material, image processing means for image-processing the image information from the imaging means, and roughness of the coating surface based on the image processing data processed by the image processing means. A surface roughness calculation means for calculating the roughness, the time variation of the roughness calculated by the surface roughness calculation means, the wavelength calculated by the wavelength distribution calculation means, and the coating condition from the coating condition input means. From the image pickup means, the coating state measuring means according to claim 1 picks up an image of the undried coating surface immediately after applying the paint. Image processing means for image-processing the image information of the image information, and surface-roughness calculating means for calculating the roughness of the coating surface based on the image-processed data processed by the image-processing means. Roughness to coating table Of a structure is a means for calculating the image clarity, as claimed in claim 6, the coating according to claim 2 N. The V calculation means calculates the non-volatile component of the paint of the paint condition input means, the thinner evaporation amount of the paint of the thinner evaporation amount input means, and the surface area of the paint particles obtained from the paint particle diameter of the atomization calculation means from the relationship immediately after coating. A non-volatile component on the surface of the coating film is calculated, and the wavelength distribution calculation means according to claim 3 determines the peak wavelength of the long wavelength region in the power spectrum of the corrugated waveform of the coating surface. It is a means for obtaining, and the atomization calculation means is a means for calculating the paint particle diameter from the relationship between the value of the peak wavelength in the long wavelength region and the predetermined paint particle diameter and setting it as the atomization degree. Claim 8
The coating state measuring means according to claim 1 measures the image clarity of the coating surface and the non-volatile components of the coating film, the degree of atomization of adhered particles, the coating film thickness, etc. The same image pickup means and the same image processing means are used for measurement, and a plurality of coating state measuring means according to any one of claims 1 to 4 and 8 are provided as the ninth aspect. The means is arranged at a plurality of positions on the coating surface of the object to be coated, and a conveyor for moving the object to be coated during coating and a conveyor speed control means are provided as claimed in claim 10, and a measured value of sharpness and a preset value are set. Means for solving the problem is configured to control the conveyor speed based on the difference between the reference value of the coating thickness and the measured value of the coating thickness and the difference of the quality reference value I am trying.

【0012】[0012]

【発明の作用】本発明に係わる自動塗装機の制御装置で
は、塗装面の塗装品質である鮮映性と、これを左右する
品質要因である塗料吹き付け時の塗料の微粒化度、塗膜
厚および塗膜の非揮発性成分を計測し、これらの計測値
に基づいて自動塗装機のフィードバック制御を行うこと
により、塗装品質が不良となった品質要因を把握して、
その品質要因を解消する正確なフィードバック制御を行
い、これにより塗装品質を高めることとなる。
In the controller of the automatic coating machine according to the present invention, the sharpness, which is the coating quality of the coated surface, and the quality factors that affect this, the degree of atomization of the coating material at the time of spraying the coating material and the coating film thickness. And the non-volatile components of the coating film are measured, and the feedback control of the automatic coating machine is performed based on these measured values to understand the quality factor that caused the coating quality to be poor,
Accurate feedback control that eliminates the quality factor is performed, which improves the coating quality.

【0013】[0013]

【実施例】図2は本発明の第1の実施例を示す図であ
り、本発明を車体の自動塗装ラインに適用した場合を示
すブロック図である。
1 is a block diagram showing a case where the present invention is applied to an automatic painting line of a vehicle body, which is a first embodiment of the present invention.

【0014】被塗装物1は、上塗り塗装工程における自
動車のボディであって、塗装ライン上を所定の速度で移
動しながら塗装される。自動塗装機(塗装ガン)5の制
御装置は、塗布直後の被塗装物1の塗装状態すなわち塗
装品質(鮮映性)とこれを左右する品質要因(塗着N.
V、微粒化度、塗膜厚)を同時に計測する塗装状態計測
手段2と、塗装状態計測手段2からの鮮映性の計測値を
予め設定された品質基準値と比較し、計測値が品質基準
値とずれている場合は、同基準値との差、および塗装状
態計測手段により同時に検知された品質要因(塗着N.
V、微粒化度、塗膜厚)の計測値と所定の要因基準値と
の差に見合った塗装条件の補正を指令する塗装条件判定
手段3と、塗装条件判定手段3からの補正指令に基づい
て自動塗装機5の塗装条件を変更する塗装条件制御手段
4を備えている。自動塗装機5は、塗装条件制御手段4
からの制御信号に基づき、次の被塗装物1への塗装を行
う。
The article to be coated 1 is the body of an automobile in the top coating process and is coated while moving on the coating line at a predetermined speed. The control device of the automatic coating machine (coating gun) 5 controls the coating state of the article 1 to be coated immediately after coating, that is, coating quality (visibility) and quality factors (coating N.N.
V, atomization degree, coating thickness) are simultaneously measured, and the measured value of the image clarity from the coating state measuring means 2 is compared with a preset quality reference value, and the measured value is the quality. If it deviates from the reference value, the difference from the reference value and the quality factors (coating N.
V, atomization degree, coating thickness) based on the correction condition from the coating condition judging means 3 for instructing the correction of the coating condition corresponding to the difference between the measured value of V) and the predetermined reference value of the factor. The coating condition control means 4 for changing the coating conditions of the automatic coating machine 5 is provided. The automatic coating machine 5 includes the coating condition control means 4
The next object 1 to be coated is coated on the basis of the control signal from.

【0015】上記の制御装置における塗装状態計測手段
2は、図3に示すように、被塗装物1の塗装表面に対す
る撮像手段6、画像処理手段7、塗装表面の凹凸波形の
パワースペクトルにおける長波長領域のピーク波長を求
める波長演算手段8、波長平均処理手段9、塗料吹き付
け時の微粒化度を算出する微粒化演算手段10、第1の
塗着N.V演算手段11、塗布直後の塗膜面の塗料密度
を算出する塗料密度演算手段12、第2の塗着N.V演
算手段13、塗装条件入力手段15、塗料の非揮発性成
分等を入力する塗料条件入力手段16、シンナー蒸発量
入力手段17、測定までの時間を入力する計測時間入力
手段18、表面粗さ演算手段19、膜厚演算手段20、
および鮮映性演算手段21を備えている。
As shown in FIG. 3, the coating state measuring means 2 in the above control device has an image pickup means 6, an image processing means 7, and a long wavelength in the power spectrum of the uneven waveform of the coating surface for the coating surface of the object to be coated 1. The wavelength calculating means 8 for obtaining the peak wavelength of the region, the wavelength averaging processing means 9, the atomization calculating means 10 for calculating the atomization degree at the time of spraying the paint, the first coating N. V calculation means 11, paint density calculation means 12 for calculating the paint density on the coating surface immediately after coating, second coating N.V. V calculation means 13, coating condition input means 15, paint condition input means 16 for inputting non-volatile components of paint, thinner evaporation amount input means 17, measurement time input means 18 for inputting time until measurement, surface roughness Computing means 19, film thickness computing means 20,
And a sharpness calculation means 21.

【0016】次に、塗装状態計測手段2の塗着N.V演
算手段11,13における塗膜面の塗着N.Vの演算原
理とシンナー蒸発量入力手段17におけるシンナー蒸発
量演算とについて説明する。
Next, the coating state N. V coating means 11 and 13 for coating the coating surface N.V. The calculation principle of V and the calculation of the thinner evaporation amount in the thinner evaporation amount input means 17 will be described.

【0017】図4は、塗装ガン(自動塗装機5)から噴
射された塗料粒子が被塗装面に付着するまでの状況を示
す図である。塗料粒子からは飛行中および付着後に溶剤
(揮発性成分)が蒸発し、塗膜が完全に乾燥した状態で
は非揮発性成分のみが残ることになる。なお、塗料が塗
装ガンから噴射された時点から被塗装物1に付着するま
での時間は、塗装ガンと被塗装体との距離によって変わ
るが、一般に、0.1秒〜0.5秒である。
FIG. 4 is a diagram showing a state in which the paint particles sprayed from the coating gun (automatic coating machine 5) adhere to the surface to be coated. The solvent (volatile components) evaporates from the paint particles during flight and after adhesion, and only non-volatile components remain when the coating film is completely dried. The time from when the paint is ejected from the coating gun to when it adheres to the article 1 to be coated varies depending on the distance between the coating gun and the article to be coated, but is generally 0.1 seconds to 0.5 seconds. .

【0018】上記のごとき状況において、付着直後の塗
着N.VをXとすれば、X1は下記数式1で与えられ
る。
In the above situation, the coating N.I. If V is X 1 , X 1 is given by the following formula 1.

【0019】[0019]

【数式1】 また、上記のシンナー蒸発速度Vは、下記数式2で与え
られる。
[Formula 1] Further, the above thinner evaporation rate V is given by the following mathematical formula 2.

【0020】[0020]

【数式2】 また、塗料粒子の質量Mは、下記数式3で与えられ
る。
[Formula 2] The mass M 1 of the paint particles is given by the following mathematical formula 3.

【0021】[0021]

【数式3】 また、塗料粒子表面積Sは、下記数式4で与えられ
る。
[Formula 3] Further, the paint particle surface area S 1 is given by the following mathematical formula 4.

【0022】[0022]

【数式4】 したがって、上記の数式3、数式4を数式1に代入する
ことにより、塗着N.V=X(%)を表す数式として
下記数式5が得られる。
[Formula 4] Therefore, by substituting the equations 3 and 4 into the equation 1, the coating N. The following formula 5 is obtained as a formula representing V = X 1 (%).

【0023】[0023]

【数式5】 単位面積当たりのシンナー蒸発量は、蒸発速度V×時間
tで示される。このシンナー蒸発量Vtを上記数式1と
数式5から求めると、下記数式6に示すようになる。
[Formula 5] The amount of thinner evaporation per unit area is shown by evaporation rate V × time t. When this thinner evaporation amount Vt is obtained from the above-mentioned formula 1 and formula 5, it becomes as shown in the following formula 6.

【0024】[0024]

【数式6】 なお、シンナー蒸発量Vtは上記数式2に示すように、
塗装前の塗料のN.V(塗料濃度)Xとシンナー混合
比Cと温度Tとの関数であるから、それらの諸量との関
係を予め実験で求めて記憶しておき、これを読み出して
用いればよいが、上記数式6から求めてもよい。
[Formula 6] The thinner evaporation amount Vt is calculated by
N. of paint before painting Since it is a function of V (paint concentration) X 0 , thinner mixing ratio C, and temperature T, the relationship with various amounts thereof may be obtained in advance by experiment and stored, and this may be read and used. It may be obtained from Equation 6.

【0025】上記数式5に示すように、塗装条件が一定
であれば、付着後の塗着N.Vは、シンナー蒸発量Vt
と塗料粒子径Rと塗料密度ρから演算で求めることが
できる。図3の実施例においては、シンナー蒸発量Vt
はシンナー蒸発量入力手段17から入力した値を用い、
塗料粒子径Rは微粒化演算手段10で求めた値を用い、
塗料密度ρは塗装条件入力手段15から入力した値を
用いる。
As shown in the above equation 5, if the coating conditions are constant, the coating N.E. V is the thinner evaporation amount Vt
It can be calculated from the paint particle diameter R and the paint density ρ 0 . In the embodiment of FIG. 3, the thinner evaporation amount Vt
Is the value input from the thinner evaporation input means 17,
The paint particle diameter R uses the value obtained by the atomization calculation means 10,
The paint density ρ 0 uses the value input from the coating condition input means 15.

【0026】次に、撮像手段6について説明する。図5
は、撮像手段6の一例を示す断面図である。
Next, the image pickup means 6 will be described. Figure 5
FIG. 4 is a cross-sectional view showing an example of the image pickup means 6.

【0027】撮像手段6の基本的構成は、光源31、明
暗パターン板32、反射鏡33、レンズ34、CDDカ
メラ35から成る。上記の明暗パターン板32は、所定
間隔(例えば1mm間隔)で直線状のスリットが設けら
れた不透明(または透明)の板に所定間隔で不透明なス
トライブパターンを印刷したものである。そして光源3
1からの平行光線を上記明暗パターン板32と反射鏡3
3とレンズ34とを介して塗装面の斜め方向から照射す
ることにより、被塗装物1上にスリットに対応した縞模
様をつくる。この縞模様は、被塗装体上の凹凸に応じて
歪んだ波形(例えば図6のごとき)となる。その反射光
をCCDカメラ35で撮像し、上記の歪んだ縞模様、す
なわち表面粗さの情報を入力するようになっている。
The basic structure of the image pickup means 6 comprises a light source 31, a light / dark pattern plate 32, a reflecting mirror 33, a lens 34, and a CDD camera 35. The bright / dark pattern plate 32 is an opaque (or transparent) plate having linear slits provided at predetermined intervals (for example, 1 mm intervals) and opaque stripe patterns printed at predetermined intervals. And light source 3
The parallel light rays from the first and second light / dark pattern plates 32 and the reflecting mirror 3
A striped pattern corresponding to a slit is formed on the object to be coated 1 by irradiating the surface to be coated through 3 and the lens 34 from an oblique direction. This striped pattern becomes a distorted waveform (for example, as shown in FIG. 6) according to the unevenness on the object to be coated. The reflected light is imaged by the CCD camera 35, and the distorted striped pattern, that is, the information of the surface roughness is input.

【0028】上記のごとき縞模様の画像情報を画像処理
し、パワースペクトル周波数分析(例えば高速フーリエ
変換処理:FFT)を行なってパワースペクトルPSを
求める。
Image information of the striped pattern as described above is subjected to image processing, and power spectrum frequency analysis (for example, fast Fourier transform processing: FFT) is performed to obtain a power spectrum PS.

【0029】図7は、上記パワースペクトルPSの周波
数特性図であり、縦軸はパワースペクトルPS、横軸は
周波数f(波長λの逆数、f=1/λ)である。
FIG. 7 is a frequency characteristic diagram of the power spectrum PS, in which the vertical axis represents the power spectrum PS and the horizontal axis represents the frequency f (the reciprocal of the wavelength λ, f = 1 / λ).

【0030】図7において、第1のピーク波形は、前
記スリットに対応した基本縞による基本波形のパワース
ペクトル、第2のピーク波形は、塗装表面の凹凸波形
の長波長領域(10〜1mm程度)に対応したパワース
ペクトル、、第3のピーク波形は、凹凸波形の中波長
領域(1〜0.1mm程度)に対応したパワースペクト
ル、第4のピーク波形は、凹凸波形の短波長領域
(0.1mm以下)に対応したパワースペクトルを示
す。
In FIG. 7, the first peak waveform is the power spectrum of the basic waveform by the basic stripes corresponding to the slits, and the second peak waveform is the long wavelength region (about 10 to 1 mm) of the uneven waveform of the coating surface. Corresponding to the power spectrum corresponding to the middle wavelength region (about 1 to 0.1 mm) of the uneven waveform, and the fourth peak waveform corresponding to the short wavelength region of the uneven waveform (0. The power spectrum corresponding to 1 mm or less) is shown.

【0031】上記のパワースペクトル波形において、凹
凸波形の長波形領域のピーク波長、すなわち第2のピー
ク波形のピーク値に対応した波長λpは、後記のごと
く微粒化度と相関性があり、それによって微粒化度を測
定することができる。
In the above power spectrum waveform, the peak wavelength of the long waveform region of the uneven waveform, that is, the wavelength λp corresponding to the peak value of the second peak waveform, has a correlation with the degree of atomization, as will be described later. The degree of atomization can be measured.

【0032】図3の実施例においては、画像処理手段7
と波長演算手段8とで上記のごとき画像処理とパワース
ペクトルの演算を行なっている。
In the embodiment of FIG. 3, the image processing means 7
The wavelength calculation means 8 performs the image processing and the power spectrum calculation as described above.

【0033】次に、波長平均処理手段9では、次のごと
き処理を行なう。
Next, the wavelength averaging processing means 9 performs the following processing.

【0034】一般に、自動車の車体塗装のような塗装自
動化ラインでは、上塗り、中塗り、或いは塗装色の違い
等のように、色々な塗料を用いるため、その塗料の種類
に応じた条件を入力する必要がある。また、車体のよう
な大型の被塗装体の場合には、吹き付け面積が大きいた
め、塗装部位によっては塗装条件が必ずしも均一になら
ない場合がある。したがって精度のよい計測を行なうた
めには、塗装表面の複数個所を撮像し、それらの各部位
におけるピーク波長λpの平均値を用いて微粒化演算や
膜厚演算を行なうことが望ましい。
Generally, in a coating automation line such as car body painting, various paints are used such as topcoat, middlecoat, or difference in paint color. Therefore, the conditions corresponding to the kind of the paint are input. There is a need. Further, in the case of a large body to be coated such as a vehicle body, since the sprayed area is large, the coating conditions may not always be uniform depending on the coating site. Therefore, in order to perform accurate measurement, it is desirable to image a plurality of locations on the coating surface and perform the atomization calculation and the film thickness calculation using the average value of the peak wavelength λp at each of those portions.

【0035】図3の実施例は、上記の理由により、撮像
手段6では塗装面の複数個所の撮像を行なってその画像
情報を順次演算処理し、求められた複数のピーク波長λ
pを波長平均処理手段9で平均化した値を微粒化演算手
段10へ送る。また、塗装条件入力手段15を設けて塗
装の種類等に応じた情報を入力し、微粒化演算手段10
では、上記の平均化したピーク波長λpの値と塗装条件
とに応じて微粒化度を演算するように構成している。
In the embodiment shown in FIG. 3, for the above-mentioned reason, the image pickup means 6 picks up an image of a plurality of locations on the painted surface, sequentially processes the image information, and obtains a plurality of peak wavelengths λ obtained.
A value obtained by averaging p by the wavelength averaging processing means 9 is sent to the atomization calculating means 10. Further, a coating condition input means 15 is provided to input information according to the type of coating, and the atomization calculation means 10
Then, the atomization degree is calculated according to the value of the averaged peak wavelength λp and the coating conditions.

【0036】次に、微粒化演算手段10における微粒化
度計測の原理について説明する。
Next, the principle of atomization degree measurement in the atomization calculation means 10 will be described.

【0037】先ず、図8に基づいて、塗装時における塗
装面への塗料粒子の付着と塗装膜面の形成過程について
説明する。
First, with reference to FIG. 8, the process of adhering paint particles to the paint surface and forming the paint film surface during painting will be described.

【0038】図8(a)に示すように、塗装ガンから塗
装面へ向けて微粒化した塗料粒子を吹き付ける。この
際、塗料粒子の平均粒子径は、基本的は、塗装条件であ
る塗料速度(下記、、)と空気速度(下記)と
塗料物性(下記)によって決まる。ただし、上記の
〜は次の通りである。
As shown in FIG. 8 (a), atomized paint particles are sprayed from the paint gun toward the paint surface. At this time, the average particle diameter of the paint particles is basically determined by the paint conditions such as paint velocity (below), air velocity (below) and paint physical properties (below). However, the above-mentioned items are as follows.

【0039】 塗装ガンの吐出量 塗装ガンのベル回転数 印加電圧 エア圧 塗料物性(粘度、表面張力、密度) なお、ベル回転数とは塗料を微粒化する回転体の回転数
であり、印加電圧とは塗料粒子の静電気を付加するため
に印加する静電圧(50kV程度)であり、エア圧と
は、塗料粒子が周辺に飛散しないように周囲に気流の壁
を作るための気圧である。
Discharge rate of coating gun Bell rotation speed of coating gun Applied voltage Air pressure Paint properties (viscosity, surface tension, density) Bell rotation speed is the rotation speed of a rotating body that atomizes the paint, and the applied voltage Is the static voltage (about 50 kV) applied to add static electricity to the paint particles, and the air pressure is the atmospheric pressure for creating a wall of airflow around the paint particles so that the paint particles do not scatter around.

【0040】上記のようにして吹き付けられた塗料粒子
は、塗装面に衝突し、つぶれた形で付着する。
The paint particles sprayed as described above collide with the painted surface and adhere in a crushed form.

【0041】次に、図8(b)に示すように、塗膜形状
の初期には、付着した小さな塗料粒子が大きな塗料粒子
に結合され、より大きな粒子を形成する。そして、さら
に粒子の結合が進み、表面張力と境界張力とによって初
期の塗膜面が形成される。
Next, as shown in FIG. 8B, in the initial stage of the coating film shape, the small paint particles that have adhered are combined with the large paint particles to form larger particles. Then, the bonding of particles further progresses, and the initial coating film surface is formed by the surface tension and the boundary tension.

【0042】上記のように粒子の付着と結合によって塗
膜が形成されていくため、初期の塗膜表面状況は大きな
塗装粒子の粒子径r、粒子衝突速度vx、塗料物性(表
面張力γ、粘度η)等に依存する。例えば、上塗り塗料
の場合、初期塗膜表面の凹凸の高さは数〜数十μm程度
であり、また、凹凸の波長分布は3〜6mm程度の長波
長領域が支配的であることが確認された。そして上記の
長波長領域のピーク波長λと大きな塗料粒子の粒子径r
とには相関性があることが実験によって確認された。
Since the coating film is formed by the adhesion and bonding of the particles as described above, the initial coating film surface condition is the particle diameter r of the large coating particles, the particle collision speed vx, the physical properties of the coating (surface tension γ, viscosity). η) etc. For example, in the case of a top coat, it is confirmed that the height of the unevenness on the surface of the initial coating film is about several to several tens of μm, and the wavelength distribution of the unevenness is dominated by a long wavelength region of about 3 to 6 mm. It was Then, the peak wavelength λ in the long wavelength region and the particle diameter r of the large paint particles are
Experiments have confirmed that there is a correlation with.

【0043】次に、図8(c)に示すように、上記の初
期塗膜形成後の塗膜表面は、レベリング力(表面張力γ
と重量gとの合成力)によって次第に平坦化して行く。
この平坦化速度は上記のレベリング力と塗料物性(表面
張力γ、粘度η)および膜厚hによって決定される。例
えば、上塗り塗料の場合、平坦化速度は時定数で数十秒
〜数百秒であることが確認されている。
Next, as shown in FIG. 8 (c), the surface of the coating film after the above initial coating film formation has a leveling force (surface tension γ
And the weight g) to gradually flatten.
This flattening speed is determined by the above-mentioned leveling force, coating material properties (surface tension γ, viscosity η) and film thickness h. For example, in the case of a topcoat paint, it has been confirmed that the flattening speed is a time constant of several tens of seconds to several hundreds of seconds.

【0044】次に、塗料粒子径と塗膜面の凹凸との関係
について図9〜図12に基づいて詳細に説明する。
Next, the relationship between the paint particle diameter and the unevenness of the coating film surface will be described in detail with reference to FIGS.

【0045】図9に示すように、塗装ガンから吹き付け
られた塗料粒子の粒子径をrとし、それが付着した付着
粒子の幅をλ/2、厚さ(ピーク値)をhとすれば、波
長λの凹凸を持つ塗膜面が形成される。なお、上記付着
粒子の幅λ/2の波長λとの関係は、実験的に求められ
たものであり、ほぼこの程度の値になることが確認され
ている。
As shown in FIG. 9, if the particle diameter of the paint particles sprayed from the coating gun is r, the width of the adhered particles adhered thereto is λ / 2, and the thickness (peak value) is h, A coating film surface having irregularities of wavelength λ is formed. The relationship with the wavelength λ of the width λ / 2 of the adhered particles is experimentally obtained, and it has been confirmed that the value has a value in this range.

【0046】上記の場合における塗料粒子径rは、下記
数式7で示される。
The paint particle diameter r in the above case is expressed by the following mathematical expression 7.

【0047】[0047]

【数式7】 上記の理論式をグラフに示すと、図10の破線で示すご
とき曲線となる。しかし、実際には、付着粒子の結合が
あるため、図10の実線で示すような特性となる。この
実験で求めた特性を数式で示すと、下記数式8のように
なる。
[Formula 7] When the above theoretical formula is shown in a graph, it becomes a curve as shown by the broken line in FIG. However, in reality, since the adhered particles are bonded, the characteristics shown by the solid line in FIG. 10 are obtained. The characteristics obtained in this experiment can be expressed by the following mathematical formula 8.

【0048】[0048]

【数式8】 上記のごとき実験で求めた凹凸のピーク波長λpと塗料
粒子径rとの関係を、付着粒子の結合を考慮して解析す
る。
[Formula 8] The relationship between the peak wavelength λp of the unevenness and the paint particle diameter r obtained in the above-described experiment is analyzed in consideration of the bond of the adhered particles.

【0049】まず、図11に示すように、付着粒子径R
は、塗布時間が大きくなるに従って順次大きくなる。こ
の関係を数式で示すと下記数式9のように成る。
First, as shown in FIG. 11, the adhered particle diameter R
Becomes larger as the coating time becomes longer. When this relationship is expressed by a mathematical formula, it is expressed by the following mathematical formula 9.

【0050】[0050]

【数式9】 なお、図11において、塗布時間とは1ケ所に塗布する
持続時間であり、初期粒子径とは付着前の塗料粒子径で
あり、付着粒子径とは最初に付着したときの粒子径であ
る。この付着粒子径Rは塗布時間が長くなるに従って順
次塗布される粒子が係合するので次第に大きくなる。
[Formula 9] In FIG. 11, the application time is the duration of application at one location, the initial particle size is the paint particle size before adhesion, and the adhered particle size is the particle size when first applied. The diameter R of the adhered particles gradually increases as the coating time increases, because the particles to be sequentially coated engage with each other.

【0051】また、図12は、塗布時間と塗膜面の凹凸
波長との関係を、実測値(破線)と周波数解析によるパ
ワースペクトルから求めた結果とについて比較した特性
図である。同図12から判るように、パワースペクトル
から求めた値は実測値によく一致している。したがって
パワースペクトルから求めた凹凸波長(前記長波長のピ
ーク波長λp)を用いて付着粒子径Rを求めることがで
きる。さらに、自動塗装機においては、塗布時間は一定
であるから、下記数式10によって塗料粒子径rも求め
ることができる。
FIG. 12 is a characteristic diagram comparing the relationship between the coating time and the wavelength of unevenness on the coating surface with the measured value (broken line) and the result obtained from the power spectrum by frequency analysis. As can be seen from FIG. 12, the value obtained from the power spectrum is in good agreement with the actually measured value. Therefore, the particle diameter R of the adhered particles can be obtained by using the uneven wavelength (peak wavelength λp of the long wavelength) obtained from the power spectrum. Furthermore, in an automatic coating machine, the coating time is constant, so the paint particle diameter r can also be determined by the following formula 10.

【0052】[0052]

【数式10】 上記のごとき考察により、基本的には前記数式8によ
り、パワースペクトルから求めた凹凸の長波長領域のピ
ーク波長λpを用いて、塗料粒子径rを求めることがで
きる。具体的には、実験で前記図10の特性を求め、そ
れから数式8の各係数ks、a,βを予め求めておけ
ば、撮像画像から求めたピーク波長λpを用いて塗料粒
子径rを求めることができる。
[Formula 10] Based on the above consideration, the paint particle diameter r can be basically obtained by the above-mentioned formula 8 using the peak wavelength λp of the long wavelength region of the unevenness obtained from the power spectrum. Specifically, if the characteristics shown in FIG. 10 are obtained by an experiment and then the respective coefficients ks, a, and β of Equation 8 are obtained in advance, the paint particle diameter r is obtained using the peak wavelength λp obtained from the captured image. be able to.

【0053】なお、塗料粒子の粒子径rは塗料の微粒化
の程度に対応しているから、塗料粒子の粒子径rをその
まま用いて微粒化度を表してもよいし、或いはrの逆
数、もしくは基準値との百分率などを用いて微粒化度を
表すこともできる。
Since the particle size r of the paint particles corresponds to the degree of atomization of the paint, the particle size r of the paint particles may be used as it is to represent the degree of atomization, or the reciprocal of r, Alternatively, the degree of atomization can be expressed using a percentage with a reference value.

【0054】次に、表面粗さ演算手段19と膜厚演算手
段20における膜厚演算について説明する。
Next, the film thickness calculation in the surface roughness calculating means 19 and the film thickness calculating means 20 will be described.

【0055】図13は、塗装後の塗膜の断面図である。
塗装直後には、(a)に示すように、塗装表面は初期の
付着粒子の結合によって凹凸状態になっている。そして
時間の経過と共に、(b)に示すように、レベリング力
によって次第に平滑化され、最終的には、(c)に示す
ように、平滑化状態となる。本実施例においては、この
ような平滑化現象に着目し、ウエット状態における塗装
表面の凹凸状態を測定し、それによって平滑化後、或い
は乾燥後の塗装膜厚を算出するものである。
FIG. 13 is a sectional view of the coating film after coating.
Immediately after coating, as shown in (a), the coated surface is in an uneven state due to the initial bonding of the adhered particles. Then, with the lapse of time, as shown in (b), it is gradually smoothed by the leveling force, and finally becomes a smoothed state as shown in (c). In this embodiment, paying attention to such a smoothing phenomenon, the unevenness of the coating surface in a wet state is measured, and the coating film thickness after smoothing or after drying is calculated by this.

【0056】上記のごときウエット状態における凹凸状
態を測定するには、光干渉式表面粗さ計など種々の方法
(例えば「機械工学便覧 日本機械学会1989年9月
30日 新版3刷発行 B2編 207頁〜208頁」
に記載)があるが、ここでは撮像手段6で塗装表面を撮
像し、その情報を画像処理する方法について説明する。
In order to measure the uneven state in the wet state as described above, various methods such as an optical interference type surface roughness meter (for example, "Handbook of Mechanical Engineering, Japan Society of Mechanical Engineers, September 30, 1989, new edition, 3rd edition, B2, 207") Pages-208 "
However, here, a method of imaging the coating surface by the imaging means 6 and image-processing the information will be described.

【0057】まず、パワースペクトル積分値Pによる平
滑化特性を説明すると、表面の凹凸(ピーク・ツウ・ピ
ーク値)の面積平均値に相当する表面粗さRとパワー
スペクトル積分値Pとは、図14に示すような関係にあ
り、下記数式11、数式12に示す関係がある。
[0057] First, when describing the smoothing characteristics of the power spectrum integral value P, and the surface of the uneven surface mean corresponding surface roughness value R a and the power spectrum integral value P (peak-to-peak value), The relationships are as shown in FIG. 14, and the relationships are shown in the following formulas 11 and 12.

【0058】[0058]

【数式11】 [Formula 11]

【0059】[0059]

【数式12】 ただし、上式において、Qは粗さ補正値、kは粗さ変換
係数である。
[Equation 12] However, in the above equation, Q is a roughness correction value, and k is a roughness conversion coefficient.

【0060】パワースペクトル解析値による平均化理論
式の導出では、まず、ウエット塗膜平均化理論式(近似
式)として、表面粗さ度Rは下記数式13で表され
る。
In the derivation of the averaging theoretical formula by the power spectrum analysis value, first, the surface roughness R a is represented by the following formula 13 as a wet coating film averaging theoretical formula (approximate formula).

【0061】[0061]

【数式13】 ただし、Ra0はRの初期値(時点0すなわち塗装直
後の値)、tは塗装後の経過時間である。また、τは粘
性流体の基本式から導出された時定数であり、後記数式
18に示すごときものである。
[Formula 13] However, R a0 is the initial value of R a (time point 0, that is, the value immediately after coating), and t is the elapsed time after coating. Further, τ is a time constant derived from the basic formula of the viscous fluid, and is as shown in the following mathematical formula 18.

【0062】上記数式12を数式13に代入すると、下
記数式14が得られる。
By substituting the equation 12 into the equation 13, the following equation 14 is obtained.

【0063】[0063]

【数式14】 ただし、PはPの初期値(時点0における値)であ
り、QはQの初期値である。
[Formula 14] However, P 0 is the initial value of P (value at time 0), and Q 0 is the initial value of Q.

【0064】上記数式14において、P、Pをそれぞ
れの補正値Q、Qを含んだ値として、(P−Q
→P、(P−Q)→Pと示せば、数式14は下記数式
15のように表せる。
In the above formula 14, P and P 0 are values including the respective correction values Q and Q 0 , and (P 0 -Q 0 )
When expressed as → P 0 , (P−Q) → P, Expression 14 can be expressed as Expression 15 below.

【0065】[0065]

【数式15】 また、時定数τは下記数式16で示される。[Formula 15] Further, the time constant τ is represented by the following mathematical formula 16.

【0066】[0066]

【数式16】 ただし、ηは塗料の粘度、λは前記の長波長領域のピー
ク波長、γは塗膜の表面張力、hはウエット状態におけ
る膜厚(撮像部分の平均値)である。
[Formula 16] Here, η is the viscosity of the coating material, λ is the peak wavelength in the above long wavelength region, γ is the surface tension of the coating film, and h is the film thickness in the wet state (average value of the imaged portion).

【0067】以上から、パワースペクトル解析値による
塗装膜厚hは、下記数式17で示すようになる。
From the above, the coating film thickness h by the power spectrum analysis value is as shown in the following formula 17.

【0068】[0068]

【数式17】 ただし、Pは時点tにおけるパワースペクトル積分
値Pの値、Pは時点t(ただし−<t)におけ
るPの値である。なお、τ´は下記数式18で示され
る。
[Formula 17] However, P 1 is the value of the power spectrum integration value P at the time point t 1 , and P 2 is the value of P at the time point t 2 (where −1 <t 2 ). It should be noted that τ ′ i is expressed by Equation 18 below.

【0069】[0069]

【数式18】 ただし、i=1,2であり、η(ti)は塗料の粘度が
塗装後の経過時間の関数であることを示す。すなわち、
塗装条件入力手段15から入力するのは、塗装前におけ
る塗料の粘度ηであるが、塗装後の塗着粘度は、塗装後
の経過時間に応じて変化する値η(t)となる。この
値は、塗料組成(塗料内の揮発成分の割合等)や風速な
どによって定まる値である。
[Formula 18] However, i = 1, 2 and η (ti) indicates that the viscosity of the coating is a function of the elapsed time after coating. That is,
What is input from the coating condition input means 15 is the viscosity η of the coating material before coating, but the coating viscosity after coating is a value η (t i ) that changes according to the elapsed time after coating. This value is determined by the paint composition (such as the proportion of volatile components in the paint) and the wind speed.

【0070】上記数式17から判るように、塗料の粘度
η、塗膜の表面張力γ、凹凸波形の長波長領域のピーク
波長λ、塗装後の2つの時点t、tにおけるパワー
スペクトル積分値Pの値から、ウエット状態における膜
厚hを求めることができる。上記の各数値のうち、塗料
の粘度ηと塗膜の表面張力γは、塗料の特性によって定
まる値であるから、予め判っている値を入力し、長波長
領域のピーク波長λとパワースペクトル積分値Pの値
は、前記画像情報を処理した値を用いる。
As can be seen from the above formula 17, the viscosity η of the coating material, the surface tension γ of the coating film, the peak wavelength λ in the long wavelength region of the uneven waveform, and the power spectrum integral value at two time points t 1 and t 2 after coating. From the value of P, the film thickness h in the wet state can be obtained. Of the above numerical values, the viscosity η of the paint and the surface tension γ of the coating film are values that are determined by the characteristics of the paint, so enter the values that are known in advance, and enter the peak wavelength λ in the long wavelength region and the power spectrum integration. As the value P, a value obtained by processing the image information is used.

【0071】図15は、上記数式17を用いた平滑化理
論値と測定値を比較したウエット平滑化特性(パワース
ペクトル積分値P)を示す特性図である。図15におい
て、横軸は塗装後の経過時間、縦軸はパワースペクトル
積分値Pである。
FIG. 15 is a characteristic diagram showing a wet smoothing characteristic (power spectrum integral value P) obtained by comparing the measured smoothed value with the smoothed theoretical value using the above-mentioned mathematical expression 17. In FIG. 15, the horizontal axis represents the elapsed time after coating and the vertical axis represents the power spectrum integral value P.

【0072】上記の測定は、塗布直後の画像を撮像手段
6で撮影し、パワースペクトル解析を行ったものであ
る。図15から、測定値は理論値とほぼ一致した平滑化
特性となっていることがわかる。
In the above measurement, an image immediately after coating was taken by the image pickup means 6 and power spectrum analysis was performed. From FIG. 15, it can be seen that the measured value has a smoothing characteristic that is substantially in agreement with the theoretical value.

【0073】また、表1は、膜厚60μmと54μmの
2つのサンプルに対して、上記数式17の推定式を用い
て膜厚hを計測した結果を示す表である。
Table 1 is a table showing the results of measuring the film thickness h of the two samples having the film thicknesses of 60 μm and 54 μm by using the estimation formula of the above-mentioned formula 17.

【0074】表1に示すように、数μmの精度で計測可
能であることが判る。
As shown in Table 1, it can be seen that measurement can be performed with an accuracy of several μm.

【0075】[0075]

【表1】 [Table 1]

【0076】図3の実施例においては、撮像手段6、画
像処理手段7、波長演算手段8、表面粗さ演算手段1
9、膜厚演算手段20において、上記のごとき処理を行
ない、撮像個所の膜厚hを求める。
In the embodiment shown in FIG. 3, the image pickup means 6, the image processing means 7, the wavelength calculation means 8 and the surface roughness calculation means 1 are provided.
9. The film thickness calculation means 20 performs the above-described processing to obtain the film thickness h at the imaged portion.

【0077】また、前記数式17においては、塗装後の
2つの時点tとtにおける2つの値P、Pを用
い、粗さ情報の時間変化量を用いて演算している。その
ため、塗装後の2つの時点で同一個所を撮像する必要が
ある。このためには、塗装ライン上の車体の移動に合わ
せて撮像手段6を移動させる必要があるので、装置が複
雑になる。それを避けるためには、次のような方法があ
る。すなわち、被塗装体である車体の他に、テストピー
スを用意して被塗装体と同じ条件で塗装を行ない、時点
(例えばt=10秒、t<t)における値P
は、テストピースの画像情報を処理して求めた値を用
いるようにする。このようにすれば、撮像手段6は時点
(例えば塗装1〜2分後)において1回のみの撮像
を行なえばよい。
Further, in the equation 17, the two values P 1 and P 2 at the two time points t 1 and t 2 after coating are used, and calculation is performed by using the time change amount of the roughness information. Therefore, it is necessary to image the same place at two points after painting. For this purpose, it is necessary to move the image pickup means 6 in accordance with the movement of the vehicle body on the coating line, which complicates the apparatus. To avoid this, there are the following methods. That is, a test piece is prepared in addition to the vehicle body that is the object to be coated, and coating is performed under the same conditions as the object to be coated, and the value P at time t 1 (for example, t 1 = 10 seconds, t 1 <t 2 ).
1 uses the value obtained by processing the image information of the test piece. In this way, the image pickup means 6 needs to take an image only once at the time point t 2 (for example, 1 to 2 minutes after coating).

【0078】次に、塗装条件判定手段3の作用を図17
に基づいて説明する。
Next, the operation of the coating condition judging means 3 will be described with reference to FIG.
It will be described based on.

【0079】塗装条件判定手段3は、ステップS1にお
いて、塗装品質である鮮映性が不良すなわち平滑性Hの
測定値が下限値(Hmin)以下(NG)の場合には、
ステップS2において品質補正係数ΔH=1としたの
ち、ステップS3において、品質要因の微粒化度Rを上
下限の設定管理幅(Rmax,Rmin)と比較し、微
粒化度Rが上下限の設定管理幅以外(NG)であれば、
ステップS4において、所定値R0との差に見合ったΔ
r=Kr(R−R0)を塗装機へのベル回転数補正値と
し、その補正値を塗装条件制御手段4に送る。また、ス
テップS5において、塗膜厚hが上下限の設定管理幅以
外(NG)であれば、ステップS6において、所定値h
0との差に見合ったΔT=Kt(h−h0)を自動塗装
機5への吐出量補正値とし、さらに、ステップS7にお
いて、塗着N.V(N)が上下限の設定管理幅以外(N
G)であれば、ステップS8において、所定値N0との
差に見合ったΔC=Kc(N−N0)を塗料シンナー条
件の補正値とする。
In step S1, the coating condition determining means 3 determines that if the coating quality is poor in clarity, that is, the measured value of the smoothness H is equal to or lower than the lower limit (Hmin) (NG),
After setting the quality correction coefficient ΔH = 1 in step S2, in step S3, the quality factor atomization degree R is compared with the upper and lower limit setting control widths (Rmax, Rmin), and the atomization degree R is upper and lower limit setting control. If it is other than width (NG),
In step S4, Δ corresponding to the difference from the predetermined value R0
r = Kr (R-R0) is set as a bell rotation speed correction value to the coating machine, and the correction value is sent to the coating condition control means 4. Further, in step S5, if the coating film thickness h is other than the upper and lower limit set control width (NG), in step S6 the predetermined value h
.DELTA.T = Kt (h-h0) corresponding to the difference from the value of 0, is set as the discharge amount correction value to the automatic coating machine 5, and in step S7, the coating N. V (N) is other than the upper and lower limit setting control width (N
If G), in step S8, ΔC = Kc (N−N0) corresponding to the difference from the predetermined value N0 is set as the correction value for the paint thinner condition.

【0080】次に、塗装品質である鮮映性が良すなわち
平滑性Hの測定値が下限値(Hmin)以上(OK)の
場合には、ステップS9において品質補正係数ΔH=H
−H0としたのち、ステップS10において品質要因の
微粒化度Rが下限の設定値(Rmin)以下(NG)で
あれば、微粒化度が低く塗着効率低下と判断して、先の
ステップS14において、平滑性Hと所定値H0との差
(ΔH=H−H0)と微粒化度Rと所定値R0との差に
見合ったΔr=ΔH×Kr(R−R0)を塗装機へのベ
ル回転補正値とし、その補正値を塗装条件制御手段4に
送る。
Next, when the sharpness, which is the coating quality, is good, that is, when the measured value of the smoothness H is not less than the lower limit value (Hmin) (OK), the quality correction coefficient ΔH = H in step S9.
After -H0, if the atomization degree R of the quality factor is equal to or lower than the lower limit set value (Rmin) in step S10 (NG), it is determined that the atomization degree is low and the coating efficiency is lowered, and the previous step S14 is performed. In, the difference between the smoothness H and the predetermined value H0 (ΔH = H−H0) and the difference between the atomization degree R and the predetermined value R0 are Δr = ΔH × Kr (R−R0) The rotation correction value is set, and the correction value is sent to the coating condition control means 4.

【0081】また、ステップS11において、塗膜厚h
を設定値(h)と比較し設定値以上(NG)であれ
ば、塗装の厚塗り状態と判断し、ステップS6において
平滑性Hと所定値Hとの差(ΔH=H−H)と塗膜
厚hと所定値Rとの差の見合ったΔT=ΔH×Kt
(h−h)を自動塗装機5への吐出量補正値とし、さ
らに、ステップS12において、塗着N.V(N)が下
限の設定値(Nmin)以下(NG)であれば垂れの発
生可能性有りと判断し、ステップS8において、平滑性
Hと所定値Hとの差(ΔH=H−H)と塗着N.V
(N)と所定値Nとの差に見合ったΔC=ΔH×Kc
(N−N)を塗料シンナー条件の補正値とする。この
ように塗装品質(平滑性)が良好な場合でも、塗着N.
V等の塗装状態計測値と各所定値との比較により最適な
塗装条件の指示を塗装条件制御手段4へ送ることができ
る。
In step S11, the coating thickness h
Is compared with the set value (h 0 ), and if it is equal to or larger than the set value (NG), it is determined that the coating is in a thick coating state, and in step S6, the difference between the smoothness H and the predetermined value H 0 (ΔH = H−H 0 ) And the coating film thickness h and the predetermined value R 0 , ΔT = ΔH × Kt
(H−h 0 ) is the discharge amount correction value to the automatic coating machine 5, and in step S12, the coating N. If V (N) is equal to or lower than the lower limit set value (Nmin) (NG), it is determined that sagging may occur, and in step S8, the difference between the smoothness H and the predetermined value H 0 (ΔH = H−H 0 ) and N. V
ΔC = ΔH × Kc corresponding to the difference between (N) and the predetermined value N 0
Let (N-N 0 ) be the correction value for the paint thinner condition. Even when the coating quality (smoothness) is good as described above, the coating N.E.
By comparing the measured value of the coating state such as V with each predetermined value, the instruction of the optimum coating condition can be sent to the coating condition control means 4.

【0082】なお、各比較ステップにおいて計測値が良
好(OK)であると判断したときには、ステップS13
において制御無修正とする。
When it is determined that the measured value is good (OK) in each comparison step, step S13.
The control is uncorrected.

【0083】そして、塗装条件制御手段4は上記の塗装
条件判定手段3からの各補正値に基づいて自動塗装機5
の塗装条件を変更する。自動塗装機5は上記塗装条件制
御手段4からの制御信号に基づき、次の被塗装物1への
自動塗装を行なう。以上の自動塗装機5の制御を行なう
ことにより、自動塗装ラインでも狙い通りの安定した塗
装品質の確保と無駄塗装のない最適な塗装制御が行なわ
れる。
Then, the coating condition control means 4 operates the automatic coating machine 5 based on each correction value from the above-mentioned coating condition determination means 3.
Change the painting conditions of. The automatic coating machine 5 automatically coats the next article 1 based on the control signal from the coating condition control means 4. By controlling the automatic coating machine 5 as described above, stable and stable coating quality can be ensured and optimal coating control without waste coating is performed even in the automatic coating line.

【0084】図18は本発明の第2の実施例を説明する
ブロック図である。
FIG. 18 is a block diagram for explaining the second embodiment of the present invention.

【0085】この実施例は本発明の第2の実施例を説明
するブロック図である。
This embodiment is a block diagram for explaining the second embodiment of the present invention.

【0086】この実施例は複数の塗装状態計測手段2
A,2B,2Cを備え、同時に被塗装物1の塗装面の複
数箇所の塗装品質(平滑性)および品質要因(塗着N.
V、微粒化度、塗膜厚)を計測する。そして、塗装状態
計測手段2A〜2Cの後に設けた平均処理手段41で、
複数の部位について計測した塗装品質(平滑性)および
品質要因(塗着N.V、微粒化度、塗膜厚)のそれぞれ
の平均化した値を求め、その値を塗装条件判定手段3へ
送る。
In this embodiment, a plurality of coating state measuring means 2
A, 2B, 2C, and at the same time, coating quality (smoothness) and quality factors (coating N.N.
V, atomization degree, coating film thickness) are measured. Then, in the average processing means 41 provided after the coating state measuring means 2A to 2C,
An averaged value of each of the coating quality (smoothness) and quality factors (coating NV, degree of atomization, coating thickness) measured for a plurality of parts is obtained, and the values are sent to the coating condition determination means 3. .

【0087】ここで、上記塗装状態計測手段2A〜2C
は、先の図3に示す構成のように、塗装品質である塗装
表面の鮮映性(平滑性)と品質要因である塗膜の塗着
N.V(非揮発性成分)と付着粒子の微粒化度と塗膜厚
等を同一の撮像手段(すなわち図4に示す撮像手段6)
と、同時の画像処理手段(すなわち図5に示す画像処理
手段7)で計測する構成とすることにより、装置の簡略
化を図っている。
Here, the coating state measuring means 2A to 2C described above.
As shown in FIG. 3, the coating image clarity (smoothness) of the coating surface, which is the coating quality, and the coating film coating N.V. V (nonvolatile component), the degree of atomization of the adhered particles, the coating film thickness, etc. are the same as the image pickup means (that is, the image pickup means 6 shown in FIG. 4).
And the simultaneous image processing means (that is, the image processing means 7 shown in FIG. 5) is used for measurement, thereby simplifying the apparatus.

【0088】上記の構成により、被塗装物1の複数部位
の塗装品質(平滑性)および品質要因(塗着N.V、微
粒化度、塗膜厚)を迅速に測定し、塗装品質(平滑性)
および品質要因(塗着N.V、微粒化度、塗膜厚)のそ
れぞれの平均値を算出することができるので、塗装状態
に合わせたさらに正確なフィードバック制御を行なうこ
とができる。
With the above-described structure, the coating quality (smoothness) and quality factors (coating NV, fineness of atomization, coating thickness) of a plurality of parts of the article to be coated 1 can be quickly measured to obtain coating quality (smoothness). sex)
Since it is possible to calculate the average value of each of the quality factors (coating NV, degree of atomization, coating thickness), it is possible to perform more accurate feedback control according to the coating state.

【0089】図19は本発明の第3の実施例を説明する
ブロック図である。
FIG. 19 is a block diagram for explaining the third embodiment of the present invention.

【0090】この実施例は被塗装物1を搬送するコンベ
ア42のコンベアスピード制御手段43を設けることに
より、塗装条件判定手段3で指示していた平滑性Hと所
定値Hとの差(ΔH=H−H)および塗膜厚hと所
定値hとの差に見合った吐出量補正値ΔT=ΔH×K
t(h−h)の代わりに、平滑性Hと所定値Hとの
差(ΔH=H−H)および塗膜厚hと所定の基準値h
との差に見合ったコンベアスピード補正値ΔV=ΔH
×Kv(h−h)をかけることができ、上記の構成に
より、吐出量の制御だけでなく自動化ラインのコンベア
スピードの制御によっても塗装状態に合わせた正確なフ
ィードバック制御をすることができる。
In this embodiment, by providing the conveyor speed control means 43 of the conveyor 42 that conveys the article to be coated 1, the difference (ΔH) between the smoothness H indicated by the coating condition determination means 3 and the predetermined value H 0. = H-H 0 ) and the ejection amount correction value ΔT = ΔH × K corresponding to the difference between the coating film thickness h and the predetermined value h 0.
Instead of t (h−h 0 ), the difference between the smoothness H and the predetermined value H 0 (ΔH = H−H 0 ), the coating film thickness h and the predetermined reference value h
Conveyor speed correction value corresponding to the difference from 0 ΔV = ΔH
× Kv (h−h 0 ) can be applied, and with the above configuration, not only the control of the discharge amount but also the control of the conveyor speed of the automation line can be performed to perform accurate feedback control according to the coating state.

【0091】[0091]

【発明の効果】【The invention's effect】

【0092】本発明の請求項1に係わる自動塗装機の制
御装置によれば、被塗装物の塗装状態が不良の場合に、
塗着N.V、微粒化度および塗膜厚等の品質要因の各測
定値とそれぞれの基準値との誤差に見合った補正を行な
うことから、塗装状態に合わせた正確なフィードバック
制御を行うことができると共に、自動塗装ラインでも狙
い通りの安定した塗装品質を確保することができ、さら
には塗着効率の向上なども実現し得る。
According to the control device of the automatic coating machine according to claim 1 of the present invention, when the coating state of the object to be coated is defective,
Coating N. Since correction is performed in accordance with the difference between each measured value of quality factors such as V, atomization degree and coating thickness and each reference value, accurate feedback control can be performed according to the coating state, and Even on an automatic coating line, it is possible to secure the desired stable coating quality and further improve the coating efficiency.

【0093】また、被塗装物の塗装状態が良好の場合で
も、塗着N.Vが下限基準値以下であるときには、鮮映
性の計測値と基準値との差および塗着N.Vの計測値と
基準値との差に見合った垂れ修正の補正を行なうことが
でき、微粒化度が下限基準値以下であるときは、鮮映性
の計測値と基準値との差、および微粒化度の計測値と基
準値との差に見合った塗着効率補正を行なうことがで
き、さらに、塗膜厚が基準値以上であるときは、鮮映性
の測定値と基準値との差および塗膜厚の計測値と基準値
との差に見合った厚塗り補正を行なうことができ、安定
した塗装品質を確保することができると共に、塗着効率
の向上も実現し得る。
Even when the object to be coated is in a good coating state, the coating N.E. When V is less than or equal to the lower limit reference value, the difference between the measured value of the image clarity and the reference value and the coating N.V. It is possible to correct the sag correction corresponding to the difference between the measured value of V and the reference value, and when the atomization degree is less than or equal to the lower limit reference value, the difference between the measured value of the image clarity and the reference value, and The coating efficiency can be corrected according to the difference between the measurement value of the atomization degree and the reference value.Furthermore, when the coating film thickness is more than the reference value, It is possible to perform thick coating correction corresponding to the difference and the difference between the measured value of the coating film thickness and the reference value, so that stable coating quality can be ensured and the coating efficiency can be improved.

【0094】本発明の請求項2〜8に係わる自動塗装機
の制御装置によれば、請求項1の効果に加えて、塗装品
質および塗装要因の計測を正確に且つ迅速に行なうこと
ができ、より一層正確なフィードバック制御を行うこと
ができると共に、塗装品質をさらに高めることができ
る。
According to the control device for an automatic coating machine according to claims 2 to 8 of the present invention, in addition to the effect of claim 1, the coating quality and the coating factor can be measured accurately and quickly. It is possible to perform more accurate feedback control and further improve the coating quality.

【0095】本発明の請求項9に係わる自動塗装機の制
御装置によれば、被塗装物における複数箇所において塗
装品質および塗装要因を計測することにより、より一層
正確な計測を行なうことができ、フィードバック制御に
正確な補正値を提供することができると共に、塗装品質
をさらに高めることができる。
According to the control device for an automatic coating machine according to claim 9 of the present invention, more accurate measurement can be performed by measuring the coating quality and the coating factor at a plurality of points on the object to be coated, An accurate correction value can be provided for the feedback control, and the coating quality can be further improved.

【0096】本発明の請求項10に係わる自動塗装機の
制御装置によれば、自動化ラインにおけるコンベアスピ
ードの制御によって塗装状態に合わせたフィードバック
制御を行なうことができ、塗装品質や塗着効率を高める
ことができる。
According to the control device of the automatic coating machine according to the tenth aspect of the present invention, the feedback control can be performed according to the coating state by controlling the conveyor speed in the automation line, and the coating quality and the coating efficiency can be improved. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的構成を説明するブロック図であ
る。
FIG. 1 is a block diagram illustrating a basic configuration of the present invention.

【図2】本発明の第1の実施例を説明するブロック図で
ある。
FIG. 2 is a block diagram illustrating a first embodiment of the present invention.

【図3】塗装状態計測手段を説明するブロック図であ
る。
FIG. 3 is a block diagram illustrating a coating state measuring unit.

【図4】粒子飛行過程における溶剤の蒸発を示す説明図
である。
FIG. 4 is an explanatory diagram showing evaporation of a solvent in a particle flight process.

【図5】撮像手段の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of an imaging unit.

【図6】撮像手段において被塗装物上に形成されるスリ
ットの縞模様を示す図である。
FIG. 6 is a diagram showing a striped pattern of slits formed on an object to be coated by the imaging means.

【図7】パワースペクトルの周波数特性を示すグラフで
ある。
FIG. 7 is a graph showing frequency characteristics of a power spectrum.

【図8】塗料粒子の付着と塗装面の形成過程を示す断面
説明図である。
FIG. 8 is an explanatory cross-sectional view showing a process of adhering paint particles and forming a coated surface.

【図9】塗料の飛行粒子と付着粒子の関係を示す説明図
である。
FIG. 9 is an explanatory diagram showing a relationship between flying particles of paint and adhered particles.

【図10】塗料粒子の平均径と波長との関係を示すグラ
フである。
FIG. 10 is a graph showing the relationship between the average diameter of paint particles and wavelength.

【図11】塗料粒子径と塗布時間の関係を示すグラフで
ある。
FIG. 11 is a graph showing the relationship between paint particle size and application time.

【図12】波長と塗布時間の関係を示すグラフである。FIG. 12 is a graph showing the relationship between wavelength and coating time.

【図13】塗膜表面の平坦化現象を示す説明図である。FIG. 13 is an explanatory diagram showing a flattening phenomenon of a coating film surface.

【図14】表面粗さとパワースペクトルの関係を示すグ
ラフである。
FIG. 14 is a graph showing the relationship between surface roughness and power spectrum.

【図15】平滑化理論と測定値の比較を示すグラフであ
る。
FIG. 15 is a graph showing comparison between smoothing theory and measured values.

【図16】波長とウエット膜厚の関係を示すグラフであ
る。
FIG. 16 is a graph showing the relationship between wavelength and wet film thickness.

【図17】塗装条件判定手段の制御を説明するフローチ
ャートである。
FIG. 17 is a flowchart illustrating control of a coating condition determination unit.

【図18】本発明の第2の実施例を説明するブロック図
である。
FIG. 18 is a block diagram illustrating a second embodiment of the present invention.

【図19】本発明の第3の実施例を説明するブロック図
である。
FIG. 19 is a block diagram illustrating a third embodiment of the present invention.

【図20】従来例を説明するブロック図である。FIG. 20 is a block diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1 被塗装物(ボディ) 2 塗装状態計測手段 3 塗装条件判定手段 4 塗装条件制御手段 5 自動塗装機 6 撮像手段 7 画像処理手段 8 波長演算手段 9 波長平均処理手段 10 微粒化演算手段 11 第1塗着N.V演算手段 12 塗料密度演算手段 13 第2塗着N.V演算手段 15 塗装条件入力手段 16 塗料条件入力手段 17 シンナー蒸発量入力手段 18 測定時間入力手段 19 表面粗さ演算手段 20 膜厚演算手段 21 鮮映性演算手段 43 コンベアスピード制御手段 1 Painting object (body) 2 Paint condition measuring means 3 Coating condition judgment means 4 Painting condition control means 5 Automatic coating machine 6 Imaging means 7 Image processing means 8 Wavelength calculation means 9 Wavelength averaging means 10 Atomization calculation means 11 First coating N.M. V calculation means 12 Paint density calculation means 13 Second coating N. V calculation means 15 Painting condition input means 16 Paint condition input means 17 Thinner evaporation amount input means 18 Measurement time input means 19 Surface roughness calculation means 20 Film thickness calculation means 21 Visibility calculation means 43 Conveyor speed control means

フロントページの続き (56)参考文献 特開 平7−96228(JP,A) 特開 平7−236841(JP,A) 特開 昭56−144776(JP,A) 特開 昭58−98169(JP,A) 特開 平1−164463(JP,A) (58)調査した分野(Int.Cl.7,DB名) B05B 12/00 - 13/06 B05D 3/00 B05D 7/14 Continuation of the front page (56) Reference JP-A-7-96228 (JP, A) JP-A-7-236841 (JP, A) JP-A-56-144776 (JP, A) JP-A-58-98169 (JP , A) Japanese Patent Laid-Open No. 1-164463 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B05B 12/00-13/06 B05D 3/00 B05D 7/14

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空調された塗装ブース内に搬入した被塗
装物を、塗装ガンを備えた自動塗装機により塗装する際
の制御装置において、 自動塗装機により所定の塗装条件下で塗装された被塗装
物の塗装面の鮮映性とこれを左右する品質要因である塗
料吹き付け時の塗料の微粒化度、塗膜厚および塗膜の非
揮発性成分を検知する塗装状態計測手段と、 塗装状態計測手段によって検知された鮮映性の計測値を
予め設定された品質基準値と比較して鮮映性の良否判定
を行い、 鮮映性の計測値が品質基準値よりも小さく鮮映性が不良
である場合に、塗装状態計測手段によって検知された微
粒化度の計測値を予め設定された微粒化度の基準値と比
較して微粒化度の良否判定を行い、 微粒化度の計測値が不良である場合に、その計測値と予
め設定された微粒化度の所定値の差を用いて決定した塗
装ガンのベル回転数の補正値を指令し、 微粒化度の計測値が良である場合に、塗装状態計測手段
によって検知された塗膜厚の計測値を予め設定された塗
膜厚の基準値と比較して塗膜厚の良否判定を行い、 塗膜厚の計測値が不良である場合に、その計測値と予め
設定された塗膜厚の所定値の差を用いて決定した塗料吹
き付け時の塗料の吐出量の補正値を指令し、 塗膜厚の計測値が良である場合に、塗装状態計測手段に
よって検知された塗膜の非揮発性成分の計測値を予め設
定された非揮発性成分の基準値と比較して非揮発性成分
の良否判定を行い、 非揮発性成分の計測値が不良である場合に、その計測値
と予め設定された非揮発性成分の所定値の差を用いて決
定した塗料のシンナー条件の補正値を指令し、 一方、鮮映性の計測値が品質基準値以上であり鮮映性が
良である場合に、塗装状態計測手段によって検知された
微粒化度の計測値を予め設定された微粒化度の基準値と
比較して微粒化度の良否判定を行い、 微粒化度の計測値が不良である場合に、鮮映性の計測値
と予め設定された鮮映性の所定値の差、および微粒化度
の計測値と予め設定された微粒化度の所定値の差を用い
て決定した塗装ガンのベル回転数の補正値を指令し、 微粒化度の計測値が良である場合に、塗装状態計測手段
によって検知された塗膜厚の計測値を予め設定された塗
膜厚の基準値と比較して塗膜厚の良否判定を行い、 塗膜厚の計測値が不良である場合に、鮮映性の計測値と
予め設定された鮮映性の所定値の差、および塗膜厚の計
測値と予め設定された塗膜厚の所定値の差を用いて決定
した塗料吹き付け時の塗料の吐出量の補正値を指令し、 塗膜厚の計測値が良である場合に、塗装状態計測手段に
よって検知された塗膜の非揮発性成分の計測値を予め設
定された非揮発性成分の基準値と比較して非揮発性成分
の良否判定を行い、 非揮発性成分の計測値が不良である場合に、鮮映性の計
測値と予め設定された鮮映性の所定値の差、および塗膜
の非揮発性成分の計測値と予め設定された非揮発性成分
の所定値の差を用いて決定した塗料のシンナー条件の補
正値を指令する塗装条件判定手段と、 塗装条件判定手段からの補正指令に基づいて塗装面の鮮
映性が基準となるように自動塗装機を制御する塗装条件
制御手段を備えたことを特徴とする自動塗装機の制御装
置。
1. A control device for coating an object to be coated brought into an air-conditioned coating booth with an automatic coating machine equipped with a coating gun, wherein the coating apparatus is coated under a predetermined coating condition by the automatic coating machine. A coating state measuring means for detecting the sharpness of the coated surface of the coated object and the fineness of the coating when spraying the coating, which is a quality factor that affects this, the coating thickness and the non-volatile components of the coating, and the coating state. The image quality measured by the measuring means is compared with a preset quality reference value to determine whether the image clarity is good or not, and the image clarity measurement value is smaller than the quality reference value and If it is defective, the measured value of the atomization degree detected by the coating state measuring means is compared with a preset reference value of the atomization degree to determine whether the atomization degree is good or not. If it is defective, the measured value and the preset The correction value of the bell rotation speed of the coating gun determined using the difference in the specified degree of atomization is commanded, and when the measured value of the atomization degree is good, the coating thickness detected by the coating state measuring means The quality of the coating film is judged by comparing the measured value with a preset reference value of the coating film thickness, and if the measured value of the coating film thickness is bad, the measured value and the preset coating film thickness Command the correction value of the discharge amount of the paint when the paint is sprayed, which is determined using the difference of the predetermined value of, and if the measured value of the paint film thickness is good, The non-volatile component is judged as good or bad by comparing the measured value of the volatile component with a preset reference value of the non-volatile component, and if the measured value of the non-volatile component is defective, Command the correction value of the thinner condition of the paint determined by using the difference between the preset values of non-volatile components On the other hand, when the measured value of the image clarity is equal to or higher than the quality reference value and the image clarity is good, the measured value of the atomization degree detected by the coating state measuring means is set as the reference of the atomization degree set in advance. The quality of the atomization degree is compared with the value, and if the measured value of the atomization degree is defective, the difference between the measured value of the image clarity and the preset value of the image clarity, and the atomization Command the correction value of the bell speed of the coating gun, which is determined by using the difference between the measured value of the degree of atomization and the preset value of the degree of atomization, and if the measured value of the degree of atomization is good, the coating state The quality of the coating film is judged by comparing the measured value of the coating film thickness detected by the measuring means with a preset reference value of the coating film thickness. The difference between the measured value of the image clarity and the predetermined value of the preset image clarity, and the measured value of the coating film thickness and the predetermined value of the preset film thickness The non-volatile component of the paint film detected by the paint condition measuring means when the correction value of the paint discharge amount when paint is sprayed, which is determined by using the difference between the The non-volatile component is compared with the preset reference value of the non-volatile component to determine whether the non-volatile component is good or bad. Correction value for thinner condition of paint determined by using the difference between the preset value of the clearness and the difference between the measured value of the non-volatile component of the coating and the preset value of the non-volatile component And a coating condition control means for controlling the automatic coating machine so that the sharpness of the coated surface becomes a reference based on a correction command from the coating condition determination means. Control device for automatic coating machine.
【請求項2】 請求項1に記載の塗装状態計測手段が、
塗料の非揮発性成分等の塗料条件を入力する塗料条件入
力手段と、塗装ガン吹き付け時の塗料の微粒化度を演算
する微粒化演算手段と、塗料のシンナー蒸発量を入力す
るシンナー蒸発量入力手段と、塗料条件入力手段からの
非揮発性成分、微粒化演算手段からの微粒化度、および
シンナー蒸発量入力手段からのシンナー蒸発量に基づい
て自動塗装機により所定の塗装条件下で塗装された被塗
装物の塗布直後の非揮発性成分を算出する第1の塗着
N.V演算手段と、第1の塗着N.V演算手段で算出さ
れた塗布直後の塗膜面の非揮発性成分と塗料条件入力手
段からの塗料種情報に基づいて塗布直後の塗膜面の塗料
密度を算出する塗料密度演算手段と、測定までの時間を
入力する測定時間入力手段と、塗膜面の膜厚を入力する
膜厚入力手段と、膜厚入力手段からの膜厚情報、シンナ
ー蒸発量入力手段からのシンナー蒸発量および測定時間
入力手段からの測定時間情報に基づいて塗布後の塗膜面
の非揮発性成分を算出する第2の塗着N.V演算手段を
備えていることを特徴とする自動塗装機の制御装置。
2. The coating state measuring means according to claim 1,
Paint condition input means for inputting paint conditions such as non-volatile components of paint, atomization calculation means for calculating the degree of atomization of the paint when spraying the coating gun, and thinner evaporation amount input for inputting the thinner evaporation amount of the paint Means, the non-volatile components from the paint condition input means, the degree of atomization from the atomization calculation means, and the thinner evaporation amount from the thinner evaporation amount input means. The first coating N.C. for calculating the non-volatile component immediately after the coating of the coated object. V computing means and the first coating N.V. A paint density calculation means for calculating the paint density of the paint film surface immediately after application based on the non-volatile components of the paint film surface immediately after application calculated by the V calculation means and the paint type information from the paint condition input means; Until the measurement time input means, the film thickness input means for inputting the film thickness of the coating film, the film thickness information from the film thickness input means, the thinner evaporation amount and the measurement time from the thinner evaporation amount input means The second coating N.V. for calculating the non-volatile component of the coating film surface after coating based on the measurement time information from the input means. A control device for an automatic coating machine, which is provided with a V calculation means.
【請求項3】 請求項1に記載の塗装状態計測手段が、
塗料を塗布した直後の未乾燥塗装表面を撮像する撮像手
段と、撮像手段からの画像情報を画像処理する画像処理
手段と、画像処理手段で処理された画像処理データに基
づいて塗装表面の凹凸波形の波長分布を算出する波長分
布演算手段と、波長分布演算手段で算出された波長分布
に基づいて塗料粒子の微粒化度を算出する微粒化度演算
手段とを備えたことを特徴とする自動塗装機の制御装
置。
3. The coating state measuring means according to claim 1,
Imaging means for imaging the undried coating surface immediately after applying the coating material, image processing means for image processing the image information from the imaging means, and uneven waveform of the coating surface based on the image processing data processed by the image processing means Automatic coating characterized by comprising a wavelength distribution calculating means for calculating the wavelength distribution of the paint particles and a fineness degree calculating means for calculating the fineness degree of the paint particles based on the wavelength distribution calculated by the wavelength distribution calculating means. Machine control device.
【請求項4】 請求項1に記載の塗装状態計測手段が、
塗料の粘度等を入力する塗装条件入力手段と、塗料を塗
布した直後の未乾燥塗装表面を撮像する撮像手段と、撮
像手段からの画像情報を画像処理する画像処理手段と、
画像処理手段で処理された画像処理データに基づいて塗
装表面の粗さを算出する表面粗さ演算手段を備え、表面
粗さ演算手段で算出された粗さ度と粗さ度の時間変化量
と波長分布演算手段で算出された波長と塗装条件入力手
段からの塗装条件から塗装膜厚を算出する手段であるこ
とを特徴とする自動塗装機の制御装置。
4. The coating state measuring means according to claim 1,
A coating condition input means for inputting the viscosity of the paint, an image pickup means for picking up an image of the undried coating surface immediately after applying the paint, an image processing means for image-processing the image information from the image pickup means,
A surface roughness calculating means for calculating the roughness of the coating surface based on the image processing data processed by the image processing means is provided, and the roughness degree calculated by the surface roughness calculating means and the time variation of the roughness degree are provided. A control device for an automatic coating machine, which is a means for calculating a coating film thickness from the wavelength calculated by the wavelength distribution calculating means and the coating condition from the coating condition input means.
【請求項5】 請求項1に記載の塗装状態計測手段が、
塗料を塗布した直後の未乾燥塗装表面を撮像する撮像手
段と、撮像手段からの画像情報を画像処理する画像処理
手段と、画像処理手段で処理された画像処理データに基
づいて塗装表面の粗さを算出する表面粗さ演算手段を備
え、表面粗さ演算手段で演算された粗さ度から塗膜表面
の鮮映性を算出する手段であることを特徴とする自動塗
装機の制御装置。
5. The coating state measuring means according to claim 1,
Imaging means for imaging the undried coating surface immediately after applying the coating material, image processing means for image-processing the image information from the imaging means, and roughness of the coating surface based on the image processing data processed by the image processing means. A control device for an automatic coating machine, comprising: a surface roughness calculating means for calculating, and a means for calculating the sharpness of the coating film surface from the roughness calculated by the surface roughness calculating means.
【請求項6】 請求項2に記載の塗着N.V演算手段
が、塗料条件入力手段の塗料の非揮発性成分とシンナー
蒸発量入力手段の塗料のシンナー蒸発量と微粒化演算手
段の塗料粒子径から求めた塗料粒子の表面積の関係から
塗布直後の塗膜面の非揮発性成分を算出する手段である
ことを特徴とする自動塗装機の制御装置。
6. The coating N.M. according to claim 2. The V calculation means calculates the non-volatile component of the paint of the paint condition input means, the thinner evaporation amount of the paint of the thinner evaporation amount input means, and the surface area of the paint particles obtained from the paint particle diameter of the atomization calculation means from the relationship immediately after coating. A control device for an automatic coating machine, which is a means for calculating a non-volatile component of a coating film surface.
【請求項7】 請求項3に記載の波長分布演算手段が、
塗装表面の凹凸波形のパワースペクトルにおける長波長
領域のピーク波長を求める手段であり、微粒化演算手段
が、長波長領域のピーク波長の値と予め定めた塗料粒子
径との関係から塗料粒子径を算出してそれを微粒化度と
する手段であることを特徴とする自動塗装機の制御装
置。
7. The wavelength distribution calculation means according to claim 3,
A means for obtaining the peak wavelength in the long wavelength region in the power spectrum of the corrugated waveform on the coating surface, and the atomization calculation means determines the paint particle diameter from the relationship between the peak wavelength value in the long wavelength region and the predetermined paint particle diameter. An automatic coating machine control device, characterized in that it is means for calculating and using it as the degree of atomization.
【請求項8】 請求項1に記載の塗装状態計測手段が、
塗装表面の鮮映性と、これを左右する品質要因である塗
膜の非揮発性成分と付着粒子の微粒化度と塗膜厚等を同
一の撮像手段および同一の画像処理手段で計測する手段
であることを特徴とする自動塗装機の制御装置。
8. The coating state measuring means according to claim 1,
Means for measuring the image clarity of the coating surface, the non-volatile components of the coating film, the atomization degree of the adhered particles, the coating film thickness, etc., which are the quality factors that affect this, with the same imaging means and the same image processing means. A control device for an automatic coating machine characterized by being
【請求項9】 請求項1〜4および8のいずれかに記載
の塗装状態計測手段を複数備え、これらの塗装状態計測
手段を被塗装物の塗装面の複数箇所に配置したことを特
徴とする自動塗装機の制御装置。
9. A plurality of coating state measuring means according to any one of claims 1 to 4 and 8, wherein the coating state measuring means are arranged at a plurality of locations on a coating surface of an object to be coated. Control device for automatic coating machine.
【請求項10】 塗装中に被塗装物を移動させるコンベ
アと、コンベアスピード制御手段を備え、鮮映性の計測
値と予め設定された品質基準値の差および塗膜厚の計測
値と予め設定された塗膜厚の基準値の差に基づいてコン
ベアスピードを制御することを特徴とする請求項1に記
載の自動塗装機の制御装置。
10. A conveyor for moving an object to be coated during coating and a conveyor speed control means, wherein the difference between the image clarity measurement value and a preset quality reference value and the coating film thickness measurement value are preset. The control device for the automatic coating machine according to claim 1, wherein the conveyor speed is controlled based on the difference between the reference values of the coating film thicknesses.
JP30091495A 1995-11-20 1995-11-20 Control device for automatic coating machine Expired - Fee Related JP3478443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30091495A JP3478443B2 (en) 1995-11-20 1995-11-20 Control device for automatic coating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30091495A JP3478443B2 (en) 1995-11-20 1995-11-20 Control device for automatic coating machine

Publications (2)

Publication Number Publication Date
JPH09141149A JPH09141149A (en) 1997-06-03
JP3478443B2 true JP3478443B2 (en) 2003-12-15

Family

ID=17890655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30091495A Expired - Fee Related JP3478443B2 (en) 1995-11-20 1995-11-20 Control device for automatic coating machine

Country Status (1)

Country Link
JP (1) JP3478443B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1721682A4 (en) * 2004-02-05 2008-06-18 Trinity Ind Corp Method for calculating nonadhering paint and method for calculating weight of solvent
JP2007044694A (en) * 2006-11-27 2007-02-22 Nippon Steel Corp Coating quality monitoring apparatus
KR102572616B1 (en) * 2021-04-15 2023-08-30 주식회사 케이씨씨 Painting apparatus and painting system comprising the same
CN115041641B (en) * 2022-07-15 2023-08-04 中国兵器装备集团西南技术工程研究所 Flow coating control system and method applied to stripping flow coating box assembling machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014629B2 (en) * 1980-04-10 1985-04-15 住友重機械工業株式会社 Uniform paint coating method on color steel plate manufacturing line
JPS5898169A (en) * 1981-12-04 1983-06-10 Daido Kohan Kk Preparation of metal plate coated with synthetic resin
JPH01164463A (en) * 1987-12-21 1989-06-28 Toyota Auto Body Co Ltd Method for controlling discharge of paint
JP3257182B2 (en) * 1993-09-27 2002-02-18 日産自動車株式会社 Painting treatment equipment and painting treatment method
JP3124171B2 (en) * 1994-02-28 2001-01-15 日立造船株式会社 Robot coating equipment and its operation method

Also Published As

Publication number Publication date
JPH09141149A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
US9316491B2 (en) Methods and instruments to measure the volume solids of a paint sample
US20090074947A1 (en) Method for coating film formation, apparatus for coating film formation, and method for toning coating material preparation
JP3478443B2 (en) Control device for automatic coating machine
JP3326962B2 (en) Paint quality analyzer
JP3811924B2 (en) Control device for automatic coating machine and control method thereof
JP3511764B2 (en) Control device for automatic coating machine
JP3326960B2 (en) Paint film thickness measuring device
JP3358434B2 (en) Paint quality analyzer
JPH09113462A (en) Printing-quality analytical instrument
JP3322034B2 (en) Paint quality analyzer
JP3353494B2 (en) Paint quality analyzer
JPH08334320A (en) Apparatus for analyzing painting quality
JP3327000B2 (en) Paint film thickness measuring device
KR102426628B1 (en) Method for painting vehicle using correlation analysis between spray distance and coating thickness and vehicle painting system using thereof
JPH09105612A (en) Coating-film-thickness measuring apparatus
JPH09262534A (en) Coating quality analysis device
JPH08327340A (en) Painting quality analyzer
JPH09210990A (en) Coating quality analyzing device
JPH07306017A (en) Measurement device of thickness of coating film
JPH095053A (en) Coating quality analysing device
JPS61287466A (en) Process and device for repair painting in automatic painting line
JP2003154296A (en) Method of controlling wet coating film and coating apparatus
Takahashi et al. Analysis of Paint Film Thickness Distribution Based on Particle Method Considering Time Series Change of Flow
JPH07306019A (en) Measurement device of thickness of coating film
JP4402421B2 (en) Coating film forming method and coating film forming apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees