JPH07306017A - Measurement device of thickness of coating film - Google Patents

Measurement device of thickness of coating film

Info

Publication number
JPH07306017A
JPH07306017A JP6098391A JP9839194A JPH07306017A JP H07306017 A JPH07306017 A JP H07306017A JP 6098391 A JP6098391 A JP 6098391A JP 9839194 A JP9839194 A JP 9839194A JP H07306017 A JPH07306017 A JP H07306017A
Authority
JP
Japan
Prior art keywords
coating
roughness
curved surface
image
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6098391A
Other languages
Japanese (ja)
Other versions
JP3321982B2 (en
Inventor
Teruo Asae
暉雄 浅枝
Yutaka Suzuki
裕 鈴木
Kiyoshi Yoshida
清 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP09839194A priority Critical patent/JP3321982B2/en
Publication of JPH07306017A publication Critical patent/JPH07306017A/en
Application granted granted Critical
Publication of JP3321982B2 publication Critical patent/JP3321982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure a thickness of a coated film by eliminating the affection of a curved surface by providing a curved surface-operation means that obtains information of a curved surface of a coated surface based on image processing data. CONSTITUTION:A vehicle body 1 to be coated is coated by moving on a coating line. An imaging section 2 images a coated surface that is not in a dried condition right after the coating. An image processing section 3 executes image processing of toughness information of the imaged coated surface. A roughness--operation section 4 obtains a roughness-information of the coated surface from the image processing data. A curved surface operation section 5 calculates a curvature of the curved surface of the vehicle body 1 from the image processing data. A curved surface correction operation section 6 applies the correction corresponding to the curvature of the coated surface obtained by the curved surface operation section 5 to the roughness and a wavelength of a unevenness wave obtained by the roughness operation section 4. A film thickness calculation section 8 calculates the coated thickness in the wet condition based on the roughness information after the correction and a coating condition inputted from a coating condition input section 7. The value of the thickness is indicated on an indicator 9 and is transmitted to a control system 10 so that the operation of a coating gun is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗料を塗布した直後の
未乾燥状態で塗装の膜厚を計測することの出来る塗装膜
厚計測技術に関し、特に、膜厚計測の精度向上技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film thickness measuring technique capable of measuring the coating film thickness in an undried state immediately after applying a coating, and more particularly to a technique for improving the accuracy of film thickness measurement.

【0002】[0002]

【従来の技術】塗装直後の未乾燥状態で塗装膜厚を計測
する装置としては、例えば針ゲージを利用した接触式の
装置、或いは電磁式や渦電流式の非接触式の装置があ
る。図15は、上記のごとき従来装置のうち、磁気を用
いた計測装置の一例の原理を示す断面図である。図15
においては、まず(a)に示すように、鋼板の被塗装体
81の塗装表面に対向して非接触膜厚センサ82を近接
距離h0に予め位置決めする。そして非接触膜厚センサ
82内に設けられた送受信コイル(図示省略)によって
被塗装体81と非接触膜厚センサ82との間に磁界を生
成する。この状態で、被塗装体81の表面にウェット状
態の塗料83を塗布すると、塗装後の被塗装体81と非
接触膜厚センサ82との間の磁界は、塗装膜厚による電
磁気抵抗によって減衰し、塗装前よりも低下した状態で
送受信コイルに感知される。このように膜厚hに比例し
て減衰する磁束の変化を検出することにより、塗装膜厚
を測定することが出来る。しかし、上記のごとき従来の
膜厚測定装置においては、塗装前に被塗装体81と非接
触膜厚センサ82との距離を所定の近接距離に設定し、
塗装前後を通じてその位置関係を精密に保つ必要がある
ため、塗装中でもセンサを近接距離に設定したままにし
ておく必要があり、実用的でない。また、測定を塗装前
と塗装後との2回行なう必要があるので手間がかかると
共に、測定精度も悪い、等の問題があった。また、前記
針ゲージを用いた接触式の装置では、塗装面に傷を付け
るので、塗装品質が低下するという問題があった。
2. Description of the Related Art As an apparatus for measuring the coating film thickness in a non-dried state immediately after coating, there are, for example, a contact type apparatus utilizing a needle gauge, or an electromagnetic or eddy current type non-contact type apparatus. FIG. 15 is a cross-sectional view showing the principle of an example of a measuring device using magnetism in the above conventional devices. Figure 15
First, as shown in (a), first, the non-contact film thickness sensor 82 is preliminarily positioned at the short distance h 0 so as to face the coating surface of the object 81 to be coated of a steel plate. A transmission / reception coil (not shown) provided in the non-contact film thickness sensor 82 generates a magnetic field between the object 81 to be coated and the non-contact film thickness sensor 82. In this state, when the wet coating material 83 is applied to the surface of the coating object 81, the magnetic field between the coating object 81 and the non-contact film thickness sensor 82 after coating is attenuated by the electromagnetic resistance due to the coating film thickness. , It is detected by the transmitting and receiving coil in a state where it is lower than before painting. In this way, the coating film thickness can be measured by detecting the change in the magnetic flux that attenuates in proportion to the film thickness h. However, in the conventional film thickness measuring device as described above, the distance between the object to be coated 81 and the non-contact film thickness sensor 82 is set to a predetermined close distance before coating,
Since it is necessary to maintain the positional relationship precisely before and after painting, it is necessary to keep the sensor set to the close distance even during painting, which is not practical. In addition, since it is necessary to perform the measurement twice before and after coating, it is troublesome and the measurement accuracy is poor. Further, the contact type device using the needle gauge has a problem that the coating quality is deteriorated because the coated surface is scratched.

【0003】上記のごとき問題を解決するため、本出願
人は、塗料を塗布した直後の未乾燥塗装表面の粗さに基
づいて、非接触で塗装膜厚を測定する装置を既に出願
(特願平4−306966号、未公開)している。上記
の測定装置は、光学的な表面粗さ計や撮像装置によって
塗装直後の未乾燥塗装表面の粗さと、塗装表面の凹凸波
形の波長とを計測し、それらに基づいて未乾燥状態にお
ける膜厚(ウェット膜厚)を測定し、さらに乾燥後の膜
厚(ドライ膜厚)を予測するものである。
In order to solve the above problems, the present applicant has already applied for a device for measuring the coating film thickness in a non-contact manner based on the roughness of the undried coating surface immediately after coating with the coating material (Japanese Patent Application No. 2000-242242). Hei 4-306966, unpublished). The above measuring device measures the roughness of the undried coating surface immediately after coating with an optical surface roughness meter or an imaging device, and the wavelength of the uneven waveform of the coating surface, and based on them, the film thickness in the undried state. It measures the (wet film thickness) and predicts the film thickness after drying (dry film thickness).

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来の
接触式の装置では、塗装面に傷を付けるので、塗装品質
が低下するという問題があり、また、磁気を利用した非
接触の装置では測定に手間がかかると共に測定精度が悪
いという問題があった。また、上記のごとき従来装置の
問題を解決した本出願人の先行出願においては、非接触
で、しかも容易に正確な測定を行なうことが可能である
が、実際の塗装作業においては、次のごとき2つの問題
がある。 (1)上記の先行出願においては、塗装表面の光学的情
報(例えば画像)から表面の粗さや凹凸波長を求めてい
る。しかし、自動車の車体のように、塗装面に曲面が存
在する場合には、撮像した画像が曲率に応じて湾曲する
ので、表面の粗さや凹凸波長を正確に測定することが困
難になり、そのため計測結果に誤差を生じることがあ
る。 (2)自動車の車体塗装のように、塗装自動化ラインで
次々に塗装を行なう場合には、塗料粒子が周辺に飛び散
らないように、周囲を囲まれた塗装ブース内で塗装を行
なうが、一つの車体の塗装中に次の車体に塗料粒子が掛
かるのを防ぐため、塗装ブースの上方から下方へ風(風
速2〜4m/sec程度)を送って塗料粒子を床面へ落と
し、それを水流で除去するようになっている。一方、前
記本出願人の先行出願においては、膜厚演算式に塗料の
粘度ηが含まれており、このηは塗装後の経過時間等に
応じて変化する。そして上記先行出願では、塗装条件入
力手段から入力した初期の塗料粘度に基づいて塗装後の
経過時間に応じた塗着粘度を推定演算するようになって
いるが、塗料の粘度は塗装後の経過時間の他に風速にも
影響されるので、上記のように塗装ブース内で風速2〜
4m/sec程度の風を送っていると、ηの推定値が実際
と合わなくなり、それによって膜厚計測に誤差を生じる
という問題がある。
As described above, the conventional contact type apparatus has a problem that the coating quality is deteriorated because the coated surface is scratched, and the non-contact apparatus utilizing magnetism is used. However, there is a problem that the measurement is troublesome and the measurement accuracy is poor. Further, in the prior application of the applicant who solved the problem of the conventional apparatus as described above, it is possible to perform accurate measurement easily in a non-contact manner. There are two problems. (1) In the above-mentioned prior application, the surface roughness and the uneven wavelength are obtained from the optical information (for example, image) of the coated surface. However, when there is a curved surface on the painted surface, such as the car body of an automobile, the captured image is curved according to the curvature, which makes it difficult to accurately measure the surface roughness and the uneven wavelength. An error may occur in the measurement result. (2) When painting one after another in an automated coating line, such as car body painting, the painting is done in a painting booth surrounded by the surroundings so that paint particles do not scatter around. In order to prevent paint particles from being applied to the next car body during painting, wind is blown (up to 2 to 4 m / sec) from the top of the paint booth to drop paint particles onto the floor surface, which is then sprayed with water. It is designed to be removed. On the other hand, in the prior application of the present applicant, the viscosity η of the paint is included in the film thickness calculation formula, and this η changes depending on the elapsed time after coating and the like. In the above-mentioned prior application, the coating viscosity is estimated and calculated according to the elapsed time after coating based on the initial coating viscosity input from the coating condition input means. In addition to the time, the wind speed affects the wind speed.
When a wind of about 4 m / sec is sent, the estimated value of η does not match the actual value, which causes an error in film thickness measurement.

【0005】本発明は、上記のごとき本出願人の先行出
願をさらに改良したものであり、第1の目的は、曲面の
影響を排除して高精度で膜厚計測を行なうことのできる
塗装膜厚計測装置を提供することである。また、第2の
目的は、風速の影響を排除して高精度で膜厚計測を行な
うことのできる塗装膜厚計測装置を提供することであ
る。
The present invention is a further improvement of the above-mentioned prior application of the present applicant. A first object of the present invention is to provide a coating film which can eliminate the influence of a curved surface and measure the film thickness with high accuracy. It is to provide a thickness measuring device. A second object is to provide a coating film thickness measuring device capable of highly accurately measuring the film thickness by eliminating the influence of wind speed.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明は、
図1(a)に示すごとく、塗料を塗布した直後の未乾燥
塗装表面の粗さを撮像する撮像手段100と、上記撮像
手段からの画像情報を画像処理する画像処理手段101
と、上記画像処理手段で処理された画像処理データに基
づいて、塗装表面の粗さ度と、塗装表面の凹凸波形の波
長とを算出する粗さ演算手段102と、上記画像処理手
段で処理された画像処理データと上記粗さ演算手段の算
出結果とのうちの少なくとも一方に基づいて、塗装面の
曲面情報を求める曲面演算手段103と、上記粗さ演算
手段で算出された粗さ度と波長に対して、上記曲面演算
手段で求めた結果に応じた補正処理を行ない、上記粗さ
度と波長のうちの少なくとも一方に補正を与える曲面補
正手段104と、少なくとも塗料の粘度を含む塗装条件
を入力する塗装条件入力手段105と、上記曲面補正手
段による補正処理後の粗さ度および波長と、上記塗装条
件入力手段からの塗装条件とに基づいて、塗装の膜厚を
算出する膜厚演算手段106と、を備えている。なお、
上記の各手段は、例えば後記図2の実施例における下記
の部分にそれぞれ対応する。すなわち、撮像手段100
は撮像部2に、画像処理手段101は画像処理部3に、
粗さ演算手段102は粗さ演算部4に、曲面演算手段1
03は曲面演算部5に、曲面補正手段104は曲面補正
演算部6に、塗装条件入力手段105は塗装条件入力部
7に、膜厚演算手段106は膜厚演算部8に、それぞれ
相当する。
In order to achieve the above object, the present invention is constructed as described in the claims. That is, the invention described in claim 1 is
As shown in FIG. 1A, an image pickup means 100 for picking up the roughness of the undried coating surface immediately after applying the paint, and an image processing means 101 for image-processing the image information from the image pickup means.
And a roughness calculation means 102 for calculating the roughness of the coating surface and the wavelength of the uneven waveform of the coating surface based on the image processing data processed by the image processing means, and the processing by the image processing means. Curved surface calculation means 103 for obtaining curved surface information of the coating surface based on at least one of the image processing data and the calculation result of the roughness calculation means, and the roughness degree and wavelength calculated by the roughness calculation means. On the other hand, the correction processing according to the result obtained by the curved surface calculation means is performed to set the curved surface correction means 104 for correcting at least one of the roughness and the wavelength, and the coating condition including at least the viscosity of the coating material. Film thickness calculation for calculating the film thickness of the coating based on the coating condition input means 105 to be input, the roughness and wavelength after the correction processing by the curved surface correction means, and the coating conditions from the coating condition input means. It includes a stage 106, a. In addition,
Each of the above means corresponds to, for example, the following portions in the embodiment shown in FIG. That is, the image pickup means 100
To the image pickup unit 2, the image processing means 101 to the image processing unit 3,
The roughness calculating means 102 includes a roughness calculating section 4 and a curved surface calculating means 1
Reference numeral 03 corresponds to the curved surface calculation unit 5, curved surface correction unit 104 corresponds to the curved surface correction calculation unit 6, coating condition input unit 105 corresponds to coating condition input unit 7, and film thickness calculation unit 106 corresponds to film thickness calculation unit 8.

【0007】次に、請求項2に記載の発明は、図1
(b)に示すごとく、上記請求項1に記載の発明に下記
の構成要素を追加したものである。すなわち、曲面演算
手段103の結果に基づいて撮像手段100による撮像
画像の角度を制御する信号を出力する撮像位置制御手段
107と、該撮像位置制御手段の信号に応じて撮像手段
100の撮像角度を調節する撮像位置駆動手段108
と、を追加したものである。なお、上記の各手段は、例
えば後記図12の実施例における下記の部分にそれぞれ
対応する。すなわち、撮像位置制御手段107は撮像位
置制御部12に、撮像位置駆動手段108は撮像位置駆
動部13に、それぞれ相当する。
Next, the invention described in claim 2 is as follows.
As shown in (b), the following constituent elements are added to the invention described in claim 1. That is, the imaging position control means 107 that outputs a signal for controlling the angle of the image captured by the imaging means 100 based on the result of the curved surface calculation means 103, and the imaging angle of the imaging means 100 according to the signal of the imaging position control means. Imaging position drive means 108 for adjustment
And are added. Each of the above means corresponds to, for example, the following part in the embodiment shown in FIG. That is, the image pickup position control unit 107 corresponds to the image pickup position control unit 12, and the image pickup position drive unit 108 corresponds to the image pickup position drive unit 13.

【0008】次に、請求項3に記載の発明は、請求項1
または請求項2に記載の発明において、曲面演算手段1
03は、画像処理手段101の画像処理データに基づい
て塗装面の曲率を演算するように構成したものであり、
曲面補正手段104は、曲面演算手段103で求めた曲
率に応じて粗さ演算手段102で求めた凹凸波長の値を
補正するように構成したものである。次に、請求項4に
記載の発明は、請求項1または請求項2に記載の発明に
おいて、撮像手段100は、塗装面に投影した所定の縞
模様を撮像するように構成したものであり、曲面演算手
段103は、画像処理手段101の画像処理データもし
くは粗さ演算手段102の演算結果に基づいて、上記縞
模様のパワースペクトルにおける基本縞のピーク波長
と、塗装面の凹凸の長波長領域のピーク波長と、を演算
するように構成したものであり、曲面補正手段104
は、予め記憶している平面時での基本縞のピーク波長
を、曲面演算手段103で求めた基本縞のピーク波長で
除算した値に、上記長波長領域のピーク波長を乗算する
ことにより、補正後の凹凸波形の波長の値を算出するよ
うに構成したものである。
Next, the invention described in claim 3 is the same as that of claim 1.
Alternatively, in the invention according to claim 2, the curved surface calculation means 1
Reference numeral 03 is configured to calculate the curvature of the coating surface based on the image processing data of the image processing means 101,
The curved surface correction means 104 is configured to correct the value of the uneven wavelength calculated by the roughness calculation means 102 according to the curvature calculated by the curved surface calculation means 103. Next, the invention according to claim 4 is the invention according to claim 1 or 2, wherein the image capturing means 100 is configured to capture an image of a predetermined striped pattern projected on the coating surface. The curved surface calculation means 103 determines, based on the image processing data of the image processing means 101 or the calculation result of the roughness calculation means 102, the peak wavelength of the basic stripe in the power spectrum of the stripe pattern and the long wavelength region of the unevenness of the painted surface. It is configured to calculate the peak wavelength and the curved surface correction means 104.
Is corrected by multiplying the peak wavelength of the basic fringes in a plane stored in advance divided by the peak wavelength of the basic fringes obtained by the curved surface calculation means 103, and the peak wavelength of the long wavelength region. It is configured to calculate the value of the wavelength of the subsequent uneven waveform.

【0009】次に、請求項5に記載の発明は、請求項2
に記載の発明において、曲面演算手段103は、撮像し
た画像に設定したx軸方向とy軸方向のそれぞれの曲率
を演算するものであり、撮像位置制御手段107は、曲
面演算手段103で算出されたx軸方向とy軸方向の曲
率値を比較し、x軸方向の曲率が予め定めた所定値以上
である場合には、x軸方向の曲率が所定値以下になるま
でy軸方向に撮像画像を回転させるための回転指示信号
を出力するものであり、撮像位置駆動手段108は、上
記回転指示信号に応じて撮像手段100を回転駆動する
ように構成したものである。
Next, the invention described in claim 5 is the same as claim 2
In the invention described in (1), the curved surface calculation means 103 calculates the respective curvatures in the x-axis direction and the y-axis direction set in the captured image, and the imaging position control means 107 is calculated by the curved surface calculation means 103. When the curvature values in the x-axis direction and the y-axis direction are compared and the curvature in the x-axis direction is equal to or greater than a predetermined value, the imaging in the y-axis direction is performed until the curvature in the x-axis direction becomes equal to or less than the predetermined value. A rotation instruction signal for rotating the image is output, and the image pickup position driving means 108 is configured to rotate the image pickup means 100 according to the rotation instruction signal.

【0010】次に、請求項6に記載の発明は、図1
(c)に記載のごとく、塗料を塗布した直後の未乾燥塗
装表面の粗さを撮像する撮像手段100と、上記撮像手
段からの画像情報を画像処理する画像処理手段101
と、上記画像処理手段で処理された画像処理データに基
づいて、塗装表面の粗さ度と、塗装表面の凹凸波形の波
長とを算出する粗さ演算手段102と、少なくとも塗料
の粘度を含む塗装条件と、少なくとも風速を含む塗装ブ
ース内の環境条件とを入力する環境条件入力手段109
と、上記粗さ演算手段で求めた粗さ度および波長と、上
記環境条件入力手段からの条件とに基づいて、塗装の膜
厚を算出する膜厚演算手段110と、を備えている。な
お、上記の各手段は、例えば後記図13の実施例におけ
る下記の部分にそれぞれ対応する。すなわち、撮像手段
100は撮像部2に、画像処理手段101は画像処理部
3に、粗さ演算手段102は粗さ演算部4に、環境条件
入力手段109は環境条件入力部14に、膜厚演算手段
110は膜厚演算部15に、それぞれ相当する。
Next, the invention according to claim 6 is shown in FIG.
As described in (c), an image pickup means 100 for picking up the roughness of the undried coating surface immediately after applying the paint, and an image processing means 101 for image-processing the image information from the image pickup means.
And a roughness calculating means 102 for calculating the roughness of the coating surface and the wavelength of the uneven waveform of the coating surface based on the image processing data processed by the image processing means, and the coating including at least the viscosity of the coating material. Environmental condition input means 109 for inputting conditions and environmental conditions in the coating booth including at least wind speed
And a film thickness calculating means 110 for calculating the film thickness of the coating based on the roughness and wavelength obtained by the roughness calculating means and the conditions from the environmental condition inputting means. Each of the above means corresponds to, for example, the following portion in the embodiment shown in FIG. That is, the image pickup unit 100 is the image pickup unit 2, the image processing unit 101 is the image processing unit 3, the roughness calculation unit 102 is the roughness calculation unit 4, the environmental condition input unit 109 is the environmental condition input unit 14, and the film thickness. The calculation means 110 corresponds to the film thickness calculation section 15, respectively.

【0011】[0011]

【作用】請求項1に記載の発明は、曲面演算手段と曲面
補正手段とを設け、粗さ演算手段で求めた塗装表面の粗
さ情報を、塗装面の曲面に応じて補正するように構成し
たものである。このように構成することにより、塗装面
が曲面であっても膜厚を正確に計測することが可能にな
る。また、請求項2に記載の発明は、曲面演算手段の結
果に基づいて撮像手段による撮像画像の角度を制御する
信号を出力する撮像位置制御手段と、その信号に応じて
撮像手段の撮像角度を調節する撮像位置駆動手段とを設
け、撮像した画像における曲率があまり大きい場合に
は、撮像角度を変えてやるように構成したものである。
すなわち、曲率があまり大きいと波長の読み取り精度を
確保することが困難になるので、上記のごとき対策を行
なったものである。具体的には、請求項5に記載のごと
く、撮像した画像に設定したx軸方向とy軸方向の曲率
値を比較し、x軸方向の曲率が予め定めた所定値以上で
ある場合には、x軸方向の曲率が所定値以下になるまで
y軸方向に撮像画像を回転させるように撮像手段を回転
させるものである。このように構成したことにより、或
る方向の曲率が非常に大きい場合でも波長読み取り精度
を確保することが出来る。
According to the present invention, the curved surface calculating means and the curved surface correcting means are provided, and the roughness information of the coating surface obtained by the roughness calculating means is corrected according to the curved surface of the coating surface. It was done. With this configuration, the film thickness can be accurately measured even if the coated surface is a curved surface. According to a second aspect of the present invention, the image pickup position control means for outputting a signal for controlling the angle of the image picked up by the image pickup means based on the result of the curved surface calculation means, and the image pickup angle of the image pickup means according to the signal. An image pickup position drive means for adjusting is provided, and the image pickup angle is changed when the curvature of the imaged image is too large.
That is, if the curvature is too large, it becomes difficult to ensure the wavelength reading accuracy, so the above-mentioned measures are taken. Specifically, as described in claim 5, the curvature values in the x-axis direction and the y-axis direction set in the captured image are compared, and when the curvature in the x-axis direction is equal to or greater than a predetermined value, , The imaging means is rotated so as to rotate the captured image in the y-axis direction until the curvature in the x-axis direction becomes equal to or less than a predetermined value. With this configuration, the wavelength reading accuracy can be secured even when the curvature in a certain direction is very large.

【0012】また、請求項3と請求項4は、請求項1ま
たは請求項2に記載の発明において、曲面演算手段と曲
面補正手段の具体的な構成を示したものである。まず、
請求項3では、塗装面の曲率を求めて凹凸波長の値を補
正するものであり、請求項4では、縞模様のパワースペ
クトルにおける基本縞のピーク波長と、塗装面の凹凸の
長波長領域のピーク波長とによって平面時における凹凸
波長の値を演算するものである。また、請求項6に記載
の発明は、膜厚演算に用いる塗料の塗着粘度ηの演算に
風の影響を含めるように構成したものである。このよう
に構成したことにより、塗装ブース内の換気用の風によ
る影響をなくし、実際の塗装工程においても正確に膜厚
を計測することが可能となる。
Further, claims 3 and 4 show specific configurations of the curved surface calculation means and the curved surface correction means in the invention according to claim 1 or 2. First,
In claim 3, the curvature of the coated surface is obtained to correct the value of the uneven wavelength, and in claim 4, the peak wavelength of the basic stripe in the power spectrum of the striped pattern and the long wavelength region of the uneven surface of the coated surface. The peak wavelength is used to calculate the value of the uneven wavelength in the plane. Further, the invention according to claim 6 is configured such that the influence of wind is included in the calculation of the coating viscosity η of the paint used for the film thickness calculation. With this configuration, it is possible to eliminate the influence of the ventilation air in the coating booth and to accurately measure the film thickness in the actual coating process.

【0013】[0013]

【実施例】図2は本発明の第1の実施例図であり、本発
明を車両の車体塗装ラインに適用した場合のブロック図
を示す。まず、図2に基づいて全体の構成の概略を説明
する。1は被塗装体の車体であり、塗装ライン上を所定
の速度で移動しながら塗装されるものである。2は塗装
直後における未乾燥(ウエット)状態の塗装表面を撮像
する撮像部である。なお、撮像する時点は、塗料を吹き
付けたのち所定時間(例えば1〜2分)後に行なう。そ
のため、撮像部2は塗装ラインの移動速度に合わせて、
例えば1〜2分後に車体が到達する位置に設置されてい
る。上記の撮像部2で撮像した塗装表面の粗さ情報(詳
細後述)は、画像処理部3で画像処理される。なお、こ
の画像処理部は画像情報を記憶する画像メモリとコンピ
ュータ等の演算装置で構成される。画像処理部3で処理
された画像処理データは粗さ演算部4に送られる。粗さ
演算部4では、入力した画像処理データから塗装表面の
粗さ情報、すなわち塗装表面の凹凸のピーク・ツウ・ピ
ークの面平均値に対応した粗さ度Ra(具体的には、後
記のパワースペクトル積分値Pを用いる)と凹凸波形の
波長λ(具体的には、後記の長波長λを用いる)を求め
る。また、曲面演算部5は、画像処理部3で処理された
画像処理データから被塗装体1の塗装面の曲率を算出す
る(詳細後述)。曲面補正演算部6は、粗さ演算部4で
求めた粗さ度Raと凹凸波形の波長λに対して、曲面演
算部5で求めた塗装面の曲率に応じた補正を与える(詳
細後述)。なお、一般的には凹凸波形の波長λに対して
のみ補正を行なえばよい。また、曲面演算部5と曲面補
正演算部6においては、上記の曲率演算とそれに応じた
波長λの補正方法の他に、パワースペクトルのピーク波
長から補正を行なう方法もある(詳細後述)。
FIG. 2 is a first embodiment of the present invention and is a block diagram when the present invention is applied to a vehicle body painting line. First, the outline of the entire configuration will be described with reference to FIG. Reference numeral 1 denotes a vehicle body of a body to be coated, which is coated while moving on a coating line at a predetermined speed. Reference numeral 2 denotes an image pickup unit for picking up an image of the undried (wet) coated surface immediately after coating. The image is taken after a predetermined time (for example, 1 to 2 minutes) after spraying the paint. Therefore, the imaging unit 2 adjusts to the moving speed of the coating line,
For example, it is installed at a position where the vehicle body can reach after 1 to 2 minutes. The roughness information of the painted surface (details will be described later) captured by the image capturing unit 2 is subjected to image processing by the image processing unit 3. The image processing unit is composed of an image memory that stores image information and a computing device such as a computer. The image processing data processed by the image processing unit 3 is sent to the roughness calculation unit 4. In roughness arithmetic unit 4, the roughness information painted surface from the input image processing data, that is, the roughness of R a (specifically corresponding to the average surface value of the unevenness of the peak-to-peak of the painted surface, below And the wavelength λ of the concavo-convex waveform (specifically, the long wavelength λ described later is used). In addition, the curved surface calculation unit 5 calculates the curvature of the coating surface of the object 1 to be coated from the image processing data processed by the image processing unit 3 (details will be described later). The curved surface correction calculation unit 6 gives a correction according to the curvature of the coated surface calculated by the curved surface calculation unit 5 to the roughness Ra and the wavelength λ of the uneven waveform calculated by the roughness calculation unit 4 (details will be described later). ). In general, the correction may be made only for the wavelength λ of the uneven waveform. Further, in the curved surface calculation unit 5 and the curved surface correction calculation unit 6, in addition to the above-described curvature calculation and the correction method of the wavelength λ corresponding thereto, there is also a method of performing correction from the peak wavelength of the power spectrum (details will be described later).

【0014】また、塗装条件入力部7は、例えばキーボ
ード等の入力手段であり、塗料の種類、揮発成分の含有
量等の塗料の成分情報、塗料の粘度、温度等の塗装条件
を入力する。また、膜厚演算部8は、曲面補正演算部6
から与えられる補正後の粗さ情報(Ra、λ)から粗さ
度Raの時間変化量ΔRaを算出し、該ΔRaおよび波長
λと上記塗装条件入力部8からの塗装条件とに基づいて
ウエット状態の塗装膜厚を演算する。上記膜厚演算部8
で求めた膜厚の値は、液晶表示装置やCRT表示装置等
の表示器9で表示して作業員に提示すると共に、塗装条
件制御システム10へ送られ、塗装ガン11の動作条件
を最適条件に保つように制御する。なお、上記の粗さ演
算部4、曲面演算部5、曲面補正演算部6、膜厚演算部
8は、コンピュータ等の演算装置で構成される。
The coating condition input unit 7 is, for example, an input means such as a keyboard, and inputs the component information of the coating such as the type of the coating and the content of the volatile component, the coating conditions such as the viscosity of the coating and the temperature. In addition, the film thickness calculation unit 8 includes the curved surface correction calculation unit 6
Roughness information after correction supplied from (R a, lambda) calculates a time variation [Delta] R a roughness degree R a from and to the coating conditions from the [Delta] R a and the wavelength lambda and the coating condition input unit 8 Based on this, the wet coating thickness is calculated. The film thickness calculator 8
The value of the film thickness obtained in step 1 is displayed on a display 9 such as a liquid crystal display device or a CRT display device and presented to a worker, and is also sent to a coating condition control system 10 so that the operating conditions of the coating gun 11 are optimized. Control to keep on. The roughness calculation unit 4, the curved surface calculation unit 5, the curved surface correction calculation unit 6, and the film thickness calculation unit 8 are configured by a calculation device such as a computer.

【0015】次に作用を説明する。まず、本発明におけ
る膜厚測定の原理について説明する。本発明における膜
厚測定方法は、塗料を塗布した直後の未乾燥状態、すな
わちウエット状態の塗装表面の平滑化現象に着目して塗
装膜厚を測定するものである。図3は、塗装後の塗膜の
断面図である。塗装直後には、(a)に示すように、塗
装表面は初期の付着粒子の結合によって凹凸状態になっ
ている。そして時間の経過と共に、(b)に示すよう
に、レベリング力によって次第に平滑化され、最終的に
は、(c)に示すように、平滑化状態となる。本発明に
おいては、このような平滑化現象に着目し、ウエット状
態における塗装表面の凹凸状態を測定し、それによって
平滑化後、或いは乾燥後の塗装膜厚を算出するものであ
る。上記のごときウエット状態における凹凸状態を測定
するには、光干渉式表面粗さ計など種々の方法(例えば
「機械工学便欄 日本機械学会1989年9月30日
新版3刷発行 B2編 207頁〜208頁」に記載)
があるが、ここでは撮像手段(例えばCCDカメラ)で
塗装表面を撮像し、その情報を画像処理する方法につい
て説明する。
Next, the operation will be described. First, the principle of film thickness measurement in the present invention will be described. The film thickness measuring method in the present invention measures the coating film thickness by paying attention to the smoothing phenomenon of the coating surface in an undried state immediately after coating the coating material, that is, in a wet state. FIG. 3 is a sectional view of the coating film after coating. Immediately after coating, as shown in (a), the coated surface is in an uneven state due to the initial bonding of the adhered particles. Then, with the lapse of time, as shown in (b), it is gradually smoothed by the leveling force, and finally becomes a smoothed state as shown in (c). In the present invention, paying attention to such a smoothing phenomenon, the uneven state of the coating surface in a wet state is measured, and thereby the coating film thickness after smoothing or after drying is calculated. In order to measure the uneven state in the wet state as described above, various methods such as an optical interference type surface roughness meter (for example, “Mechanical Engineering Flight Section, Japan Society of Mechanical Engineers, September 30, 1989”) are used.
3rd edition of new edition, B2, pp. 207-208 ")
However, here, a method will be described in which the coating surface is imaged by an image pickup means (for example, a CCD camera) and the information is image-processed.

【0016】図4は、撮像部2の一例を示す断面図であ
る。図4に示すように、撮像部の基本的構成は、光源3
1、明暗パタン板32、反射鏡33、レンズ34、CC
Dカメラ35から成る。上記の明暗パタン板32は、所
定間隔(例えば1mm間隔)で直線状のスリットが設け
られた不透明板(または透明板に所定間隔で不透明なス
トライプパタンを印刷したもの)である。そして光源3
1からの平行光線を上記明暗パタン板32と反射鏡33
とレンズ34とを介して塗装面に斜め方向から照射する
ことにより、被塗装体上にスリットに対応した縞模様を
つくる。この縞模様は、被塗装体上の凹凸に応じて歪ん
だ波形となる。その反射光をCCDカメラ35で撮像
し、上記の歪んだ縞模様、すなわち表面粗さの情報を入
力するようになっている。上記のごとき縞模様の画像情
報を画像処理し、パワースペクトル周波数分析(例えば
高速フーリエ変換処理:FFT)を行なってパワースペ
クトルPSを求める。
FIG. 4 is a sectional view showing an example of the image pickup section 2. As shown in FIG. 4, the basic configuration of the imaging unit is the light source 3
1, bright and dark pattern plate 32, reflecting mirror 33, lens 34, CC
It consists of a D camera 35. The bright / dark pattern plate 32 is an opaque plate (or a transparent plate on which opaque stripe patterns are printed at predetermined intervals) provided with linear slits at predetermined intervals (for example, 1 mm intervals). And light source 3
The parallel light beam from the light source 1 is reflected by the bright / dark pattern plate 32 and the reflecting mirror 33.
By irradiating the coated surface obliquely through the lens 34 and the lens 34, a striped pattern corresponding to the slit is formed on the coated object. This striped pattern has a distorted waveform according to the irregularities on the object to be coated. The reflected light is imaged by the CCD camera 35, and the distorted striped pattern, that is, the information of the surface roughness is input. Image information of the striped pattern as described above is subjected to image processing, and power spectrum frequency analysis (for example, fast Fourier transform processing: FFT) is performed to obtain the power spectrum PS.

【0017】図5は、上記パワースペクトルPSの周波
数特性図であり、縦軸はパワースペクトルPS、横軸は
周波数f(波長λの逆数、f=1/λ)である。図5に
おいて、第1のピーク波形は、前記スリットに対応し
た基本縞による基本波形のパワースペクトル、第2のピ
ーク波形は、塗装表面の凹凸波形の長波長領域(10
〜1mm程度)に対応したパワースペクトル、第3のピ
ーク波形は、凹凸波形の中波長領域(1〜0.1mm
程度)に対応したパワースペクトル、第4のピーク波形
は、凹凸波形の短波長領域(0.1mm以下)に対応
したパワースペクトルを示す。上記のパワースペクトル
波形において、凹凸波形の長波長領域のピーク波長、す
なわち第2のピーク波形のピーク値に対応した波長λ
を求め、さらに表面の粗さを表示する値として、第2の
ピーク波形の積分値(斜線部分の面積)を求め、それ
をパワースペクトル積分値Pとする。上記の波長λ(長
波長領域のピーク波長)とパワースペクトル積分値Pと
は、下記のごとく膜厚と関係があり、これらの値に基づ
いて、下記の平滑化理論式を用いて膜厚を算出すること
が出来る。
FIG. 5 is a frequency characteristic diagram of the power spectrum PS, in which the vertical axis represents the power spectrum PS and the horizontal axis represents the frequency f (the reciprocal of the wavelength λ, f = 1 / λ). In FIG. 5, the first peak waveform is the power spectrum of the basic waveform formed by the basic stripes corresponding to the slits, and the second peak waveform is the long wavelength region (10) of the uneven waveform on the coating surface.
Power spectrum corresponding to ~ 1 mm), the third peak waveform is the uneven wavelength waveform in the middle wavelength region (1 to 0.1 mm).
The fourth peak waveform shows the power spectrum corresponding to the short wavelength region (0.1 mm or less) of the uneven waveform. In the above power spectrum waveform, the peak wavelength in the long wavelength region of the uneven waveform, that is, the wavelength λ corresponding to the peak value of the second peak waveform.
Then, the integrated value (area of the shaded area) of the second peak waveform is obtained as a value for displaying the surface roughness, and this is taken as the power spectrum integrated value P. The wavelength λ (peak wavelength in the long wavelength region) and the power spectrum integral value P are related to the film thickness as follows, and based on these values, the film thickness can be calculated by using the following smoothing theoretical formula. It can be calculated.

【0018】まず、パワースペクトル積分値Pによる平
滑化特性を説明すると、表面の凹凸(ピーク・ツウ・ピ
ーク値)の面積平均値に相当する表面粗さRaとパワー
スペクトル積分値Pとは、図6に示すような関係にあ
り、下記(数1)式、(数2)式に示す関係がある。 P=Q+k×√Ra …(数1) Ra={(P−Q)/k}2 …(数2) ただし、上式において、Qは粗さ補正値、kは粗さ変換
係数である。パワースペクトル解析値による平滑化理論
式の導出では、まず、ウエット塗膜平滑化理論式(近似
式)として、表面粗さ度Raは下記(数3)式で表され
る。 Ra=Ra0・exp(−t/τ) …(数3) ただし、Ra0はRaの初期値(時点0すなわち塗装直後
の値)、tは塗装後の経過時間である。また、τは粘性
流体の基本式から導出された時定数であり、後記(数
8)式に示すごときものである。上記(数2)式を(数
3)式に代入すると、下記(数4)式が得られる。 {(P−Q)/k}2={(P0−Q0)/k}2 exp(−t/τ) …(数4) ただし、P0はPの初期値(時点0における値)であ
り、Q0はQの初期値である。上記(数4)式におい
て、P、P0をそれぞれの補正値Q、Q0を含んだ値とし
て、(P0−Q0)→P0、(P−Q)→Pと示せば、
(数4)式は下記(数5)式のように表せる。 P=P0・exp(−t/2τ) …(数5) また、時定数τは下記(数6)式で示される。 τ=3ηλ4/16π4γh3 …(数6) ただし、ηは塗料の粘度、λは前記の長波長領域のピー
ク波長、γは塗膜の表面張力、hはウエット状態におけ
る膜厚(撮像部分の平均値)である。以上から、パワー
スペクトル解析値による塗装膜厚hは、下記(数7)式
で示すようになる。
[0018] First, explaining the smoothing characteristics of the power spectrum integral value P, and the surface of the uneven surface mean corresponding surface roughness value R a and the power spectrum integral value P (peak-to-peak value), There is a relationship as shown in FIG. 6, and there is a relationship as shown in the following (Formula 1) and (Formula 2). P = Q + k × √R a (Equation 1) Ra = {(P−Q) / k} 2 (Equation 2) However, in the above equation, Q is a roughness correction value and k is a roughness conversion coefficient. is there. In the derivation of the smoothing theoretical formula based on the power spectrum analysis value, first, the surface roughness R a is represented by the following (Formula 3) as a wet coating smoothing theoretical formula (approximate formula). R a = R a0 · exp (−t / τ) ( Equation 3) where R a0 is the initial value of R a (time point 0, that is, the value immediately after coating), and t is the elapsed time after coating. Further, τ is a time constant derived from the basic formula of the viscous fluid, and is as shown in the following formula (Equation 8). By substituting the equation (2) into the equation (3), the following equation (4) is obtained. {(P−Q) / k} 2 = {(P 0 −Q 0 ) / k} 2 exp (−t / τ) (Equation 4) where P 0 is the initial value of P (value at time 0) And Q 0 is the initial value of Q. In the above formula (4), if P and P 0 are values including the respective correction values Q and Q 0, and expressed as (P 0 −Q 0 ) → P 0 , (P−Q) → P,
The equation (4) can be expressed as the following equation (5). P = P 0 · exp (−t / 2τ) (Equation 5) The time constant τ is expressed by the following (Equation 6). τ = 3ηλ 4 / 16π 4 γh 3 (Equation 6) where η is the viscosity of the paint, λ is the peak wavelength of the long wavelength region, γ is the surface tension of the coating film, and h is the film thickness in the wet state (imaging The average value of the part). From the above, the coating film thickness h by the power spectrum analysis value becomes as shown by the following (Formula 7).

【0019】[0019]

【数7】 [Equation 7]

【0020】ただし、P1は時点t1におけるパワースペ
クトル積分値Pの値、P2は時点t2(ただし−1<t2
におけるPの値である。なお、τ'iは下記(数8)式で
示される。 τ'i=3η(ti)・λ4/16π4γ …(数8) ただし、i=1,2であり、η(ti)は塗料の粘度が塗
装後の経過時間の関数であることを示す。すなわち、塗
装条件入力手段7から入力するのは、塗装前における塗
料の粘度ηであるが、塗装後の塗着粘度は、塗装後の経
過時間に応じて変化する値η(ti)となる。この値は、
塗料組成(塗料内の揮発成分の割合等)や風速などによ
って定まる値である。上記(数7)式から判るように、
塗料の粘度η、塗膜の表面張力γ、凹凸波形の長波長領
域のピーク波長λ、塗装後の2つの時点t1、t2におけ
るパワースペクトル積分値Pの値から、ウエット状態に
おける膜厚hを求めることが出来る。上記の各数値のう
ち、塗料の粘度ηと塗膜の表面張力γは、塗料の特性に
よって定まる値であるから、予め判っている値を入力
し、長波長領域のピーク波長λとパワースペクトル積分
値Pの値は、前記の画像情報を処理した値を用いる。
However, P 1 is the value of the power spectrum integral value P at the time point t 1 , and P 2 is the time point t 2 (where −1 <t 2 ).
Is the value of P in. Note that τ ′ i is expressed by the following (Equation 8). τ ′ i = 3 η (t i ) · λ 4 / 16π 4 γ (Equation 8) where i = 1, 2 and η (t i ) is a function of the viscosity of the paint and the elapsed time after painting. Indicates that. That is, what is input from the coating condition input means 7 is the viscosity η of the coating material before coating, but the coating viscosity after coating is a value η (t i ) that changes according to the elapsed time after coating. . This value is
It is a value determined by the paint composition (such as the proportion of volatile components in the paint) and the wind speed. As can be seen from the above equation (7),
From the viscosity η of the coating material, the surface tension γ of the coating film, the peak wavelength λ of the long wavelength region of the uneven waveform, and the power spectrum integral value P at two time points t 1 and t 2 after coating, the film thickness h in the wet state Can be asked. Of the above numerical values, the viscosity η of the paint and the surface tension γ of the coating film are values that are determined by the characteristics of the paint, so enter the values that are known in advance, and enter the peak wavelength λ in the long wavelength region and the power spectrum integration. As the value P, a value obtained by processing the image information is used.

【0021】図7は、上記(数7)式を用いた平滑化理
論値と測定値を比較したウエット平滑化動特性(パワー
スペクトル積分値P)を示す特性図である。図7におい
て、横軸は塗装後の経過時間、縦軸はパワースペクトル
積分値Pである。上記の測定は、塗布直後の画像を撮像
部2で撮影し、パワースペクトル解析を行なったもので
ある。図7から、測定値は理論値とほぼ一致した平滑化
特性となっていることがわかる。また、表1は、膜厚6
0μmと54μmの2つのサンプルに対して、上記(数
7)式の推定式を用いて膜厚hを計測した結果を示す表
である。表1に示すように、数μmの精度で計測可能で
あることが判る。
FIG. 7 is a characteristic diagram showing a wet smoothing dynamic characteristic (power spectrum integral value P) obtained by comparing a smoothed theoretical value and a measured value using the equation (7). In FIG. 7, the horizontal axis is the elapsed time after coating, and the vertical axis is the power spectrum integral value P. In the above measurement, an image immediately after coating is taken by the imaging unit 2 and power spectrum analysis is performed. From FIG. 7, it can be seen that the measured value has a smoothing characteristic that is substantially in agreement with the theoretical value. Table 1 shows that the film thickness is 6
9 is a table showing the results of measuring the film thickness h using the estimation formula of (Equation 7) for two samples of 0 μm and 54 μm. As shown in Table 1, it can be seen that measurement can be performed with an accuracy of several μm.

【0022】[0022]

【表1】 [Table 1]

【0023】図2の実施例においては、撮像部2、画像
処理部3、粗さ演算部4、膜厚演算部8において、上記
のごとき処理を行ない、撮像個所の膜厚hを求める。
In the embodiment shown in FIG. 2, the image pickup section 2, the image processing section 3, the roughness calculating section 4, and the film thickness calculating section 8 perform the above-described processing to obtain the film thickness h at the image pickup point.

【0024】また、前記(数7)式においては、塗装後
の2つの時点t1とt2における2つの値P1、P2を用
い、粗さ情報の時間変化量を用いて演算している。その
ため、塗装後に2つの時点で同一個所を撮像する必要が
ある。このためには、塗装ライン上の車体の移動に合わ
せて撮像部2を移動させる必要があるので、装置が複雑
になる。それを避けるためには、次のような方法があ
る。すなわち、被塗装体である車体の他に、テストピー
スを用意して被塗装体と同じ条件で塗装を行ない、時点
1(例えばt1=10秒、t1<t2)における値P
1は、テストピースの画像情報を処理して求めた値を用
いるようにする。このようにすれば、撮像部2は時点t
2(例えば塗装1〜2分後)において1回のみの撮像を
行なえばよい。なお、本実施例においては、基本的な測
定を塗装面の撮像と画像処理によって行ない、塗装表面
の粗さの情報としてパワースペクトル積分値Pと長波長
領域のピーク波長λとを用いて演算を行なう場合を例示
した。しかし、塗装表面の粗さ情報としては、例えば、
前記本出願人の先行出願(特願平4−306966号)
に記載のように、光干渉式表面粗さ計を用い、凹凸のピ
ーク・ツウ・ピークと凹凸の波長λに基づいて演算する
方法、或いは上記光干渉式表面粗さ計の測定結果から表
面の平均粗さ度Raと凹凸の平均波長λaとを用いて演算
する方法などがあり、いずれを用いてもよい。
Further, in the equation (7), two values P 1 and P 2 at two time points t 1 and t 2 after coating are used to calculate using the time variation of roughness information. There is. Therefore, it is necessary to image the same place at two points after painting. For this purpose, it is necessary to move the image pickup unit 2 in accordance with the movement of the vehicle body on the coating line, which complicates the apparatus. To avoid this, there are the following methods. That is, a test piece is prepared in addition to the vehicle body that is the object to be coated, and coating is performed under the same conditions as the object to be coated, and the value P at time t 1 (for example, t 1 = 10 seconds, t 1 <t 2 ).
1 uses the value obtained by processing the image information of the test piece. In this way, the image pickup unit 2 is set to the time point t.
In 2 (for example, 1 to 2 minutes after coating), the image capturing may be performed only once. In the present embodiment, basic measurement is performed by imaging and image processing of the painted surface, and calculation is performed using the power spectrum integral value P and the peak wavelength λ of the long wavelength region as information on the roughness of the painted surface. The case where it does is illustrated. However, as the coating surface roughness information, for example,
Prior application of the applicant (Japanese Patent Application No. 4-306966)
As described in, using an optical interferometric surface roughness meter, a method of calculating based on the peak-to-peak of unevenness and the wavelength λ of unevenness, or from the measurement result of the optical interference type surface roughness meter of the surface There is a method of calculating using the average roughness R a and the average wavelength λ a of the unevenness, and any method may be used.

【0025】また、これまでの計測は、ウエット状態の
膜厚を算出するものであるが、ウエット状態の膜厚と乾
燥後のドライ膜厚とには、塗料中の揮発成分に応じた一
定の相関関係がある。したがって計測したウエット膜厚
に塗料の内容に応じて定まる係数を乗算することによ
り、ドライ膜厚を容易に推定することが出来る。
Further, the measurement up to now is to calculate the film thickness in the wet state, but the film thickness in the wet state and the dry film thickness after drying are constant depending on the volatile components in the paint. There is a correlation. Therefore, the dry film thickness can be easily estimated by multiplying the measured wet film thickness by a coefficient determined according to the content of the coating material.

【0026】次に、本発明における曲面補正について説
明する。図8は、撮像部2で撮像した画像の一例図であ
り、(a)は塗装面が平面の場合、(b)は塗装面が曲
面の場合(x軸方向で湾曲)の画像を示す。塗装面が平
坦な場合は、(a)に示すように、画像の外形は前記図
4の撮像部2から投射した画像と同じ円形になり、明暗
パタン板32の縞模様が塗装表面の凹凸に応じて歪んだ
形で現われる。これに対して曲面の場合は、(b)に示
すように、曲面方向が縮んだ楕円形状になる。なお、図
8においては、縞模様の断続方向をx軸、それと直角方
向をy軸としている。
Next, the curved surface correction in the present invention will be described. 8A and 8B are examples of images captured by the image capturing unit 2. FIG. 8A illustrates an image when the coating surface is a flat surface, and FIG. 8B illustrates an image when the coating surface is a curved surface (curved in the x-axis direction). When the coated surface is flat, as shown in (a), the outer shape of the image becomes the same circle as the image projected from the image pickup unit 2 in FIG. 4, and the striped pattern of the light-dark pattern plate 32 becomes uneven on the coated surface. Appears in a distorted form accordingly. On the other hand, in the case of a curved surface, as shown in (b), the curved surface direction becomes an elliptical shape. In FIG. 8, the intermittent direction of the striped pattern is the x-axis, and the direction orthogonal thereto is the y-axis.

【0027】曲率演算部5では、上記のごとき画像デー
タを用い下記の手順で塗装表面の曲率rを導出する。ま
ず、図8(b)に示すように楕円形状をした画像エリア
のx軸、y軸方向の最大長(明部エリア)x、yを画像
上で導出する。導出方法は2値化された各軸上の初期明
点位置を左右から検索することによって最大長を算出す
る。次に、凸曲率をもつ塗膜面は一般に凹レンズ相当の
作用をするため、図4の撮像部2と凸曲面の塗膜面の光
学系は図9に示すようになる。このような光学系の距離
定数より、塗膜表面のx方向の曲率rは下記(数9)式
で与えられる。なお、y方向も同様に算出できる。
The curvature calculation unit 5 uses the image data as described above to derive the curvature r of the coating surface according to the following procedure. First, as shown in FIG. 8B, the maximum lengths (bright area) x and y in the x-axis and y-axis directions of the elliptical image area are derived on the image. The derivation method calculates the maximum length by searching the binarized initial bright point position on each axis from the left and right. Next, since the coating surface having a convex curvature generally acts as a concave lens, the image pickup unit 2 of FIG. 4 and the optical system of the coating surface of the convex curved surface are as shown in FIG. From the distance constant of such an optical system, the curvature r in the x direction of the coating film surface is given by the following (Formula 9). The y direction can be calculated in the same manner.

【0028】[0028]

【数9】 [Equation 9]

【0029】ただし、 x:計測されたx軸最大長 x0:塗装面が平面の場合のx軸最大長(既知の値) L1:CCDカメラ35と塗膜面との距離 L2:光源31と塗膜面との距離 次に、図10に示される曲率rと補正係数Kの関係よ
り、波長λについての曲率rによる補正係数Kを求め
る。なお、図10は実験よって求めた関係式であり、縦
軸は補正係数K、横軸は曲率rの逆数(1/r=R:曲
面)を示す。上記のようにして求めた補正係数Kによっ
て、前記の膜厚演算における長波長領域のピーク波長λ
の値を補正する。すなわち、曲面部における実測波長が
λであった場合、それを補正した平面相当の実波長λ'
は、下記(数10)式で示される。
Here, x: measured maximum x-axis length x 0 : maximum x-axis length when coating surface is flat (known value) L 1 : distance between CCD camera 35 and coating surface L 2 : light source Distance between 31 and coating surface Next, a correction coefficient K for the wavelength λ by the curvature r is obtained from the relationship between the curvature r and the correction coefficient K shown in FIG. Note that FIG. 10 is a relational expression obtained by experiments, in which the vertical axis represents the correction coefficient K and the horizontal axis represents the reciprocal of the curvature r (1 / r = R: curved surface). Based on the correction coefficient K obtained as described above, the peak wavelength λ in the long wavelength region in the above film thickness calculation.
Correct the value of. That is, when the measured wavelength at the curved surface is λ, the actual wavelength λ'corresponding to the corrected plane is λ '.
Is expressed by the following equation (10).

【0030】[0030]

【数10】 [Equation 10]

【0031】ただし a:定数 R=1/r 上記のようにして算出した実波長λ'を用いて前記のよ
うにして膜厚演算を行なえば、曲面においても正確に膜
厚を計測することが出来る。図2の実施例においては、
曲面演算部5で上記の補正係数Kを求める演算を行な
い、曲面補正演算部6で上記の実波長λ'を求める演算
を行なう。そして膜厚演算部8では、曲面補正演算部6
から与えられるパワースペクトル積分値Pと補正後の実
波長λ'と塗装条件入力部8からの塗装条件とに基づい
てウエット状態の塗装膜厚hを演算する。
However, a: constant R = 1 / r If the film thickness is calculated as described above using the actual wavelength λ ′ calculated as described above, the film thickness can be accurately measured even on a curved surface. I can. In the embodiment of FIG. 2,
The curved surface calculation unit 5 performs the calculation to obtain the correction coefficient K, and the curved surface correction calculation unit 6 performs the calculation to obtain the actual wavelength λ ′. In the film thickness calculation unit 8, the curved surface correction calculation unit 6
The coating film thickness h in the wet state is calculated based on the power spectrum integral value P given from the above, the corrected actual wavelength λ ′, and the coating condition from the coating condition input unit 8.

【0032】なお、表示器9にはウエット膜厚hの他、
パワースペクトル積分値P、波長λ、補正後の実波長
λ'、塗膜面の曲率r等を表示してもよい。また、上記
の説明においては、x軸方向についてのみ曲率rを求め
て補正を行なっている。これは図8に示すように縞模様
の断続方向をx軸としているためであるが、y軸方向に
ついても同様に曲率を求め、曲率の大きい方の値を用い
て補正係数Kを求めるように構成してもよい。また、上
記の説明においては、曲面補正は波長λについてのみ行
なっているが、パワースペクトル積分値Pについても同
様に補正することが出来る。すなわち、前記図10に示
した波長λについての曲率rと補正係数Kとの関係と同
様に、パワースペクトル積分値Pについての曲率rと補
正係数K'との関係を予め実験で求めておき、その関係
に基づいて、算出した曲率rから補正係数K'を求め、
それを測定したパワースペクトル積分値Pに乗算して、
補正後の実パワースペクトル積分値P'を求めればよ
い。
In addition to the wet film thickness h on the display 9,
The power spectrum integral value P, the wavelength λ, the corrected actual wavelength λ ′, the curvature r of the coating film surface, and the like may be displayed. In the above description, the curvature r is obtained and corrected only in the x-axis direction. This is because the intermittent direction of the striped pattern is set as the x-axis as shown in FIG. 8, but the curvature is similarly obtained in the y-axis direction, and the correction coefficient K is obtained using the larger value of the curvature. You may comprise. Further, in the above description, the curved surface correction is performed only for the wavelength λ, but the power spectrum integral value P can be similarly corrected. That is, similar to the relationship between the curvature r with respect to the wavelength λ and the correction coefficient K shown in FIG. 10, the relationship between the curvature r and the correction coefficient K ′ with respect to the power spectrum integral value P is previously obtained by an experiment, Based on the relationship, the correction coefficient K ′ is calculated from the calculated curvature r,
Multiply it by the measured power spectrum integral value P,
The corrected actual power spectrum integral value P ′ may be obtained.

【0033】次に、曲面補正の他の方法について説明す
る。前記図5に示したように、パワースペクトルPSの
周波数特性において、第1のピーク波形は、撮像部2
のスリットに対応した基本縞による基本波形のパワース
ペクトル、ピーク波形は、塗装表面の凹凸波形の長波
長領域(10〜1mm程度)に対応したパワースペクト
ルである。これらのパワースペクトルのピーク値は、塗
装面の曲率の応じて変化するが、本発明者らの実験によ
ると、基本縞のピーク周波数fと長波長領域のピーク周
波数f'には、塗装面の曲率に関わりなく一定の関係が
あることが判明した。図11は、パワースペクトルPS
の周波数特性の曲面依存性を示す特性図である。図11
において、縦軸はパワースペクトルPS、横軸は周波数
f(1/λ)を示し、実線(A)は塗装面が平面の特
性、点線(B)は塗装面が曲率r1の場合の特性、破線
(C)は塗装面が曲率r2(r1<r2)の場合の特性を
示す。
Next, another method of curved surface correction will be described. As shown in FIG. 5, in the frequency characteristic of the power spectrum PS, the first peak waveform is the image pickup unit 2
The power waveform and the peak waveform of the basic waveform by the basic stripes corresponding to the slit are the power spectrum corresponding to the long wavelength region (about 10 to 1 mm) of the uneven waveform of the coating surface. Although the peak values of these power spectra change according to the curvature of the coated surface, according to the experiments by the present inventors, the peak frequency f of the basic fringe and the peak frequency f ′ of the long wavelength region are It turns out that there is a certain relationship regardless of the curvature. FIG. 11 shows the power spectrum PS
It is a characteristic view which shows the curved surface dependence of the frequency characteristic of. Figure 11
In, the vertical axis shows the power spectrum PS, the horizontal axis shows the frequency f (1 / λ), the solid line (A) shows the characteristics of the coated surface being flat, and the dotted line (B) shows the characteristics of the coating surface having the curvature r 1 . The broken line (C) shows the characteristic when the coated surface has a curvature r 2 (r 1 <r 2 ).

【0034】図11から判るように、曲率が大きくなる
に従ってピーク周波数は大きく(ピーク波長λは小さ
く)なるが、曲率に関わりなく、下記(数11)式の関
係が成立することが判明した。
As can be seen from FIG. 11, the peak frequency increases (the peak wavelength λ decreases) as the curvature increases, but it has been found that the relationship of the following (Equation 11) holds regardless of the curvature.

【0035】[0035]

【数11】 [Equation 11]

【0036】ただし f0 :平面時の基本縞ピーク周波
数 f0':平面時の長波長ピーク周波数 fr :曲率r時の基本縞ピーク周波数 fr':曲率r時の長波長ピーク周波数 上記(数11)式から、平面時の長波長ピーク周波数f
0'は下記(数12)式で求められる。
However, f 0 : basic fringe peak frequency on a plane f 0 ′: long wavelength peak frequency on a plane fr : basic fringe peak frequency on a curvature r f r ′: long wavelength peak frequency on a curvature r From equation (11), the long wavelength peak frequency f in the plane
0 'is determined by the following equation (12) below.

【0037】[0037]

【数12】 [Equation 12]

【0038】(数12)式において、平面時の基本縞ピ
ーク周波数f0の値は、予め測定可能な既知の値であ
る。また、曲率rのときの基本縞ピーク周波数frと長
波長ピーク周波数fr'とは前記の画像処理によって実測
値として求められる。したがって曲率rのときの長波長
ピーク周波数fr'を平面時の値f0'に換算するには、f
r'にf0/frを乗算してやればよい。なお、前記の膜厚
演算で説明したように波長λで表現する場合には、下記
(数13)式のように補正すればよい。
In the equation (12), the value of the basic fringe peak frequency f 0 in the plane is a known value that can be measured in advance. Further, the basic fringe peak frequency fr and the long wavelength peak frequency fr 'when the curvature is r are obtained as actual measurement values by the image processing described above. Therefore, in order to convert the long-wavelength peak frequency f r ′ with the curvature r to the value f 0 ′ on the plane, f
to r 'may do it by multiplying the f 0 / f r. When the wavelength λ is used as described in the film thickness calculation, the correction may be performed according to the following (Equation 13).

【0039】[0039]

【数13】 [Equation 13]

【0040】ただし λ0 :平面時の基本縞ピーク波長 λ0':平面時の長波長ピーク波長 λr :曲率r時の基本縞ピーク波長 λr':曲率r時の長波長ピーク波長 この方法によれば、基本縞ピーク波長λrと長波長ピー
ク波長λr'とを求めるだけで簡単に曲面補正を行なうこ
とが出来る。上記の方法を前記図2の実施例に適用する
場合には、画像処理部3の画像処理データから曲面演算
部5でλrとλr'を求める演算を行ない、曲面補正演算
部6では、それらの値と予め記憶しておいたλ0の値か
らλ0'を求める演算を行なうように構成すればよい。な
お、λr'の値は、粗さ演算部4で求めた値を用いること
もできる。
Where λ 0 : basic fringe peak wavelength in plane λ 0 ': long wavelength peak wavelength in plane λ r : basic fringe peak wavelength in curvature r λ r ': long wavelength peak wavelength in curvature r According to the method, the curved surface can be easily corrected only by obtaining the basic fringe peak wavelength λ r and the long wavelength peak wavelength λ r '. When the above method is applied to the embodiment shown in FIG. 2, the curved surface calculation unit 5 calculates λ r and λ r ′ from the image processing data of the image processing unit 3, and the curved surface correction calculation unit 6 the calculation from the values of lambda 0 which has been previously stored their values determine the lambda 0 'may be configured to perform. As the value of λ r ′, the value calculated by the roughness calculator 4 can be used.

【0041】次に、図12は、本発明の第2の実施例の
ブロック図である。図12において、12は撮像位置制
御部、13は撮像位置駆動部であり、その他は図2と同
様である。前記図2の実施例においては、塗装面の曲率
に応じて波長λの値を補正するように構成しているが、
曲率があまり大きいと波長の読み取り精度を確保するこ
とが困難になる。この実施例は、その対策を行なったも
のである。
Next, FIG. 12 is a block diagram of a second embodiment of the present invention. In FIG. 12, 12 is an image pickup position control unit, 13 is an image pickup position drive unit, and the others are the same as in FIG. In the embodiment of FIG. 2, the value of the wavelength λ is corrected according to the curvature of the coated surface,
If the curvature is too large, it becomes difficult to secure the wavelength reading accuracy. In this embodiment, the countermeasure is taken.

【0042】図12において、撮像位置制御部12は、
曲面演算部5で算出されたx軸方向とy軸方向の曲率値
を比較し、x軸方向の曲率が非常に大(所定値以上)で
ある場合には、x軸方向の曲率が所定値以下になるまで
y軸方向に撮像画像を回転させるための回転指示信号を
出力する。そして撮像位置駆動部13は、上記の回転指
示信号に応じて撮像部2を回転させ、撮像画像を回転さ
せる。このようにしてx軸方向の曲率が所定値以下にな
ったら、そのx軸の曲率データを曲面補正演算部6に送
り、その値に前記のごとき補正を施す。上記のように、
或る軸方向の曲率が非常に大きい場合は、曲率の小さな
軸方向に撮像画像を回転させてやることにより、波長読
み取り精度を確保することが出来る。なお、撮像位置駆
動部13は、例えばサーボモータ等であり、撮像部2を
塗装面に対向したままでz軸←→y軸方向に回転させる
ものである。
In FIG. 12, the image pickup position control unit 12 is
The curvature values in the x-axis direction and the y-axis direction calculated by the curved surface calculation unit 5 are compared, and when the curvature in the x-axis direction is extremely large (equal to or more than a predetermined value), the curvature in the x-axis direction is a predetermined value. A rotation instruction signal for rotating the captured image in the y-axis direction is output until the following. Then, the image pickup position drive unit 13 rotates the image pickup unit 2 in accordance with the rotation instruction signal to rotate the picked-up image. When the curvature in the x-axis direction becomes equal to or less than the predetermined value in this way, the curvature data of the x-axis is sent to the curved surface correction calculation unit 6 and the value is corrected as described above. as mentioned above,
When the curvature in a certain axial direction is very large, the wavelength reading accuracy can be secured by rotating the captured image in the axial direction having a small curvature. The image pickup position drive unit 13 is, for example, a servomotor or the like, and rotates the image pickup unit 2 in the z-axis ← → y-axis direction while facing the coated surface.

【0043】次に、図13は、本発明の第3の実施例の
ブロック図である。図13において、環境条件入力部1
4は、塗料の種類、揮発成分の含有量等の塗料の成分情
報、塗料の粘度、温度等の塗装条件と、塗装ブース内の
環境条件、例えば風速を入力する。また、膜厚演算部1
5は、粗さ演算部4で求めた粗さ度および波長と、環境
条件入力部14からの条件とに基づいて、塗装の膜厚を
算出する。
Next, FIG. 13 is a block diagram of the third embodiment of the present invention. In FIG. 13, the environmental condition input unit 1
Reference numeral 4 is used to input paint component information such as paint type and volatile content, paint conditions such as paint viscosity and temperature, and environmental conditions inside the paint booth, such as wind speed. In addition, the film thickness calculation unit 1
Reference numeral 5 calculates the coating film thickness based on the roughness degree and wavelength obtained by the roughness calculation unit 4 and the condition from the environmental condition input unit 14.

【0044】以下、環境条件入力部14から入力する風
速情報について詳細に説明する。前記(数8)式に示す
ように、塗料の粘度η(ti)は時間の関数であり、下記
(数14)式で示される。 η(ti)=(η0+k1T)+(η1+k2T)t+k32 …(数14) ただし η0、η1:初期粘度係数 T:塗料温度 k1、k2:温度補正係数 k3:t2補正係数 上記(数14)式は、塗装ブース内の風の影響を無視し
た式であるが、風速の影響を含めた塗着粘度η(ti)'は
下記(数15)式で示される。 η(ti)'=(η0+k1T)+(η1+k2T)t+(eH+k3)t2 …(数15) ただし H:塗装ブース内の風速(m/sec) e:風補正係数 一般に、塗装ブース内の換気用風速は2〜4m/sec程
度である。
The wind speed information input from the environmental condition input unit 14 will be described in detail below. As shown in the equation (8), the viscosity η (t i ) of the paint is a function of time and is represented by the following equation (14). η (t i ) = (η 0 + k 1 T) + (η 1 + k 2 T) t + k 3 t 2 (Equation 14) where η 0 , η 1 : initial viscosity coefficient T: coating temperature k 1 , k 2 : temperature correction coefficient k 3: t 2 correction coefficient the equation (14) is a formula that ignores the effects of the wind in the painting booth, the coating viscosity eta (t i) 'is the following, including the effects of wind It is shown by the equation (15). η (t i ) '= (η 0 + k 1 T) + (η 1 + k 2 T) t + (eH + k 3 ) t 2 (Equation 15) where H: wind speed in coating booth (m / sec) e: wind Correction factor Generally, the ventilation wind speed in the coating booth is about 2 to 4 m / sec.

【0045】図14は、塗着粘度の特性図であり、
(A)は実験室内のおける無風状態の特性を(数14)
式で求めた場合の特性、(B)は(数15)式において
風速H=3.5m/secとして求めた場合の特性である。
このように、塗装ブース内の換気用の風の影響を含めて
塗着粘度ηを算出することにより、実際の塗装ラインに
おいても正確に塗装膜厚を計測することが出来る。な
お、上記図13の実施例と前記図2または図12の実施
例とを組合せ、曲面補正と風速補正との両方を行なうよ
うに構成することも当然可能である。
FIG. 14 is a characteristic diagram of coating viscosity.
(A) shows the characteristics of the windless state in the laboratory (Equation 14).
The characteristic obtained by the equation, (B) is the characteristic obtained when the wind speed H = 3.5 m / sec in the equation (15).
In this way, by calculating the coating viscosity η including the effect of the ventilation wind in the coating booth, the coating film thickness can be accurately measured even in the actual coating line. It is of course possible to combine the embodiment shown in FIG. 13 with the embodiment shown in FIG. 2 or 12 to perform both curved surface correction and wind speed correction.

【0046】[0046]

【発明の効果】以上説明したごとく本発明においては、
膜厚演算に用いる表面の粗さや波長の値に対して、塗装
面の曲面に対応した補正を施すように構成したことによ
り、塗装面が曲面であっても膜厚を正確に計測すること
が可能になる、という効果が得られる。また、膜厚演算
に用いる塗料の塗着粘度ηの演算に風の影響を含めるよ
うに構成したことにより、塗装ブース内の換気用の風に
よる影響をなくし、実際の塗装工程においても正確に膜
厚を計測することが出来る、という効果が得られる。
As described above, according to the present invention,
Since the surface roughness and wavelength values used for film thickness calculation are corrected according to the curved surface of the painted surface, the film thickness can be accurately measured even if the painted surface is curved. The effect that it becomes possible is obtained. In addition, since the influence of wind is included in the calculation of the coating viscosity η of the paint used for calculating the film thickness, the effect of ventilation wind in the coating booth is eliminated, and the film is accurately applied in the actual coating process. The effect is that the thickness can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の機能ブロック図。FIG. 1 is a functional block diagram of the present invention.

【図2】本発明の第1の実施例のブロック図。FIG. 2 is a block diagram of the first embodiment of the present invention.

【図3】塗装後の塗膜の状態を示す断面図。FIG. 3 is a cross-sectional view showing a state of a coating film after coating.

【図4】撮像部2の一例を示す断面図。FIG. 4 is a cross-sectional view showing an example of an imaging unit 2.

【図5】パワースペクトルPSの周波数特性図。FIG. 5 is a frequency characteristic diagram of a power spectrum PS.

【図6】表面の凹凸の面積平均値に相当する表面粗さR
aとパワースペクトル積分値Pと関係の関係を示す特性
図。
FIG. 6 is a surface roughness R corresponding to an average value of surface irregularities.
The characteristic view which shows the relationship of a and power spectrum integral value P.

【図7】(数7)式を用いた平滑化理論値と測定値を比
較したウエット平滑化動特性を示す特性図。
FIG. 7 is a characteristic diagram showing wet smoothing dynamic characteristics obtained by comparing a smoothed theoretical value using Equation (7) and a measured value.

【図8】撮像部2で撮像した画像の一例図であり、
(a)は塗装面が平面の場合、(b)は塗装面が曲面の
場合(x軸方向で湾曲)の画像を示す図。
FIG. 8 is an example diagram of an image captured by the image capturing unit 2,
FIG. 6A is a diagram showing an image when the coated surface is a flat surface, and FIG.

【図9】撮像部2と凸曲面の塗膜面の光学系を示す図。FIG. 9 is a diagram showing an imaging system 2 and an optical system of a coating surface having a convex curved surface.

【図10】曲率rと補正係数Kの関係を示す特性図。FIG. 10 is a characteristic diagram showing a relationship between a curvature r and a correction coefficient K.

【図11】パワースペクトルPSの周波数特性の曲面依
存性を示す特性図。
FIG. 11 is a characteristic diagram showing the curved surface dependence of the frequency characteristic of the power spectrum PS.

【図12】本発明の第2の実施例のブロック図。FIG. 12 is a block diagram of a second embodiment of the present invention.

【図13】本発明の第3の実施例のブロック図。FIG. 13 is a block diagram of a third embodiment of the present invention.

【図14】塗着粘度の特性図。FIG. 14 is a characteristic diagram of coating viscosity.

【図15】従来装置の一例の断面図。FIG. 15 is a cross-sectional view of an example of a conventional device.

【符号の説明】[Explanation of symbols]

1…被塗装体(ボディ) 8…膜厚演算部 2…撮像部 9…表示器 3…画像処理部 10…塗装条件制御
システム 4…粗さ演算部 11…塗装ガン 5…曲面演算部 12…撮像位置制御
部 6…曲面補正部 13…撮像位置駆動
部 7…塗装条件入力部 14…環境条件入力
部 15…膜厚演算部 100…撮像手段 106…膜厚演算
手段 101…画像処理手段 107…撮像位置
制御手段 102…粗さ演算手段 108…撮像位置
駆動手段 103…曲面演算手段 109…環境条件
入力手段 104…曲面補正手段 110…膜厚演算
手段 105…塗装条件入力手段
DESCRIPTION OF SYMBOLS 1 ... Body to be coated (body) 8 ... Film thickness calculation part 2 ... Imaging part 9 ... Indicator 3 ... Image processing part 10 ... Coating condition control system 4 ... Roughness calculation part 11 ... Coating gun 5 ... Curved surface calculation part 12 ... Imaging position control unit 6 ... Curved surface correction unit 13 ... Imaging position driving unit 7 ... Painting condition input unit 14 ... Environmental condition input unit 15 ... Film thickness calculation unit 100 ... Imaging unit 106 ... Film thickness calculation unit 101 ... Image processing unit 107 ... Imaging position control means 102 ... Roughness calculation means 108 ... Imaging position drive means 103 ... Curved surface calculation means 109 ... Environmental condition input means 104 ... Curved surface correction means 110 ... Film thickness calculation means 105 ... Painting condition input means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】塗料を塗布した直後の未乾燥塗装表面の粗
さを撮像する撮像手段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の粗さ度と、塗装表面の凹凸波形の波長と
を算出する粗さ演算手段と、 上記画像処理手段で処理された画像処理データと上記粗
さ演算手段の算出結果とのうちの少なくとも一方に基づ
いて、塗装面の曲面情報を求める曲面演算手段と、 上記粗さ演算手段で算出された粗さ度と波長に対して、
上記曲面演算手段で求めた結果に応じた補正処理を行な
い、上記粗さ度と波長のうちの少なくとも一方に補正を
与える曲面補正手段と、 少なくとも塗料の粘度を含む塗装条件を入力する塗装条
件入力手段と、 上記曲面補正手段による補正処理後の粗さ度および波長
と、上記塗装条件入力手段からの塗装条件とに基づい
て、塗装の膜厚を算出する膜厚演算手段と、 を備えたことを特徴とする塗装膜厚計測装置。
1. An image pickup means for picking up the roughness of the undried coating surface immediately after applying the paint, an image processing means for image-processing the image information from the image pickup means, and an image processed by the image processing means. Roughness calculating means for calculating the roughness of the coating surface and the wavelength of the uneven waveform of the coating surface based on the processing data, image processing data processed by the image processing means, and calculation of the roughness calculating means Based on at least one of the results, the curved surface calculating means for obtaining the curved surface information of the coating surface, and the roughness degree and the wavelength calculated by the roughness calculating means,
Curved surface correction means for performing a correction process according to the result obtained by the curved surface calculation means to correct at least one of the roughness and the wavelength, and a coating condition input for inputting coating conditions including at least the viscosity of the coating material. Means, and a film thickness calculating means for calculating the film thickness of the coating based on the roughness and wavelength after the correction processing by the curved surface correcting means and the coating condition from the coating condition inputting means. A coating film thickness measuring device characterized by.
【請求項2】塗料を塗布した直後の未乾燥塗装表面の粗
さを撮像する撮像手段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の粗さ度と、塗装表面の凹凸波形の波長と
を算出する粗さ演算手段と、 上記画像処理手段で処理された画像処理データと上記粗
さ演算手段の算出結果とのうちの少なくとも一方に基づ
いて、塗装面の曲面情報を求める曲面演算手段と、 上記粗さ演算手段で算出された粗さ度と波長に対して、
上記曲面演算手段で求めた結果に応じた補正処理を行な
い、上記粗さ度と波長のうちの少なくとも一方に補正を
与える曲面補正手段と、 上記曲面演算手段の結果に基づいて上記撮像手段による
撮像画像の角度を制御する信号を出力する撮像位置制御
手段と、 上記撮像位置制御手段の信号に応じて上記撮像手段の撮
像角度を調節する撮像位置駆動手段と、 少なくとも塗料の粘度を含む塗装条件を入力する塗装条
件入力手段と、 上記曲面補正手段による補正処理後の粗さ度および波長
と、上記塗装条件入力手段からの塗装条件とに基づい
て、塗装の膜厚を算出する膜厚演算手段と、 を備えたことを特徴とする塗装膜厚計測装置。
2. An image pickup means for picking up the roughness of the undried coating surface immediately after applying the paint, an image processing means for image-processing the image information from the image pickup means, and an image processed by the image processing means. Roughness calculating means for calculating the roughness of the coating surface and the wavelength of the uneven waveform of the coating surface based on the processing data, image processing data processed by the image processing means, and calculation of the roughness calculating means Based on at least one of the results, the curved surface calculating means for obtaining the curved surface information of the coating surface, and the roughness degree and the wavelength calculated by the roughness calculating means,
Curved surface correction means for performing correction processing according to the result obtained by the curved surface calculation means to correct at least one of the roughness and wavelength, and imaging by the imaging means based on the result of the curved surface calculation means. Image pickup position control means for outputting a signal for controlling the image angle, image pickup position drive means for adjusting the image pickup angle of the image pickup means according to the signal of the image pickup position control means, and coating conditions including at least the viscosity of the paint. Coating condition input means for inputting, a roughness and wavelength after correction processing by the curved surface correcting means, and a film thickness calculating means for calculating a coating film thickness based on the coating conditions from the coating condition input means. A coating film thickness measuring device comprising:
【請求項3】上記曲面演算手段は、上記画像処理手段の
画像処理データに基づいて塗装面の曲率を演算するもの
であり、 上記曲面補正手段は、上記曲面演算手段で求めた曲率に
応じて上記粗さ演算手段で求めた凹凸波長の値を補正す
るものである、ことを特徴とする請求項1または請求項
2に記載の塗装膜厚計測装置。
3. The curved surface calculating means calculates the curvature of the painted surface based on the image processing data of the image processing means, and the curved surface correcting means responds to the curvature calculated by the curved surface calculating means. The coating film thickness measuring device according to claim 1 or 2, wherein the value of the uneven wavelength obtained by the roughness calculating means is corrected.
【請求項4】上記撮像手段は、塗装面に投影した所定の
縞模様を撮像するものであり、 上記曲面演算手段は、上記画像処理手段の画像処理デー
タもしくは上記粗さ演算手段の演算結果に基づいて、上
記縞模様のパワースペクトルにおける基本縞のピーク波
長と、塗装面の凹凸の長波長領域のピーク波長と、を演
算するものであり、 上記曲面補正手段は、予め記憶している平面時での基本
縞のピーク波長を、上記曲面演算手段で求めた基本縞の
ピーク波長で除算した値に、上記長波長領域のピーク波
長を乗算することにより、補正後の凹凸波形の波長の値
を算出するものである、 ことを特徴とする請求項1または請求項2に記載の塗装
膜厚計測装置。
4. The image pick-up means picks up an image of a predetermined striped pattern projected on a painted surface, and the curved surface calculation means outputs image processing data of the image processing means or a calculation result of the roughness calculation means. On the basis of the above, the peak wavelength of the basic stripe in the power spectrum of the striped pattern and the peak wavelength of the long wavelength region of the unevenness of the coating surface are calculated, and the curved surface correction means is a flat surface stored in advance. The value obtained by dividing the peak wavelength of the basic fringes at the value obtained by dividing the peak wavelength of the basic fringes obtained by the curved surface calculating means by the peak wavelength of the long wavelength region, to obtain the wavelength value of the uneven waveform after correction. The coating film thickness measuring device according to claim 1 or 2, which is calculated.
【請求項5】上記曲面演算手段は、撮像した画像に設定
したx軸方向とy軸方向のそれぞれの曲率を演算するも
のであり、 上記撮像位置制御手段は、上記曲面演算手段で算出され
たx軸方向とy軸方向の曲率値を比較し、x軸方向の曲
率が予め定めた所定値以上である場合には、x軸方向の
曲率が所定値以下になるまでy軸方向に撮像画像を回転
させるための回転指示信号を出力するものであり、 撮像位置駆動手段は、上記の回転指示信号に応じて上記
撮像手段を回転駆動するものである、ことを特徴とする
請求項2に記載の塗装膜厚計測装置。
5. The curved surface calculating means calculates the respective curvatures in the x-axis direction and the y-axis direction set in the imaged image, and the imaging position control means is calculated by the curved surface calculating means. If the curvature values in the x-axis direction and the y-axis direction are compared and the curvature in the x-axis direction is equal to or larger than a predetermined value, a captured image in the y-axis direction until the curvature in the x-axis direction becomes equal to or smaller than the predetermined value. 3. A rotation instruction signal for rotating the image pickup device is output, and the image pickup position driving means rotates the image pickup means according to the rotation instruction signal. Coating film thickness measuring device.
【請求項6】塗料を塗布した直後の未乾燥塗装表面の粗
さを撮像する撮像手段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の粗さ度と、塗装表面の凹凸波形の波長と
を算出する粗さ演算手段と、 少なくとも塗料の粘度を含む塗装条件と、少なくとも風
速を含む塗装ブース内の環境条件とを入力する環境条件
入力手段と、 上記粗さ演算手段で求めた粗さ度および波長と、上記環
境条件入力手段からの条件とに基づいて、塗装の膜厚を
算出する膜厚演算手段と、 を備えたことを特徴とする塗装膜厚計測装置。
6. An image pickup means for picking up the roughness of the undried coating surface immediately after applying the coating material, an image processing means for image-processing the image information from the image pickup means, and an image processed by the image processing means. Roughness calculation means for calculating the roughness of the coating surface and the wavelength of the uneven waveform of the coating surface based on the processing data, the coating conditions including at least the viscosity of the coating, and the environment in the coating booth including at least the wind speed. Environmental condition input means for inputting conditions, a roughness degree and a wavelength obtained by the roughness calculation means, and a film thickness calculation means for calculating a coating film thickness based on the conditions from the environmental condition input means. And a coating film thickness measuring device.
JP09839194A 1994-05-12 1994-05-12 Paint film thickness measuring device Expired - Fee Related JP3321982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09839194A JP3321982B2 (en) 1994-05-12 1994-05-12 Paint film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09839194A JP3321982B2 (en) 1994-05-12 1994-05-12 Paint film thickness measuring device

Publications (2)

Publication Number Publication Date
JPH07306017A true JPH07306017A (en) 1995-11-21
JP3321982B2 JP3321982B2 (en) 2002-09-09

Family

ID=14218553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09839194A Expired - Fee Related JP3321982B2 (en) 1994-05-12 1994-05-12 Paint film thickness measuring device

Country Status (1)

Country Link
JP (1) JP3321982B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122024A (en) * 1994-10-24 1996-05-17 Nissan Motor Co Ltd Thickness measuring apparatus of coating film
JPH10253324A (en) * 1997-03-06 1998-09-25 Matsushita Electric Ind Co Ltd Method for measuring film thickness of multi-layer thin film, and method and device for manufacturing optical information recording medium
KR100738129B1 (en) * 2005-10-11 2007-07-10 현대자동차주식회사 Device for observation painting layer on the chassis
CN104482867A (en) * 2014-12-18 2015-04-01 西南交通大学 Method and device for processing images of locomotive brake shoes
TWI730149B (en) * 2016-09-02 2021-06-11 日商迪思科股份有限公司 Thickness measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266343A (en) * 1987-04-24 1988-11-02 Nippon Paint Co Ltd Method and device for measuring surface property
JPH01203910A (en) * 1988-02-09 1989-08-16 Sumitomo Metal Ind Ltd Measuring method for film thickness distribution
JPH06160071A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Apparatus for measuring thickness of wet paint film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266343A (en) * 1987-04-24 1988-11-02 Nippon Paint Co Ltd Method and device for measuring surface property
JPH01203910A (en) * 1988-02-09 1989-08-16 Sumitomo Metal Ind Ltd Measuring method for film thickness distribution
JPH06160071A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Apparatus for measuring thickness of wet paint film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122024A (en) * 1994-10-24 1996-05-17 Nissan Motor Co Ltd Thickness measuring apparatus of coating film
JPH10253324A (en) * 1997-03-06 1998-09-25 Matsushita Electric Ind Co Ltd Method for measuring film thickness of multi-layer thin film, and method and device for manufacturing optical information recording medium
KR100738129B1 (en) * 2005-10-11 2007-07-10 현대자동차주식회사 Device for observation painting layer on the chassis
CN104482867A (en) * 2014-12-18 2015-04-01 西南交通大学 Method and device for processing images of locomotive brake shoes
TWI730149B (en) * 2016-09-02 2021-06-11 日商迪思科股份有限公司 Thickness measuring device

Also Published As

Publication number Publication date
JP3321982B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JPH07306017A (en) Measurement device of thickness of coating film
JP2000111490A (en) Detection apparatus for coating face
EP2577265B1 (en) Apparatus and method for locating the centre of a beam profile
JP3326961B2 (en) Paint film thickness measuring device
CN109827607A (en) The scaling method and device of line-structured light weld seam tracking sensor
JP3326960B2 (en) Paint film thickness measuring device
JP2964800B2 (en) Wet film thickness measuring device
Imai et al. Random-dot pressure-sensitive paint for time-resolved measurement of deformation and surface pressure of transonic wing flutter
CN104568966A (en) Method and measuring device for evaluating structural differences of a reflecting surface
JP3322034B2 (en) Paint quality analyzer
Libsig et al. Accuracy enhancement of wind tunnel aerodynamic coefficients determination based on the coupling of balance data and optical angle of attack measurement
JP2950084B2 (en) Wet film thickness measuring device
JP3358434B2 (en) Paint quality analyzer
JP2964801B2 (en) Film thickness measuring device
JP3353494B2 (en) Paint quality analyzer
CN115077412A (en) Profile detection apparatus, profile detection method, and storage medium
JP3478443B2 (en) Control device for automatic coating machine
JP3327000B2 (en) Paint film thickness measuring device
JPH0854234A (en) Three-dimensional coordinate position measuring method
JP2950083B2 (en) Wet film thickness measuring device
JPH07306156A (en) Device for analyzing quality of coating
JPH09105612A (en) Coating-film-thickness measuring apparatus
JPH09113462A (en) Printing-quality analytical instrument
JPH0783814A (en) Device and method for measuring tackiness of paint and device for measuring thickness of paint film
JPH01124703A (en) Method and device for noncontact measurement of film characteristic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees