JP3358434B2 - Paint quality analyzer - Google Patents

Paint quality analyzer

Info

Publication number
JP3358434B2
JP3358434B2 JP07275396A JP7275396A JP3358434B2 JP 3358434 B2 JP3358434 B2 JP 3358434B2 JP 07275396 A JP07275396 A JP 07275396A JP 7275396 A JP7275396 A JP 7275396A JP 3358434 B2 JP3358434 B2 JP 3358434B2
Authority
JP
Japan
Prior art keywords
coating
paint
volatile component
wavelength
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07275396A
Other languages
Japanese (ja)
Other versions
JPH09262533A (en
Inventor
清 吉田
裕 鈴木
正実 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP07275396A priority Critical patent/JP3358434B2/en
Publication of JPH09262533A publication Critical patent/JPH09262533A/en
Application granted granted Critical
Publication of JP3358434B2 publication Critical patent/JP3358434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塗装品質、すなわち塗
着直後や塗着の所定時間後(例えば数分後)における塗
膜中の非揮発性成分を求める塗装品質解析装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating quality analyzing apparatus for determining a coating quality, that is, a non-volatile component in a coating film immediately after coating or after a predetermined time (for example, several minutes) after coating.

【0002】[0002]

【従来の技術】塗装品質の評価、例えば自動車の車体塗
装における塗装品質の評価としては、塗装後に長時間か
けて乾燥させ、乾燥後に塗装の鮮映性、すなわち平滑感
と肉持ち感と光沢感とを検査して評価することが行なわ
れている。上記のごとき塗装品質評価の際に、鮮映性の
評価値にバラツキが発生した場合、その要因としては、
吹き付け時の塗料の種類、膜厚、塗着後の非揮発性成分
(以下、塗着N.Vと略記する)、塗着粘度、塗装ガン
吹き付け圧等が考えられる。これらの要因のうち、代表
的要因としては、塗着N.Vと膜厚とが挙げられるが、
これらの要因は、出来るだけ塗布直後に定量的に把握
し、以後の塗装条件改善に役立てる必要がある。従来、
塗装直後の塗膜面の塗着N.Vを測定するには、車体等
の被塗装体にアルミ箔を貼り付け、塗装ガンで塗料を塗
布した後にアルミ箔を剥ぎ取り、塗布直後のアルミ箔の
重量と乾燥後のアルミ箔の重量とを計測するアルミ重量
法が用いられている。
2. Description of the Related Art The evaluation of coating quality, for example, the evaluation of coating quality in car body coating, includes drying for a long time after coating, and after drying, sharpness of the coating, that is, smoothness, solid feeling and glossiness. Are inspected and evaluated. If the evaluation value of the sharpness varies when the coating quality is evaluated as described above, the cause is as follows.
The type and thickness of the paint at the time of spraying, the non-volatile components after coating (hereinafter abbreviated as coating NV), the coating viscosity, the spray pressure of the coating gun, and the like are considered. Among these factors, typical factors include a coating NV and a film thickness.
It is necessary to quantitatively grasp these factors as soon as possible immediately after coating, and to use them for improving the coating conditions thereafter. Conventionally,
To measure the coating NV on the coating film immediately after coating, apply aluminum foil to the body to be coated such as a car body, apply the paint with a coating gun, peel off the aluminum foil, The aluminum weight method is used to measure the weight of the aluminum foil and the weight of the dried aluminum foil.

【0003】[0003]

【発明が解決しようとする課題】自動車の車体塗装のよ
うに、塗装自動化ラインで次々に塗装を行なう場合に
は、塗装状態の良否を出来るだけ速やかにフィードバッ
クして次の塗装条件を改善し、常に最良の塗装状態に保
つ必要がある。しかし、従来のアルミ重量法では、上記
のように、アルミ箔の添付と剥離工程および乾燥工程や
重量測定工程が必要なため、測定に多くの工程と時間と
が必要であり、かつ、乾燥後のアルミ箔の重量を計測し
た後に初めて塗布直後の塗着N.Vが判明するので、塗
布直後や塗布後の任意の時点(例えば数分後)の塗着
N.Vをリアルタイムで求めることは出来なかった。そ
のため、上記のごとき塗装自動化ラインの要求に応える
ことが出来ない、という問題があった。
In the case of successive paintings on a painting automation line, such as the painting of a car body, the next painting condition is improved by feeding back the quality of the painting as soon as possible. It is necessary to always keep the best paint condition. However, in the conventional aluminum gravimetric method, as described above, since an aluminum foil attachment and peeling step, a drying step and a weight measuring step are required, many steps and time are required for measurement, and after drying, Since the coating NV immediately after the application is found only after the weight of the aluminum foil is measured, it is not possible to obtain the coating NV immediately after the coating or at any time after the coating (for example, several minutes later) in real time. I could not do it. For this reason, there has been a problem that it is not possible to meet the requirements of the above-mentioned automatic painting line.

【0004】上記の問題を解決するため、本出願人は、
塗装前の塗料の非揮発性成分情報と、塗膜面における塗
料の微粒化度と、塗料のシンナー蒸発量情報(単位面積
当りの蒸発量)とに基づいて塗布直後の塗膜面の塗着
N.Vを演算し、また、上記の算出した塗布直後の塗着
N.Vと塗料の種類情報とに基づいて、塗布直後の塗膜
面の塗料密度を算出し、その算出した塗料密度と計測時
間(塗布時点から任意の計測時点までの経過時間)と膜
厚とシンナー蒸発量とに基づいて、任意の設定した計測
時点における塗膜面の塗着N.Vを演算するように構成
した塗装品質解析装置を発明し、既に出願している(特
願平6−258073号:末公開)。上記の本出願人の
先行発明においては、塗着直後や塗布時点から所定時間
後における塗膜中の非揮発性成分を、非接触で、かつ短
時間で計測することが出来るという優れた効果が得られ
る。しかし、上記の先行発明においては、次のごとき問
題が残った。
[0004] In order to solve the above problems, the present applicant has
Applying the coating surface immediately after application based on the non-volatile component information of the coating material before coating, the degree of atomization of the coating material on the coating film surface, and the thinner evaporation amount of the coating material (evaporation amount per unit area) N.V., and based on the calculated coating N.V. immediately after the coating and the type information of the coating, the coating density of the coating film immediately after the coating is calculated, and the calculated coating density and Based on the measurement time (elapsed time from the time of application to an arbitrary measurement time), the film thickness, and the evaporation amount of the thinner, the coating NV of the coating film surface at an arbitrary set measurement time is calculated. A coating quality analyzer has been invented and has already been filed (Japanese Patent Application No. 6-258073, published late). In the above-mentioned prior invention of the present applicant, a non-volatile component in a coating film immediately after coating or at a predetermined time after the coating time, in a non-contact manner, can be measured in a short time, an excellent effect. can get. However, in the above-mentioned prior invention, the following problem remains.

【0005】(1)自動塗装ラインでは仕上がり品質を
良くするため、上塗りを2度吹き(1度吹き後のセット
タイム:数十秒〜数分)するラインも有るが、このよう
な場合には、2度吹き後の塗着N.Vは1度吹きと2度
吹きとの合成されたものとなるので、2度吹き塗着直後
の塗着N.V(非揮発性成分)を計測することが困難で
ある。
[0005] (1) In order to improve the finish quality in an automatic coating line, there is a line in which the top coat is sprayed twice (set time after spraying once: several tens of seconds to several minutes). In such a case, Since the coating NV after the second blowing is a composite of the first blowing and the second blowing, the coating NV (non-volatile component) immediately after the second blowing is measured. It is difficult.

【0006】(2)塗料のシンナー蒸発速度は塗料の初
期濃度(N.V)に大きく依存するため、ベル型回転機
等の自動塗装機の塗装条件(回転数、吐出量、塗布距離
等)を1度吹き目と2度吹き目とで変更した場合には、
初期N.Vの値が変わるので前記先行出願では計測精度
の確保が難しい。
(2) Since the paint thinner evaporation rate greatly depends on the initial paint concentration (N.V), the coating conditions (rotational speed, discharge amount, coating distance, etc.) of an automatic coating machine such as a bell-type rotary machine are used. Is changed between the first blow and the second blow,
Since the value of the initial NV changes, it is difficult to secure measurement accuracy in the above-mentioned prior application.

【0007】上記のように、本出願人の先行発明におい
ても、2度吹き塗装ラインの場合、特に自動塗装機の塗
装条件を1度目と2度目で変更するような自動化ライン
に適用する場合には、更に改良の余地があった。
As described above, even in the prior invention of the present applicant, in the case of a two-time spray coating line, particularly in a case where the present invention is applied to an automated line in which the coating conditions of an automatic coating machine are changed between a first time and a second time. Has room for further improvement.

【0008】本発明は、上記のごとき従来技術の問題を
解決し、さらに上記本出願人の先行発明を改良するため
になされたものであり、第1の目的は、2度吹き塗装ラ
インでも塗着直後のN.Vを計測できる塗装品質解析装
置を提供することである。また、第2の目的は、1度目
と2度目で自動塗装機の塗装条件を変更した場合でも、
吹き付け後の塗着N.Vの計測精度を確保することの出
来る塗装品質解析装置を提供することである。
The present invention has been made to solve the problems of the prior art as described above, and has been made to further improve the above-mentioned prior invention of the present applicant. An object of the present invention is to provide a coating quality analysis device capable of measuring NV immediately after wearing. The second purpose is that even if the coating conditions of the automatic coating machine are changed between the first and second times,
An object of the present invention is to provide a coating quality analyzing apparatus capable of ensuring the measurement accuracy of the coating NV after spraying.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明は、
図に示すごとく、少なくとも、塗装前の塗料の非揮発性
成分情報(塗料のN.V)と、塗料の種類情報(塗料の
種類とシンナー種とを含む)と、塗装ブース内の温度情
報と、1度吹きと2度吹きにおける塗装条件(例えば各
々の吐出量)と、を含む塗装条件を入力する塗装条件入
力手段100と、塗膜面における塗料の微粒化度を入力
する微粒化度入力手段101と、塗料の単位面積当りの
シンナー蒸発量(蒸発速度×時間)を入力するシンナー
蒸発量入力手段102と、上記塗料の非揮発性成分と、
上記微粒化度と、上記シンナー蒸発量と、に基づいて1
度吹き塗布直後の塗膜面の塗着非揮発性成分を演算する
第1の塗着非揮発性成分演算手段103と、上記第1の
塗着非揮発性成分演算手段で算出した塗布直後の塗着非
揮発性成分と、上記塗装条件入力手段から入力した塗料
の種類情報と、に基づいて、1度吹き塗布直後の塗膜面
の塗料密度を算出する第1の塗料密度演算手段104
と、塗料塗布時点から任意の計測時点までの時間を入力
する計測時間入力手段105と、塗膜面の膜厚を入力す
る膜厚入力手段106と、上記第1の塗料密度演算手段
からの塗料密度と、上記計測時間と、上記膜厚と、上記
シンナー蒸発量と、上記塗装条件と、に基づいて、2度
吹き塗布時点における1度吹き塗膜面の塗着非揮発性成
分を演算する第2の塗着非揮発性成分演算手段107
と、上記第1の塗着非揮発性成分演算手段からの1度吹
き塗布直後の塗膜面の塗着非揮発性成分と、上記第2の
塗着非揮発性成分演算手段からの2度吹き塗布時点にお
ける1度吹き塗膜面の塗着非揮発性成分と、上記1度吹
きと2度吹きにおける塗装条件と、に基づいて、2度吹
き塗布直後の塗膜面の塗着非揮発性成分を演算する第3
の塗着非揮発性成分演算手段108と、上記第3の塗着
非揮発性成分演算手段で算出した2度吹き塗布直後の塗
着非揮発性成分と、上記塗装条件入力手段から入力した
塗料の種類情報と、に基づいて、2度吹き塗布直後の塗
膜面の塗料密度を算出する第2の塗料密度演算手段10
9と、上記第3の塗着非揮発性成分演算手段で算出した
2度吹き塗布直後の塗着非揮発性成分と、上記第2の塗
料密度演算手段からの塗料密度と、上記計測時間入力手
段から入力した時間と、上記膜厚と、上記シンナー蒸発
量と、に基づいて、上記の設定した計測時点における2
度吹き塗膜面の塗着非揮発性成分を演算する第4の塗着
非揮発性成分演算手段110と、を備えている。
Means for Solving the Problems In order to achieve the above object, the present invention is configured as described in the claims. That is, the invention described in claim 1 is:
As shown in the figure, at least the non-volatile component information (N.V. of the paint) of the paint before painting, the kind information of the paint (including the kind of paint and the thinner kind), the temperature information in the painting booth, and the like. A coating condition input means 100 for inputting coating conditions including one-time and two-time coating conditions (for example, respective discharge amounts); and a fine-graining degree input for inputting a fine-graining degree of the paint on the coating film surface. Means 101, thinner evaporation amount input means 102 for inputting the thinner evaporation amount per unit area of the paint (evaporation speed × time), non-volatile components of the paint,
1 based on the atomization degree and the thinner evaporation amount.
The first applied non-volatile component calculating means 103 for calculating the applied non-volatile component of the coating surface immediately after the spray coating, and the immediately applied non-volatile component calculated by the first applied non-volatile component calculating means. First paint density calculating means 104 for calculating the paint density on the coating surface immediately after the first spray application based on the coating non-volatile component and the paint type information input from the coating condition input means.
A measuring time input means 105 for inputting a time from a paint application time to an arbitrary measuring time, a film thickness input means 106 for inputting a film thickness of a coating film surface, and a paint from the first paint density calculating means. Based on the density, the measurement time, the film thickness, the thinner evaporation amount, and the coating condition, the non-volatile component applied to the once-sprayed coating surface at the time of the second-spray coating is calculated. Second coating non-volatile component calculating means 107
And a non-volatile component applied to the coating surface immediately after the first spray application from the first applied non-volatile component calculating means, and a second non-volatile component applied from the second applied non-volatile component calculating means. Based on the non-volatile component applied to the once-sprayed coating surface at the time of the spraying application and the coating conditions in the one-time spraying and the two-time spraying, the coating non-volatile property of the coating surface immediately after the two-time spray coating is applied. The third to calculate the sex component
The non-volatile component calculating means 108, the non-volatile component applied immediately after the second spray application calculated by the third non-volatile component calculating means, and the paint input from the coating condition input means. Paint density calculating means 10 for calculating the paint density on the coating surface immediately after the second spray application based on the type information of
9, the applied non-volatile component immediately after the second spray application calculated by the third applied non-volatile component calculating means, the coating density from the second coating density calculating means, and the measurement time input. Based on the time input from the means, the film thickness, and the thinner evaporation amount, the value of 2
And a fourth coating non-volatile component calculating means 110 for calculating the coating non-volatile component on the surface of the blown coating film.

【0010】上記のように請求項1に記載の発明におい
ては、第1の塗着非揮発性成分演算手段で求めた1度吹
き塗布直後の塗膜面の塗着非揮発性成分と、第2の塗着
非揮発性成分演算手段で求めた2度吹き塗布時点におけ
る1度吹き塗膜面の塗着非揮発性成分と、1度吹きと2
度吹きにおける塗料条件と、に基づいて、2度吹き塗布
直後の塗膜面の塗着非揮発性成分を演算(推定演算)す
るようの構成しているので、これまで求められなかった
2度吹き塗布直後の塗膜面の塗着非揮発性成分を求める
ことが可能になった。
[0010] As described above, according to the first aspect of the present invention, the non-volatile component applied to the coating surface immediately after the one-time spray coating obtained by the first non-volatile component application calculating means, The non-volatile component applied to the once-sprayed coating film surface at the time of the second-spray coating obtained by the non-volatile component application calculating means of No. 2
Since the configuration is such that the non-volatile component applied to the coating film surface immediately after the second spray application is calculated (estimated) based on the paint conditions in the second spray application, two times that have not been obtained so far are obtained. It has become possible to determine the applied non-volatile components on the coating surface immediately after spray coating.

【0011】また、上記シンナー蒸発量入力手段102
は、例えば請求項2に記載の構成で算出した基準のシン
ナー蒸発量を、請求項3に記載のようの補正して用いる
ものである。なお、図1の破線で示す経路は、上記のシ
ンナー蒸発量入力手段102に補正機能を持たせた場合
におけるシンナー蒸発量補正のための各情報の経路を示
すものである。また、後記実施の形態においては、基本
となるシンナー蒸発量を入力する部分(シンナー蒸発量
入力部13)と、それを補正する部分(シンナー蒸発量
補正部12)とに分けて記載している。上記のように、
1度吹きと2度吹きにおける塗料条件(例えば各々の吐
出量)を演算に取り入れ、かつ付着直後の初期塗着N.
Vの推定値を用いて塗膜のシンナー蒸発速度(蒸発速度
×時間=蒸発量)を補正することにより、塗装条件を1
度吹き目と2度吹き目とで変更した場合でも計測精度を
良好に保つことが出来る。
The thinner evaporation amount input means 102
Is used, for example, by correcting the reference thinner evaporation amount calculated by the configuration of claim 2 as described in claim 3. The paths indicated by broken lines in FIG. 1 indicate the paths of information for thinner evaporation amount correction when the thinner evaporation amount input means 102 has a correction function. In the embodiment described later, a portion for inputting a basic thinner evaporation amount (thinner evaporation amount input section 13) and a portion for correcting the same (thinner evaporation amount correction section 12) are described separately. . As described above,
The paint conditions (for example, the respective discharge amounts) in the first and second blows are incorporated into the calculation, and the initial coating N.
By correcting the thinner evaporation rate (evaporation rate × time = evaporation amount) of the coating film using the estimated value of V,
The measurement accuracy can be kept good even when changing between the first and second blows.

【0012】また、請求項4に記載のように、上記第1
の塗着非揮発性成分演算手段103は、上記の入力した
塗料の非揮発性成分およびシンナー蒸発量と上記の入力
した微粒化度から求めた塗料粒子の表面積との関係に基
づいて塗布直後の塗膜面の塗着非揮発性成分を演算する
ものである。また、上記微粒化度入力手段101は、例
えば請求項5に記載のごとき構成を有するものである。
また、請求項5内に記載の波長演算手段と微粒化演算手
段は、例えば請求項6に記載のごとき構成を有するもの
である。
[0012] According to a fourth aspect of the present invention, the first type
The applied non-volatile component calculating means 103 immediately after application is performed based on the relationship between the input non-volatile component of the paint and the thinner evaporation amount and the surface area of the paint particles obtained from the input degree of atomization. This is for calculating the applied non-volatile component on the coating film surface. The atomization degree input means 101 has, for example, a configuration as described in claim 5.
The wavelength calculation means and the atomization calculation means described in claim 5 have, for example, a configuration as described in claim 6.

【0013】また、請求項7に記載のように、上記撮像
手段では、塗装表面の複数個所を撮像し、後続の各手段
ではそれぞれの個所について処理を行ない、上記波長演
算手段ではそれぞれの個所における波長値を順次算出
し、かつ、上記複数個の波長値を平均処理する波長平均
処理手段を備え、上記微粒化演算手段では、上記波長平
均処理手段の演算結果に基づいて微粒化度を算出するも
のである。一般に、自動車の車体のような大型の被塗装
体の場合には、吹き付け面積が大きいため、塗装部位に
よっては塗装条件が必ずしも均一にならない場合があ
る。したがって精度のよい計測を行なうためには、塗装
表面の複数個所を撮像し、それらの各部位における平均
値を用いて微粒化度演算を行なうことが望ましいので、
上記のように構成している。
According to a seventh aspect of the present invention, the imaging means takes an image of a plurality of locations on the painting surface, and the subsequent means perform processing at each location, and the wavelength calculation means takes a picture at each location. A wavelength averaging means for sequentially calculating wavelength values and averaging the plurality of wavelength values, wherein the atomization calculating means calculates a degree of atomization based on a calculation result of the wavelength averaging means; Things. In general, in the case of a large object to be coated such as an automobile body, the spraying area is large, so that the coating conditions may not always be uniform depending on the coating site. Therefore, in order to perform accurate measurement, it is desirable to take an image of a plurality of locations on the painted surface and perform the atomization degree calculation using the average value of each of those locations.
The configuration is as described above.

【0014】また、請求項8に記載の発明は、請求項7
の発明において、塗料を塗布した直後の未乾燥塗装表面
を、塗装面の異なった個所についてそれぞれ撮像する複
数の撮像手段を備え、それらの撮像手段で撮像した複数
個所の画像情報を順次処理するように構成したものであ
る。このように、複数の撮像手段を設けて並列処理を行
なえば、計測演算速度を向上させることが出来る。ま
た、請求項1における膜厚入力手段106は、例えば請
求項9に記載のごとき構成を有するものである。
The invention described in claim 8 is the same as the invention described in claim 7.
In the invention according to the invention, a plurality of image pickup means for picking up an image of the undried coating surface immediately after the application of the paint is provided for each of different portions of the coating surface, and the image information of the plurality of points picked up by the image pickup means is sequentially processed. It is what was constituted. As described above, if a plurality of imaging units are provided and the parallel processing is performed, the measurement calculation speed can be improved. Further, the film thickness input means 106 in the first aspect has, for example, a configuration as described in the ninth aspect.

【0015】上記のごとく、上記の微粒化度や膜厚は、
請求項5〜請求項9にそれぞれ記載のように、塗装面を
撮像した画像を画像処理することによって演算で求める
ことが出来る。したがって非接触で極めて短時間に塗布
直後や塗布時点から所定時間後の塗着N.Vを容易に計
測することが出来る。なお、塗着N.Vは、例えば非揮
発性成分の含有率で表示されるが、含有量を用いてもよ
い。
As described above, the degree of atomization and the film thickness are as follows:
As described in claims 5 to 9, the image obtained by capturing the painted surface can be calculated by image processing. Therefore, it is possible to easily measure the coating NV immediately after the coating or a predetermined time after the coating in a very short time without contact. In addition, the coating NV is indicated by, for example, the content of the nonvolatile component, but the content may be used.

【0016】[0016]

【発明の効果】本発明においては、2度吹き塗装ライン
でも塗装直後および所定時間後の塗着N.Vを計測する
ことが可能となった。また、自動塗装機の塗装条件(回
転数、吐出量、塗布距離等)を変更した場合でも、付着
直後の初期塗着N.Vの推定値を用い塗膜のシンナー蒸
発速度を補正することにより、塗着N.Vの計測精度を
確保することが可能となった。したがって、塗装中に非
接触で極めて短時間に塗布直後や塗布時点から所定時間
後の塗着N.Vを正確に計測することが出来る。そのた
め塗装条件を直ちにフィードバック制御することが出来
るので、塗装品質を維持、向上させることができると共
に、塗着N.V計測の工数を大幅に低減することが出来
る、という効果が得られる。
According to the present invention, it is possible to measure the coating NV immediately after coating and after a predetermined time even on a two-time spray coating line. In addition, even when the coating conditions (rotational speed, discharge amount, coating distance, etc.) of the automatic coating machine are changed, the thinner evaporation rate of the coating film is corrected by using the estimated value of the initial coating NV immediately after the coating. , It is possible to ensure the measurement accuracy of the coating NV. Therefore, the coating NV can be accurately measured in a very short time immediately after coating or after a predetermined time from the time of coating in a non-contact manner during coating. Therefore, since the coating conditions can be immediately feedback-controlled, the coating quality can be maintained and improved, and the number of steps of the coating NV measurement can be greatly reduced.

【0017】[0017]

【発明の実施の形態】図2は本発明の第1の実施の形態
を示す図であり、本発明を自動塗装ラインに適用した場
合のブロック図を示す。まず、図2に基づいて全体の構
成の概略を説明する。1は被塗装体(例えば自動車のボ
ディ)であり、塗装ライン上を所定の速度で移動しなが
ら塗装されるものである。2は塗装直後におけるウエッ
ト状態の塗装表面を撮像する撮像部である。撮像する時
点は、塗料を吹き付けたのち所定時間(例えば1〜2
分)後に行なう。そのため、撮像部2は塗装ラインの移
動速度に合わせて、例えば1〜2分後に車体が到達する
位置に設置されている。
FIG. 2 is a view showing a first embodiment of the present invention, and is a block diagram in a case where the present invention is applied to an automatic coating line. First, an outline of the entire configuration will be described with reference to FIG. Reference numeral 1 denotes a body to be coated (for example, a body of an automobile), which is painted while moving on a painting line at a predetermined speed. Reference numeral 2 denotes an imaging unit for imaging a wet coating surface immediately after coating. The time of imaging is a predetermined time (for example, 1 to 2) after the paint is sprayed.
Minutes). Therefore, the imaging unit 2 is installed at a position where the vehicle body reaches after, for example, 1 to 2 minutes in accordance with the moving speed of the painting line.

【0018】本願を適用する2度吹き塗装ラインの場合
には、例えば塗装ラインの移動速度で数十秒〜数分程度
離れた点に2つの塗装ガン(図2では塗装ガン28とし
て1個のみ記載)が設けられ、数十秒〜数分程度の間隔
で2度吹き塗装を行なう。その後、1〜2分後に車体が
到達する位置に撮像部2が設置されている。なお、1度
吹き用塗装ガンと2度吹き用塗装ガンとの間の領域は塗
料粒子が飛散している等の理由で撮像部を設置すること
が困難である。そのため、撮像部2で撮像する塗装表面
は2度吹き目の塗装が済んだ後の塗装面である。したが
って1度吹き直後の塗装面の撮像は出来ないが、塗装条
件が同じであれば1度吹き後と2度吹き後の塗装面の付
着粒子の状態は同じなので、2度吹き後の撮像画面から
1度吹きの微粒化度等を算出できる。また、塗装条件が
変わる場合には、塗装条件(例えば吐出量の比)に応じ
て補正してやればよい(詳細後述)。また、2度吹き後
の塗着N.Vは、1度吹きと2度吹きとの合成になるの
で、詳細を後述するごとき方法で算出する。
In the case of a double spray coating line to which the present invention is applied, for example, two coating guns (only one coating gun 28 in FIG. Described), and spray coating is performed twice at intervals of about several tens of seconds to several minutes. Thereafter, the imaging unit 2 is installed at a position where the vehicle body reaches after 1 to 2 minutes. Note that it is difficult to install an imaging unit in a region between the first-time spray coating gun and the second-time spray coating gun because paint particles are scattered. Therefore, the painted surface imaged by the imaging unit 2 is the painted surface after the second spray painting. Therefore, it is not possible to image the painted surface immediately after the first blowing, but if the coating conditions are the same, the state of the attached particles on the painted surface after the first blowing and after the second blowing is the same, so the imaging screen after the second blowing , The degree of atomization of a single blow can be calculated. In the case where the coating conditions change, correction may be made according to the coating conditions (for example, the ratio of the discharge amount) (details will be described later). Further, since the coating NV after the second blowing is a combination of the first blowing and the second blowing, it is calculated by a method described later in detail.

【0019】上記の撮像部2で撮像した塗装表面の画像
(詳細後述)は、画像処理部3で2値化等の画像処理さ
れる。なお、この画像処理部は画像情報を記憶する画像
メモリとコンピュータ等の演算装置で構成される。上記
の画像処理部3で処理された画像処理データは波長演算
部4へ送られる。上記波長演算部4では、パワースペク
トル周波数分析(例えば高速フーリエ変換処理:FF
T)を行ない、入力した画像処理データから塗装表面の
凹凸波形のパワースペクトルPS(特にその長波長領域
のピーク波長λpと積分値P:詳細後述)を算出する。
The image of the painted surface (details will be described later) captured by the image capturing unit 2 is subjected to image processing such as binarization by the image processing unit 3. The image processing unit is composed of an image memory for storing image information and an arithmetic device such as a computer. The image processing data processed by the image processing unit 3 is sent to the wavelength calculation unit 4. In the wavelength calculation unit 4, power spectrum frequency analysis (for example, fast Fourier transform processing: FF
T) is performed to calculate a power spectrum PS (particularly, a peak wavelength λp and an integral value P in a long wavelength region thereof) of an uneven waveform of the coating surface from the input image processing data.

【0020】上記波長演算部5の演算結果は、平均処理
部7へ送られる。平均処理部7では、塗装表面の複数個
所におけるピーク波長λpや積分値Pの平均値を求め
る。一般に、自動車の車体のような大型の被塗装体の場
合には、吹き付け面積が大きいため、塗装部位によって
は塗装条件が必ずしも均一にならない場合がある。した
がって精度のよい計測を行なうためには、塗装表面の複
数個所を撮像し、それらの各部位における平均値を用い
て微粒化度演算を行なうことが望ましいので、上記のよ
うに構成しているが、小型の被塗装体の場合には上記の
平均処理を省略し、1個所の値を用いてもよい。上記の
パワースペクトルPSの値は、微粒化演算部6へ送られ
る。
The operation result of the wavelength operation unit 5 is sent to the averaging unit 7. The averaging unit 7 calculates the average of the peak wavelength λp and the integral value P at a plurality of locations on the coating surface. In general, in the case of a large object to be coated such as an automobile body, the spraying area is large, so that the coating conditions may not always be uniform depending on the coating site. Therefore, in order to perform accurate measurement, it is desirable to image a plurality of locations on the painted surface and perform the atomization degree calculation using the average value at each of those locations. In the case of a small object to be coated, the above-described averaging process may be omitted and a value at one location may be used. The value of the power spectrum PS is sent to the atomization calculation unit 6.

【0021】また、塗装条件入力部5は、例えばキーボ
ード等の入力手段であり、少なくとも塗装前の塗料の非
揮発性成分(含有率または含有量)と、塗料の種類情報
(塗料のシンナー種情報を含む)と、塗装ブース内の温
度情報と、1度吹き目と2度吹き目とによる塗装条件の
差(例えば吐出量の比など)と、を含む塗装条件の数値
を入力する。なお、塗装条件には、その他に、吹き付け
の回数(1度目か2度目か)、塗料の種類や吹き付け距
離等があり、必要に応じて塗装条件入力部5から入力す
る。なお、シンナー種とは、季節に応じてシンナーの沸
点を変えるように調合したものであり、例えば低沸点シ
ンナーと高沸点シンナーとの混合比を変えることによ
り、夏用(高沸点)、冬用(低沸点)、春秋用(中間)
のように季節に応じた沸点に調合する。したがって塗装
条件入力部5から入力するシンナー種は、例えば2種の
シンナーの混合比で表すことが出来る。
The coating condition input unit 5 is an input means such as a keyboard, for example. The coating condition input unit 5 includes at least a non-volatile component (content or content) of the paint before painting and paint type information (paint thinner type information). ), Temperature information in the coating booth, and a difference in the coating conditions between the first and second blows (for example, a ratio of the discharge amount) is input. In addition, the coating conditions include the number of times of spraying (first time or second time), type of paint, spraying distance, and the like, and are input from the coating condition input unit 5 as necessary. Note that the thinner species is prepared by changing the boiling point of the thinner according to the season. For example, by changing the mixing ratio of the low boiling thinner and the high boiling thinner, it can be used for summer (high boiling) and winter (Low boiling point), for spring and autumn (middle)
It is adjusted to the boiling point according to the season. Therefore, the thinner type input from the coating condition input unit 5 can be represented by, for example, a mixture ratio of two types of thinner.

【0022】また、微粒化演算部6は、上記塗装条件入
力部5からの塗装条件と、波長演算部4で求め、平均処
理部7で平均化した波長値と、に基づいて塗料の微粒化
度を演算する(詳細後述)。
The atomization calculating section 6 atomizes the paint based on the coating condition from the coating condition input section 5 and the wavelength value obtained by the wavelength calculating section 4 and averaged by the averaging section 7. The degree is calculated (details will be described later).

【0023】また、シンナー蒸発量入力部13は、予め
実験で測定した塗料のシンナー蒸発量(蒸発速度×時
間:詳細後述)を入力する。なお、予め実験によって測
定した塗装前の塗料の非揮発性成分含有率と塗装直後の
塗着非揮発性成分と塗料の微粒化度との関係に基づいて
単位面積当たりのシンナー蒸発量を算出することも出来
る。また、このシンナー蒸発量入力部13と前記塗装条
件入力部5とは別々に記載しているが、共通のものでも
よい。
The thinner evaporation amount input unit 13 inputs the thinner evaporation amount (evaporation speed × time: detailed later) of the paint measured in advance in an experiment. The thinner evaporation amount per unit area is calculated based on the relationship between the non-volatile component content of the paint before coating and the applied non-volatile component immediately after coating and the degree of atomization of the paint, which are measured in advance by experiments. You can do it. Although the thinner evaporation input unit 13 and the coating condition input unit 5 are described separately, they may be common.

【0024】次に、シンナー蒸発量補正部12は、塗装
条件入力部5から入力した塗装ブース内の温度、塗料の
シンナー種、後記の膜厚演算部15から入力した塗装膜
厚、第1の塗着N.V演算部10の演算結果および第3
の塗着N.V演算部23の演算結果に応じて、シンナー
蒸発量入力部13から入力したシンナー蒸発量を補正す
る。例えば、基準のシンナー蒸発量を、塗装ブース内の
温度と、塗料のシンナー種とに応じて補正した第1の補
正値と、基準のシンナー蒸発量を、塗装ブース内の温度
と、塗料のシンナー種と、膜厚と、第1の塗着N.V演
算部10の演算結果と、に応じて補正した第2の補正値
と、基準のシンナー蒸発量を、塗装ブース内の温度と、
塗料のシンナー種と、膜厚と、第3の塗着N.V演算部
23の演算結果と、に応じて補正した第3の補正値と、
を演算し、第1の塗着N.V演算部10は第1の補正値
を用いて演算を行ない、第2の塗着N.V演算部22は
第2の補正値を用いて演算を行ない、第4の塗着N.V
演算部25は第3の補正値を用いて演算を行なう。(詳
細後述)。
Next, the thinner evaporation correction section 12 calculates the temperature in the coating booth input from the coating condition input section 5, the type of thinner of the coating, the coating film thickness input from the film thickness calculating section 15 described later, and the first The calculation result of the coating NV calculation unit 10 and the third
The thinner evaporation amount input from the thinner evaporation amount input unit 13 is corrected in accordance with the calculation result of the coating NV calculation unit 23. For example, a first correction value obtained by correcting the reference thinner evaporation amount according to the temperature in the coating booth and the type of paint thinner, and the reference thinner evaporation amount to the temperature in the coating booth and the paint thinner The second correction value corrected according to the seed, the film thickness, and the calculation result of the first coating NV calculation unit 10, the reference thinner evaporation amount, the temperature in the coating booth,
A third correction value corrected according to the paint thinner type, the film thickness, and the calculation result of the third coating NV calculation unit 23;
Is calculated, the first coating NV calculating unit 10 performs the calculation using the first correction value, and the second coating NV calculating unit 22 performs the calculation using the second correction value. Done, 4th coating NV
The calculation unit 25 performs a calculation using the third correction value. (Details described later).

【0025】次に、第1の塗着N.V演算部10は、上
記微粒化演算部6から入力した塗料の微粒化度と、上記
塗装条件入力部5から入力した塗布前の塗料の非揮発性
成分と、上記シンナー蒸発量補正部12から入力した補
正後のシンナー蒸発量(上記第1の補正値)と、に基づ
いて塗布直後の塗膜面の塗着N.V1(1度吹き目の
値)を演算する(詳細後述)。ただし、塗着N.Vの単
位は、例えば単位面積当たりの重量または%である。
Next, the first coating NV calculating section 10 calculates the degree of atomization of the paint input from the atomizing calculating section 6 and the non-painting degree of the unpainted paint input from the coating condition input section 5. Based on the volatile component and the corrected thinner evaporation amount (the first correction value) input from the thinner evaporation amount correction unit 12, the coating NV. Eye value) (details will be described later). However, the unit of the coating NV is, for example, the weight per unit area or%.

【0026】なお、前記のごとく、1度吹き用塗装ガン
と2度吹き用塗装ガンとの間の領域には撮像部を設置す
ることが困難であるため、撮像部2で撮像する塗装表面
は2度吹き目の塗装が済んだ後の塗装面である。したが
って1度吹き直後の塗装面の撮像は出来ないが、塗装条
件が同じであれば1度吹き後と2度吹き後の塗装面の付
着粒子の状態は同じなので、2度吹き後の撮像画面から
1度吹きの微粒化度を算出できる。すなわち上記第1の
塗着N.V演算部10で演算に用いる塗料の微粒化度
(微粒化演算部6からの入力値)は、2度吹き塗布直後
の値である。
As described above, since it is difficult to install an imaging unit in the area between the one-time spray coating gun and the two-time spray coating gun, the coating surface to be imaged by the imaging unit 2 is difficult. This is the painted surface after the second spray painting. Therefore, it is not possible to image the painted surface immediately after the first blowing, but if the coating conditions are the same, the state of the attached particles on the painted surface after the first blowing and after the second blowing is the same, so the imaging screen after the second blowing , The degree of atomization of one-time blowing can be calculated. That is, the degree of atomization of the paint used for the calculation in the first coating NV calculating section 10 (the input value from the atomizing calculating section 6) is a value immediately after the second spray application.

【0027】次に、第1の塗料密度演算部20は、第1
の塗着N.V演算部10で求めた塗装直後の塗着N.Vと
塗装条件入力部5からの塗装条件(塗料の種類等)とに
基づいて塗着直後の塗料密度を演算する(詳細後述)。
Next, the first paint density calculating section 20 executes the first
The paint density immediately after the coating is calculated based on the paint NV immediately after the coating obtained by the coating NV calculating unit 10 and the coating condition (type of the paint) from the coating condition input unit 5 ( Details will be described later).

【0028】一方、表面粗さ演算部14は、画像処理部
3で求めた画像処理情報に基づいて塗装表面の粗さ度を
演算し、膜厚演算部15は、上記表面粗さ度およびその
時間変化量と波長演算部4で求めた波長(パワースペク
トルPSの長波長領域のピーク波長λpとパワースペク
トル積分値P)とに基づいて、塗装膜厚を演算する(詳
細後述)。
On the other hand, the surface roughness calculating section 14 calculates the roughness of the painted surface based on the image processing information obtained by the image processing section 3, and the film thickness calculating section 15 calculates the surface roughness and its value. The coating film thickness is calculated based on the time change amount and the wavelength (the peak wavelength λp in the long wavelength region of the power spectrum PS and the integrated value P of the power spectrum) obtained by the wavelength calculating unit 4 (described later in detail).

【0029】また、測定時間入力部21は、塗料を塗布
した時点から任意の計測時点(塗装後所望の時間が経過
した時点、例えば2度吹き時点や2度吹き後の任意の時
点:2分〜9分程度)までの時間(以下、計測時間と記
す)を入力する。そして第2の塗着N.V演算部22
は、膜厚演算部15で求めた膜厚と、第1の塗料密度演
算部20で求めた塗料密度と、計測時間入力部21から
入力した計測時間と、シンナー蒸発量補正部12で補正
したシンナー蒸発量(前記第2の補正値)と、塗装条件
入力部5から入力した塗装条件(1度吹きと2度吹きの
吐出量など)とに基づいて、2度吹き塗布時点における
塗着N.V2を演算する(詳細後述)。この塗着N.V2
は、2度吹き時点における1度吹き塗膜の塗着N.Vで
ある。
The measuring time input section 21 is provided for measuring at any time from the time when the paint is applied (at the time when a desired time has elapsed after coating, for example, at the time of double blowing or at any time after double blowing: 2 minutes). (To about 9 minutes) (hereinafter referred to as measurement time). Then, the second coating NV calculating unit 22
Are corrected by the thinner evaporation amount correction unit 12 and the film thickness obtained by the film thickness calculation unit 15, the paint density obtained by the first paint density calculation unit 20, the measurement time input from the measurement time input unit 21. On the basis of the thinner evaporation amount (the second correction value) and the coating conditions (such as the discharge amount of the first blow and the second blow) input from the coating condition input unit 5, the coating N at the time of the second spray coating is applied. .V2 is calculated (details will be described later). This coating NV2
Is the applied NV of the once-blown coating film at the time of the second-blown time.

【0030】次に、第3の塗着N.V演算部23は、第
1の塗着N.V演算部10で求めた塗着N.V1と、第2
の塗着N.V演算部22で求めた塗着N.V2と、塗装条
件入力部5から入力した1度吹き目と2度吹き目の塗装
条件(例えば、1度吹きと2度吹きとの吐出量の比)か
ら2度吹き塗布直後の塗着N.V3を演算する(詳細後
述)。
Next, the third coating NV calculating section 23 calculates the coating NV 1 obtained by the first coating NV calculating section 10 and the second coating NV.
The coating NV2 obtained by the coating NV calculating unit 22 and the coating conditions of the first and second blowings input from the coating condition input unit 5 (for example, the first blowing and the second blowing). The application NV3 immediately after the second spray application is calculated from the ratio of the ejection amount of the second application (the details will be described later).

【0031】次に、第2の塗料密度演算部24は、第3
の塗着N.V演算部23で求めた2度吹き塗布直後の塗
着N.V3と塗装条件入力部5からの塗装条件(塗料の
種類等)とに基づいて塗着直後の塗料密度を演算する
(詳細後述)。
Next, the second paint density calculator 24 calculates the third paint density.
The coating density immediately after coating is determined based on the coating NV 3 immediately after the second spray coating obtained by the coating NV calculation unit 23 and the coating condition (type of coating) from the coating condition input unit 5. Calculate (details described later).

【0032】次に、第4の塗着N.V演算部25は、第
3の塗着N.V演算部24で求めた塗着N.V3と、第2
の塗料密度演算部24で求めた塗料密度と、膜厚演算部
15で求めた膜厚と、測定時間入力部21から入力した
計測時間と、シンナー蒸発量補正部12で補正したシン
ナー蒸発量(前記第3の補正値)とに基づいて、上記の
測定時間入力部21で設定した塗装時点から任意の時間
後の塗着N.V4(2度吹き後の全体の値)を演算する
(詳細後述)。
Next, the fourth coating NV calculating unit 25 calculates the coating NV3 obtained by the third coating NV calculating unit 24 and the second coating NV3.
The paint density calculated by the paint density calculation unit 24, the film thickness calculated by the film thickness calculation unit 15, the measurement time input from the measurement time input unit 21, and the thinner evaporation amount corrected by the thinner evaporation amount correction unit 12 ( Based on the third correction value), a coating NV4 (an entire value after the second blowing) after an arbitrary time from the coating time set by the measurement time input unit 21 is calculated (details). See below).

【0033】上記のようにして求められた塗着N.V1
〜塗着N.V4は、液晶表示装置やCRT表示装置等の
表示器8で表示して作業員に提示すると共に、プリンタ
11によってハードコピーとして取り出される。なお、
2度吹きの場合には、実際に塗装ガンを制御する塗装条
件として用いるのは、塗着N.V3と塗着N.V4が普通
であるから、それらのみを表示してもよい。上記の各演
算部や補正部は、コンピュータ等の演算装置で構成され
る。
The coating NV1 determined as described above
The coated NV 4 is displayed on a display device 8 such as a liquid crystal display device or a CRT display device, is presented to an operator, and is taken out as a hard copy by the printer 11. In addition,
In the case of the double spraying, the coating NV3 and the coating NV4 are usually used as the coating conditions for actually controlling the coating gun. Therefore, only the coating NV3 and the coating NV4 may be displayed. Each of the calculation units and the correction unit is configured by a calculation device such as a computer.

【0034】次に、各部の詳細構造および作用を説明す
る。最初に、撮像部2について説明する。図3は、撮像
部2の一例を示す断面図である。図3に示すように、撮
像部の基本的構成は、光源31、明暗パタン板32、反
射鏡33、レンズ34、CCDカメラ35から成る。上
記の明暗パタン板32は、所定間隔(例えばlmm間
隔)で直線状のスリットが設けられた不透明板(または
透明板に所定間隔で不透明なストライプパタンを印刷し
たもの)である。そして光源31からの平行光線を上記
明暗パタン板32と反射鏡33とレンズ34とを介して
塗装面の斜め方向から照射することにより、被塗装体上
にスリットに対応した縞模様をつくる。この縞模様は、
被塗装体上の凹凸に応じて歪んだ波形(例えば後記図2
1のごとき波形)となる。その反射光をCCDカメラ3
5で撮像し、上記の歪んだ縞模様、すなわち表面粗さの
情報を入力するようになっている。
Next, the detailed structure and operation of each part will be described. First, the imaging unit 2 will be described. FIG. 3 is a cross-sectional view illustrating an example of the imaging unit 2. As shown in FIG. 3, the basic configuration of the imaging unit includes a light source 31, a light / dark pattern plate 32, a reflecting mirror 33, a lens 34, and a CCD camera 35. The light / dark pattern plate 32 is an opaque plate provided with linear slits at a predetermined interval (for example, 1 mm interval) (or an opaque stripe pattern printed at a predetermined interval on a transparent plate). Then, a parallel light beam from the light source 31 is emitted from the oblique direction of the coating surface via the light / dark pattern plate 32, the reflecting mirror 33, and the lens 34 to form a stripe pattern corresponding to the slit on the object to be coated. This striped pattern
Waveforms distorted in accordance with irregularities on the object to be coated (for example, FIG.
1 waveform). The reflected light is transferred to the CCD camera 3
The image is picked up at 5 and the above-mentioned distorted stripe pattern, that is, information on the surface roughness is input.

【0035】上記のごとき縞模様の画像情報を画像処理
し、パワースペクトル周波数分析(例えば高速フーリエ
変換処理:FFT)を行なってパワースペクトルPSを
求める。図4は、上記パワースペクトルPSの周波数特
性図であり、縦軸はパワースペクトルPS、横軸は周波
数f(波長λの逆数、f=1/λ)である。図4におい
て、第1のピーク波形は、前記スリットに対応した基
本縞による基本波形のパワースペクトル、第2のピーク
波形は、塗装表面の凹凸波形の長波長領域(10〜l
mm程度)に対応したパワースペクトル、第3のピーク
波形は、凹凸波形の中波長領域(1〜0.lmm程
度)に対応したパワースペクトル、第4のピーク波形
は、凹凸波形の短波長領域(0.lmm以下)に対応し
たパワースペクトルを示す。
The above-mentioned striped image information is subjected to image processing, and power spectrum frequency analysis (for example, fast Fourier transform processing: FFT) is performed to obtain a power spectrum PS. FIG. 4 is a frequency characteristic diagram of the power spectrum PS. The vertical axis represents the power spectrum PS, and the horizontal axis represents the frequency f (the reciprocal of the wavelength λ, f = 1 / λ). In FIG. 4, a first peak waveform is a power spectrum of a basic waveform by a basic fringe corresponding to the slit, and a second peak waveform is a long wavelength region (10 to l) of the uneven surface waveform of the coating surface.
The third peak waveform is a power spectrum corresponding to a medium wavelength region (approximately 1 to 0.1 mm) of the uneven waveform, and the fourth peak waveform is a short wavelength region (approximately 1 to 0.1 mm) of the uneven waveform. (Less than 0.1 mm).

【0036】上記のパワースペクトル波形において、凹
凸波形の長波長領域のピーク波長、すなわち第2のピー
ク波形のピーク値に対応した波長λpを求め、さらに
表面の粗さを表示する値として、第2のピーク波形の
積分値(斜線部分の面積)を求め、それをパワースペク
トル積分値Pとする。上記の波長λpとパワースペクト
ル積分値Pとは、後記のごとく膜厚と関係があり、これ
らの値に基づいて、後記の平滑化理論式を用いて膜厚を
算出することが出来る。また、上記の波長λpは、後記
のごとく微粒化度と相関性があり、それによって微粒化
度を測定することが出来る。また、この波長λpのみか
ら膜厚を算出することもできる。図2に示した実施の形
態においては、画像処理部3、波長演算部4および表面
粗さ演算部14とで上記のごとき画像処理とパワースペ
クトルの演算を行なっている。波長演算部4の出力は、
平均処理部7で平均化して用いる。
In the above power spectrum waveform, the peak wavelength in the long wavelength region of the concavo-convex waveform, that is, the wavelength λp corresponding to the peak value of the second peak waveform, is obtained. Of the peak waveform (the area of the hatched portion) is determined as the power spectrum integrated value P. The wavelength λp and the power spectrum integral value P have a relationship with the film thickness as described below, and based on these values, the film thickness can be calculated using the theoretical formula of smoothing described later. Further, the wavelength λp has a correlation with the degree of atomization as described later, and the degree of atomization can be measured thereby. Further, the film thickness can be calculated only from this wavelength λp. In the embodiment shown in FIG. 2, the image processing and the power spectrum calculation as described above are performed by the image processing unit 3, the wavelength calculation unit 4, and the surface roughness calculation unit 14. The output of the wavelength calculator 4 is
The data is averaged by the averaging unit 7 and used.

【0037】次に、塗装条件入力部5から塗装前の塗料
のN.Vと塗料の種類と塗装ブース内の温度、その他の
塗料と塗装の情報を入力する。そして微粒化演算部6で
は、上記塗装前の塗料のN.Vと塗料の種類の情報およ
び波長演算部4からのピーク波長λpの値に応じて微粒
化度を演算する。
Next, the NV of paint before painting, the kind of paint, the temperature in the paint booth, and other paint and paint information are input from the paint condition input unit 5. The atomization calculating section 6 calculates the degree of atomization according to the NV of the paint before coating and the information of the kind of the paint and the value of the peak wavelength λp from the wavelength calculating section 4.

【0038】次に、微粒化演算部6における微粒化度計
測の原理について説明する。まず、図5に基づいて、塗
装時における塗装面への塗料粒子の付着と塗装膜面の形
成過程について説明する。図5(a)に示すように、塗
装ガンから塗装面へ向けて微粒化した塗料粒子を吹き付
ける。この際、塗料粒子の平均粒子径は、基本的には、
塗装条件である塗料速度(下記、、)と空気速度
(下記)と塗料物性(下記)によって決まる。ただ
し、上記の〜は次の通りである。 塗装ガンの吐出量 塗装ガンのベル回転数 印加電圧 エア圧 塗料物性(粘度、表面張力、密度) なお、ベル回転数とは塗料を微粒化する回転体の回転数
であり、印加電圧とは塗料粒子に静電気を付加するため
に印加する静電圧(50kV程度)であり、エア圧と
は、塗料粒子が周辺に飛散しないように周囲に気流の壁
を作るための気圧である。上記のようにして吹き付けら
れた塗料粒子は、塗装面に衝突し、つぶれた形で付着す
る。
Next, the principle of the measurement of the degree of atomization in the atomization calculating section 6 will be described. First, based on FIG. 5, a description will be given of the adhesion of paint particles to the painted surface and the process of forming the painted film surface during painting. As shown in FIG. 5A, atomized paint particles are sprayed from a paint gun toward a paint surface. At this time, the average particle diameter of the paint particles is basically
It is determined by the coating conditions, ie, the paint speed (described below), the air speed (described below), and the paint properties (described below). However, the above is as follows. Discharge volume of coating gun Bell rotation speed of coating gun Applied voltage Air pressure Physical properties of paint (viscosity, surface tension, density) The bell rotation speed is the rotation speed of the rotating body that atomizes the paint, and the applied voltage is the paint It is a static voltage (approximately 50 kV) applied to apply static electricity to the particles, and the air pressure is a pressure for creating an airflow wall around the paint particles so that the paint particles do not fly around. The paint particles sprayed as described above collide with the painted surface and adhere in a crushed form.

【0039】次に、図5(b)に示すように、塗膜形成
の初期には、付着した小さな塗料粒子が大きな塗料粒子
に結合され、より大きな粒子を形成する。そして、さら
に粒子の結合が進み、表面張力と境界張力とによって初
期の塗膜面が形成される。上記のように粒子の付着と結
合によって塗膜が形成されていくため、初期の塗膜表面
状況は大きな塗装粒子の粒子径r、粒子衝突速度vx、
塗料物性(表面張力γ、粘度η)等に依存する。例え
ば、上塗り塗料の場合、初期塗膜表面の凹凸の高さは数
〜数十μm程度であり、また、凹凸の波長分布は3〜6
mm程度の長波長領域が支配的であることが確認され
た。そして上記の長波長領域のピーク波長λpと大きな
塗料粒子の粒子径rとには相関性があることが実験によ
って確認された。
Next, as shown in FIG. 5B, in the early stage of the coating film formation, the small paint particles adhered are combined with the large paint particles to form larger particles. Then, the bonding of the particles further proceeds, and the initial coating surface is formed by the surface tension and the boundary tension. As described above, the coating film is formed by the attachment and bonding of the particles, and thus the initial coating film surface condition is such that the large coating particles have a particle diameter r, a particle collision velocity vx,
It depends on the paint properties (surface tension γ, viscosity η) and the like. For example, in the case of a top coat, the height of the unevenness on the surface of the initial coating film is about several to several tens of μm, and the wavelength distribution of the unevenness is 3 to 6 μm.
It was confirmed that a long wavelength region of about mm was dominant. Experiments have confirmed that there is a correlation between the peak wavelength λp in the long wavelength region and the particle diameter r of the large paint particles.

【0040】次に、図5(c)に示すように、上記の初
期塗膜形成後の塗膜表面は、レベリング力(表面張力γ
と重力gとの合成力)によって次第に平坦化して行く。
この平坦化速度は上記のレベリング力と塗料物性(表面
張力γ、粘度η)および膜厚hによって決定される。例
えば、上塗り塗料の場合、平坦化速度は時定数で数十秒
〜数百秒であることが確認されている。
Next, as shown in FIG. 5C, the surface of the coating film after the formation of the initial coating film has a leveling force (surface tension γ).
And the gravity g).
The leveling speed is determined by the leveling force and the paint properties (surface tension γ, viscosity η) and the film thickness h. For example, in the case of a top coat, it has been confirmed that the flattening speed is a time constant of several tens of seconds to several hundreds of seconds.

【0041】次に、塗料粒子径と塗膜面の凹凸との関係
について図6〜図9に基づいて詳細に説明する。図6に
示すように、塗装ガンから吹き付けられた塗料粒子の粒
子径をrとし、それが付着した付着粒子の幅をλ/2、
厚さ(ピーク値)をhとすれば、波長λの凹凸を持つ塗
膜面が形成される。なお、上記付着粒子の幅λ/2と波
長λとの関係は、実験的に求められたものであり、ほぼ
この程度の値になることが確認されている。上記の場合
における塗料粒子径rは、下記(数1)式で示される。
Next, the relationship between the coating particle diameter and the unevenness of the coating film surface will be described in detail with reference to FIGS. As shown in FIG. 6, the particle diameter of the paint particles sprayed from the paint gun is represented by r, the width of the adhered particles adhered thereto is λ / 2,
Assuming that the thickness (peak value) is h, a coating film surface having irregularities of wavelength λ is formed. Note that the relationship between the width λ / 2 of the attached particles and the wavelength λ was determined experimentally, and it has been confirmed that the value is approximately this value. The paint particle diameter r in the above case is represented by the following (Equation 1).

【0042】[0042]

【数1】 (Equation 1)

【0043】上記の理論式をグラフに示すと、図7の破
線で示すごとき曲線となる。しかし、実際には、付着粒
子の結合があるため、図7の実線で示すような特性とな
る。この実験で求めた特性を数式で示すと、下記(数
2)式のようになる。
When the above theoretical formula is shown in a graph, it becomes a curve as shown by a broken line in FIG. However, in actuality, since the attached particles are bonded, the characteristics are as shown by the solid line in FIG. When the characteristics obtained in this experiment are shown by mathematical expressions, they are as shown in the following (Equation 2).

【0044】[0044]

【数2】 (Equation 2)

【0045】ただし ks:補正係数 λp:塗膜面の凹凸のピーク波長(前記長波長領域のピ
ーク波長に相当) a、β:定数 上記のごとき実験で求めた凹凸のピーク波長λpと塗料
粒子径rとの関係を、付着粒子の結合を考慮して解析す
る。まず、図8に示すように、付着粒子径Rは、塗布時
間が大きくなるに従って順次大きくなる。この関係を数
式で示すと下記(数3)式のようになる。
Where, ks: correction coefficient λp: peak wavelength of the unevenness on the coating film surface (corresponding to the peak wavelength in the long wavelength region) a, β: constant The peak wavelength λp of the unevenness and the paint particle diameter obtained in the above experiment. The relationship with r is analyzed in consideration of the binding of the attached particles. First, as shown in FIG. 8, the attached particle diameter R sequentially increases as the coating time increases. This relationship is expressed by the following equation (Formula 3).

【0046】[0046]

【数3】 (Equation 3)

【0047】ただし R0:初期粒子径 b,c:定数 なお、図8において、塗布時間とは1ヶ所に塗布する持
続時間であり、初期粒子径とは付着前の塗料粒子径であ
り、付着粒子径とは最初に付着したときの粒子径であ
る。この付着粒子径Rは塗布時間が長くなるに従って順
次塗布される粒子が結合するので次第に大きくなる。
Here, R 0 : initial particle diameter b, c: constant In FIG. 8, the application time is the duration of application at one location, the initial particle diameter is the paint particle diameter before adhesion, The particle diameter is the particle diameter when the particles first adhere. The attached particle diameter R becomes gradually larger as the coating time becomes longer, since the particles to be applied sequentially bond.

【0048】また、図9は、塗布時間と塗膜面の凹凸波
長との関係を、実測値(破線)と周波数解析によるパワ
ースペクトルから求めた結果とについて比較した特性図
である。図9から判るように、パワースペクトルから求
めた値は実測値によく一致している。したがってパワー
スペクトルから求めた凹凸波長(前記長波長のピーク波
長λp)を用いて付着粒子径Rを求めることが出来る。
さらに、自動塗装機においては、塗布時間は一定である
から、下記(数4)式によって塗料粒子径rも求めるこ
とが出来る。 2r(t)=λp(t) …(数4) 上記のごとき考察により、基本的には前記(数2)式に
より、パワースペクトルから求めた凹凸の長波長領域の
ピーク波長λpを用いて、塗料粒子径rを求めることが
出来る。具体的には、実験で前記図7の特性を求め、そ
れから(数2)式の各係数ks、a、βを予め求めてお
けば、撮像画像から求めたピーク波長λpを用いて塗料
粒子径rを求めることが出来る。なお、塗料粒子の粒子
径rは塗料の微粒化の程度に対応しているから、塗料粒
子の粒子径rをそのまま用いて微粒化度を表してもよい
し、或いはrの逆数、もしくは基準値との百分率などを
用いて微粒化度を表すことも出来る。
FIG. 9 is a characteristic diagram comparing the relationship between the coating time and the uneven wavelength of the coating film surface with the measured value (broken line) and the result obtained from the power spectrum by frequency analysis. As can be seen from FIG. 9, the value obtained from the power spectrum agrees well with the actually measured value. Therefore, the attached particle diameter R can be determined using the uneven wavelength (peak wavelength λp of the long wavelength) determined from the power spectrum.
Further, in the automatic coating machine, since the application time is constant, the coating particle diameter r can also be determined by the following equation (4). 2r (t) = λp (t) (Equation 4) From the above considerations, basically, using the peak wavelength λp in the long wavelength region of the concavities and convexities obtained from the power spectrum by the above (Equation 2), The paint particle diameter r can be determined. More specifically, if the characteristics shown in FIG. 7 are obtained through experiments, and the respective coefficients ks, a, and β of Expression (2) are obtained in advance, the paint particle diameter can be obtained using the peak wavelength λp obtained from the captured image. r can be obtained. Since the particle diameter r of the paint particles corresponds to the degree of atomization of the paint, the degree of atomization may be expressed using the particle diameter r of the paint particles as they are, or the reciprocal of r, or the reference value. The degree of atomization can also be represented using the percentage of

【0049】次に、図2に示した第1の塗着N.V演算
部10における塗膜面の塗着N.Vの算出原理と、シン
ナー蒸発量入力部13およびシンナー蒸発量補正部12
におけるシンナー蒸発量演算について説明する。図10
は、塗装ガンから噴射された塗料粒子が被塗装面に付着
するまでの状況を示す図である。図10に示すように、
塗料粒子からは飛行中および付着後に溶剤(揮発性成
分)が蒸発し、塗膜が完全に乾燥した状態では非揮発性
成分のみが残ることになる。なお、塗料が塗装ガンから
噴射された時点から被塗装体に付着するまでの時間は、
塗装ガンと被塗装体との距離によって変わるが、一般
に、0.1秒〜0.5秒程度である。
Next, the principle of calculating the coating NV on the coating surface in the first coating NV calculating unit 10 shown in FIG. 2, the thinner evaporation input unit 13 and the thinner evaporation correcting unit 12
Will be described. FIG.
FIG. 3 is a view showing a situation until paint particles sprayed from a paint gun adhere to a surface to be coated. As shown in FIG.
The solvent (volatile component) evaporates from the paint particles during flight and after adhesion, and only the non-volatile component remains when the coating film is completely dried. The time from when the paint is sprayed from the coating gun until it adheres to the object to be coated is
Although it depends on the distance between the coating gun and the object to be coated, it is generally about 0.1 second to 0.5 second.

【0050】上記のごとき状況において、付着直後の塗
着N.VをX1とすれば、X1は下記(数5)式で与えら
れる。 X1=M1×X0/(M1−V×S1×t) …(数5) ただし、M1:飛行中の塗料粒子の質量 X0:塗布前の塗料のN.V(塗料濃度) V:シンナー蒸発速度(単位面積当たりの値) S1:飛行中の塗料粒子表面積 t:塗料噴射時点からの経過時間(塗料粒子の飛行時
間) また、上記のシンナー蒸発速度Vは、下記(数6)式で
与えられる。 V=V(C,T,X0) …(数6) ただし、C:シンナー種混合比 T:温度(塗料温度または塗装ブースの雰囲気温度) なお、シンナー種混合比Cとは、季節による温度変化に
対応するため、低沸点シンナーと高沸点シンナーとの混
合比を変えて季節に応じた沸点に調合する場合の混合比
を意味する。
In the above situation, if the coating NV immediately after the deposition is X 1 , X 1 is given by the following equation (5). X 1 = M 1 × X 0 / (M 1 −V × S 1 × t) (Equation 5) where M 1 : mass of paint particles in flight X 0 : NV of paint before application (paint Concentration) V: Thinner evaporation speed (value per unit area) S 1 : Surface area of paint particles in flight t: Elapsed time from paint injection time (flight time of paint particles) Further, the above thinner evaporation speed V is as follows: It is given by the equation (6). V = V (C, T, X 0 ) (Equation 6) where C: Thinner type mixing ratio T: Temperature (paint temperature or coating booth ambient temperature) Note that the thinner type mixing ratio C is the temperature depending on the season In order to cope with the change, it means a mixing ratio in a case where the mixing ratio between the low boiling thinner and the high boiling thinner is changed to adjust the boiling point according to the season.

【0051】また、塗料粒子の質量M1は下記(数7)
式で与えられる。 M1=(1/6)×πR3×ρ0 …(数7) ただし、R:塗装粒子径 ρ0:塗料密度 また、塗料粒子表面積S1は下記(数8)式で与えられ
る。 S1=πR2 …(数8) したがって、上記の(数7)式、(数8)式を(数5)
式に代入することにより、塗着N.V=X1(%)を表す
数式として下記(数9)式が得られる。
The mass M 1 of the paint particles is given by
Given by the formula. M 1 = (1/6) × πR 3 × ρ 0 (Equation 7) where R: Paint particle diameter ρ 0 : Paint density The paint particle surface area S 1 is given by the following (Equation 8). S 1 = πR 2 (Equation 8) Therefore, the above-mentioned equations (7) and (8) are replaced by (5)
By substituting into the equation, the following (Equation 9) is obtained as an equation representing the coating NV = X 1 (%).

【0052】[0052]

【数9】 (Equation 9)

【0053】単位面積当たりのシンナー蒸発量は、蒸発
速度V×時間tで示される。したがって基準温度におけ
るシンナー蒸発量を上記(数5)式と(数9)式から求
めると、下記(数10)式に示すようになる。 Vc×tc=(1/6)×R×ρ0(Xc−X0)/Xc …(数10) ただし、Vc:基準温度における蒸発速度 tc:粒子飛行時間(噴射時点から付着時点までの時
間) Xc:基準温度における付着直後の塗着N.V したがって基準塗装条件における粒子飛行時間tcは下
記(数11)式で示される。
The thinner evaporation amount per unit area is represented by evaporation speed V × time t. Therefore, when the thinner evaporation amount at the reference temperature is obtained from the above equations (5) and (9), the following equation (10) is obtained. Vc × tc = (1/6) × R × ρ 0 (Xc−X 0 ) / Xc (Equation 10) where Vc: evaporation rate at the reference temperature tc: particle flight time (time from injection time to adhesion time) Xc: coating NV immediately after adhesion at the reference temperature Therefore, the particle flight time tc under the reference coating conditions is represented by the following equation (11).

【0054】 tc=(1/6)×R×ρ0(Xc−X0)/Xc・Vc …(数11) また、任意の温度T、膜厚h、シンナー種混合比Cにお
けるシンナー蒸発速度Vは、図18に示すごとく、塗布
直後の塗着N.Vの値X0の2次特性で表され、下記(数
12)式で示される。
Tc = (1/6) × R × ρ 0 (Xc−X 0 ) / Xc · Vc (Equation 11) Further, the thinner evaporation rate at an arbitrary temperature T, film thickness h, and thinner type mixing ratio C V is represented by the secondary characteristic of the value X 0 of the coating NV immediately after coating, as shown in FIG. 18, and is expressed by the following (Equation 12).

【0055】[0055]

【数12】 (Equation 12)

【0056】ただし、 Vc:基準温度における蒸発速
度 T:計測時の温度 T0:基準温度 C:計測時の塗料シンナー種混合比 C0:塗料シンナー種混合比の基準値 X0:塗布前の塗料のN.V(塗料濃度) X00:塗布前の塗料のN.Vの基準値 k1、k2、k3、α、τ:定数 なお、上記CおよびC0の塗料シンナー種混合比とは、
季節に応じてシンナーの沸点を変える場合に、低沸点シ
ンナーと高沸点シンナーとの混合比を変えることによ
り、夏用(高沸点)、冬用(低沸点)、春秋用(中間)
のように季節に応じた沸点に調合したときの混合比を意
味する。したがってシンナー種とは上記の夏用、冬用、
春秋用のような沸点に違いによるシンナーの種類を意味
する。
Where, Vc: evaporation rate at reference temperature T: temperature at measurement T 0 : reference temperature C: paint thinner species mixture ratio at measurement C 0 : paint thinner species mixture ratio X 0 : before coating NV (paint concentration) of paint X 00 : reference value of NV of paint before coating k 1 , k 2 , k 3 , α, τ: constant The above-mentioned C and C 0 paint thinner type mixing ratio Is
When the boiling point of the thinner is changed according to the season, by changing the mixing ratio of the low-boiling thinner and the high-boiling thinner, summer (high boiling), winter (low boiling), spring and autumn (middle)
Means the mixing ratio when the boiling point is adjusted according to the season. Therefore, the thinner type is for summer, winter,
It means the type of thinner due to the difference in boiling point like spring and autumn.

【0057】上記(数11)式、(数12)式に示すよ
うに、粒子飛行時間tcおよびシンナー蒸発速度Vは、
塗装機の塗装条件R、Xc、X0等によって較正される。
また、上記(数9)式に示すように、塗装条件が一定で
あれば、付着後の塗着N.Vは、シンナー蒸発量(蒸発
速度V×時間t)と塗料粒子径Rと塗料密度ρ0から演
算で求めることが出来る。そして基準温度T0における
シンナー蒸発速度Vcは上記(数10)式に基づいて予
め実験で求めることが出来、任意の温度T、膜厚h、シ
ンナー種Cにおけるシンナー蒸発速度Vは上記(数1
2)式で求めることが出来る。
As shown in the above formulas (11) and (12), the particle flight time tc and the thinner evaporation speed V are
Coating conditions for coating machine R, Xc, it is calibrated by X 0 and the like.
Further, as shown in the above equation (9), if the coating conditions are constant, the coating NV after adhesion is determined by the thinner evaporation amount (evaporation speed V × time t), the coating particle diameter R, and the coating density. It can be obtained by calculation from ρ 0 . The thinner evaporation rate Vc at the reference temperature T 0 can be obtained by an experiment in advance based on the above equation (Equation 10), and the thinner evaporation rate V at an arbitrary temperature T, the film thickness h, and the thinner type C is calculated by the above (Equation 1).
It can be obtained by equation (2).

【0058】前記図2の実施の形態においては、上記の
ようにして予め求めた基準温度T0におけるシンナー蒸
発速度Vcまたはシンナー蒸発量(Vc×tc)をシンナ
ー蒸発量入力部13から入力する。そしてシンナー蒸発
量補正部12においては、塗装条件入力部5から入力し
た塗装ブース内の温度(実測値:上記のTに相当)およ
びシンナー種(上記のCに相当)とを用いて(数12)
式で基準のシンナー蒸発量を補正し、その塗装条件にお
けるシンナー蒸発量(第1の補正値)を演算し、その値
を用いて付着直後の塗着N.Vを演算する。なお、塗料
粒子径Rは微粒化演算部6で求めた値を用い、塗料密度
ρ0は塗装条件入力部5から入力した値を用いる。
In the embodiment of FIG. 2, the thinner evaporation speed Vc or the thinner evaporation amount (Vc × tc) at the reference temperature T 0 obtained in advance as described above is input from the thinner evaporation amount input unit 13. Then, the thinner evaporation amount correction unit 12 uses the temperature (actually measured value: equivalent to the above T) and the type of thinner (corresponding to the above C) input from the coating condition input unit 5 (equation 12). )
The reference thinner evaporation amount is corrected by the equation, the thinner evaporation amount (first correction value) under the coating conditions is calculated, and the coating NV immediately after adhesion is calculated using the value. The paint particle diameter R uses the value obtained by the atomization calculation unit 6, and the paint density ρ 0 uses the value input from the coating condition input unit 5.

【0059】次に、図2に示した第2の塗着N.V演算
部22における演算について説明する。第2の塗着N.
V演算部22においては、1度吹き後、2度吹き塗布を
行なった時点(いわゆるセットタイム:例えば30秒〜
1分後)における1度吹き塗膜の塗着N.Vを演算する
ものである。また上記の演算を行なうために必要な第1
の塗料密度演算部20、測定時間入力部21および膜厚
演算部15についても説明する。
Next, the calculation in the second coating NV calculating section 22 shown in FIG. 2 will be described. Second coating N.
In the V calculation unit 22, the point at which the spraying is performed twice after the spraying once (so-called set time: for example, 30 seconds to
(After one minute) to calculate the applied NV of the once-blown coating film. In addition, the first operation required to perform the above operation is performed.
The paint density calculation unit 20, measurement time input unit 21, and film thickness calculation unit 15 will also be described.

【0060】まず、第1の塗料密度演算部20は、第1
の塗着N.V演算部10で求めた塗着N.Vから塗料密度
を演算する(詳細後述)。また、測定時間入力部21
は、塗料を塗布した時点から任意の計測時点までの時間
(この場合には、1度吹き時点から2度吹き時点までの
時間)を入力する。また、膜厚演算部15は、波長演算
部4で求めたピーク波長λpと表面粗さ演算部14で求
めた粗さ度(およびその時間変化量)に応じて塗装膜厚
を演算する(詳細後述)。また、シンナー蒸発量補正部
12も第2の塗着N.V演算部22の演算に用いる補正
値(第2の補正値)を演算する(詳細後述)。そして第
2の塗着N.V演算部22は、膜厚演算部15で求めた
膜厚と第1の塗料密度演算部20で求めた塗料密度と測
定時間入力部21から入力した計測時間と、補正後のシ
ンナー蒸発量と、塗装条件と、に基づいて、2度吹き塗
布を行なった時点における1度吹き塗膜の塗着N.Vを
演算する。
First, the first paint density calculating section 20 performs the first
The paint density is calculated from the paint NV calculated by the paint NV calculating unit 10 (described later in detail). The measurement time input unit 21
Is a time from the time when the paint is applied to an arbitrary measurement time (in this case, the time from the time of the first blow to the time of the second blow) is input. Further, the film thickness calculating section 15 calculates the coating film thickness in accordance with the peak wavelength λp obtained by the wavelength calculating section 4 and the roughness (and its time change amount) obtained by the surface roughness calculating section 14 (details). See below). In addition, the thinner evaporation amount correction unit 12 also calculates a correction value (second correction value) used for the calculation of the second coating NV calculation unit 22 (details will be described later). Then, the second coating NV calculating section 22 calculates the film thickness obtained by the film thickness calculating section 15, the paint density obtained by the first paint density calculating section 20, and the measurement time inputted from the measurement time input section 21. Based on the corrected thinner evaporation amount and the coating conditions, the application NV of the once-sprayed coating film at the time when the two-time spray coating is performed is calculated.

【0061】以下、第2の塗着N.V演算部22で行な
う塗装時点から任意の時間後の塗着N.V演算について
説明する。付着直後(塗料噴射時点から塗料粒子飛行時
間t1経過後)の塗着N.VをX1、付着後、時間t2が経
過した時点の塗着N.VをX2とすれば、X1は下記(数
13)式、X2は下記(数14)式または(数15)式
で与えられる。 X1=M1×X0/(M1−S1×V×t1) …(数13) X2=M1×X0/(M1−S1×V×t1−S2×V'×t2)…(数14) or X2:M2×X1/(M2−S2×V'×t2) …(数15) ただし、M1:飛行中の塗料粒子の質量 M2:付着後の塗料粒子の質量 X0:塗布前の塗料のN.V(塗料濃度) S1:飛行中の塗料粒子表面積 S2:付着後の塗料粒子表面積 V:飛行中の単位面積当たりのシンナー蒸発速度 V':付着後の単位面積当たりのシンナー蒸発速度 なお、(数13)式における「S1×V×t1」は塗装粒
子飛行中のシンナー蒸発量に相当し、(数14)式の
「S2×V'×t2」は、付着後のシンナー蒸発量に相当
する。
Hereinafter, the coating NV calculation performed by the second coating NV calculating section 22 at an arbitrary time after the coating time will be described. If the coating NV immediately after adhesion (after the paint particle flight time t 1 has elapsed since the time of paint spraying) is X 1 , and the coating NV when the time t 2 has elapsed after attachment is X 2 , X 1 below (number 13), X 2 is given by the following equation (14) or (expression 15) below. X 1 = M 1 × X 0 / (M 1 −S 1 × V × t 1 ) (Expression 13) X 2 = M 1 × X 0 / (M 1 −S 1 × V × t 1 −S 2 × V ′ × t 2 ) (Equation 14) or X 2 : M 2 × X 1 / (M 2 −S 2 × V ′ × t 2 ) (Equation 15) where M 1 : Paint particles in flight Mass M 2 : Mass of paint particles after adhesion X 0 : NV (paint concentration) of paint before application S 1 : Surface area of paint particles in flight S 2 : Surface area of paint particles after adhesion V: Unit in flight Thinner evaporation rate per unit area V ′: Thinner evaporation rate per unit area after adhesion “S 1 × V × t 1 ” in equation (13) corresponds to the thinner evaporation amount during flight of the coating particles, “S 2 × V ′ × t 2 ” in the equation (14) corresponds to the thinner evaporation amount after the adhesion.

【0062】また、付着後の塗料粒子の質量M2は、塗
膜表面積S2と1度吹きの膜厚h'と付着直後の塗料密度
ρ2によって下記(数16)式で与えられる。 M2=S2×h'×ρ2 …(数16) ただし、1度吹きの膜厚h'は、1度吹きの塗料の吐出
量をn、2度吹きの吐出量をm、2度吹き後に計測した
膜厚をhとすれば、h'=n×h/(n+m)で与えら
れる。
The mass M 2 of the paint particles after the adhesion is given by the following equation (Formula 16) based on the surface area S 2 of the coating film, the thickness h ′ of the single blow, and the paint density ρ 2 immediately after the adhesion. M 2 = S 2 × h ′ × ρ 2 (Equation 16) Here, the film thickness h ′ of the single blow is n, the discharge amount of the paint once blown is n, and the discharge amount of the double blow is m, twice. Assuming that the film thickness measured after blowing is h, it is given by h ′ = n × h / (n + m).

【0063】また、上記の付着後の塗料粒子表面積S2
は下記(数17)式で与えられる。 S2=k5×S1 …(数17) ただし、k5=f(h)であり、k5は膜厚hの関数であ
る。上記の(数16)式および(数17)式を、(数1
4)式、(数15)式に代入すると、付着後、時間t2
が経過した時点(2度吹き時点)の塗着N.Vを示すX2
(含有率)の数式として下記(数18)式と(数19)
式が得られる。
Further, the surface area S 2 of the paint particles after the above-mentioned adhesion is obtained.
Is given by the following (Equation 17). S 2 = k 5 × S 1 (Equation 17) where k 5 = f (h), and k 5 is a function of the film thickness h. Equations (16) and (17) are replaced by (1)
Substituting into the equations 4) and (Equation 15) gives the time t 2 after the adhesion.
X 2 indicating the coating NV at the time when the time elapses (at the time of second blowing)
(Equation 18) and (Equation 19)
An expression is obtained.

【0064】[0064]

【数18】 (Equation 18)

【0065】また、任意の温度T、膜厚h、シンナー種
混合比C、付着後の時間t2におけるシンナー蒸発速度
V'は下記(数20)式で与えられる。
An arbitrary temperature T, film thickness h, thinner type mixing ratio C, and thinner evaporation rate V ′ at time t 2 after deposition are given by the following (Equation 20).

【0066】[0066]

【数20】 (Equation 20)

【0067】ただし、X1:付着直後の塗着N.V X10:付着直後の塗着N.Vの基準値 n:1度吹きの吐出量 m:2度吹きの吐出量 h:2度吹き時の膜厚 h0:2度吹き時の基準膜厚 その他の各符号の意味は前記(数12)式と同じ。Where X 1 : N.V. Coating immediately after adhesion N.sub.X 10 : Reference value of N.V. coating immediately after adhesion n: Discharge amount of one-time blowing m: Discharge amount of two-time blowing h: 2 degree Thickness at the time of blowing h 0 : Reference film thickness at the time of blowing twice The meanings of the other symbols are the same as those of the above (Equation 12).

【0068】上記(数19)式を用いる場合には、付着
直後の塗着N.Vを示すX1と、付着後の塗料密度ρ
2と、塗膜の膜厚hと、h'を算出するためのnとm(塗
装条件入力部5から入力)、塗装時点から計測時点まで
の計測時間t2と、補正後のシンナー蒸発速度V'(第2
の補正値)が必要があるが、X1は前記のように(数1
3)式を用いて求められるし、膜厚hは膜厚演算部15
で演算することが出来る。また、計測時間t2は測定時
間入力部21から入力すればよい。また、付着後の塗料
密度ρ2(なお、ρ2=ρ1)は、第1の塗料密度演算部
20で求めた値を用いる。また、シンナー蒸発速度V'
は上記(数20)式によって求められる。上記補正後の
シンナー蒸発速度V'(第2の補正値)はシンナー蒸発
量補正部12で求める。
In the case where the above equation (19) is used, X 1 indicating the coating NV immediately after the adhesion and the coating density ρ after the adhesion
2, and the thickness h of the coating film, (input from paint condition input unit 5) n and m for calculating h ', the measurement time t 2 to the measuring point from the coating point, thinner evaporation rate of the corrected V '(second
There is a need for correction values) but, X 1 is as described above (Equation 1
The film thickness h is obtained by using the expression 3), and the film thickness
Can be calculated. The measurement time t 2 may be input from the measurement time input unit 21. As the paint density ρ 2 after application (ρ 2 = ρ 1 ), a value obtained by the first paint density calculator 20 is used. Also, the thinner evaporation rate V ′
Is obtained by the above equation (20). The thinner evaporation speed V ′ (second correction value) after the above correction is obtained by the thinner evaporation amount correction unit 12.

【0069】次に、第1の塗料密度演算部20で行なう
塗料密度演算について説明する。付着直後の塗着N.V
(前記のX1)と塗料密度ρとは、図11に示すような
関係がある。したがって第1の塗料密度演算部20にお
いては、予め図11の特性を記憶しておき、第1の塗着
N.V演算部10で求めた付着直後の塗着N.Vに応じ
て、そのときの塗料密度ρを読み出して出力するように
構成する。なお、図11の関係は塗料の種類(上塗り、
下塗り等)によって異なるので、それぞれの塗料に応じ
た特性を記憶しておき、塗装条件入力部5から入力した
塗料の種類の情報に応じて対応する特性を用いる。上記
のようにして、2度吹き塗布を行なった時点における1
度吹き塗膜の塗着N.Vを演算する。
Next, the paint density calculation performed by the first paint density calculator 20 will be described. Coating NV immediately after adhesion
(X 1 ) and the paint density ρ have a relationship as shown in FIG. Therefore, the first paint density calculating unit 20 stores the characteristics of FIG. 11 in advance, and according to the coating NV immediately after adhesion obtained by the first coating NV calculating unit 10, The current paint density ρ is read and output. The relationship in FIG. 11 is based on the type of paint (overcoat,
Therefore, the characteristic corresponding to each paint is stored, and the corresponding characteristic is used according to the information of the type of the paint input from the coating condition input unit 5. As described above, the value of 1 at the time of performing
The application NV of the blown coating film is calculated.

【0070】次に、図2に示した表面粗さ演算部14と
膜厚演算部15における表面粗さ度と膜厚の演算につい
て説明する。図12は、塗装後の塗膜の断面図である。
塗装直後には、(a)に示すように、塗装表面は初期の
付着粒子の結合によって凹凸状態になっている。そして
時間の経過と共に、(b)に示すように、レベリング力
によって次第に平滑化され、最終的には、(c)に示す
ように、平滑化状態となる。本実施の形態においては、
このような平滑化現象に着目し、ウエット状態における
塗装表面の凹凸状態を測定し、それによって平滑化後、
或いは乾燥後の塗装膜厚を算出するものである。
Next, the calculation of the surface roughness and the film thickness in the surface roughness calculator 14 and the film thickness calculator 15 shown in FIG. 2 will be described. FIG. 12 is a cross-sectional view of the coating film after painting.
Immediately after coating, as shown in (a), the coated surface is in an uneven state due to the initial bonding of the adhered particles. Then, as time passes, as shown in (b), smoothing is gradually performed by the leveling force, and finally, as shown in (c), a smoothed state is obtained. In the present embodiment,
Focusing on such a smoothing phenomenon, measuring the unevenness of the coating surface in a wet state, and after smoothing it,
Alternatively, the coating thickness after drying is calculated.

【0071】上記のごときウエット状態における凹凸状
態を測定するには、光干渉式表面粗さ計など種々の方法
(例えば「機械工学便欄 日本機械学会1989年9月
30日 新版3刷発行 B2編 207頁〜208
頁」に記載)があるが、ここでは撮像手段(例えばCC
Dカメラ)で塗装表面を撮像し、その情報を画像処理す
る方法について説明する。
In order to measure the unevenness state in the wet state as described above, various methods such as an optical interference type surface roughness meter (for example, “Mechanical Engineering Service Section, Japan Society of Mechanical Engineers, September 30, 1989, issue of new edition 3rd edition, B2 edition) 207 pages to 208
Page), but here, the imaging means (for example, CC
A method of imaging the painted surface with a D camera) and image processing the information will be described.

【0072】まず、パワースペクトル積分値Pによる平
滑化特性を説明すると、表面の凹凸(ピーク・ツウ・ピ
ーク値)の面積平均値に相当する表面粗さRaとパワー
スペクトル積分値Pとは、図13に示すような関係にあ
り、下記(数21)式、(数22)式に示す関係があ
る。 P=Q十k×√Ra …(数21) Ra={(P−Q)/k}2 …(数22) ただし、上式において、Qは粗さ補正値、kは粗さ変換
係数である。
[0072] First, explaining the smoothing characteristics of the power spectrum integral value P, and the surface of the uneven surface mean corresponding surface roughness value R a and the power spectrum integral value P (peak-to-peak value), There is a relationship as shown in FIG. 13, and there is a relationship as shown in the following equations (21) and (22). P = Q tens k × √R a ... (number 21) R a = {(P -Q) / k} 2 ... ( Equation 22) However, in the above formula, Q is the roughness correction value, k is Roughness conversion It is a coefficient.

【0073】パワースペクトル解析値による平滑化理論
式の導出では、まず、ウエット塗膜平滑化理論式(近似
式)として、表面粗さ度Raは下記(数23)式で表さ
れる。 Ra=Ra0・exp(−t/τ) …
(数23) ただし、Ra0はRaの初期値(時点0すなわち塗装直後
の値)、tは塗装後の経過時間である。また、τは粘性
流体の基本式から導出された時定数であり、後記(数2
8)式に示すごときものである。
In deriving the theoretical equation for smoothing based on the power spectrum analysis value, first, the surface roughness Ra is expressed by the following equation (Equation 23) as the theoretical equation for wet coating film smoothing (approximate equation). R a = R a0 · exp (−t / τ) ...
( Equation 23) Here, Ra0 is the initial value of Ra (time 0, that is, the value immediately after painting), and t is the elapsed time after painting. Τ is a time constant derived from the basic formula of a viscous fluid, and
8) This is as shown in the equation.

【0074】上記(数22)式を(数23)式に代入す
ると、下記(数24)式が得られる。 {(P−Q)/k}2={(P0−Q0)/k}2 exp(−t/τ)…(数24) ただし、P0はPの初期値(時点0における値)であ
り、Q0はQの初期値である。上記(数24)式におい
て、P、P0をそれぞれの補正値Q、Q0を含んだ値とし
て、(P0−Q0)→P0、(P−Q)→Pと示せば、
(数24)式は下記(数25)式のように表せる。 P=P0・exp(−t/2τ) …(数25) また、時定数τは下記(数26)式で示される。 τ=3ηλ4/16π4γh3 …(数26) ただし、ηは塗料の粘度、λは前記の長波長領域のピー
ク波長、γは塗膜の表面張力、hはウエット状態におけ
る膜厚(撮像部分の平均値)である。以上から、パワー
スペクトル解析値による塗装膜厚hは、下記(数27)
式で示すようになる。
When the above equation (22) is substituted into the equation (23), the following equation (24) is obtained. {(P−Q) / k} 2 = {(P 0 −Q 0 ) / k} 2 exp (−t / τ) (Equation 24) where P 0 is the initial value of P (the value at time 0) And Q 0 is the initial value of Q. In the above equation (24), if P and P 0 are values including the respective correction values Q and Q 0 and are expressed as (P 0 −Q 0 ) → P 0 , (P−Q) → P,
The expression (24) can be expressed as the following expression (25). P = P 0 · exp (−t / 2τ) (Equation 25) The time constant τ is expressed by the following (Equation 26). τ = 3ηλ 4 / 16π 4 γh 3 (Equation 26) where η is the viscosity of the paint, λ is the peak wavelength in the long wavelength region, γ is the surface tension of the coating film, and h is the film thickness in a wet state (imaging) (Average value of parts). From the above, the coating film thickness h based on the power spectrum analysis value is as follows (Equation 27).
It becomes as shown by the formula.

【0075】[0075]

【数27】 [Equation 27]

【0076】ただし、P1は時点t1におけるパワースペ
クトル積分値Pの値、P2は時点t(ただし−t
2)におけるPの値である。なお、τ'iは下記(数2
8)式で示される。 τ'i=3η(ti)・λ4/16π4γ …(数28) ただし、i=1,2であり、η(ti)は塗料の粘度が塗
装後の経過時間の関数であることを示す。すなわち、塗
装条件入力部5から入力するのは、塗装前における塗料
の粘度ηであるが、塗装後の塗着粘度は、塗装後の経過
時間に応じて変化する値η(ti)となる。この値は、塗
料組成(塗料内の揮発成分の割合等)や風速などによっ
て定まる値である。上記(数27)式から判るように、
塗料の粘度η、塗膜の表面張力γ、凹凸波形の長波長領
域のピーク波長λ、塗装後の2つの時点t1、t2におけ
るパワースペクトル積分値Pの値から、ウエット状態に
おける膜厚hを求めることが出来る。上記の各数値のう
ち、塗料の粘度ηと塗膜の表面張力γは、塗料の特性に
よって定まる値であるから、予め判っている値を入力
し、長波長領域のピーク波長λとパワースペクトル積分
値Pの値は、前記の画像情報を処理した値を用いる。
Here, P 1 is the value of the power spectrum integral value P at the time point t 1 , and P 2 is the time point t 2 (where −t 1 <
This is the value of P at t 2 ). Note that τ ′ i is as follows (Equation 2)
8) It is shown by the equation. τ ′ i = 3η (t i ) · λ 4 / 16π 4 γ (28) where i = 1,2, and η (t i ) is a function of the viscosity of the paint and the elapsed time after painting. Indicates that That is, what is input from the coating condition input unit 5 is the viscosity η of the coating before the coating, but the coating viscosity after the coating is a value η (t i ) that changes according to the elapsed time after the coating. . This value is determined by the paint composition (such as the proportion of volatile components in the paint) and the wind speed. As can be seen from the above equation (27),
From the values of the viscosity η of the paint, the surface tension γ of the paint film, the peak wavelength λ in the long wavelength region of the uneven waveform, and the integrated value P of the power spectrum at two time points t 1 and t 2 after coating, the film thickness h in the wet state is obtained. Can be requested. Among the above values, the viscosity η of the paint and the surface tension γ of the paint film are values determined by the properties of the paint, so input a known value, and input the peak wavelength λ in the long wavelength region and the power spectrum integration. As the value P, a value obtained by processing the above-described image information is used.

【0077】図14は、上記(数27)式を用いた平滑
化理論値と測定値を比較したウエット平滑化動特性(パ
ワースペクトル積分値P)を示す特性図である。図14
において、横軸は塗装後の経過時間、縦軸はパワースペ
クトル積分値Pである。上記の測定は、塗布直後の画像
を撮像部2で撮影し、パワースペクトル解析を行なった
ものである。図14から、測定値は理論値とほぼ一致し
た平滑化特性となっていることがわかる。
FIG. 14 is a characteristic diagram showing a wet smoothing dynamic characteristic (power spectrum integral value P) obtained by comparing a measured value with a theoretical value of smoothing using the above equation (27). FIG.
In the graph, the horizontal axis represents the elapsed time after painting, and the vertical axis represents the power spectrum integrated value P. In the above measurement, an image immediately after application is taken by the imaging unit 2 and power spectrum analysis is performed. From FIG. 14, it can be seen that the measured value has a smoothing characteristic almost coincident with the theoretical value.

【0078】また、表1は、膜厚60μmと54μmの
2つのサンプルに対して、上記(数27)式の推定式を
用いて膜厚hを計測した結果を示す表である。表1に示
すように、数μmの精度で計測可能であることが判る。
Table 1 is a table showing the results of measuring the film thickness h of the two samples having a film thickness of 60 μm and 54 μm by using the above-mentioned equation (27). As shown in Table 1, it can be seen that measurement is possible with an accuracy of several μm.

【0079】[0079]

【表1】 [Table 1]

【0080】図2の実施の形態においては、撮像部2、
画像処理部3、波長演算部4、表面粗さ演算部14、膜
厚演算部15において、上記のごとき処理を行ない、撮
像個所の膜厚hを求める。
In the embodiment shown in FIG. 2, the image pickup unit 2,
The above processing is performed in the image processing unit 3, the wavelength calculation unit 4, the surface roughness calculation unit 14, and the film thickness calculation unit 15 to obtain the film thickness h at the imaging location.

【0081】また、前記(数27)式においては、塗装
後の2つの時点t1とt2における2つの値P1、P2を用
い、粗さ情報の時間変化量を用いて演算している。その
ため、塗装後に2つの時点で同一個所を撮像する必要が
ある。このためには、塗装ライン上の車体の移動に合わ
せて撮像部2を移動させる必要があるので、装置が複雑
になる。それを避けるためには、次のような方法があ
る。すなわち、被塗装体である車体の他に、テストピー
スを用意して被塗装体と同じ条件で塗装を行ない、時点
1(例えばt1=10秒、t1<t2)における値P
1は、テストピースの画像情報を処理して求めた値を用
いるようにする。このようにすれば、撮像部2は時点t
2(例えば塗装1〜2分後)において1回のみの撮像を
行なえばよい。
In equation (27), the two values P 1 and P 2 at the two time points t 1 and t 2 after painting are used to calculate using the time change amount of the roughness information. I have. Therefore, it is necessary to image the same place at two points after painting. For this purpose, it is necessary to move the imaging unit 2 in accordance with the movement of the vehicle body on the painting line, so that the apparatus becomes complicated. To avoid this, there are the following methods. That is, a test piece is prepared in addition to the vehicle body to be coated, and the coating is performed under the same conditions as the coated object, and the value P at time t 1 (for example, t 1 = 10 seconds, t 1 <t 2 )
1 uses a value obtained by processing the image information of the test piece. In this way, the imaging unit 2 moves to the time point t.
2 (for example, 1 to 2 minutes after painting), only one imaging need be performed.

【0082】なお、本実施の形態においては、基本的な
測定を塗装面の撮像と画像処理によって行ない、塗装表
面の粗さの情報としてパワースペクトル積分値Pと長波
長領域のピーク波長λとを用いて演算を行なう場合を例
示した。しかし、塗装表面の粗さ情報としては、例え
ば、本出願人の先行出願(特願平4−306966号)
に記載のように、光干渉式表面粗さ計を用い、凹凸のピ
ーク・ツウ・ピークと凹凸の波長λに基づいて演算する
方法、或いは上記光干渉式表面粗さ計の測定結果から表
面の平均粗さ度Raと凹凸の平均波長λaとを用いて演算
する方法などがあり、いずれを用いてもよい。
In the present embodiment, the basic measurement is performed by imaging and image processing of the painted surface, and the power spectrum integral value P and the peak wavelength λ in the long wavelength region are used as information on the roughness of the painted surface. The case where the calculation is performed using the above is exemplified. However, as the roughness information of the painted surface, for example, a prior application (Japanese Patent Application No. 4-306966) of the present applicant is used.
As described in the above, using a light interference type surface roughness meter, a method of calculating based on the peak-to-peak of the unevenness and the wavelength λ of the unevenness, or the surface of the surface from the measurement results of the light interference type surface roughness meter There is a method of calculation using the mean wavelength of the roughness degree of R a and irregularities lambda a, it may be either.

【0083】また、塗膜面の凹凸波長(長波長領域のピ
ーク波長λp)のみを用いて膜厚を演算することもでき
る。以下詳細に説明する。前記の波長演算部4で求めた
パワースペクトル波形(図4)において、凹凸波形の長
波長領域のピーク波長、すなわち第2のピーク波形の
ピーク値に対応した波長λpは、後記のごとく塗装の膜
厚と相関性があるので、上記の波長λpを求めることに
よって塗装膜厚を計測することが出来る。
Further, the film thickness can be calculated using only the unevenness wavelength of the coating film surface (peak wavelength λp in the long wavelength region). This will be described in detail below. In the power spectrum waveform (FIG. 4) obtained by the wavelength calculation unit 4, the peak wavelength in the long wavelength region of the concavo-convex waveform, that is, the wavelength λp corresponding to the peak value of the second peak waveform, is as described below. Since there is a correlation with the thickness, the coating film thickness can be measured by obtaining the wavelength λp.

【0084】前記図5で説明したような塗料粒子の付着
メカニズムの基礎実験、具体的には塗料の吹き付け時間
を制御することによって膜厚を変化させ、そのときの塗
装膜面の波長分布を測定した実験の結果によれば、被塗
装面への付着粒子は、粒子結合によって粒子径が前記図
8に示したように成長することが確認された。そして前
記図5〜図9で説明したごとく、パワースペクトルから
求めた凹凸の長波長領域のピーク波長λpを用いて、塗
料粒子径rを求めることが出来る。具体的には、実験で
前記図7の特性を求め、それから(数2)式の各係数k
s、aを予め求めておけば、撮像画像から求めたピーク
波長λpを用いて塗料粒子径rを求めることが出来る。
A basic experiment on the adhesion mechanism of paint particles as described in FIG. 5, specifically, by controlling the spray time of the paint to change the film thickness and measuring the wavelength distribution of the paint film surface at that time. According to the results of the experiment, it was confirmed that the particles adhered to the surface to be coated grew as shown in FIG. Then, as described with reference to FIGS. 5 to 9, the paint particle diameter r can be obtained using the peak wavelength λp in the long wavelength region of the unevenness obtained from the power spectrum. Specifically, the characteristic of FIG. 7 is obtained by an experiment, and then each coefficient k
If s and a are determined in advance, the paint particle diameter r can be determined using the peak wavelength λp determined from the captured image.

【0085】そして、図8に示すように、付着粒子径R
は塗布時間すなわち膜厚が大きくなるに従って順次大き
くなっている。この関係を、さらに塗布時間ではなく膜
厚値を実測しながら、膜厚と付着粒子径の関係、すなわ
ち膜厚と塗膜面の凹凸の波長との関係を解析すると、膜
厚と波長(前記ピーク波長λp)との関係は、図15に
示すようになる。すなわち、膜厚が大きくなるとピーク
波長λpも大きくなり、下記(数29)式、(数30)
式に示したごとき関係が実験的に得られた。
Then, as shown in FIG.
Gradually increase as the coating time, that is, the film thickness increases. By analyzing the relationship between the film thickness and the attached particle diameter, that is, the relationship between the film thickness and the wavelength of the unevenness of the coating film surface, while actually measuring the film thickness value instead of the coating time, the relationship is obtained. The relationship with the peak wavelength λp) is as shown in FIG. That is, as the film thickness increases, the peak wavelength λp also increases.
The relationship as shown in the equation was obtained experimentally.

【0086】[0086]

【数29】 (Equation 29)

【0087】h=k'×λ−k" …(数30) ただし、k、k'、k"、α:塗料に応じて定まる定数 上記の数式および図の特性から判るように、付着粒子径
(すなわち塗装面の凹凸の波長)は、膜厚が厚いほど粒
子の結合数が多くなるため、大きくなる。すなわち、塗
膜面の成長は塗装条件である膜厚値に依存することを示
しており、膜厚値の推定を行なう場合には、上記(数2
9)式または(数30)式を用いて、塗膜面の凹凸の波
長から膜厚値の算出を行なうことが可能である。したが
って塗膜表面の凹凸波形の長波長領域のピーク波長λp
を求めることにより、ウエット状態の膜厚hを算出する
ことが出来る。
H = k ′ × λ−k ″ (Equation 30), where k, k ′, k ″, α: constants determined according to the paint, as can be seen from the above formulas and the characteristics in the figures, the diameter of the adhered particles (I.e., the wavelength of the irregularities on the painted surface) increases as the film thickness increases, because the number of bonded particles increases. That is, it is shown that the growth of the coating film surface depends on the film thickness value which is a coating condition.
It is possible to calculate the film thickness value from the wavelength of the unevenness of the coating film surface by using the expression 9) or the expression (30). Therefore, the peak wavelength λp in the long wavelength region of the uneven waveform of the coating film surface
Is obtained, the film thickness h in a wet state can be calculated.

【0088】図2の実施の形態に適用する場合には、波
長演算部4で、入力した画像処理データから塗装表面の
凹凸波形のパワースペクトルPSを求め、前記の長波長
領域のピーク波長λpを算出する。そして膜厚演算部1
5では、予め実験で求めた前記図15の特性(数29式
または数30式)を用いて上記ピーク波長λpから塗装
の膜厚値を演算するように構成する。この場合には表面
粗さ演算部14を省略することが出来る。なお、上記の
演算において、図15の特性は、正確には塗料の種類に
応じて異なるので、塗装条件入力部5から入力した中塗
り、上塗りベース、上塗りクリア等の塗料の種類に応じ
て(数29)式、(数30)式の係数値を変更する。
In the case of application to the embodiment of FIG. 2, the wavelength calculator 4 calculates the power spectrum PS of the uneven waveform of the coating surface from the input image processing data, and calculates the peak wavelength λp in the long wavelength region. calculate. And the film thickness calculating section 1
In step 5, the film thickness value of the coating is calculated from the peak wavelength λp using the characteristic (Equation 29 or Eq. 30) of FIG. In this case, the surface roughness calculator 14 can be omitted. In the above calculation, the characteristics in FIG. 15 are different depending on the type of the paint, to be exact. Therefore, according to the type of the paint such as the middle coat, the top coat base, and the clear top coat inputted from the coating condition input unit 5 ( The coefficient values of the equations (29) and (30) are changed.

【0089】次に、図2に示した第3の塗着N.V演算
部23と第4の塗着N.V演算部25における演算につ
いて説明する。第3の塗着N.V演算部23では、2度
吹き塗布直後の塗着N.V3を演算し、第4の塗着N.V
演算部25では、その後の任意時間経過後の塗着N.V
4を演算する。
Next, the calculation in the third coating NV calculating section 23 and the fourth coating NV calculating section 25 shown in FIG. 2 will be described. The third coating NV calculator 23 calculates the coating NV3 immediately after the second spray coating, and calculates the fourth coating NV.
In the calculation unit 25, after the elapse of an arbitrary time, the coating NV
4 is calculated.

【0090】図16は、塗布後の経過時間と塗着N.V
の関係の一例を示す特性図である。図16においては、
折線の左端の数値(約38%)は塗料のN.Vを示し、
0分時に1度吹き塗布が行なわれ、その後、2度吹き塗
布が行なわれた例を示す。1度吹き直後の塗着N.V1
(X1)は約50%であり、1分後の塗着N.V2
(X2)は約53%に上昇している。そして2度吹きが
行なわれると、揮発成分の多い塗料粒子が追加されるの
で、塗着N.V3(X3)はやや低下した値となり、その
後は時間の経過と共に徐々に増加する(塗着N.V4:
4)。なお、前記のように、1度吹き直後の塗着N.V
1(X1)は、実際には2度吹き直後の値X1'を代用し
て用いる。また、塗着N.V3(X3)はX1とX2との平
均値として推定することが出来る。なお、上記図16の
特性は、1度吹き目と2度吹き目との吐出量が同じであ
る場合の特性であり、吐出量が異なる場合には、それに
対応した補正が必要である。また、図17は、上記の関
係における塗膜の断面を示す模式図であり、1度吹きと
2度吹きの吐出量が同じであった場合(膜厚hがh/2
づつ)を示す。
FIG. 16 shows the elapsed time after coating and the coating NV.
FIG. 6 is a characteristic diagram showing an example of the relationship. In FIG.
The numerical value (about 38%) at the left end of the broken line indicates the NV of the paint,
An example is shown in which spray coating is performed once at 0 minutes, and then twice. Coating NV1 just after blowing once
(X 1 ) is about 50%, and coating NV2 after 1 minute
(X 2 ) has increased to about 53%. When the spraying is performed twice, paint particles having a large amount of volatile components are added, so that the coating NV3 (X 3 ) has a slightly reduced value, and thereafter gradually increases with time (coating). NV4:
X 4). As described above, the coating NV immediately after the first spraying is applied.
1 (X 1 ) is actually replaced with the value X 1 ′ immediately after blowing twice. Further, the coating N.V3 (X 3) can be estimated as the average of the X 1 and X 2. The characteristic shown in FIG. 16 is a characteristic when the ejection amount of the first and second blows is the same, and when the ejection amount is different, a correction corresponding to the difference is necessary. FIG. 17 is a schematic diagram showing the cross section of the coating film in the above relationship, and the discharge amount of the first blow and the second blow is the same (the film thickness h is h / 2).
).

【0091】以下、2度吹き塗布直後の塗着N.V3=
3と塗膜形成後t4経過後の塗着N.V4=X4の演算に
ついて説明する。1度吹きと2度吹きの吐出量が同じで
あった場合のX3とX4は、下記(数31)式と(数3
2)式で示される。 X3=(X1+X2)/2 …(数31) X4=X3/〔1−(V"×t4/h×ρ3)〕 …(数32) ただし、V":付着後の時間t4におけるシンナー蒸発速
度 ρ3:2度吹き直後の塗膜面の塗料密度 そして1度吹きと2度吹きの吐出量が異なる場合のX3
は、下記(数33)式で示される。なお、X4は上記
(数32)式と同じである。 X3=(nX1+mX2)/(n+m) …(数33) ただし、n:1度吹き目の吐出量 m:2度吹き目の吐出量 上記のように、2度吹き直後の塗着N.Vは、X1とX2
との平均値として近似される。
Hereafter, the coating NV3 =
Will be described operation of X 3 and the coating film formed after t 4 the coating after lapse N.V4 = X 4. X 3 and X 4 when once blown and discharge amount of blowing twice are the same, the following equation (31) and (Equation 3
It is shown by the equation 2). X 3 = (X 1 + X 2 ) / 2 (Equation 31) X 4 = X 3 / [1− (V ″ × t 4 / h × ρ 3 )] (Equation 32) where V ″: after adhesion Thinning evaporation rate at time t 4 ρ 3 : paint density on the coating surface immediately after the second blow and X 3 when the discharge amount of the first blow and the second blow is different
Is expressed by the following (Equation 33). Note that X 4 is the same as the above (Equation 32). X 3 = (nX 1 + mX 2 ) / (n + m) (Expression 33), where n: discharge amount of the first blow m: discharge amount of the second blow As described above, coating immediately after the second blow NV is X 1 and X 2
Is approximated as the average value of

【0092】また、塗膜形成後t4経過後の塗着N.V4
=X4は、前記第2の塗着N.V演算部22における演算
と同様にして行なわれる。すなわち、塗料質量M4は、
塗膜表面積S4、塗膜厚h、塗料密度ρ3から下記(数3
4)式で示され、X4は下記(数35)式で示される。 M4=S4×h×ρ3 …(数34) X4=M4×X1/(M2−S2'×V×t2) …(数35) 上記(数34)式を(数35)式に代入すれば、塗膜形
成後t4経過後の塗着N.V4=X4は、下記(数36)
式で算出され、また、付着後の時間t4におけるシンナ
ー蒸発速度V"は、下記(数37)式で算出される。
Further, the coating NV4 after a lapse of t 4 after the formation of the coating film
= X 4 is performed in the same manner as the calculation in the second coating NV calculating unit 22. That is, the paint mass M 4 is
Coating the surface area S 4, film thickness h, following the paint density [rho 3 (Number 3
X 4 is expressed by the following equation (Expression 35). M 4 = S 4 × h × ρ 3 (Expression 34) X 4 = M 4 × X 1 / (M 2 −S 2 ′ × V × t 2 ) (Expression 35) by substituting the number 35), the coating N.V4 = X 4 after t 4 has elapsed after the film formation, the following equation (36)
The thinner evaporation rate V ″ at the time t 4 after the adhesion is calculated by the following equation (Formula 37).

【0093】[0093]

【数36】 [Equation 36]

【0094】ただし、h:2度吹き時の膜厚 h0:2度吹き時の基準膜厚 上記の塗料密度ρ3は、前記第1の塗料密度演算部20
における演算と同様に、図2の第2の塗料密度演算部2
4において、第3の塗着N.V演算部の結果と塗装条件
に応じて算出される。上記のようにして、図2の実施の
形態においては、2度吹き塗装においても、2度吹き直
後や任意の時間経過後の塗膜の塗着N.Vを精度良く算
出することが出来る。
Where h: the film thickness when blown twice and h 0 : the reference film thickness when blown twice. The above-mentioned paint density ρ 3 is calculated by the first paint density calculation unit 20.
, The second paint density calculator 2 in FIG.
In 4, the calculation is performed according to the result of the third coating NV calculating section and the coating conditions. As described above, in the embodiment of FIG. 2, even in the case of the double spray coating, the coating NV of the coating film immediately after the double spray or after an arbitrary time has elapsed can be accurately calculated.

【0095】次に、図19は、本発明の第2の実施の形
態を示すブロック図である。本実施の形態は、本発明を
自動塗装ライン(例えば自動車ボディの塗装)に適用し
た場合を示す。
Next, FIG. 19 is a block diagram showing a second embodiment of the present invention. This embodiment shows a case where the present invention is applied to an automatic painting line (for example, painting an automobile body).

【0096】図19においては、被塗装体1が自動車の
ボディであり、塗装ライン上を順次移動しながら塗装さ
れる。そして第1の塗着N.V演算部10、第2の塗着
N.V演算部22、第3の塗着N.V演算部23および第
4の塗着N.V演算部25で求めた各種の塗着N.V(特
に第3と第4が重要)を塗装条件制御システム9に送る
ように構成している。塗装条件制御システム9では、塗
装状態の良否を速やかにフィードバックして所望の塗着
N.Vを達成するための最適条件に保つように、塗装ガ
ン28の作動条件、すなわち、塗料の吐出量、ベル回転
数、エア圧力等を制御する。これにより、所望の塗装状
態を実現することが出来る。
In FIG. 19, the object 1 to be coated is the body of an automobile, and the object 1 is painted while sequentially moving on a painting line. Then, the first coating NV calculation unit 10, the second coating NV calculation unit 22, the third coating NV calculation unit 23, and the fourth coating NV calculation unit 25 determine the value. The various coating NV (particularly the third and fourth important) are sent to the coating condition control system 9. In the coating condition control system 9, the operating condition of the coating gun 28, that is, the discharge amount of the paint, so as to maintain the optimum condition for achieving the desired coating NV by promptly feeding back the quality of the coating condition. Controls bell speed, air pressure, etc. Thereby, a desired coating state can be realized.

【0097】次に、図20は、本発明の第3の実施の形
態を示すブロック図である。この実施の形態は、被塗装
体1の曲面補正を行なう機能を有するものである。本発
明においては、塗装表面の画像から表面の凹凸波長を求
め、それに基づいて微粒化度や膜厚を演算している。と
ころが自動車のボディのように塗装面に曲面が存在する
場合には、撮像した画像が曲面に応じて湾曲するので、
表面の凹凸波長を正確に測定することが困難になる場合
がある。そのため、本実施の形態においては、曲面演算
部19と波長補正演算部27とを設け、曲面補正を行な
った結果の波長を用いて以後の演算を行なうように構成
している。
Next, FIG. 20 is a block diagram showing a third embodiment of the present invention. This embodiment has a function of performing a curved surface correction of the object 1 to be coated. In the present invention, the surface roughness wavelength is determined from the image of the painted surface, and the degree of atomization and the film thickness are calculated based on the wavelength. However, if the painted surface has a curved surface such as a car body, the captured image is curved according to the curved surface.
In some cases, it may be difficult to accurately measure the surface unevenness wavelength. Therefore, in the present embodiment, the curved surface calculation unit 19 and the wavelength correction calculation unit 27 are provided, and the subsequent calculation is performed using the wavelength obtained by performing the curved surface correction.

【0098】以下、曲面演算部19と波長補正演算部2
7における演算について説明する。また、曲面演算部1
9では、入力した画像処理データと波長演算部4の算出
結果との少なくとも一方に基づいて塗装面の曲面情報を
求める(詳細後述)。また、曲面補正演算部27では、
波長演算部4の算出結果に対して、曲面演算部19で求
めた結果に応じた曲面補正処理を行なう(詳細後述)。
Hereinafter, the curved surface calculation unit 19 and the wavelength correction calculation unit 2
7 will be described. Also, a curved surface calculation unit 1
In step 9, curved surface information of the painted surface is obtained based on at least one of the input image processing data and the calculation result of the wavelength calculation unit 4 (details will be described later). Also, in the curved surface correction calculation unit 27,
The calculation result of the wavelength calculation unit 4 is subjected to a curved surface correction process according to the result obtained by the curved surface calculation unit 19 (details will be described later).

【0099】図21は、撮像部2で撮像した画像の一例
図であり、(a)は塗装面が平面の場合、(b)は塗装
面が曲面の場合(x軸方向で湾曲)の画像を示す。塗装
面が平坦な場合は、(a)に示すように、画像の外形は
前記図3の撮像部2から投射した画像と同じ円形にな
り、明暗パタン板32の縞模様が塗装表面の凹凸に応じ
て歪んだ形で現われる。これに対して曲面の場合は、
(b)に示すように、曲面方向が縮んだ楕円形状にな
る。なお、図21においては、縞模様の断続方向をx
軸、それと直角方向をy軸としている。
FIGS. 21A and 21B are diagrams showing an example of an image picked up by the image pickup section 2. FIG. 21A shows an image when the painted surface is flat, and FIG. 21B shows an image when the painted surface is curved (curved in the x-axis direction). Is shown. When the painted surface is flat, the outer shape of the image becomes the same circle as the image projected from the image pickup unit 2 in FIG. 3 as shown in FIG. 3A, and the stripe pattern of the light / dark pattern plate 32 becomes uneven on the painted surface. Appears distorted accordingly. For curved surfaces, on the other hand,
As shown in (b), the curved surface direction is reduced to an elliptical shape. In FIG. 21, the intermittent direction of the stripe pattern is x
The axis, and the direction perpendicular thereto is the y-axis.

【0100】曲面演算部19では、上記のごとき画像デ
ータを用い下記の手順で塗装表面の曲率rを導出する。
まず、図21(b)に示すように楕円形状をした画像エ
リアのx軸、y軸方向の最大長(明部エリア)x、yを
画像上で導出する。導出方法は2値化された各軸上の初
期明点位置を左右から検索することによって最大長を算
出する。次に、凸曲率をもつ塗膜面は一般に凹レンズ相
当の作用をするため、図3の撮像部2と凸曲面の塗膜面
の光学系は図22に示すようになる。このような光学系
の距離定数より、塗膜表面のx方向の曲率rは下記(数
38)式で与えられる。なお、y方向も同様に算出でき
る。
The curved surface calculation unit 19 derives the curvature r of the painted surface using the image data as described above in the following procedure.
First, as shown in FIG. 21B, the maximum length (bright area) x, y in the x-axis and y-axis directions of an image area having an elliptical shape is derived on the image. In the derivation method, the maximum length is calculated by searching the binarized initial bright spot position on each axis from the left and right. Next, since the coating surface having a convex curvature generally acts like a concave lens, the optical system of the imaging unit 2 and the coating surface of the convex surface in FIG. 3 is as shown in FIG. From the distance constant of such an optical system, the curvature r in the x direction of the coating film surface is given by the following equation (38). The y direction can be calculated in the same manner.

【0101】 r=(L1+L2)・(x0−x)/2L12・x …(数38) ただし、 x:計測されたx軸最大長 x0:塗装面が平面の場合のx軸最大長(既知の値) L1:CCDカメラ35と塗膜面との距離 L2:光源31と塗膜面との距離 次に、図23に示される曲率rと補正係数Kの関係よ
り、波長λについての曲率rによる補正係数Kを求め
る。なお、図23は実験よって求めた関係式であり、縦
軸は補正係数K、横軸は曲率rの逆数(1/r=R:曲
面)を示す。上記のようにして求めた補正係数Kによっ
て、前記の膜厚演算における長波長領域のピーク波長λ
pの値を補正する。すなわち、曲面部における実測波長
がλpであった場合、それを補正した平面相当の実波長
λp'は、下記(数39)式で示される。
R = (L 1 + L 2 ) · (x 0 −x) / 2L 1 L 2 · x (Expression 38) where x: measured maximum length of x axis x 0 : when the painted surface is flat L 1 : distance between the CCD camera 35 and the coating surface L 2 : distance between the light source 31 and the coating surface Next, the curvature r and the correction coefficient K shown in FIG. From the relationship, a correction coefficient K for the wavelength λ based on the curvature r is obtained. FIG. 23 is a relational expression obtained by an experiment, in which the vertical axis represents the correction coefficient K, and the horizontal axis represents the reciprocal of the curvature r (1 / r = R: curved surface). The peak wavelength λ in the long wavelength region in the above-described film thickness calculation is obtained by the correction coefficient K obtained as described above.
Correct the value of p. That is, when the measured wavelength at the curved surface portion is λp, the corrected actual wavelength λp ′ corresponding to the plane is expressed by the following equation (39).

【0102】 λp'=K×λp=(R+a)×λp/R …(数39) ただし、 a:定数 R=1/r 上記のようにして算出した実波長λp'を用いて前記のよ
うにして微粒化演算等を行なえば、曲面においても正確
な計測を行なうことが出来る。図20の実施の形態にお
いては、曲面演算部19で上記の補正係数Kを求める演
算を行ない、曲面補正演算部27で上記の実波長λp'を
求める演算を行なう。
Λp ′ = K × λp = (R + a) × λp / R (Equation 39) where: a: constant R = 1 / r As described above, using the actual wavelength λp ′ calculated as described above. By performing atomization calculation or the like, accurate measurement can be performed even on a curved surface. In the embodiment of FIG. 20, the curved surface calculation unit 19 performs the calculation for obtaining the correction coefficient K, and the curved surface correction calculation unit 27 performs the calculation for obtaining the actual wavelength λp ′.

【0103】また、上記の説明においては、x軸方向に
ついてのみ曲率rを求めて補正を行なっている。これは
図21に示すように縞模様の断続方向をx軸としている
ためであるが、y軸方向についても同様に曲率を求め、
曲率の大きい方の値を用いて補正係数Kを求めるように
構成してもよい。
In the above description, the correction is performed by obtaining the curvature r only in the x-axis direction. This is because the intermittent direction of the striped pattern is set to the x-axis as shown in FIG. 21.
The correction coefficient K may be obtained by using the larger value of the curvature.

【0104】次に、曲面補正の他の方法について説明す
る。前記図4に示したように、パワースペクトルPSの
周波数特性において、第1のピーク波形は、撮像部2
のスリットに対応した基本縞による基本波形のパワース
ペクトル、ピーク波形は、塗装表面の凹凸波形の長波
長領域(10〜1mm程度)に対応したパワースペクト
ルである。これらのパワースペクトルのピーク値は、塗
装面の曲率に応じて変化するが、本発明者らの実験によ
ると、基本縞のピーク周波数fと長波長領域のピーク周
波数f'(=1/λp)には、塗装面の曲率に関わりなく
一定の関係があることが判明した。図24は、パワース
ペクトルPSの周波数特性の曲面依存性を示す特性図で
ある。図24において、縦軸はパワースペクトルPS、
横軸は周波数f(1/λ)を示し、実線(A)は塗装面
が平面の特性、点線(B)は塗装面が曲率r1の場合の
特性、破線(C)は塗装面が曲率r2(r1<r2)の場
合の特性を示す。
Next, another method of curved surface correction will be described. As shown in FIG. 4, in the frequency characteristic of the power spectrum PS, the first peak waveform
The power spectrum and the peak waveform of the basic waveform due to the basic stripe corresponding to the slit are power spectra corresponding to the long wavelength region (about 10 to 1 mm) of the uneven waveform on the coating surface. Although the peak values of these power spectra change according to the curvature of the painted surface, according to experiments performed by the present inventors, the peak frequency f of the basic fringe and the peak frequency f ′ (= 1 / λp) in the long wavelength region. Has a certain relationship regardless of the curvature of the painted surface. FIG. 24 is a characteristic diagram illustrating the curved surface dependence of the frequency characteristic of the power spectrum PS. In FIG. 24, the vertical axis is the power spectrum PS,
The horizontal axis indicates the frequency f (1 / λ), the solid line (A) indicates the characteristic of the painted surface being flat, the dotted line (B) indicates the characteristic when the painted surface has the curvature r 1 , and the broken line (C) indicates that the painted surface has the curvature This shows the characteristics when r 2 (r 1 <r 2 ).

【0105】図24から判るように、曲率が大きくなる
に従ってピーク周波数は大きく(ピーク波長λpは小さ
く)なるが、曲率に関わりなく、下記(数40)式の関
係が成立することが判明した。
As can be seen from FIG. 24, the peak frequency increases (the peak wavelength λp decreases) as the curvature increases, but it has been found that the following equation (Equation 40) holds regardless of the curvature.

【0106】 f0/f0'=fr/fr'=C(一定) …(数40) ただし f0 :平面時の基本縞ピーク周波数 f0':平面時の長波長ピーク周波数 fr :曲率r時の基本縞ピーク周波数 fr':曲率r時の長波長ピーク周波数 上記(数40)式から、平面時の長波長ピーク周波数f
0'は下記(数41)式で求められる。
[0106] f 0 / f 0 '= f r / f r' = C ( constant) ... (number 40), where f 0: fundamental fringe peak frequency f 0 at the time of the plane ': the long wavelength peak frequency f r at the time of plane : Basic fringe peak frequency at the time of curvature r fr ': Long wavelength peak frequency at the time of curvature r From the above (Equation 40), the long wavelength peak frequency f at the time of a plane is obtained.
0 ′ is obtained by the following equation (41).

【0107】 f0'=(f0/fr)×fr' …(数41) (数41)式において、平面時の基本縞ピーク周波数f
0の値は、予め測定可能な既知の値である。また、曲率
rのときの基本縞ピーク周波数frと長波長ピーク周波
数fr'とは前記の画像処理によって実測値として求めら
れる。したがって曲率rのときの長波長ピーク周波数f
r'を平面時の値f0'に換算するには、fr'にf0/fr
乗算してやればよい。なお、前記の膜厚演算で説明した
ように波長λで表現する場合には、下記(数42)式の
ように補正すればよい。
F 0 ′ = (f 0 / f r ) × f r ′ (Equation 41) In equation (41), the basic fringe peak frequency f in the plane is
A value of 0 is a known value that can be measured in advance. Further, the basic fringe peak frequency fr and the long wavelength peak frequency fr 'at the curvature r are obtained as actual measured values by the above-described image processing. Therefore, the long wavelength peak frequency f at the time of the curvature r
In order to convert r ′ into a value f 0 ′ in the plane, it is sufficient to multiply f r ′ by f 0 / f r . In the case where the wavelength is expressed as λ as described in the above-described film thickness calculation, the correction may be performed as in the following (Equation 42).

【0108】 λ0'=(λ0/λr)×λr' …(数42) ただし λ0 :平面時の基本縞ピーク波長 λ0':平面時の長波長ピーク波長 λr :曲率r時の基本縞ピーク波長 λr':曲率r時の長波長ピーク波長 この方法によれば、基本縞ピーク波長λrと長波長ピー
ク波長λr'とを求めるだけで簡単に曲面補正を行なうこ
とが出来る。上記の方法を前記図20の実施の形態に適
用する場合には、画像処理部3の画像処理データから曲
面演算部19でλrとλr'を求める演算を行ない、曲面
補正演算部27では、それらの値と予め記憶しておいた
λ0の値からλ0'を求める演算を行なうように構成すれ
ばよい。
Λ 0 ′ = (λ 0 / λ r ) × λ r ′ (Equation 42) where λ 0 is a peak wavelength of a basic fringe in a plane λ 0 ′ is a peak wavelength of a long wavelength in a plane λ r is a curvature r basic fringe peak wavelength lambda r when ': According to the long wavelength peak wavelength this method when the curvature r, the basic pattern peak wavelength lambda r and long wavelength peak wavelength lambda r' to perform simply by a curved surface correction seeking and Can be done. When the above method is applied to the embodiment of FIG. 20, the surface calculation unit 19 performs an operation to obtain λ r and λ r ′ from the image processing data of the image processing unit 3, and the surface correction operation unit 27 performs it may be configured to perform a calculation for obtaining the lambda 0 'from the value of lambda 0 which has been previously stored their values.

【0109】上記のように、図20に示す実施の形態に
おいては、被塗装面の曲率に対応して曲面補正を行なう
ように構成したことにより、自動車の車体のように塗装
面が曲面の場合でも塗着N.Vなどを塗装中に非接触で
迅速、かつ精密に計測することが出来る。
As described above, in the embodiment shown in FIG. 20, since the curved surface is corrected in accordance with the curvature of the surface to be painted, the painted surface is curved as in the case of a car body. However, the coating NV can be measured quickly and precisely without contact during coating.

【0110】次に、図25は、本発明の第4の実施の形
態を示すブロック図である。この実施の形態は、塗着
N.V判定部26を設け、第1の塗着N.V演算部10、
第2の塗着N.V演算部22、第3の塗着N.V演算部2
3および第4の塗着N.V演算部25で求めた各種の塗
着N.V(特に第3と第4が重要)を、所定のN.V管理
値(それぞれの塗装ラインにおける基準の値)を比較
し、N.V管理値との偏差に応じて現状の塗装条件を続
けるか否かの判定を行ない、その結果に応じて塗装条件
制御システム9を制御するように構成したものである。
このように構成することにより、塗着N.Vの値がN.V
管理値から大幅にずれた場合には塗装条件(塗料シンナ
ー混合比等)を速やかに変更することが可能なので、塗
装不良の製品が連続することがなくなり、速やかに異常
の原因を追及して解消することが出来る。
FIG. 25 is a block diagram showing a fourth embodiment of the present invention. In this embodiment, a coating NV determining unit 26 is provided, and a first coating NV calculating unit 10 is provided.
Second coating NV calculation unit 22, third coating NV calculation unit 2
The various coating NVs (especially the third and fourth important ones) obtained by the third and fourth coating NV calculating units 25 are converted into predetermined NV management values (standards for each coating line). Values), a determination is made as to whether or not to continue the current coating conditions according to the deviation from the NV management value, and the coating condition control system 9 is controlled according to the result. is there.
With this configuration, the value of the coating NV becomes NV
In the case of a large deviation from the control value, the coating conditions (paint thinner mixture ratio, etc.) can be changed quickly, so that products with poor coating will not be continued, and the cause of the abnormality will be immediately investigated and resolved. You can do it.

【0111】なお、一般に、自動車の車体のような大型
の被塗装体の場合には、吹き付け面積が大きいため、塗
装部位によっては塗装条件が必ずしも均一にならない場
合がある。したがって精度のよい計測を行なうために
は、塗装表面の複数個所を撮像し、それらの各部位にお
けるピーク波長λpの平均値を用いて微粒化度演算を行
なうことが望ましい。したがって撮像部2では塗装面の
複数個所の撮像を行なってその画像情報を順次演算処理
し、波長演算部4で求められた複数のピーク波長λpを
平均処理部7で平均化する。そして微粒化演算部6で
は、上記の平均化したピーク波長λp'の値に応じて微粒
化度を演算するように構成している。
In general, in the case of a large object to be coated such as the body of an automobile, the spraying area is large, so that the coating conditions may not always be uniform depending on the coating site. Therefore, in order to perform accurate measurement, it is desirable to take an image of a plurality of locations on the paint surface and perform the atomization degree calculation using the average value of the peak wavelength λp at each of those locations. Therefore, the image pickup unit 2 picks up an image of a plurality of places on the painted surface, sequentially processes the image information, and averages the plurality of peak wavelengths λp obtained by the wavelength calculation unit 4 by the averaging unit 7. The atomization calculating section 6 is configured to calculate the degree of atomization according to the averaged peak wavelength λp ′.

【0112】また、1個の撮像部2を用いて複数個所の
撮像を順次行なうのでは、計測時間が長くなると共に計
測手順が複雑になる場合がある。したがって複数の撮像
部を設け、同時に複数個所の画像情報を入力するように
構成すれば、計測時間を短縮できると共に計測手順を簡
略化することが出来る。なお、撮像部の数は、被塗装面
の大きさ等の応じて適当な個数を設ければよい。
[0112] In addition, when a plurality of locations are sequentially imaged using one imaging unit 2, the measurement time may be long and the measurement procedure may be complicated. Therefore, by providing a plurality of imaging units and simultaneously inputting image information at a plurality of locations, the measurement time can be reduced and the measurement procedure can be simplified. The number of imaging units may be appropriately set according to the size of the surface to be coated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の機能ブロックを示す図。FIG. 1 is a diagram showing functional blocks of the present invention.

【図2】本発明の第1の実施の形態を示すブロック図。FIG. 2 is a block diagram showing a first embodiment of the present invention.

【図3】撮像部2の一例を示す断面図。FIG. 3 is a cross-sectional view illustrating an example of an imaging unit 2.

【図4】パワースペクトルPSの周波数特性図。FIG. 4 is a frequency characteristic diagram of a power spectrum PS.

【図5】塗装時における塗装面への塗料粒子の付着と塗
装膜面の形成過程を示す図。
FIG. 5 is a diagram showing a process of depositing paint particles on a paint surface and forming a paint film surface during painting.

【図6】飛行中の塗料粒子と付着粒子との関係を示す
図。
FIG. 6 is a diagram showing the relationship between paint particles and adhered particles during flight.

【図7】塗料粒子の平均径と波長との関係を示す特性
図。
FIG. 7 is a characteristic diagram showing a relationship between an average diameter of paint particles and a wavelength.

【図8】塗料の粒子径と塗布時間との関係を示す特性
図。
FIG. 8 is a characteristic diagram showing a relationship between a particle size of a paint and an application time.

【図9】波長λと塗布時間との関係を示す特性図。FIG. 9 is a characteristic diagram showing a relationship between a wavelength λ and a coating time.

【図10】塗装時における塗料粒子からの溶剤蒸発状況
を示す図。
FIG. 10 is a diagram showing a situation of solvent evaporation from paint particles during coating.

【図11】塗着密度と塗着N.Vとの関係を示す特性
図。
FIG. 11 is a characteristic diagram showing a relationship between coating density and coating NV.

【図12】塗装後の塗膜の状態を示す断面図。FIG. 12 is a sectional view showing a state of a coating film after painting.

【図13】表面の凹凸の面積平均値に相当する表面粗さ
aとパワースペクトル積分値Pと関係の関係を示す特
性図。
FIG. 13 is a characteristic diagram showing a relationship between a surface roughness Ra corresponding to an area average value of surface irregularities and a power spectrum integrated value P.

【図14】平滑化理論値と測定値を比較したウエット平
滑化動特性を示す特性図。
FIG. 14 is a characteristic diagram showing a wet smoothing dynamic characteristic obtained by comparing a smoothing theoretical value and a measured value.

【図15】波長とウエット膜厚との関係を示す特性図。FIG. 15 is a characteristic diagram showing a relationship between a wavelength and a wet film thickness.

【図16】塗布後の経過時間と塗着N.Vの関係の一例
を示す特性図。
FIG. 16 is a characteristic diagram showing an example of a relationship between elapsed time after coating and coating NV.

【図17】図16の関係における塗膜の断面を示す模式
図。
FIG. 17 is a schematic view showing a cross section of a coating film in the relationship of FIG. 16;

【図18】塗着N.Vとシンナー蒸発速度との関係を示
す特性図。
FIG. 18 is a characteristic diagram showing a relationship between a coating NV and a thinner evaporation rate.

【図19】本発明の第2の実施の形態を示すブロック
図。
FIG. 19 is a block diagram showing a second embodiment of the present invention.

【図20】本発明の第3の実施の形態を示すブロック
図。
FIG. 20 is a block diagram showing a third embodiment of the present invention.

【図21】撮像部2で撮像した画像の一例図であり、
(a)は塗装面が平面の場合、(b)は塗装面が曲面の
場合(x軸方向で湾曲)の画像を示す図。
FIG. 21 is an example of an image captured by the imaging unit 2.
(A) is a diagram showing an image when the painted surface is flat, and (b) is a diagram showing an image when the painted surface is curved (curved in the x-axis direction).

【図22】図3の撮像部2と凸曲面の塗膜面の光学系を
示す図。
FIG. 22 is a diagram showing an optical system of the imaging unit 2 and the coating surface of the convex curved surface in FIG.

【図23】曲率rと補正係数Kの関係を示す特性図。FIG. 23 is a characteristic diagram showing a relationship between a curvature r and a correction coefficient K.

【図24】パワースペクトルPSの周波数特性の曲面依
存性を示す特性図。
FIG. 24 is a characteristic diagram showing the curved surface dependence of the frequency characteristic of the power spectrum PS.

【図25】本発明の第4の実施の形態を示すブロック
図。
FIG. 25 is a block diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…被塗装体(ボディ) 6…微粒化演算部 2…撮像部 7…平均処理部 3…画像処理部 8…表示器 4…波長演算部 9…塗装条件制御
システム 5…塗装条件入力部 10…第1の塗着
N.V演算部 11…プリンタ 14…表面粗さ演
算部 12…シンナー蒸発量補正部 15…膜厚演算部
13…シンナー蒸発量入力部 19…曲面演算部 20…第1の塗料密度演算部 25…第4の塗着
N.V演算部 21…測定時間入力部 26…塗着N.V
判定部 22…第2の塗着N.V演算部 27…波長補正演
算部 23…第3の塗着N.V演算部 28…塗装ガン 24…第2の塗料密度演算部 100…塗装条件入力手段 106…膜厚入力
手段 101…微粒化度入力手段 107…第2の塗
着N.V演算手段 102…シンナー蒸発量入力手段 108…第3の塗
着N.V演算手段 103…第1の塗着N.V演算手段 109…第2の塗
料密度演算手段 104…第1の塗料密度演算手段 110…第4の塗
着N.V演算手段 105…計測時間入力時間
DESCRIPTION OF SYMBOLS 1 ... Coated body (body) 6 ... Atomization calculation part 2 ... Imaging part 7 ... Average processing part 3 ... Image processing part 8 ... Display 4 ... Wavelength calculation part 9 ... Coating condition control system 5 ... Coating condition input part 10 ... First coating NV calculating unit 11 ... Printer 14 ... Surface roughness calculating unit 12 ... Thinner evaporation amount correcting unit 15 ... Thickness calculating unit 13 ... Thinner evaporation amount input unit 19 ... Curved surface calculating unit 20 ... First Paint density calculating section 25: fourth coating NV calculating section 21: measuring time input section 26: coating NV
Judgment unit 22: second coating NV calculation unit 27: wavelength correction calculation unit 23: third coating NV calculation unit 28: coating gun 24: second coating density calculation unit 100: coating condition input Means 106: Film thickness input means 101: Atomization degree input means 107: Second coating NV calculating means 102: Thinner evaporation amount input means 108: Third coating NV calculating means 103: First Coating NV calculating means 109 ... second paint density calculating means 104 ... first paint density calculating means 110 ... fourth coating NV calculating means 105 ... measurement time input time

フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 21/88 G01B 11/24 M (56)参考文献 特開 昭56−51270(JP,A) 特開 平6−142565(JP,A) 特開 平8−117656(JP,A) 特開 昭60−122069(JP,A) 特開 平6−277574(JP,A) 特開 平6−148090(JP,A) 特開 平7−306016(JP,A) 特開 平7−306156(JP,A) 特開 平9−105612(JP,A) 特開 平9−113462(JP,A) 特開 昭62−294946(JP,A) 特開 平7−96228(JP,A) (58)調査した分野(Int.Cl.7,DB名) B05C 21/00 B05B 12/10 G01B 11/06 G01B 11/255 G01B 11/30 G01N 21/88 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI G01N 21/88 G01B 11/24 M (56) References JP-A-56-51270 (JP, A) JP-A-6-142565 (JP, A JP-A-8-117656 (JP, A) JP-A-60-12696 (JP, A) JP-A-6-277574 (JP, A) JP-A-6-148090 (JP, A) JP-A-7-107 306016 (JP, A) JP-A-7-306156 (JP, A) JP-A-9-105612 (JP, A) JP-A-9-113462 (JP, A) JP-A-62-294946 (JP, A) JP-A-7-96228 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B05C 21/00 B05B 12/10 G01B 11/06 G01B 11/255 G01B 11/30 G01N 21 / 88

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも、塗装前の塗料の非揮発性成分
情報と、塗料の種類情報と、塗装ブース内の温度情報
と、1度吹きと2度吹きにおける塗装条件と、を含む塗
装条件を入力する塗装条件入力手段と、 塗膜面における塗料の微粒化度を入力する微粒化度入力
手段と、 塗料の単位面積当りのシンナー蒸発量を入力するシンナ
ー蒸発量入力手段と、 上記塗料の非揮発性成分と、上記微粒化度と、上記シン
ナー蒸発量と、に基づいて1度吹き塗布直後の塗膜面の
塗着非揮発性成分を演算する第1の塗着非揮発性成分演
算手段と、 上記第1の塗着非揮発性成分演算手段で算出した塗布直
後の塗着非揮発性成分と、上記塗装条件入力手段から入
力した塗料の種類情報と、に基づいて、1度吹き塗布直
後の塗膜面の塗料密度を算出する第1の塗料密度演算手
段と、 塗料塗布時点から任意の計測時点までの時間を入力する
計測時間入力手段と、 塗膜面の膜厚を入力する膜厚入力手段と、 上記第1の塗料密度演算手段からの塗料密度と、上記計
測時間と、上記膜厚と、上記シンナー蒸発量と、上記塗
装条件と、に基づいて、2度吹き塗布時点における1度
吹き塗膜面の塗着非揮発性成分を演算する第2の塗着非
揮発性成分演算手段と、 上記第1の塗着非揮発性成分演算手段からの1度吹き塗
布直後の塗膜面の塗着非揮発性成分と、上記第2の塗着
非揮発性成分演算手段からの2度吹き塗布時点における
1度吹き塗膜面の塗着非揮発性成分と、上記1度吹きと
2度吹きにおける塗装条件と、に基づいて、2度吹き塗
布直後の塗膜面の塗着非揮発性成分を演算する第3の塗
着非揮発性成分演算手段と、 上記第3の塗着非揮発性成分演算手段で算出した2度吹
き塗布直後の塗着非揮発性成分と、上記塗装条件入力手
段から入力した塗料の種類情報と、に基づいて、2度吹
き塗布直後の塗膜面の塗料密度を算出する第2の塗料密
度演算手段と、 上記第3の塗着非揮発性成分演算手段で算出した2度吹
き塗布直後の塗着非揮発性成分と、上記第2の塗料密度
演算手段からの塗料密度と、上記計測時間入力手段から
入力した時間と、上記膜厚と、上記シンナー蒸発量と、
に基づいて、上記の設定した計測時点における2度吹き
塗膜面の塗着非揮発性成分を演算する第4の塗着非揮発
性成分演算手段と、 を備えた塗装品質解析装置。
A coating condition including at least non-volatile component information of a coating material before coating, type information of a coating material, temperature information in a coating booth, and coating conditions in a single blow and a double blow. Input means for inputting coating condition; input means for inputting the degree of atomization of the paint on the coating film surface; input means for inputting the amount of thinner evaporation per unit area of the coating; A first coating non-volatile component calculating means for calculating a coating non-volatile component on the coating surface immediately after the first spray coating based on the volatile component, the degree of atomization, and the thinner evaporation amount; One-time spray coating based on the applied non-volatile component immediately after application calculated by the first applied non-volatile component calculating means and the type of paint input from the coating condition input means. The first paint density to calculate the paint density on the coating surface immediately after Degree calculation means, measurement time input means for inputting a time from a paint application time to an arbitrary measurement time point, film thickness input means for inputting a film thickness of a coating film surface, and the first paint density calculation means Based on the paint density, the measurement time, the film thickness, the thinner evaporation amount, and the coating conditions, the non-volatile component applied to the once-sprayed coating surface at the time of the second-spray coating is calculated. A second applied non-volatile component calculating means, and a non-volatile applied component on the coating film surface immediately after the first spray application from the first applied non-volatile component calculating means; Based on the non-volatile component applied to the once-sprayed coating film surface at the time of the second-spray coating from the non-volatile component calculating means, and the coating conditions in the one-time and two-time spraying, two times A third applied non-volatile component operator for calculating the applied non-volatile component on the coating surface immediately after the spray application. Based on the coating non-volatile component immediately after the second spray application calculated by the third coating non-volatile component calculating means, and the paint type information input from the coating condition input means, A second paint density calculating means for calculating the paint density on the coating film surface immediately after the second spray coating, and a coating nonvolatile immediately after the second spray coating calculated by the third coating non-volatile component calculating means. A component, a paint density from the second paint density calculation means, a time input from the measurement time input means, the film thickness, the thinner evaporation amount,
A coating non-volatile component calculating means for calculating the non-volatile component applied to the twice-blown coating film surface at the set measurement time point based on the above.
【請求項2】上記シンナー蒸発量入力手段は、予め実験
によって測定した基準温度における塗装前の塗料の非揮
発性成分と、塗装直後の塗膜面の塗着非揮発性成分と、
塗料の微粒化度と、に基づいて基準温度における飛行中
の塗料粒子の単位面積当りのシンナー蒸発量を算出して
入力するものである、ことを特徴とする請求項1に記載
の塗装品質解析装置。
2. The thinner evaporation amount input means includes: a non-volatile component of a paint before coating at a reference temperature measured in advance by an experiment; a non-volatile component of a coating film immediately after coating;
The coating quality analysis according to claim 1, wherein a thinner evaporation amount per unit area of the coating particles in flight at a reference temperature is calculated based on the degree of atomization of the coating and input. apparatus.
【請求項3】上記シンナー蒸発量入力手段は、基準のシ
ンナー蒸発量を、塗装ブース内の温度と、塗料のシンナ
ー種とに応じて補正する第1の補正手段と、 上記基準のシンナー蒸発量を、塗装ブース内の温度と、
塗料のシンナー種と、膜厚と、上記第1の塗着非揮発性
成分演算手段の演算結果と、に応じて補正する第2の補
正手段と、 上記基準のシンナー蒸発量を、塗装ブース内の温度と、
塗料のシンナー種と、膜厚と、上記第3の塗着非揮発性
成分演算手段の演算結果と、に応じて補正する第3の補
正手段と、を備え、 上記第1の塗着非揮発性成分演算手段は上記第1の補正
手段の出力を上記シンナー蒸発量として上記演算を行な
い、 上記第2の塗着非揮発性成分演算手段は上記第2の補正
手段の出力を上記シンナー蒸発量として上記演算を行な
い、 上記第4の塗着非揮発性成分演算手段は上記第3の補正
手段の出力を上記シンナー蒸発量として上記演算を行な
う、 ことを特徴とする請求項1に記載の塗装品質解析装置。
3. The thinner evaporation amount input means includes: first correction means for correcting the reference thinner evaporation amount according to the temperature in the coating booth and the type of paint thinner; The temperature in the painting booth,
Second correcting means for correcting according to the thinner type of the paint, the film thickness, and the calculation result of the first coating non-volatile component calculating means, and the reference thinner evaporation amount in the coating booth. Temperature and
A third correction unit that corrects according to a thinner type of the paint, a film thickness, and a calculation result of the third coating non-volatile component calculation unit; The sex component calculating means performs the calculation using the output of the first correction means as the thinner evaporation amount, and the second coating non-volatile component calculation means calculates the output of the second correction means as the thinning evaporation amount. 2. The coating according to claim 1, wherein the fourth coating non-volatile component calculating unit performs the calculation using the output of the third correction unit as the thinner evaporation amount. 3. Quality analysis device.
【請求項4】上記第1の塗着非揮発性成分演算手段は、
上記の入力した塗料の非揮発性成分と、上記シンナー蒸
発量と、上記微粒化度から求めた塗料粒子の表面積との
関係に基づいて、塗布直後の塗膜面の塗着非揮発性成分
を演算するものである、ことを特徴とする請求項1に記
載の塗装品質解析装置。
4. The first coating nonvolatile component calculating means,
Based on the relationship between the input non-volatile component of the paint, the thinner evaporation amount, and the surface area of the paint particles determined from the degree of atomization, the applied non-volatile component on the coating surface immediately after application is calculated. The coating quality analysis apparatus according to claim 1, wherein the calculation is performed.
【請求項5】上記微粒化度入力手段は、 塗料を塗布した直後の未乾燥塗装表面を撮像する撮像手
段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の凹凸波形の波長分布を算出する波長演算
手段と、 上記波長演算手段で求めた波長分布に基づいて微粒化度
を演算する微粒化演算手段と、 を備え、上記の演算した微粒化度を入力するものであ
る、ことを特徴とする請求項1に記載の塗装品質解析装
置。
5. The image forming apparatus according to claim 1, wherein said atomization degree input means includes: an image pickup means for picking up an image of an undried painted surface immediately after coating with a paint; an image processing means for image processing image information from said image pickup means; Based on the image processing data processed in, the wavelength calculation means for calculating the wavelength distribution of the uneven waveform of the coating surface, and atomization calculation means for calculating the degree of atomization based on the wavelength distribution obtained by the wavelength calculation means, The coating quality analysis apparatus according to claim 1, further comprising: inputting the calculated degree of atomization.
【請求項6】上記波長演算手段は、塗装表面の凹凸波形
のパワースペクトルにおける長波長領域のピーク波長を
求めるものであり、 上記微粒化演算手段は、上記長波長領域のピーク波長の
値と予め実験で求めた塗料粒子径との関係から、塗料粒
子径を算出し、それを微粒化度とするものである、こと
を特徴とする請求項5に記載の塗装品質解析装置。
6. A wavelength calculating means for determining a peak wavelength in a long wavelength region in a power spectrum of an uneven waveform on a coating surface, wherein said atomization calculating means determines a peak wavelength in said long wavelength region in advance. The coating quality analysis apparatus according to claim 5, wherein a paint particle diameter is calculated from a relationship with the paint particle diameter obtained in an experiment, and the calculated paint particle diameter is used as a degree of atomization.
【請求項7】上記撮像手段では、塗装表面の複数個所を
撮像し、後続の各手段ではそれぞれの個所について処理
を行ない、上記波長演算手段ではそれぞれの個所におけ
る波長値を順次算出し、 かつ、上記複数個の波長値を平均処理する波長平均処理
手段を備え、 上記波長平均処理手段の演算結果を波長値として用い
る、ことを特徴とする請求項5または請求項6に記載の
塗装品質解析装置。
7. The image pickup means picks up an image of a plurality of places on the surface of the coating, the subsequent means perform processing for each point, the wavelength calculation means sequentially calculates the wavelength value at each point, and 7. The coating quality analysis apparatus according to claim 5, further comprising wavelength averaging means for averaging the plurality of wavelength values, wherein a calculation result of the wavelength averaging means is used as a wavelength value. .
【請求項8】塗料を塗布した直後の未乾燥塗装表面を、
塗装面の異なった個所についてそれぞれ撮像する複数の
撮像手段を備え、それらの撮像手段で撮像した複数個所
の画像情報を順次処理することを特徴とする請求項7に
記載の塗装品質解析装置。
8. The undried coating surface immediately after the coating is applied,
8. The coating quality analyzing apparatus according to claim 7, further comprising a plurality of image pickup means for picking up images of different places on the painted surface, and sequentially processing image information of the plurality of places picked up by the image pickup means.
【請求項9】上記膜厚入力手段は、 塗料を塗布した直後の未乾燥塗装表面を撮像する撮像手
段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の凹凸波形の波長分布を算出する波長演算
手段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の粗さを算出する表面粗さ算出手段と、 少なくとも塗料の粘度を含む塗装条件を入力する塗装条
件入力手段と、 上記表面粗さ算出手段で算出された粗さ度と、該粗さ度
の時間変化量と、上記波長分布演算手段で算出された波
長分布と、上記塗装条件入力手段から入力された塗装条
件とに基づいて塗装膜厚を算出する膜厚演算手段と、 を備え、上記の算出した膜厚を入力するものである、こ
とを特徴とする請求項1に記載の塗装品質解析装置。
9. An image pickup means for picking up an image of an undried coating surface immediately after a paint is applied, an image processing means for performing image processing of image information from the image pickup means, Wavelength calculating means for calculating the wavelength distribution of the uneven waveform of the coating surface based on the processed image processing data; and a surface calculating the roughness of the coating surface based on the image processing data processed by the image processing means. Roughness calculating means, coating condition input means for inputting coating conditions including at least the viscosity of the paint, roughness calculated by the surface roughness calculating means, time variation of the roughness, and the wavelength A film thickness calculating means for calculating a coating film thickness based on the wavelength distribution calculated by the distribution calculating means and the coating condition input from the coating condition input means; and inputting the calculated film thickness. What is this The coating quality analysis apparatus according to claim 1, wherein:
JP07275396A 1996-03-27 1996-03-27 Paint quality analyzer Expired - Fee Related JP3358434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07275396A JP3358434B2 (en) 1996-03-27 1996-03-27 Paint quality analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07275396A JP3358434B2 (en) 1996-03-27 1996-03-27 Paint quality analyzer

Publications (2)

Publication Number Publication Date
JPH09262533A JPH09262533A (en) 1997-10-07
JP3358434B2 true JP3358434B2 (en) 2002-12-16

Family

ID=13498438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07275396A Expired - Fee Related JP3358434B2 (en) 1996-03-27 1996-03-27 Paint quality analyzer

Country Status (1)

Country Link
JP (1) JP3358434B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846583B2 (en) * 2019-09-27 2023-12-19 Panasonic Intellectual Property Management Co., Ltd. Inspection method and inspection system
JPWO2022269302A1 (en) * 2021-06-21 2022-12-29

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581991B2 (en) * 1979-10-05 1983-01-13 トヨタ自動車株式会社 Automotive body painting method
JPS60122069A (en) * 1983-12-02 1985-06-29 Toyota Motor Corp Method and apparatus for coating
JPH061177B2 (en) * 1986-06-14 1994-01-05 関東自動車工業株式会社 Method of measuring smoothness of coated surface
JP3443873B2 (en) * 1992-09-16 2003-09-08 日産自動車株式会社 Automotive coating condition management device
JPH06148090A (en) * 1992-11-09 1994-05-27 Toyota Motor Corp Painting inspection information analyzer
JPH06277574A (en) * 1993-03-30 1994-10-04 Nissan Motor Co Ltd Dilute paint supply device
JP3257182B2 (en) * 1993-09-27 2002-02-18 日産自動車株式会社 Painting treatment equipment and painting treatment method
JP3326962B2 (en) * 1994-05-12 2002-09-24 日産自動車株式会社 Paint quality analyzer
JP3326960B2 (en) * 1994-05-12 2002-09-24 日産自動車株式会社 Paint film thickness measuring device
JP3353494B2 (en) * 1994-10-24 2002-12-03 日産自動車株式会社 Paint quality analyzer
JPH09105612A (en) * 1995-10-11 1997-04-22 Nissan Motor Co Ltd Coating-film-thickness measuring apparatus
JPH09113462A (en) * 1995-10-24 1997-05-02 Nissan Motor Co Ltd Printing-quality analytical instrument

Also Published As

Publication number Publication date
JPH09262533A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
US9316491B2 (en) Methods and instruments to measure the volume solids of a paint sample
CN103143484B (en) A kind of control method of thickness of coating fluorescent dye
MX2020014310A (en) Method for determining the droplet size distribution during atomization and screening method based thereon in paint development.
JP3358434B2 (en) Paint quality analyzer
Sidawi et al. On surface area coverage by an electrostatic rotating bell atomizer
JP3326962B2 (en) Paint quality analyzer
JP3353494B2 (en) Paint quality analyzer
JPH09113462A (en) Printing-quality analytical instrument
JP3322034B2 (en) Paint quality analyzer
JP3257182B2 (en) Painting treatment equipment and painting treatment method
JP3478443B2 (en) Control device for automatic coating machine
JP3811924B2 (en) Control device for automatic coating machine and control method thereof
JPH09262534A (en) Coating quality analysis device
JP3326960B2 (en) Paint film thickness measuring device
JPH08334320A (en) Apparatus for analyzing painting quality
JPH09210990A (en) Coating quality analyzing device
JP3511764B2 (en) Control device for automatic coating machine
JP3327000B2 (en) Paint film thickness measuring device
JP3321982B2 (en) Paint film thickness measuring device
JPH08327340A (en) Painting quality analyzer
JPH09105612A (en) Coating-film-thickness measuring apparatus
JP3326961B2 (en) Paint film thickness measuring device
JPH095053A (en) Coating quality analysing device
JP2964801B2 (en) Film thickness measuring device
JP3496246B2 (en) Apparatus and method for measuring coating viscosity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees