JPH08334320A - Apparatus for analyzing painting quality - Google Patents

Apparatus for analyzing painting quality

Info

Publication number
JPH08334320A
JPH08334320A JP14194095A JP14194095A JPH08334320A JP H08334320 A JPH08334320 A JP H08334320A JP 14194095 A JP14194095 A JP 14194095A JP 14194095 A JP14194095 A JP 14194095A JP H08334320 A JPH08334320 A JP H08334320A
Authority
JP
Japan
Prior art keywords
atomization
coating
degree
distance
spraying distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14194095A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoshida
清 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14194095A priority Critical patent/JPH08334320A/en
Publication of JPH08334320A publication Critical patent/JPH08334320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To provide a painting quality-analyzing apparatus which can obtain an atomization degree according to a reference spraying distance quickly and highly accurately during painting even when a spraying distance is different for each part of an object to be painted. CONSTITUTION: A surface immediately after a painting is applied and therefore not dried is photographed by a photographing means 100. The image data are processed by an image-processing means 101, based on which a wavelength distribution of a rough waveform on the painted surface is calculated by a wavelength distribution-operating means 102. An atomization degree is calculated on the basis of the wavelength distribution by an atomization-operating means 103. The atomization degree is converted at a correcting/operating means 105 to a value responding to a reference spraying distance in accordance with spraying distance data input from a painting condition input means 104, whereby the atomization degree in conformity with the reference spraying distance is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗装品質、すなわち塗
料の微粒化度を求める塗装品質解析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating quality analyzing apparatus for determining coating quality, that is, the degree of atomization of coating material.

【0002】[0002]

【従来の技術】塗装における塗料粒子の大きさ、すなわ
ち塗料の微粒化度を計測する従来の方法としては、例え
ば図14に示すごとく、塗装ガン50から吹き付けられ
る塗料粒子を特殊コーティングしたガラス板51に直接
付着させ、電子顕微鏡等で粒子径を測定する方法があ
る。また、他の微粒化度計測装置としては、レーザドッ
プラ流速計と光の散乱計測技術を応用したレーザドップ
ラ式粒子測定装置がある。これは塗装ガンから吹き付け
られた塗料粒子へレーザ光を照射し、粒子の散乱光の強
度から粒子径を計測するものである。
2. Description of the Related Art As a conventional method for measuring the size of paint particles in coating, that is, the degree of atomization of paint, a glass plate 51 specially coated with paint particles sprayed from a coating gun 50 is shown in FIG. There is a method of directly adhering to the above and measuring the particle size with an electron microscope or the like. Further, as another atomization degree measuring device, there is a laser Doppler type particle measuring device to which a laser Doppler velocimeter and a light scattering measuring technique are applied. This is to irradiate the coating particles sprayed from a coating gun with laser light and measure the particle diameter from the intensity of the scattered light of the particles.

【0003】[0003]

【発明が解決しようとする課題】上記のごとき塗料の微
粒化度は、塗装品質に大きな影響を及ぼすので、精密に
制御する必要がある。特に自動車の車体塗装のように、
塗装自動化ラインで次々に塗装を行なう場合には、塗装
状態の良否を出来るだけ速やかにフィードバックして次
の塗装条件を改善し、常に最良の塗装状態に保つ必要が
ある。しかし、上記のごとき従来の微粒化度計測方法や
装置は、研究用解析装置であり、次のごとき問題のため
に塗装自動化ライン等には適用出来なかった。まず、塗
料粒子をガラス板に付着させる方法は、測定の度に試料
のガラス板を作成して電子顕微鏡で観察する必要がある
ため、工数と時間が掛かると共に、リアルタイムで塗装
工程にフィードバックさせることは本来無理な方法であ
る。また、レーザドップラ式粒子測定装置も研究用解析
装置であり、一般の塗装工程のように引火性の溶剤を用
いる場合には、レーザ光によって発火するおそれがある
ため、使用することが困難である。
Since the degree of atomization of the coating material as described above has a great influence on the coating quality, it is necessary to control it precisely. Especially like car body painting,
When painting one after another in an automated painting line, it is necessary to feed back the quality of the painting as quickly as possible to improve the next painting condition and always maintain the best painting condition. However, the conventional method and apparatus for measuring the degree of atomization as described above is an analysis apparatus for research and cannot be applied to an automated coating line or the like due to the following problems. First of all, the method of attaching paint particles to the glass plate requires that a glass plate of the sample be prepared and observed with an electron microscope each time it is measured, so it takes man-hours and time, and feeds back to the coating process in real time. Is an inherently impossible method. In addition, the laser Doppler particle measuring device is also an analytical device for research, and when a flammable solvent is used as in a general coating process, it is difficult to use because it may be ignited by laser light. .

【0004】上記のごとき従来技術の問題を解決するた
め、本出願人は、塗装後の未乾燥塗装表面を撮像し、そ
の光学画像から、塗装面の凹凸の波長分布を求め、それ
に基づいて塗料の粒子径を計測するように構成した新規
な塗装品質解析装置を発明し、既に出願している(特願
平6−98483号:未公開)。上記の先行発明におい
ては、塗料の微粒化度を塗装中に非接触で容易に計測す
ることが出来る。そのため塗装条件を直ちにフィードバ
ック制御することが出来るので、塗装品質を維持、向上
させることができると共に、微粒化計測の工数を大幅に
低減することが出来る、という優れた効果が得られる。
しかし、実際の塗装工程においては、次のごとき問題が
残された。すなわち、上記の先行発明においては、塗装
表面の光学画像から表面の凹凸の波長分布を求めている
が、自動車の車体塗装のような自動化ラインでは、車体
の形状に応じて各部位毎に吹き付け距離(塗装ガンから
塗装面までの距離)が異なるため、同じ塗装条件で塗装
ガンを駆動した場合でも、距離の差に応じた塗料粒子の
衝突速度の違いによって塗膜面の波長分布が異なってし
まう。そのため塗装部位によって吹き付け距離が異なる
場合には、単に画像から求めた塗装表面の凹凸波長に基
づいて微粒化演算を行なうと、吹き付け距離の差に基づ
いた誤差が生じ、基準の吹き付け距離に相当した微粒化
度を正確に計測することが困難になる場合がある。した
がって自動車の車体塗装のような自動化ラインに適用す
る場合には、更に改良の余地があった。
In order to solve the above-mentioned problems of the prior art, the present applicant takes an image of the undried coating surface after coating, finds the wavelength distribution of the unevenness of the coating surface from the optical image, and based on this, the coating material. Has invented a new coating quality analysis device configured to measure the particle size of the above, and has already applied for it (Japanese Patent Application No. 6-98483: unpublished). In the above-mentioned prior invention, the degree of atomization of the paint can be easily measured without contact during painting. Therefore, the coating conditions can be immediately feedback-controlled, so that the coating quality can be maintained and improved, and the number of man-hours for atomization measurement can be significantly reduced, which is an excellent effect.
However, the following problems remained in the actual painting process. That is, in the above prior invention, the wavelength distribution of the unevenness of the surface is obtained from the optical image of the painted surface, but in an automated line such as car body painting of an automobile, the spraying distance for each part according to the shape of the car body Since the (distance from the coating gun to the coating surface) is different, even if the coating gun is driven under the same coating conditions, the wavelength distribution on the coating surface will differ due to the difference in the collision speed of the coating particles depending on the difference in the distance. . Therefore, when the spraying distance differs depending on the painted part, if the atomization calculation is simply performed based on the uneven wavelength of the coating surface obtained from the image, an error based on the difference in the spraying distance occurs, which corresponds to the reference spraying distance. It may be difficult to accurately measure the atomization degree. Therefore, there is room for further improvement when applied to automated lines such as car body painting.

【0005】本発明は、上記のごとき従来技術の問題を
解決し、さらに上記本出願人の先行発明を改良するため
になされたものであり、吹き付け距離が部位によって異
なるような被塗装物体であっても塗装中に迅速かつ高精
度で基準の吹き付け距離に相当した微粒化度を求めるこ
とのできる塗装品質解析装置を提供することを目的とす
る。
The present invention has been made in order to solve the problems of the prior art as described above and to improve the prior invention of the applicant of the present invention. Even if, during coating, it is an object of the present invention to provide a coating quality analysis device capable of quickly and highly accurately obtaining the atomization degree corresponding to the reference spraying distance.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。図1は本発明の機能ブロック図であ
る。請求項1に記載の発明は、図1(a)に示すごと
く、塗料を塗布した直後の未乾燥塗装表面を撮像する撮
像手段100と、撮像手段100からの画像情報を画像
処理する画像処理手段101と、画像処理手段101で
処理された画像処理データに基づいて、塗装表面の凹凸
波形の波長分布を算出する波長分布演算手段102と、
該波長分布演算手段102の算出結果に基づいて微粒化
度を算出する微粒化演算手段103と、塗料吹き付け手
段と被塗装物表面との間の吹き付け距離を少なくとも含
む塗装条件を入力する塗装条件入力手段104と、微粒
化演算手段103で算出した微粒化度と塗装条件入力手
段104から入力した吹き付け距離とに基づいて基準吹
き付け距離における微粒化度を算出する補正演算手段1
05と、を備えている。なお、上記の各手段は、例えば
後記図2の実施例における下記の各手段に相当する。す
なわち、撮像手段100は撮像部2に、画像処理手段1
01は画像処理部3に、波長分布演算手段102は波長
演算部4に、微粒化演算手段103は微粒化演算部6
に、塗装条件入力手段104は塗装条件入力部5に、補
正演算手段105は補正演算部7に、それぞれ相当す
る。
In order to achieve the above object, the present invention is constructed as described in the claims. FIG. 1 is a functional block diagram of the present invention. The invention according to claim 1 is, as shown in FIG. 1 (a), an image pickup means 100 for picking up an image of the undried coating surface immediately after applying the paint, and an image processing means for image-processing the image information from the image pickup means 100. 101, and a wavelength distribution calculation means 102 for calculating the wavelength distribution of the corrugated waveform on the coating surface based on the image processing data processed by the image processing means 101.
Atomization calculation means 103 for calculating the atomization degree based on the calculation result of the wavelength distribution calculation means 102, and a coating condition input for inputting a coating condition including at least a spraying distance between the paint spraying means and the surface of the object to be coated. Correction calculation means 1 for calculating the atomization degree at the reference spraying distance based on the means 104, the atomization degree calculated by the atomization calculation means 103, and the spraying distance input from the coating condition input means 104.
05 and. The above-mentioned means correspond to the following means in the embodiment of FIG. That is, the image pickup unit 100 is provided in the image pickup unit 2 and the image processing unit 1 is provided.
Reference numeral 01 denotes the image processing unit 3, wavelength distribution calculation unit 102 is the wavelength calculation unit 4, and atomization calculation unit 103 is the atomization calculation unit 6.
The coating condition input means 104 corresponds to the coating condition input section 5, and the correction calculation means 105 corresponds to the correction calculation section 7.

【0007】また、請求項2に記載の発明は、補正演算
手段105の構成例を示したものであり、請求項3に記
載の発明は、図1(b)に示すごとく、実際の吹き付け
距離を計測する距離測定手段106を設けた構成例を示
したものであり、請求項4に記載の発明は、図1(c)
に示すごとく、被塗装物表面の複数個所において補正さ
れた微粒化度を求め、さらに、それを平均処理する微粒
化平均処理手段107を設けた構成を示すものである。
The invention according to claim 2 shows an example of the configuration of the correction calculation means 105, and the invention according to claim 3 is the actual spraying distance as shown in FIG. FIG. 1C shows an example of the configuration in which the distance measuring means 106 for measuring the distance is provided.
As shown in FIG. 3, the composition is provided with an atomization averaging means 107 for obtaining a corrected atomization degree at a plurality of points on the surface of the object to be coated and further averaging the atomization degrees.

【0008】[0008]

【作用】請求項1に記載の発明は、塗装後の未乾燥塗装
表面の画像から塗装面の凹凸の波長分布を求め、それに
基づいて塗料の粒子径(微粒化度)を計測し、かつ吹き
付け距離に応じた補正を行なって基準吹き付け距離に相
当した微粒化度を演算するように構成したものである。
このように構成したことにより、基準吹き付け距離に相
当した微粒化度を塗装中に非接触で容易に計測すること
が出来る。そのため塗装条件を直ちにフィードバック制
御することが出来るので、塗装品質を維持、向上させる
ことができると共に、微粒化計測の工数を大幅に低減す
ることが出来る。なお、微粒化度すなわち塗料粒子の微
粒化の程度は、塗料の粒子径をそのまま用いてもよい
し、或いはその逆数や基準値に対する百分率で表しても
よい。また、実際の吹き付け距離は被塗装物体の形状に
応じた値となるから、自動車の塗装ラインのように予め
被塗装物体の形状が判っている場合には、吹き付け距離
はラインの進行状況に応じた値として既知であり、その
値を塗装条件手段104から入力すればよい。また、基
準吹き付け距離は予め補正演算手段105に与えておい
てもよいし、塗装条件入力手段104から与えてもよ
い。
According to the invention described in claim 1, the wavelength distribution of the unevenness of the coated surface is obtained from the image of the undried coated surface after coating, and the particle diameter (atomization degree) of the coating material is measured based on the wavelength distribution and sprayed. The correction is performed according to the distance to calculate the atomization degree corresponding to the reference spraying distance.
With this configuration, the degree of atomization corresponding to the reference spraying distance can be easily measured without contact during coating. Therefore, since the coating conditions can be immediately feedback-controlled, the coating quality can be maintained and improved, and the number of man-hours for atomization measurement can be significantly reduced. The degree of atomization, that is, the degree of atomization of the paint particles, may be the particle size of the paint as it is, or may be expressed as the reciprocal thereof or a percentage with respect to a reference value. Also, since the actual spray distance is a value that depends on the shape of the object to be painted, if the shape of the object to be painted is known in advance, such as in a car painting line, the spray distance will depend on the progress of the line. It is known as a value that has been set, and that value may be input from the coating condition means 104. Further, the reference spraying distance may be given to the correction calculation means 105 in advance, or may be given from the coating condition input means 104.

【0009】また、請求項3に記載の発明は、実際の吹
き付け距離を計測する距離測定手段106を設け、塗料
吹き付け手段(例えば塗装ガン)から被塗装物体の塗装
面までの吹き付け距離を実際に計測し、それを補正演算
手段105における吹き付け距離として用いるように構
成したものである。このように構成することにより、被
塗装物体の形状に関わらず、常に正確な吹き付け距離を
用いて補正演算を行なうことが出来る。
Further, according to the third aspect of the present invention, the distance measuring means 106 for measuring the actual spraying distance is provided, and the spraying distance from the paint spraying means (for example, the coating gun) to the coating surface of the object to be coated is actually measured. It is configured to measure and use it as the blowing distance in the correction calculation unit 105. With such a configuration, it is possible to always perform the correction calculation using the accurate spray distance regardless of the shape of the object to be coated.

【0010】また、請求項4に記載の発明は、微粒化平
均処理手段107を設け、複数個所における微粒化度を
平均化した値を算出するように構成したものである。自
動車の車体のように吹き付け面積が大きい被塗装物体の
場合には、塗装部位によって塗装条件が必ずしも一定に
ならないことがある。そのため精度のよい微粒化計測を
行なうために、塗装表面の複数個所を撮像し、それらに
ついての微粒化度を求め、それらの値を平均化した値を
用いて塗装制御を行なうことにより、制御性能を向上さ
せることが出来る。
Further, the invention according to claim 4 is provided with the atomization averaging means 107, and is configured to calculate a value obtained by averaging the atomization degrees at a plurality of locations. In the case of an object to be coated having a large spraying area such as the body of an automobile, the coating conditions may not always be constant depending on the portion to be coated. Therefore, in order to perform accurate atomization measurement, multiple points on the coating surface are imaged, the degree of atomization is calculated for each of them, and the coating control is performed by using the value obtained by averaging those values. Can be improved.

【0011】[0011]

【実施例】図2は本発明の第1の実施例図であり、本発
明を車両の車体塗装ラインに適用した場合のブロック図
を示す。まず、図2に基づいて全体の構成の概略を説明
する。1は被塗装体の車体であり、塗装ライン上を所定
の速度で移動しながら塗装されるものである。2は塗装
直後におけるウエット状態の塗装表面を撮像する撮像部
である。撮像する時点は、塗料を吹き付けたのち所定時
間(例えば1〜2分)後に行なう。そのため、撮像部2
は塗装ラインの移動速度に合わせて、例えば1〜2分後
に車体が到達する位置に設置されている。
FIG. 2 is a first embodiment of the present invention and is a block diagram when the present invention is applied to a vehicle body painting line. First, the outline of the entire configuration will be described with reference to FIG. Reference numeral 1 denotes a vehicle body of a body to be coated, which is coated while moving on a coating line at a predetermined speed. Reference numeral 2 denotes an image pickup unit for picking up an image of the wet coating surface immediately after coating. The image is taken at a predetermined time (for example, 1 to 2 minutes) after spraying the paint. Therefore, the imaging unit 2
Is installed at a position where the vehicle body arrives after, for example, 1 to 2 minutes according to the moving speed of the coating line.

【0012】上記の撮像部2で撮像した塗装表面の画像
(詳細後述)は、画像処理部3で2値化等の画像処理を
施される。なお、この画像処理部3は画像情報を記憶す
る画像メモリとコンピュータ等の演算装置で構成され
る。上記の画像処理部3で処理された画像処理データ
は、波長演算部4に送られる。この波長演算部4では、
パワースペクトル周波数分析(例えば高速フーリエ変換
処理:FFT)を行ない、入力した画像処理データから
塗装表面の凹凸波形のパワースペクトルPS(詳細後
述)を算出する。また、塗装条件入力部5は、例えばキ
ーボード等の入力手段であり、中塗り、上塗りベース、
上塗りクリア等の塗料の種類および吹き付け距離につい
ての情報を入力する。また、微粒化演算部6は、上記塗
装条件入力部5からの塗装条件と、波長演算部4で求め
られた波長値(波長分布のピーク波長)とに基づいて塗
料の微粒化度を演算する(詳細後述)。また、補正演算
部7は、微粒化演算部6で算出した微粒化度と塗装条件
入力部5から入力した吹き付け距離とに基づいて基準吹
き付け距離における微粒化度を算出する(詳細後述)。
上記のようにして求められた基準吹き付け距離に換算し
た微粒化度は、液晶表示装置やCRT表示装置等の表示
器8で表示して作業員に提示すると共に、塗装条件制御
システム9へ送られ、塗装ガン10の動作条件(塗料の
吐出量、ベル回転数、エア圧等)を所望の微粒化度を達
成するための最適条件に保つように制御する。なお、上
記の波長演算部4、微粒化演算部6および補正演算部7
は、コンピュータ等の演算装置で構成される。
The image of the painted surface (details will be described later) taken by the image pickup unit 2 is subjected to image processing such as binarization by the image processing unit 3. The image processing unit 3 is composed of an image memory that stores image information and a computing device such as a computer. The image processing data processed by the image processing unit 3 is sent to the wavelength calculation unit 4. In this wavelength calculator 4,
A power spectrum frequency analysis (for example, fast Fourier transform processing: FFT) is performed, and a power spectrum PS (details described later) of the uneven waveform of the coating surface is calculated from the input image processing data. Further, the coating condition input unit 5 is an input means such as a keyboard, and includes an intermediate coating, a top coating base,
Enter information about the type of paint such as clear topcoat and the spray distance. Further, the atomization calculator 6 calculates the degree of atomization of the paint based on the coating condition from the coating condition input unit 5 and the wavelength value (peak wavelength of the wavelength distribution) obtained by the wavelength calculator 4. (Details below). Further, the correction calculation unit 7 calculates the atomization degree at the reference spraying distance based on the atomization degree calculated by the atomization calculation unit 6 and the spraying distance input from the coating condition input unit 5 (details will be described later).
The atomization degree converted into the reference spraying distance obtained as described above is displayed on the display device 8 such as a liquid crystal display device or a CRT display device to be presented to the worker, and is also sent to the coating condition control system 9. The operating conditions of the coating gun 10 (the discharge amount of the coating, the number of rotations of the bell, the air pressure, etc.) are controlled to be the optimum conditions for achieving the desired atomization degree. In addition, the wavelength calculation unit 4, the atomization calculation unit 6, and the correction calculation unit 7 described above.
Is an arithmetic unit such as a computer.

【0013】次に作用を説明する。最初に、撮像部2に
ついて説明する。図3は、撮像部2の一例を示す断面図
である。図3に示すように、撮像部の基本的構成は、光
源31、明暗パタン板32、反射鏡33、レンズ34、
CCDカメラ35から成る。上記の明暗パタン板32
は、所定間隔(例えば1mm間隔)で直線状のスリット
が設けられた不透明板(または透明板に所定間隔で不透
明なストライプパタンを印刷したもの)である。そして
光源31からの平行光線を上記明暗パタン板32と反射
鏡33とレンズ34とを介して塗装面の斜め方向から照
射することにより、被塗装体上にスリットに対応した縞
模様をつくる。この縞模様は、被塗装体上の凹凸に応じ
て歪んだ波形(後記図10のごとき波形)となる。その
反射光をCCDカメラ35で撮像し、上記の歪んだ縞模
様、すなわち表面粗さの情報を入力するようになってい
る。上記のごとき縞模様の画像情報を画像処理し、パワ
ースペクトル周波数分析(例えば高速フーリエ変換処
理:FFT)を行なってパワースペクトルPSを求め
る。
Next, the operation will be described. First, the image pickup unit 2 will be described. FIG. 3 is a cross-sectional view showing an example of the image pickup unit 2. As shown in FIG. 3, the basic configuration of the image pickup unit includes a light source 31, a bright / dark pattern plate 32, a reflecting mirror 33, a lens 34,
It consists of a CCD camera 35. The light and dark pattern plate 32 described above
Is an opaque plate (or a transparent plate on which opaque stripe patterns are printed at predetermined intervals) provided with linear slits at predetermined intervals (for example, 1 mm intervals). Then, a parallel light beam from the light source 31 is irradiated from an oblique direction of the coating surface through the bright / dark pattern plate 32, the reflecting mirror 33, and the lens 34 to form a striped pattern corresponding to the slit on the object to be coated. This striped pattern has a distorted waveform (a waveform as shown in FIG. 10, which will be described later) that is distorted according to the irregularities on the object to be coated. The reflected light is imaged by the CCD camera 35, and the distorted striped pattern, that is, the information of the surface roughness is input. Image information of the striped pattern as described above is subjected to image processing, and power spectrum frequency analysis (for example, fast Fourier transform processing: FFT) is performed to obtain the power spectrum PS.

【0014】図4は、上記パワースペクトルPSの周波
数特性図であり、縦軸はパワースペクトルPS、横軸は
周波数f(波長λの逆数、f=1/λ)である。図4に
おいて、第1のピーク波形は、前記スリットに対応し
た基本縞による基本波形のパワースペクトル、第2のピ
ーク波形は、塗装表面の凹凸波形の長波長領域(10
〜1mm程度)に対応したパワースペクトル、第3のピ
ーク波形は、凹凸波形の中波長領域(1〜0.1mm
程度)に対応したパワースペクトル、第4のピーク波形
は、凹凸波形の短波長領域(0.1mm以下)に対応
したパワースペクトルを示す。上記のパワースペクトル
波形において、凹凸波形の長波長領域のピーク波長、す
なわち第2のピーク波形のピーク値に対応した波長
は、後記のごとく微粒化度と相関性があり、それによっ
て微粒化度を測定することが出来る。
FIG. 4 is a frequency characteristic diagram of the power spectrum PS, in which the vertical axis represents the power spectrum PS and the horizontal axis represents the frequency f (the reciprocal of the wavelength λ, f = 1 / λ). In FIG. 4, the first peak waveform is the power spectrum of the basic waveform due to the basic stripes corresponding to the slits, and the second peak waveform is the long-wavelength region (10
Power spectrum corresponding to ~ 1 mm), the third peak waveform is the uneven wavelength waveform in the middle wavelength region (1 to 0.1 mm).
The fourth peak waveform shows the power spectrum corresponding to the short wavelength region (0.1 mm or less) of the uneven waveform. In the above power spectrum waveform, the peak wavelength in the long wavelength region of the concave-convex waveform, that is, the wavelength corresponding to the peak value of the second peak waveform, has a correlation with the atomization degree as described below, and thereby the atomization degree is changed. It can be measured.

【0015】次に、微粒化演算部6における微粒化度計
測の原理について説明する。まず、図5に基づいて、塗
装時における塗装面への塗料粒子の付着と塗装膜面の形
成過程について説明する。図5(a)に示すように、塗
装ガン50から塗装面(下塗鋼板52)へ向けて微粒化
した塗料粒子を吹き付ける。この際、塗料粒子の平均粒
子径は、基本的には、塗装条件である塗料速度(下記
、、)と空気速度(下記)と塗料物性(下記
)によって決まる。ただし、上記の〜は次の通り
である。 塗装ガンの吐出量 塗装ガンのベル回転数 印加電圧 エア圧 塗料物性(粘度、表面張力、密度) なお、ベル回転数とは塗料を微粒化する回転体の回転数
であり、印加電圧とは塗料粒子に静電気を付加するため
に印加する静電圧(50kV程度)であり、エア圧と
は、塗料粒子が周辺に飛散しないように周囲に気流の壁
を作るための気圧である。上記のようにして吹き付けら
れた塗料粒子は、塗装面に衝突し、つぶれた形で付着す
る。
Next, the principle of the atomization degree measurement in the atomization calculator 6 will be described. First, with reference to FIG. 5, the process of adhering paint particles to the coating surface and forming the coating film surface during coating will be described. As shown in FIG. 5A, atomized paint particles are sprayed from the paint gun 50 toward the paint surface (undercoat steel plate 52). At this time, the average particle size of the paint particles is basically determined by the paint conditions such as paint velocity (below), air velocity (below) and paint physical properties (below). However, the above-mentioned items are as follows. Discharge rate of coating gun Bell rotation speed of coating gun Applied voltage Air pressure Paint physical properties (viscosity, surface tension, density) Bell rotation speed is the rotation speed of the rotating body that atomizes the paint, and applied voltage is the paint It is a static voltage (about 50 kV) applied to add static electricity to the particles, and the air pressure is an atmospheric pressure for creating a wall of airflow around the paint particles so that the paint particles do not scatter around. The paint particles sprayed as described above collide with the painted surface and adhere in a crushed form.

【0016】次に、図5(b)に示すように、塗膜形成
の初期には、付着した小さな塗料粒子が大きな塗料粒子
に結合され、より大きな粒子を形成する。そして、さら
に粒子の結合が進み、表面張力と境界張力とによって初
期の塗膜面が形成される。上記のように粒子の付着と結
合によって塗膜が形成されていくため、初期の塗膜表面
状況は大きな塗装粒子の粒子径r、粒子衝突速度vx、
塗料物性(表面張力γ、粘度η)等に依存する。例え
ば、上塗り塗料の場合、初期塗膜表面の凹凸の高さは数
〜数十μm程度であり、また、凹凸の波長分布は3〜6
mm程度の長波長領域が支配的であることが確認され
た。そして上記の長波長領域のピーク波長λと大きな塗
料粒子の粒子径rとには相関性があることが実験によっ
て確認された。
Next, as shown in FIG. 5 (b), in the initial stage of film formation, the small paint particles that have adhered are combined with the large paint particles to form larger particles. Then, the bonding of particles further progresses, and the initial coating film surface is formed by the surface tension and the boundary tension. As described above, since the coating film is formed by the adhesion and bonding of the particles, the initial coating film surface condition is the particle diameter r of the large coating particles, the particle collision velocity vx,
It depends on the physical properties of the coating (surface tension γ, viscosity η) and the like. For example, in the case of a top coating, the height of the unevenness on the surface of the initial coating film is about several to several tens of μm, and the wavelength distribution of the unevenness is 3 to 6 μm.
It was confirmed that the long wavelength region of about mm is dominant. It was confirmed by experiments that there is a correlation between the peak wavelength λ in the long wavelength region and the particle diameter r of large paint particles.

【0017】次に、図5(c)に示すように、上記の初
期塗膜形成後の塗膜表面は、レベリング力(表面張力γ
と重力gとの合成力)によって次第に平坦化して行く。
この平坦化速度は上記のレベリング力と塗料物性(表面
張力γ、粘度η)および膜厚hによって決定される。例
えば、上塗り塗料の場合、平坦化速度は時定数で数十秒
〜数百秒であることが確認されている。
Next, as shown in FIG. 5C, the surface of the coating film after the above initial coating film formation has a leveling force (surface tension γ
And synthetic force of gravity g)).
This flattening speed is determined by the above-mentioned leveling force, coating material properties (surface tension γ, viscosity η) and film thickness h. For example, in the case of a topcoat paint, it has been confirmed that the flattening speed is a time constant of several tens of seconds to several hundreds of seconds.

【0018】次に、塗料粒子径と塗膜面の凹凸との関係
について図6〜図9に基づいて詳細に説明する。図6に
示すように、塗装ガンから吹き付けられた塗料粒子(飛
行粒子53)の粒子径をrとし、それが付着した付着粒
子54の幅をλ/2、厚さ(ピーク値)をhとすれば、
波長λの凹凸を持つ塗膜面が形成される。なお、上記付
着粒子の幅λ/2と波長λとの関係は、実験的に求めら
れたものであり、ほぼこの程度の値になることが確認さ
れている。上記の場合における塗料粒子径rは、下記
(数1)式で示される。
Next, the relationship between the paint particle diameter and the unevenness of the coating film surface will be described in detail with reference to FIGS. As shown in FIG. 6, the particle diameter of the coating particles (flying particles 53) sprayed from the coating gun is r, the width of the adhered particles 54 adhered thereto is λ / 2, and the thickness (peak value) is h. if,
A coating film surface having irregularities of wavelength λ is formed. Note that the relationship between the width λ / 2 of the adhered particles and the wavelength λ is experimentally obtained, and it has been confirmed that the value has a value in this range. The paint particle diameter r in the above case is expressed by the following (Formula 1).

【0019】[0019]

【数1】 [Equation 1]

【0020】上記の理論式をグラフに示すと、図7の破
線で示すごとき曲線となる。しかし、実際には、付着粒
子の結合があるため、図7の実線で示すような特性とな
る。この実験で求めた特性を数式で示すと、下記(数
2)式のようになる。
When the above theoretical formula is shown in a graph, it becomes a curve as shown by the broken line in FIG. However, in reality, since the adhered particles are bonded, the characteristics shown by the solid line in FIG. 7 are obtained. The characteristic obtained by this experiment is expressed by a mathematical expression as shown in the following (Equation 2).

【0021】[0021]

【数2】 [Equation 2]

【0022】ただし ks:補正係数 λp:塗膜面の凹凸のピーク波長(前記長波長領域のピ
ーク波長に相当) a、β:定数 上記のごとき実験で求めた凹凸のピーク波長λpと塗料
粒子径rとの関係を、付着粒子の結合を考慮して解析す
る。まず、図8に示すように、付着粒子径Rは、塗布時
間が大きくなるに従って順次大きくなる。この関係を数
式で示すと下記(数3)式のようになる。
Where ks: correction coefficient λp: peak wavelength of irregularities on the coating surface (corresponding to the peak wavelength of the long-wavelength region) a, β: constant peak wavelength λp of irregularities obtained by the above-mentioned experiment and paint particle diameter The relationship with r is analyzed in consideration of the bond of adhered particles. First, as shown in FIG. 8, the adhering particle diameter R gradually increases as the coating time increases. When this relationship is shown by a mathematical expression, it becomes as shown in the following (Equation 3).

【0023】[0023]

【数3】 (Equation 3)

【0024】ただし R0:初期粒子径 b,c:定数 なお、図8において、塗布時間とは1ヶ所に塗布する持
続時間であり、初期粒子径とは付着前の塗料粒子径であ
り、付着粒子径とは最初に付着したときの粒子径であ
る。この付着粒子径Rは塗布時間が長くなるに従って順
次塗布される粒子が結合するので次第に大きくなる。
However, R 0 : initial particle diameter b, c: constants In FIG. 8, the coating time is the duration of coating at one location, the initial particle diameter is the coating particle diameter before adhesion, and The particle size is the particle size when first attached. The diameter R of the adhered particles gradually increases as the coating time increases because the particles that are sequentially coated combine.

【0025】また、図9は、塗布時間と塗膜面の凹凸波
長との関係を、実測値(破線)と周波数解析によるパワ
ースペクトルから求めた結果とについて比較した特性図
である。図9から判るように、パワースペクトルから求
めた値は実測値によく一致している。したがってパワー
スペクトルから求めた凹凸波長(前記長波長のピーク波
長λp)を用いて付着粒子径Rを求めることが出来る。
さらに、自動塗装機においては、塗布時間は一定である
から、下記(数4)式によって塗料粒子径rも求めるこ
とが出来る。 2r(t)=λp(t) …(数4) 上記のごとき考察により、基本的には前記(数2)式に
より、パワースペクトルから求めた凹凸の長波長領域の
ピーク波長λpを用いて、塗料粒子径rを求めることが
出来る。具体的には、実験で前記図7の特性を求め、そ
れから(数2)式の各係数ks、a、βを予め求めてお
けば、撮像画像から求めたピーク波長λpを用いて塗料
粒子径rを求めることが出来る。なお、塗料粒子の粒子
径rは塗料の微粒化の程度に対応しているから、塗料粒
子の粒子径rをそのまま用いて微粒化度を表してもよい
し、或いはrの逆数、もしくは基準値との百分率などを
用いて微粒化度を表すことも出来る。
FIG. 9 is a characteristic diagram comparing the relationship between the coating time and the wavelength of unevenness on the coating surface with the measured value (broken line) and the result obtained from the power spectrum by frequency analysis. As can be seen from FIG. 9, the value obtained from the power spectrum is in good agreement with the actually measured value. Therefore, the particle diameter R of the adhered particles can be obtained by using the uneven wavelength (peak wavelength λp of the long wavelength) obtained from the power spectrum.
Further, in an automatic coating machine, the coating time is constant, so that the paint particle diameter r can be calculated by the following equation (4). 2r (t) = λp (t) (Equation 4) Based on the above consideration, the peak wavelength λp of the long wavelength region of the unevenness obtained from the power spectrum is basically used by the equation (Equation 2). The paint particle diameter r can be obtained. Specifically, if the characteristics shown in FIG. 7 are obtained by an experiment and then the respective coefficients ks, a, and β of the equation (2) are obtained in advance, the paint particle diameter is calculated using the peak wavelength λp obtained from the captured image. It is possible to obtain r. Since the particle size r of the paint particles corresponds to the degree of atomization of the paint, the particle size r of the paint particles may be used as it is to represent the degree of atomization, or the reciprocal of r or a reference value. It is also possible to express the degree of atomization by using the percentage and the like.

【0026】図2の実施例においては、波長演算部4
で、入力した画像処理データから塗装表面の凹凸波形の
パワースペクトルPSを求め、前記の長波長領域のピー
ク波長λpを算出する。そして微粒化演算部6では、予
め実験で求めた前記図7の特性(数2式)を用いて補正
後のピーク波長λpから塗料粒子の粒子径rを求め、そ
の値から微粒化度を演算する。なお、上記の演算におい
て、図7の特性は、塗料の種類に応じて異なるので、塗
装条件入力部7から入力した中塗り、上塗りベース、上
塗りクリア等の塗料の種類に応じて(数2)式の係数値
を変更する。
In the embodiment shown in FIG. 2, the wavelength calculator 4 is used.
Then, the power spectrum PS of the corrugated waveform on the coating surface is obtained from the input image processing data, and the peak wavelength λp in the long wavelength region is calculated. Then, in the atomization calculation unit 6, the particle diameter r of the paint particles is calculated from the corrected peak wavelength λp using the characteristic (Equation 2) of FIG. 7 previously obtained in the experiment, and the atomization degree is calculated from the value. To do. Note that in the above calculation, the characteristics of FIG. 7 differ depending on the type of paint, so depending on the type of paint such as intermediate coating, topcoat base, clear topcoat, etc. input from the coating condition input section 7 (Equation 2) Change the coefficient value of the expression.

【0027】次に、補正演算部7における吹き付け距離
に応じた微粒化度の補正演算について説明する。図11
に示すような塗料粒子の付着メカニズムにおいて、塗装
ガンと被塗装表面との間の吹き付け距離Lを変化させ、
その場合における塗装面の付着粒子径rを測定した結果
は、図10に示すようになり、rはLの関数として下記
(数5)式で示されることが判明した。 r=d×L+f …(数5) ただし、d,f:定数 一般に、塗料条件が一定の場合には、付着時の塗料粒子
径は塗料の飛行中の粒子結合による肥大度と塗料粒子の
衝突速度vの低下による粒子の潰れ度との合成によって
決定される。エア・スプレーガンの例では、飛行中の塗
料粒子結合による肥大度が塗料粒子の衝突速度vの低下
度より勝っているので、付着粒子径rは吹き付け距離
(粒子の飛行距離)が長いほど大きくなる。なお、上記
の付着粒子径r(微粒化度)は、塗膜面の波長λに対応
しているので、吹き付け距離Lと波長λ(塗装表面の凹
凸の波長分布における長波長領域のピーク波長)との関
係も下記(数6)式のように表すことが出来る。
Next, the correction calculation of the atomization degree according to the spraying distance in the correction calculation unit 7 will be described. Figure 11
In the adhesion mechanism of the paint particles as shown in, the spraying distance L between the coating gun and the surface to be coated is changed,
The result of measuring the adhered particle diameter r on the coated surface in that case is as shown in FIG. 10, and it was found that r is expressed as the function of L by the following formula (Equation 5). r = d × L + f (Equation 5) However, d and f: constants In general, when the paint conditions are constant, the paint particle size at the time of adhesion is the degree of enlargement due to particle bonding during paint flight and the collision of paint particles. It is determined by the combination with the degree of collapse of the particles due to the decrease in the velocity v. In the example of the air spray gun, the degree of enlargement due to the bond of paint particles during flight exceeds the degree of decrease in the collision speed v of paint particles, so the adhered particle diameter r increases as the spray distance (particle flight distance) increases. Become. Since the adhered particle diameter r (the degree of atomization) corresponds to the wavelength λ of the coating film surface, the spraying distance L and the wavelength λ (the peak wavelength of the long wavelength region in the wavelength distribution of the irregularities on the coating surface) The relationship with and can also be expressed as in the following (Equation 6).

【0028】λ=a'×L+b' …(数6) ただし、a',b':定数 上記のように、付着粒子の微粒化度は吹き付け距離Lに
依存するので、吹き付け距離が異なる場合には、基準の
吹き付け距離に対応した微粒化度補正を行なう必要があ
る。
Λ = a ′ × L + b ′ (Equation 6) where a ′ and b ′ are constants As described above, the degree of atomization of adhered particles depends on the spraying distance L, so that when the spraying distance is different. Needs to perform the atomization degree correction corresponding to the reference spraying distance.

【0029】上記(数5)式の関係に基づいて、基準吹
き付け距離L0相当の微粒化度r’を求める補正式は、
下記(数7)式で示される。 r’=r+d×(L−L0) …(数7) 上記のように、図10の特性を予め実験で求め、それに
対応した上記(数7)式を用いて、基準吹き付け距離相
当の微粒化度を算出することにより、吹き付け距離が異
なるような被塗装物体の場合においても、常に基準吹き
付け距離における微粒化度を正確に算出することが出
来、それによって塗装制御を精密に行なうことが出来
る。
Based on the relationship of the above equation (5), the correction equation for obtaining the atomization degree r'corresponding to the reference spraying distance L 0 is
It is expressed by the following equation (7). r ′ = r + d × (L−L 0 ) ... (Equation 7) As described above, the characteristic of FIG. By calculating the degree of atomization, it is possible to accurately calculate the degree of atomization at the reference spraying distance, even in the case of an object to be coated having a different spraying distance, thereby enabling precise control of coating. .

【0030】なお、実際には前記微粒化演算において説
明したように、微粒化度は塗膜表面の凹凸の波長分布に
おける長波長領域のピーク波長λpに基づいて計算する
から、上記の基準吹き付け距離相当の微粒化度を求める
(数7)式におけるrとしては、上記のようにλpに基
づいて求めた微粒化度を用いればよい。図2の実施例に
おいては、補正演算部7において、塗装条件入力部5か
ら入力した吹き付け距離Lと微粒化演算部6から入力し
た微粒化度rとに基づいて、上記(数7)式の演算を行
ない、基準吹き付け距離L0に相当した微粒化度r’を
演算する。
Actually, as described in the atomization calculation, the atomization degree is calculated based on the peak wavelength λp in the long wavelength region in the wavelength distribution of the unevenness of the coating film surface. As r in the equation (7) for obtaining a considerable atomization degree, the atomization degree obtained based on λp as described above may be used. In the embodiment of FIG. 2, in the correction calculation unit 7, based on the spraying distance L input from the coating condition input unit 5 and the atomization degree r input from the atomization calculation unit 6, the equation (7) is calculated. The calculation is performed to calculate the atomization degree r ′ corresponding to the reference spraying distance L 0 .

【0031】なお、実際の吹き付け距離Lは被塗装物体
の形状に応じた値となるから、自動車の塗装ラインのよ
うに予め被塗装物体の形状が判っている場合には、吹き
付け距離Lはラインの進行状況に応じた値として既知で
あり、その値を塗装条件入力部5から入力すればよい。
また、後記第2の実施例で説明するように、実際の吹き
付け距離を計測する装置を設けてもよい。また、基準吹
き付け距離L0は予め補正演算部7に与えておいてもよ
いし、塗装条件入力部5から与えてもよい。
Since the actual spraying distance L has a value corresponding to the shape of the object to be coated, when the shape of the object to be coated is known in advance, such as a car painting line, the spraying distance L is the line. The value is known as a value according to the progress status of, and the value may be input from the coating condition input unit 5.
Further, as described in a second embodiment described later, a device for measuring an actual spraying distance may be provided. Further, the reference spraying distance L 0 may be given to the correction calculation unit 7 in advance, or may be given from the coating condition input unit 5.

【0032】上記のように、本実施例においては、塗装
後の未乾燥塗装表面の画像から、塗装面の凹凸の波長分
布を求め、それに基づいて塗装ガンから吹き付けられる
塗料の粒子径を計測し、かつ吹き付け距離に応じた補正
を行なって基準吹き付け距離に相当した微粒化度を演算
するように構成したものである。このように構成したこ
とにより、基準吹き付け距離に相当した微粒化度を塗装
中に非接触で容易に計測することが出来る。そのため塗
装条件を直ちにフィードバック制御することが出来るの
で、塗装品質を維持、向上させることができると共に、
微粒化計測の工数を大幅に低減することが出来る。
As described above, in the present embodiment, the wavelength distribution of the unevenness of the coating surface was obtained from the image of the undried coating surface after coating, and the particle diameter of the coating material sprayed from the coating gun was measured based on the wavelength distribution. In addition, the correction is performed according to the spraying distance to calculate the atomization degree corresponding to the reference spraying distance. With this configuration, the degree of atomization corresponding to the reference spraying distance can be easily measured without contact during coating. Therefore, the coating conditions can be immediately feedback-controlled, so that the coating quality can be maintained and improved, and
The man-hour for atomization measurement can be significantly reduced.

【0033】次に、図12は、本発明の第2の実施例の
ブロック図である。この実施例は、実際の吹き付け距離
を計測する距離センサ11を設け、塗装自動化ラインに
流れている被塗装物体の塗装面1から塗装ガン10まで
の吹き付け距離を実際に計測し、それを補正演算部7に
おける吹き付け距離Lとして用いるように構成したもの
である。上記のように構成することにより、被塗装物体
の形状に関わらず、常に正確な吹き付け距離Lを用いて
補正演算を行なうことが出来る。その他の構成、効果は
前記図2の実施例と同様である。なお、塗装ガン10と
撮像部2との相互関係は一定であるから、距離センサ1
1は撮像部2と一緒に設ければよい。また、距離センサ
1としては、例えば超音波式やレーザ式の距離計測装置
を用いることが出来る。
Next, FIG. 12 is a block diagram of a second embodiment of the present invention. In this embodiment, a distance sensor 11 for measuring the actual spraying distance is provided, and the spraying distance from the coating surface 1 of the object to be coated flowing through the coating automation line to the coating gun 10 is actually measured and the correction calculation is performed. It is configured to be used as the spraying distance L in the portion 7. With the above configuration, the correction calculation can always be performed using the accurate spray distance L regardless of the shape of the object to be coated. Other configurations and effects are similar to those of the embodiment shown in FIG. Since the mutual relationship between the coating gun 10 and the imaging unit 2 is constant, the distance sensor 1
1 may be provided together with the imaging unit 2. Further, as the distance sensor 1, for example, an ultrasonic type or laser type distance measuring device can be used.

【0034】次に、図13は、本発明の第3の実施例の
ブロック図である。この実施例は、平均処理部12を設
け、複数個所における微粒化度を平均化した値を算出す
るように構成したものである。自動車の車体塗装のよう
な塗装自動化ラインの場合には、吹き付け面積が大きい
ため、塗装部位によって塗装条件が必ずしも一定になら
ないことがある。そのため精度のよい微粒化計測を行な
うために、塗装表面の複数個所を撮像し、それらについ
ての微粒化度を求め、それらの値を平均化した値を用い
て塗装制御を行なうことにより、制御性能を向上させる
ことが出来る。その他の構成、効果は前記図2の実施例
と同様である。なお、図13においては、図2の実施例
に平均処理部12を設けた場合を例示したが、図12の
実施例に平均処理部12を組み合わせてもよい。
Next, FIG. 13 is a block diagram of a third embodiment of the present invention. In this embodiment, an averaging unit 12 is provided and an average value of the atomization degrees at a plurality of locations is calculated. In the case of an automated coating line such as car body painting, the spraying area is large, so the coating conditions may not always be constant depending on the coating site. Therefore, in order to perform accurate atomization measurement, multiple points on the coating surface are imaged, the degree of atomization is calculated for each of them, and the coating control is performed by using the value obtained by averaging those values. Can be improved. Other configurations and effects are similar to those of the embodiment shown in FIG. Although FIG. 13 illustrates the case where the average processing unit 12 is provided in the embodiment of FIG. 2, the average processing unit 12 may be combined with the embodiment of FIG.

【0035】[0035]

【発明の効果】以上説明したごとく、本発明において
は、塗装後の未乾燥塗装表面の画像から塗装面の凹凸の
波長分布を求め、それに基づいて塗料の粒子径を計測
し、かつ吹き付け距離に応じた補正を行なって基準吹き
付け距離に相当した微粒化度を演算するように構成した
ことにより、基準吹き付け距離に相当した微粒化度を塗
装中に非接触で容易に計測することが出来る。そのため
塗装条件を直ちにフィードバック制御することが出来る
ので、塗装品質を維持、向上させることができると共
に、微粒化計測の工数を大幅に低減することが出来る、
という効果が得られる。
As described above, in the present invention, the wavelength distribution of the unevenness of the coating surface is obtained from the image of the undried coating surface after coating, the particle diameter of the coating material is measured based on the wavelength distribution, and the spraying distance is set. By performing the correction according to the calculation to calculate the atomization degree corresponding to the reference spraying distance, the atomization degree corresponding to the reference spraying distance can be easily measured in a non-contact manner during coating. Therefore, the coating conditions can be immediately feedback-controlled, so that the coating quality can be maintained and improved, and the number of man-hours for atomization measurement can be significantly reduced.
The effect is obtained.

【0036】また、請求項3に記載のように、距離測定
手段を設けて吹き付け距離を実際に計測し、その値を補
正演算手段における吹き付け距離として用いるように構
成したものにおいては、被塗装物体の形状に関わらず、
常に正確な吹き付け距離を用いて補正演算を行なうこと
が出来る。また、請求項4に記載のように、複数個所に
おける微粒化度を平均化した値を算出するように構成し
たものにおいては、吹き付け面積が大きく塗装部位によ
って塗装条件が必ずしも一定にならないような被塗装物
体においても、精度のよい微粒化計測を行なうことが出
来る、という効果が得られる。
Further, as described in claim 3, the object to be coated is one in which the distance measuring means is provided, the spraying distance is actually measured, and the value is used as the spraying distance in the correction calculating means. Regardless of the shape of
The correction calculation can always be performed using the accurate spray distance. Further, as described in claim 4, in the one configured to calculate the averaged value of the atomization degree at a plurality of locations, the coating area where the spraying area is large and the coating condition is not always constant depending on the coating site. It is possible to obtain an effect that accurate atomization measurement can be performed even on a coated object.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の機能ブロック図。FIG. 1 is a functional block diagram of the present invention.

【図2】本発明の一実施例のブロック図。FIG. 2 is a block diagram of an embodiment of the present invention.

【図3】撮像部2の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of an imaging unit 2.

【図4】パワースペクトルPSの周波数特性図。FIG. 4 is a frequency characteristic diagram of a power spectrum PS.

【図5】塗装時における塗装面への塗料粒子の付着と塗
装膜面の形成過程を示す図。
FIG. 5 is a diagram showing a process of coating material particles adhering to a coating surface and forming a coating film surface during coating.

【図6】飛行中の塗料粒子と付着粒子との関係を示す
図。
FIG. 6 is a diagram showing a relationship between paint particles and adhered particles during flight.

【図7】塗料粒子の平均径と波長との関係を示す特性
図。
FIG. 7 is a characteristic diagram showing the relationship between the average diameter of paint particles and wavelength.

【図8】塗料の粒子径と塗布時間との関係を示す特性
図。
FIG. 8 is a characteristic diagram showing the relationship between the particle size of the coating material and the coating time.

【図9】波長λと塗布時間との関係を示す特性図。FIG. 9 is a characteristic diagram showing the relationship between wavelength λ and coating time.

【図10】吹き付け距離Lと塗装面の付着粒子径rとの
関係を示す特性図。
FIG. 10 is a characteristic diagram showing a relationship between a spraying distance L and an adhered particle diameter r on a coated surface.

【図11】吹き付け距離Lと塗装面の付着粒子径rとの
関係を計測する状態を示す模式図。
FIG. 11 is a schematic diagram showing a state in which the relationship between the spray distance L and the adhered particle diameter r on the coated surface is measured.

【図12】本発明の第2の実施例のブロック図。FIG. 12 is a block diagram of a second embodiment of the present invention.

【図13】本発明の第3の実施例のブロック図。FIG. 13 is a block diagram of a third embodiment of the present invention.

【図14】従来の微粒化度検出方法の一例を示す図。FIG. 14 is a diagram showing an example of a conventional atomization degree detection method.

【符号の説明】[Explanation of symbols]

1…被塗装体(ボディ) 10…塗装ガン 2…撮像部 11…距離センサ 3…画像処理部 12…平均処理部 4…波長演算部 50…塗装ガン 5…塗装条件入力部 51…ガラス板 6…微粒化演算部 52…下塗鋼板 7…補正演算部 53…飛行粒子 8…表示器 54…付着粒子 9…塗装条件制御システム 100…撮像手段 104…塗装条件
入力手段 101…画像処理手段 105…補正演算
手段 102…波長分布演算手段 106…距離測定
手段 103…微粒化演算手段 107…微粒化平
均処理手段
DESCRIPTION OF SYMBOLS 1 ... Body to be coated (body) 10 ... Coating gun 2 ... Imaging part 11 ... Distance sensor 3 ... Image processing part 12 ... Average processing part 4 ... Wavelength calculating part 50 ... Coating gun 5 ... Coating condition input part 51 ... Glass plate 6 ... atomization calculation unit 52 ... undercoat steel plate 7 ... correction calculation unit 53 ... flying particles 8 ... indicator 54 ... adhered particles 9 ... coating condition control system 100 ... imaging unit 104 ... coating condition input unit 101 ... image processing unit 105 ... correction Calculation means 102 ... Wavelength distribution calculation means 106 ... Distance measuring means 103 ... Atomization calculation means 107 ... Atomization average processing means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】塗料を塗布した直後の未乾燥塗装表面を撮
像する撮像手段と、 上記撮像手段からの画像情報を画像処理する画像処理手
段と、 上記画像処理手段で処理された画像処理データに基づい
て、塗装表面の凹凸波形の波長分布を算出する波長分布
演算手段と、 上記波長分布演算手段の算出結果に基づいて微粒化度を
算出する微粒化演算手段と、 塗料吹き付け手段と被塗装物表面との間の吹き付け距離
を少なくとも含む塗装条件を入力する塗装条件入力手段
と、 上記微粒化演算手段で算出した微粒化度と上記塗装条件
入力手段から入力した吹き付け距離とに基づいて基準吹
き付け距離における微粒化度を算出する補正演算手段
と、 を備えたことを特徴とする塗装品質解析装置。
1. An image pickup means for picking up an image of the undried coating surface immediately after applying a paint, an image processing means for image-processing the image information from the image pickup means, and image processing data processed by the image processing means. Based on the wavelength distribution calculation means for calculating the wavelength distribution of the uneven waveform of the coating surface, the atomization calculation means for calculating the atomization degree based on the calculation result of the wavelength distribution calculation means, the paint spraying means and the object to be coated. A coating condition input means for inputting a coating condition including at least a spray distance to the surface, and a reference spray distance based on the atomization degree calculated by the atomization calculation means and the spray distance input from the coating condition input means. A coating quality analysis device comprising: a correction calculation unit for calculating the degree of atomization.
【請求項2】上記補正演算手段は、予め実験で求めた吹
き付け距離と塗装面の凹凸波形の波長分布との関係に基
づいて、計測した微粒化度を基準吹き付け距離相当の微
粒化度に換算するものである、ことを特徴とする請求項
1に記載の塗装品質解析装置。
2. The correction calculation means converts the measured atomization degree into an atomization degree corresponding to the reference spraying distance based on the relationship between the spraying distance previously obtained by an experiment and the wavelength distribution of the corrugated waveform on the painted surface. The coating quality analysis device according to claim 1, wherein the coating quality analysis device comprises:
【請求項3】塗料吹き付け手段と被塗装物表面との間の
吹き付け距離を計測する距離測定手段を備え、 上記補正演算手段は、上記微粒化演算手段で算出した微
粒化度と上記距離測定手段で測定した吹き付け距離とに
基づいて基準吹き付け距離における微粒化度を算出する
ものである、ことを特徴とする請求項1または請求項2
に記載の塗装品質解析装置。
3. A distance measuring means for measuring a spray distance between the paint spraying means and the surface of the object to be coated, wherein the correction calculating means is the atomization degree calculated by the atomizing calculating means and the distance measuring means. The atomization degree at the reference spraying distance is calculated based on the spraying distance measured in (1) or (2).
The coating quality analysis device described in.
【請求項4】上記微粒化演算手段は、被塗装物表面の複
数個所における微粒化度を算出するものであり、上記補
正演算手段は、それらの各値をそれぞれ補正して被塗装
物表面の複数個所における補正された微粒化度を算出す
るものであり、 さらに、上記の被塗装物表面の複数個所における補正さ
れた微粒化度を平均処理する微粒化平均処理手段を備え
たことを特徴とする請求項1乃至請求項3の何れかに記
載の塗装品質解析装置。
4. The atomization calculation means calculates the degree of atomization at a plurality of points on the surface of the article to be coated, and the correction calculation means corrects each of these values to obtain the surface of the article to be coated. A method for calculating a corrected atomization degree at a plurality of locations, further comprising an atomization average processing means for averaging the corrected atomization degrees at a plurality of locations on the surface of the coating object. The coating quality analysis device according to any one of claims 1 to 3.
JP14194095A 1995-06-08 1995-06-08 Apparatus for analyzing painting quality Pending JPH08334320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14194095A JPH08334320A (en) 1995-06-08 1995-06-08 Apparatus for analyzing painting quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14194095A JPH08334320A (en) 1995-06-08 1995-06-08 Apparatus for analyzing painting quality

Publications (1)

Publication Number Publication Date
JPH08334320A true JPH08334320A (en) 1996-12-17

Family

ID=15303684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14194095A Pending JPH08334320A (en) 1995-06-08 1995-06-08 Apparatus for analyzing painting quality

Country Status (1)

Country Link
JP (1) JPH08334320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094167A1 (en) * 2000-06-06 2001-12-13 Uegaki, Tateo Repair device for vehicle
US7430485B2 (en) 2003-08-22 2008-09-30 Rohm And Haas Company Method and system for analyzing coatings undergoing exposure testing
KR100937059B1 (en) * 2007-12-27 2010-01-15 삼성중공업 주식회사 Semi-auto paint machine for high working place

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094167A1 (en) * 2000-06-06 2001-12-13 Uegaki, Tateo Repair device for vehicle
JP2001347933A (en) * 2000-06-06 2001-12-18 Kamigaki Takeo Repairing device for vehicle
US6731866B2 (en) 2000-06-06 2004-05-04 Tateo Uegaki Repair device for vehicle
KR100789525B1 (en) * 2000-06-06 2007-12-28 유가키 다테오 repair device for vehicle
US7430485B2 (en) 2003-08-22 2008-09-30 Rohm And Haas Company Method and system for analyzing coatings undergoing exposure testing
KR100937059B1 (en) * 2007-12-27 2010-01-15 삼성중공업 주식회사 Semi-auto paint machine for high working place

Similar Documents

Publication Publication Date Title
US7220966B2 (en) Systems and methods for inspecting coatings, surfaces and interfaces
US10071482B2 (en) Robotic vehicle painting instrument including a terahertz radiation device
WO2023092690A1 (en) Apparatus for testing state of glue path, and test method therefor
US7129492B2 (en) Systems and methods for inspecting coatings
JP3326962B2 (en) Paint quality analyzer
Seeler et al. Simulations and experimental investigation of paint film leveling
WO2006054962A2 (en) Systems and methods for inspecting coatings, surfaces and interfaces
JPH08334320A (en) Apparatus for analyzing painting quality
JP3257182B2 (en) Painting treatment equipment and painting treatment method
JP3478443B2 (en) Control device for automatic coating machine
JP3358434B2 (en) Paint quality analyzer
JPH09113462A (en) Printing-quality analytical instrument
JP2000246167A (en) Coating method
JP3322034B2 (en) Paint quality analyzer
JPH095053A (en) Coating quality analysing device
JPH08327340A (en) Painting quality analyzer
JP3326960B2 (en) Paint film thickness measuring device
JP3353494B2 (en) Paint quality analyzer
JP3327000B2 (en) Paint film thickness measuring device
JP3811924B2 (en) Control device for automatic coating machine and control method thereof
JP3511764B2 (en) Control device for automatic coating machine
JPH09105612A (en) Coating-film-thickness measuring apparatus
JPH09262534A (en) Coating quality analysis device
CN104568966A (en) Method and measuring device for evaluating structural differences of a reflecting surface
JPH09210990A (en) Coating quality analyzing device