JPH08109490A - Production of anode for generating oxygen - Google Patents

Production of anode for generating oxygen

Info

Publication number
JPH08109490A
JPH08109490A JP7021920A JP2192095A JPH08109490A JP H08109490 A JPH08109490 A JP H08109490A JP 7021920 A JP7021920 A JP 7021920A JP 2192095 A JP2192095 A JP 2192095A JP H08109490 A JPH08109490 A JP H08109490A
Authority
JP
Japan
Prior art keywords
active material
electrode active
tantalum
metal
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7021920A
Other languages
Japanese (ja)
Other versions
JP3045031B2 (en
Inventor
Takahiro Endo
貴弘 遠藤
Ryuichi Otogawa
隆一 音川
Shigekazu Seto
茂和 瀬戸
Shinji Yamauchi
信次 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP7021920A priority Critical patent/JP3045031B2/en
Publication of JPH08109490A publication Critical patent/JPH08109490A/en
Application granted granted Critical
Publication of JP3045031B2 publication Critical patent/JP3045031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To produce an anode for generating oxygen having excellent durability by providing the surface of a conductive base body of metal Ti subjected to surface roughening to specific roughness with an electrode active material coating layer contg. a platinum metal oxide via an intermediate layer of Ta. CONSTITUTION: The surface of the conductive metallic base body consisting of the metal Ti or its alloy and having a prescribed shape is subjected to surface roughening by a blasting treatment and is further subjected to degreasing and is formed with fine ruggedness by chemical etching treatment, by which the center line average height Ra thereof is specified to a range of 3 to 8μm. The intermediate layer consisting of the Ta or its alloy is thereafter formed by a sputtering method on the surface of the base body at a thickness of 1 to 5μm. This layer is then provided thereon with the electrode active material coating layer contg. the platinum metal oxide. A mixture composed of 10 to 97wt.% (in terms of metal) platinum metal oxide and 90 to 3% valve metal oxide of Ti, Ta, Nb, Zr, etc., is preferable as the electrode active material. As a result, the passivation of the base body is prevented and the electrode having the excellent durability even under severe service conditions is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素発生を伴う電解工
程、主として亜鉛、錫、クロム等の電気めっきおよびス
テンレス鋼の表面処理等に使用される不溶性陽極の製法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing an insoluble anode used in an electrolysis process involving generation of oxygen, mainly in electroplating zinc, tin, chromium or the like and surface treatment of stainless steel.

【0002】[0002]

【従来の技術】鋼板亜鉛めっき用陽極として、従来から
鉛又は鉛系合金が使用されてきたが、溶出した鉛による
めっき液の汚染、膜質の低下等の問題を抱えてきた。こ
れに代わる陽極として、チタン等のバルブ金属からなる
基体に貴金属酸化物を含む電極活物質を被覆した不溶性
の陽極が種々提案されている。しかしながら、基体表面
に単純に電極活物質を被覆した電極では、電極活物質層
中に存在するクラックから電解液が浸透し、被覆層−基
体界面に絶縁性の不働態皮膜が形成され、残存する活物
質の量が十分であっても電極としての機能を失ってしま
うという不都合を生じる。
2. Description of the Related Art Lead or a lead-based alloy has been conventionally used as an anode for galvanizing steel sheets, but it has had problems such as contamination of a plating solution due to eluted lead and deterioration of film quality. As an alternative anode, various insoluble anodes have been proposed in which a base body made of a valve metal such as titanium is coated with an electrode active material containing a noble metal oxide. However, in an electrode in which the surface of the substrate is simply coated with an electrode active material, the electrolytic solution penetrates through the cracks present in the electrode active material layer, and an insulating passivation film is formed and remains at the coating layer-substrate interface. Even if the amount of the active material is sufficient, there is a disadvantage that the function as an electrode is lost.

【0003】このような基体の不働態化を抑制するため
に、特開昭48−40676号公報には電極基板上に電
解環境下において耐久性を有するチタン、タンタル等の
金属をプラズマ溶射などの手法で溶射被覆し、その上に
電極活性物質を沈着した被覆電極が提案されている。ま
た、特開昭56−112458号公報にはチタン基体上
にタンタル等の金属をプラズマ溶射した後、電子ビーム
等で照射処理し、ルテニウム系酸化物を熱分解法により
形成した電極が提案されている。しかし、チタンやタン
タル等の溶射皮膜は一般に疎構造であるため、基体界面
への電解液の侵入を防ぐことが難しく、長時間使用にお
ける耐久性に欠けることも認められている。
In order to suppress such passivation of the substrate, JP-A-48-40676 discloses a metal such as titanium, tantalum or the like which has durability under an electrolytic environment on an electrode substrate by plasma spraying or the like. There has been proposed a coated electrode in which an electrode active material is deposited on the surface by thermal spray coating. Further, Japanese Patent Application Laid-Open No. 56-112458 proposes an electrode in which a metal such as tantalum is plasma sprayed on a titanium substrate and then irradiated with an electron beam or the like to form a ruthenium oxide by a thermal decomposition method. There is. However, since the thermal spray coating of titanium, tantalum, etc. is generally a sparse structure, it is difficult to prevent the electrolyte solution from entering the interface of the substrate, and it is also recognized that it lacks durability in long-term use.

【0004】このような問題を解決するために、特開昭
53−95180号公報には蒸着、イオンめっき、陰極
スパッタリング等の手法でチタン基体上にタングステン
・タンタル混合皮膜をコーティングし、さらにロジウム
薄膜を蒸着した電極が提案されている。また、特開平2
−282491号公報にはスパッタリングにより金属タ
ンタルの中間層を形成させ、更にその上に電極活物質を
被覆した電極が基体の不働態化を防ぐのに有効であると
記載されている。これらの電極は、上記種々の気相成長
法により形成された比較的緻密で耐食性の高い中間層を
有するため十分に実用に耐えるものであるが、中間層成
膜時の基体の前処理や中間層上に被覆される電極活物質
の組成について詳細な検討がなされていないため、中間
層の隠ぺい率や基体との密着性及び電極活物質に対する
アンカー効果が不十分であり、より緻密でピンホールの
少ない被覆層を形成して耐久性を向上させる余地が残さ
れていた。
In order to solve such a problem, JP-A-53-95180 discloses that a titanium substrate is coated with a tungsten / tantalum mixed film by a method such as vapor deposition, ion plating, and cathode sputtering, and a rhodium thin film is further formed. Electrodes deposited by vapor deposition have been proposed. In addition, Japanese Unexamined Patent Publication
JP-A-2828491 describes that an electrode in which a metal tantalum intermediate layer is formed by sputtering and further coated with an electrode active material is effective for preventing passivation of a substrate. Although these electrodes have a relatively dense intermediate layer formed by the various vapor deposition methods described above and having a high corrosion resistance, they are sufficiently durable for practical use. Since the composition of the electrode active material coated on the layer has not been studied in detail, the concealment ratio of the intermediate layer, the adhesion to the substrate, and the anchor effect on the electrode active material are insufficient, resulting in a more dense and pinhole-like structure. There was still room for improving the durability by forming a coating layer having a small amount.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、酸素
発生を伴う電解、主として電気めっき用陽極として検討
されている不溶性電極において問題とされている基体の
不働態化を防ぎ、過酷な使用条件下においても優れた耐
久性を有する電極の製法を提供することにある。
The object of the present invention is to prevent the passivation of a substrate, which is a problem in electrolysis with oxygen generation, and insoluble electrodes which are mainly studied as anodes for electroplating, and to prevent severe use. It is to provide a method for producing an electrode having excellent durability even under conditions.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、酸素発生用陽極において、基体をブラスト処理に
より特定の範囲の平均粗さに粗面化し、次いで化学エッ
チング処理を施した後、タンタル又はその合金をスパッ
タリングして中間層を形成させることが上記課題の解決
に極めて有効であることを見出し本発明を完成したもの
である。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that in an oxygen generating anode, after a substrate is roughened to an average roughness in a specific range by blasting and then chemically etched. The present invention has been completed by finding that it is extremely effective to solve the above problems by sputtering tantalum or its alloy to form an intermediate layer.

【0007】本発明はすなわち、金属チタン又はその合
金からなる導電性金属基体の表面をブラスト処理により
粗面化し、次いで化学エッチング処理を施して中心線平
均粗さRaが3〜8μmの範囲にした後、スパッタリン
グ法によりタンタル又はその合金よりなる中間層を設
け、その表面に白金族金属酸化物を含む電極活物質被覆
層を設けることを特徴とする酸素発生用陽極の製法であ
る。
According to the present invention, the surface of a conductive metal substrate made of titanium metal or an alloy thereof is roughened by blasting and then chemically etched so that the center line average roughness Ra is in the range of 3 to 8 μm. After that, an intermediate layer made of tantalum or its alloy is provided by a sputtering method, and an electrode active material coating layer containing a platinum group metal oxide is provided on the surface of the intermediate layer, which is a method for producing an oxygen generating anode.

【0008】本発明に関する電極の基体としては、金属
チタンやチタン−タンタル、チタン−タンタル−ニオ
ブ、チタン−パラジウム等のチタン基合金が好適であ
り、その形状は、板状、網状、棒状、多孔板状等所望の
ものとすることができる。
As the electrode substrate of the present invention, titanium-based alloys such as metallic titanium and titanium-tantalum, titanium-tantalum-niobium and titanium-palladium are suitable, and their shapes are plate-like, net-like, rod-like and porous. Any desired shape such as a plate shape can be used.

【0009】上記金属基体の物理的な粗面化には、グリ
ットブラスト、ショットブラスト又はサンドブラスト処
理が適用される。これらのブラスト材としてはアルミ
ナ、ジルコニア、炭化ケイ素、スチール、サンド等が使
用され、その粒子径は200〜1000μm程度が適当
である。ブラスト処理後の表面粗度は、電極の耐久性に
とって重要な要素であり、中心線平均粗さRaは3〜8
μm、好ましくは4〜6μmの凹凸を有することが必要
であり、その際のピークカウントPcは40〜60/c
m程度が望ましい。
Grit blasting, shot blasting or sand blasting is applied to physically roughen the metal substrate. Alumina, zirconia, silicon carbide, steel, sand and the like are used as these blast materials, and the particle size thereof is preferably about 200 to 1000 μm. The surface roughness after blasting is an important factor for the durability of the electrode, and the center line average roughness Ra is 3 to 8.
It is necessary to have unevenness of μm, preferably 4 to 6 μm, and the peak count Pc at that time is 40 to 60 / c.
About m is desirable.

【0010】ブラスト後に施される化学エッチングに
は、塩酸、蓚酸、硫酸、弗酸より選ばれた少なくとも1
種の無機酸を含む水溶液を使用し、場合によっては60
℃以上に昇温することによって更に効果を高めることが
可能である。この化学エッチング処理は、ブラスト後の
基体表面を脱脂洗浄するだけでなくブラストによる比較
的大きな凹凸に加えて侵食による微少な凹凸を形成させ
るものが好ましい。この処理後は、十分に水洗する必要
があり、精製水等による超音波洗浄が効果的である。そ
の際、中心線平均粗さRaは3〜8μm、好ましくは4
〜6μmとすることが必要であり、ピークカウントPc
は80〜120/cm程度である。Raが上記範囲の下
限値未満の場合は、中間層及び電極活物質被覆層に対す
るアンカー効果が不十分となり、逆に上限値を越えた場
合は必要以上に突出した凸部によって被覆層が不均一化
するだけでなく、電解中には凸部先端の選択的な電極活
物質の損耗を来たして結果的には寿命が低下する。
For chemical etching performed after blasting, at least one selected from hydrochloric acid, oxalic acid, sulfuric acid, and hydrofluoric acid is used.
An aqueous solution containing some inorganic acid is used, in some cases 60
The effect can be further enhanced by raising the temperature to not less than ° C. It is preferable that this chemical etching treatment not only cleans the surface of the substrate after blasting, but also forms minute irregularities due to erosion in addition to relatively large irregularities due to blasting. After this treatment, it is necessary to sufficiently wash with water, and ultrasonic cleaning with purified water or the like is effective. At that time, the center line average roughness Ra is 3 to 8 μm, preferably 4
~ 6 μm is required, and the peak count Pc
Is about 80 to 120 / cm. When Ra is less than the lower limit value of the above range, the anchor effect on the intermediate layer and the electrode active material coating layer becomes insufficient, and when it exceeds the upper limit value, the coating layer is uneven due to protrusions more than necessary. In addition, the electrode active material on the tip of the protrusion is selectively worn during electrolysis, resulting in a shorter life.

【0011】本発明による電極の中間層をなすタンタル
又はその合金の薄膜は、上記前処理を施した基体上にス
パッタリング法により形成される。スパッタリングとし
ては、高周波スパッタリング、直流二極スパッタリング
ともに可能であり、マグネトロンスパッタリングであれ
ば更に好ましい。タンタルの膜厚は1〜5μmであるこ
とが望ましく、1μm未満ではグリット処理との関係で
十分に被覆できず、また5μmを越えるとスパッタリン
グ加工の困難性等の問題点を生じる。スパッタリング時
の真空度は、成膜速度や膜質に影響を与えることから、
基体を保持する装置内の残留ガスを十分に取り除く必要
があり、この点においても化学エッチングによる脱脂洗
浄は最も有効な前処理である。
The thin film of tantalum or its alloy forming the intermediate layer of the electrode according to the present invention is formed on the pretreated substrate by the sputtering method. As the sputtering, both high frequency sputtering and DC bipolar sputtering are possible, and magnetron sputtering is more preferable. It is desirable that the film thickness of tantalum be 1 to 5 μm, and if it is less than 1 μm, the film cannot be sufficiently covered in relation to the grit treatment, and if it exceeds 5 μm, problems such as difficulty in sputtering processing occur. Since the degree of vacuum during sputtering affects the film formation speed and film quality,
It is necessary to sufficiently remove the residual gas in the apparatus that holds the substrate, and in this respect also, degreasing cleaning by chemical etching is the most effective pretreatment.

【0012】最後に、電極活性能を持たない上記中間層
の表面に、電気化学的に活性を有する白金族金属酸化物
を含む電極活性層を設ける。酸素発生を伴う電解に適し
た電極活物質としては、白金族金属酸化物又はこれらと
チタン、タンタル、ニオブ、タングステン、ジルコニウ
ム等バルブ金属との混合酸化物が好適である。代表的な
例としてはイリジウム−タンタル混合酸化物、イリジウ
ム−チタン混合酸化物、イリジウム−ルテニウム混合酸
化物、イリジウム−ルテニウム−チタン混合酸化物、ル
テニウム−チタン混合酸化物、ルテニウム−タンタル混
合酸化物、イリジウム−白金−タンタル混合酸化物等が
挙げられる。この際、金属換算で白金族金属が10〜9
7重量%とバルブ金属が90〜3重量%とから成る混合
酸化物被膜が耐久性に優れている。電極活性層中の白金
族金属の含有量は金属換算で1〜300g/m2 である
事が好ましい。
Finally, an electrode active layer containing an electrochemically active platinum group metal oxide is provided on the surface of the intermediate layer having no electrode activation ability. Platinum group metal oxides or mixed oxides of these with valve metals such as titanium, tantalum, niobium, tungsten, and zirconium are suitable as electrode active materials suitable for electrolysis involving oxygen generation. Typical examples are iridium-tantalum mixed oxide, iridium-titanium mixed oxide, iridium-ruthenium mixed oxide, iridium-ruthenium-titanium mixed oxide, ruthenium-titanium mixed oxide, ruthenium-tantalum mixed oxide, Examples thereof include iridium-platinum-tantalum mixed oxide. At this time, the platinum group metal is 10-9 in terms of metal.
A mixed oxide coating consisting of 7 wt% and valve metal of 90 to 3 wt% has excellent durability. The platinum group metal content in the electrode active layer is preferably 1 to 300 g / m 2 in terms of metal.

【0013】特に好ましいのは、酸化イリジウムと酸化
タンタルよりなる混合酸化物である。この際、イリジウ
ムとタンタルの混合比が電極の寿命に及ぼす影響は大き
く、亜鉛めっきライン等の大量の気泡発生および厳しい
流動条件下においては、金属換算でイリジウム60〜9
5重量%及びタンタル40〜5重量%を含有する混合酸
化物被膜が耐久性に優れているが更に金属換算でイリジ
ウム70〜90重量%およびタンタル30〜10重量%
を含有する混合酸化物被膜が特に高い耐久性を有する。
電極活性層中に含まれるイリジウム金属の量は2〜20
0g/m2 が好ましい。上記組成の混合酸化物層は、ク
ラックや空隙が特に少ない緻密な皮膜であることが走査
型電子顕微鏡(SEM)による断面観察により確かめら
れ、また、タンタル又はその合金からなる中間層との親
和性も良好であるため、長時間にわたって安定した電位
を示し活性層の利用率も高い。
Particularly preferred is a mixed oxide composed of iridium oxide and tantalum oxide. At this time, the mixing ratio of iridium and tantalum has a great influence on the life of the electrode, and under the conditions of a large amount of bubbles generated in a galvanizing line and severe flow conditions, iridium 60-9 can be calculated as metal.
A mixed oxide coating containing 5% by weight and 40 to 5% by weight of tantalum has excellent durability, but further 70 to 90% by weight of iridium and 30 to 10% by weight of tantalum in terms of metal.
The mixed oxide coating containing is particularly durable.
The amount of iridium metal contained in the electrode active layer is 2 to 20.
0 g / m 2 is preferred. The mixed oxide layer having the above composition is confirmed to be a dense film with particularly few cracks and voids by observing a cross section with a scanning electron microscope (SEM), and has an affinity with an intermediate layer made of tantalum or its alloy. Since it is also good, a stable potential is exhibited for a long time and the utilization rate of the active layer is high.

【0014】上記電極活物質の被覆法としては、熱分解
法、電気化学的酸化法、粉末焼結法、スパッタリングを
含む気相成長法等が挙げられるが、熱分解法が好まし
い。すなわち、これらの金属塩溶液を所定の前処理を施
した金属基体上に形成した中間層の表面に塗布して乾燥
させた後、大気雰囲気中350〜600℃で加熱処理を
施す。以上の工程を数十回繰り返すことにより目的とす
る電極活物質被覆層を得ることができる。
Examples of the coating method of the electrode active material include a thermal decomposition method, an electrochemical oxidation method, a powder sintering method, a vapor phase growth method including sputtering, and the like, but the thermal decomposition method is preferable. That is, these metal salt solutions are applied to the surface of an intermediate layer formed on a metal substrate that has been subjected to a predetermined pretreatment, dried, and then heat-treated at 350 to 600 ° C. in an air atmosphere. The target electrode active material coating layer can be obtained by repeating the above steps tens of times.

【0015】[0015]

【作用】従来、金属基体に電極活物質層をスパッタリン
グ法により形成させる場合、通常は化学エッチング処理
によりその表面を清浄化させるとともに僅かな粗面化を
行っていた。これは主としてスパッタリングにより形成
される層の厚さが0.1μm程度の極薄層であり、粗面
化をブラスト等の物理的方法により大にすれば十分な被
覆が行われないという理由によるものである。しかし本
発明による電極のように中間層をスパッタリングで形成
させる際には膜厚は1μm以上を必要とし、基体表面の
粗面化を化学エッチングによるのみでなく、平均粗さを
一定の範囲に保つようにブラスト処理を行うことにより
ピンホールの少ない中間層が形成され、またこの中間層
被覆後においても基体表面は電極活物質に対しても優れ
たアンカー効果を示す三次元的な凹凸を呈する。これに
より、電極活物質との密着性も良好となり、電極活物質
上で発生する酸素による不働態化に対し十分な抵抗力を
有する高耐久性の陽極が得られるものである。
In the past, when the electrode active material layer was formed on the metal substrate by the sputtering method, the surface was usually cleaned by chemical etching and the surface was slightly roughened. This is mainly because the thickness of the layer formed by sputtering is an extremely thin layer of about 0.1 μm, and if the roughening is increased by a physical method such as blasting, sufficient coating cannot be performed. Is. However, when the intermediate layer is formed by sputtering like the electrode according to the present invention, the film thickness is required to be 1 μm or more, and the roughening of the surface of the substrate is not only performed by chemical etching, but the average roughness is kept within a certain range. By carrying out the blast treatment in this way, an intermediate layer with few pinholes is formed, and even after coating with this intermediate layer, the surface of the substrate exhibits three-dimensional unevenness exhibiting an excellent anchoring effect on the electrode active material. As a result, the adhesion with the electrode active material is improved, and a highly durable anode having sufficient resistance to passivation by oxygen generated on the electrode active material can be obtained.

【0016】[0016]

【実施例】以下、実施例、比較例により本発明を詳述す
る。なお例中%はいずれも重量基準である。 実施例1、比較例1〜2 市販チタン板(10×50×1.5mm)をアセトンに
て脱脂後、粒度#30のアルミナグリットを用い、圧力
4kgf/cm2 でグリットブラスト処理を施した。こ
れを90℃に保持した10%蓚酸溶液で3時間エッチン
グ処理後、流水中で一昼夜洗浄し乾燥したものを電極基
体とした。触針式表面粗さ測定器により基体表面の粗さ
を測定したところ、中心線平均粗さRaは5.2μmで
あった。比較例1として上記市販チタン板をブラストせ
ずにエッチング処理のみ施して使用した。また、比較例
2として粒度#10のアルミナグリットを用いて実施例
1と同様のブラスト処理、エッチング処理を行った。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. All percentages in the examples are on a weight basis. Example 1 and Comparative Examples 1 and 2 Commercially available titanium plates (10 × 50 × 1.5 mm) were degreased with acetone, and then grit blasted at a pressure of 4 kgf / cm 2 using alumina grit with a grain size of # 30. This was etched with a 10% oxalic acid solution kept at 90 ° C. for 3 hours, washed in running water for 24 hours, and dried to obtain an electrode substrate. When the roughness of the substrate surface was measured by a stylus type surface roughness measuring device, the center line average roughness Ra was 5.2 μm. As Comparative Example 1, the commercially available titanium plate was used without being blasted and only subjected to etching treatment. Further, as Comparative Example 2, the same blasting and etching processes as in Example 1 were performed using alumina grit with a grain size of # 10.

【0017】次にそれぞれのチタン板を直流二極スパッ
タリング装置のチャンバー内に装着し、タンタルターゲ
ットを用いて、真空度1×10-2mbar、投入電力6
〜7kW、Ar流量600sccmの条件で約1時間タ
ンタルのスパッタリングコーティングを行った。この処
理により、厚さ約2μmのタンタル皮膜が基体上に形成
された。この基体に下記液組成の溶液を塗布した。 TaCl5 185mg H2 IrCl6 ・6H2 O 1000mg 35% HCl 1ml n−CH3 (CH2 3 OH 10ml これを120℃で10分間乾燥し、次いで490℃に保
持した電気炉中で20分間焼成した。この電極活物質の
被覆操作を数十回繰り返して、約30g/m2の酸化イ
リジウムを含有する電極活性層を得た(重量組成比はI
r/Ta=8/2)。
Next, each titanium plate was mounted in a chamber of a DC bipolar sputtering apparatus, a tantalum target was used, a vacuum degree of 1 × 10 -2 mbar, and an input power of 6
Sputter coating of tantalum was performed for about 1 hour under conditions of ˜7 kW and Ar flow rate of 600 sccm. By this treatment, a tantalum film having a thickness of about 2 μm was formed on the substrate. A solution having the following liquid composition was applied to this substrate. TaCl 5 185 mg H 2 IrCl 6 · 6H 2 O 1000 mg 35% HCl 1 ml n-CH 3 (CH 2 ) 3 OH 10 ml This was dried at 120 ° C. for 10 minutes and then calcined in an electric furnace kept at 490 ° C. for 20 minutes. did. This coating operation of the electrode active material was repeated tens of times to obtain an electrode active layer containing about 30 g / m 2 of iridium oxide (weight composition ratio was I
r / Ta = 8/2).

【0018】これらの電極を陽極としジルコニウム板を
陰極として、浴温度80℃、pH1.6、硫酸ナトリウ
ム100g/lを含む硫酸水溶液中で、電流密度300
A/dm2 の定電流電解法により加速寿命試験を行っ
た。なお、本試験ではセル電圧が5V上昇するまでの時
間を電極寿命と判定した。得られた結果を表1に示す。
尚、表中に示す各試料の中心線平均粗さRaは、スパッ
タリングの前処理が完了した時点のチタン基体表面を測
定した結果である。表1に示す結果から明らかなよう
に、基体の表面粗度が限定した範囲内におさまるように
ブラスト及びエッチング処理を施した本発明の実施例で
は、高温、高電流密度の過酷な電解条件にもかかわらず
電極寿命が大幅に延びていることが分かる。
Using these electrodes as anodes and zirconium plates as cathodes, a current density of 300 was obtained in a sulfuric acid aqueous solution containing a bath temperature of 80 ° C., pH 1.6 and sodium sulfate 100 g / l.
An accelerated life test was performed by an A / dm 2 constant current electrolysis method. In this test, the time until the cell voltage increased by 5 V was determined as the electrode life. The results obtained are shown in Table 1.
The center line average roughness Ra of each sample shown in the table is the result of measuring the titanium substrate surface at the time when the pretreatment of sputtering is completed. As is clear from the results shown in Table 1, in the examples of the present invention in which the blasting and etching treatments were performed so that the surface roughness of the substrate was set within the limited range, high temperature, high current density, and severe electrolysis conditions were used. Nevertheless, it can be seen that the electrode life has been extended significantly.

【0019】実施例2、3、比較例3、4 エッチングの条件を下記のようにした以外は実施例1と
同様にして電極を作製した。 (実施例2)65℃に保持した43%硫酸溶液に1.5
時間浸漬 (実施例3)70℃に保持した17.5%塩酸溶液に2
時間浸漬 次に、実施例1におけるエッチング処理の代わりに、下
記の処理を行った以外は実施例1と同様にして電極を作
製した。 (比較例3)エッチング処理行わず (比較例4)450℃の電気炉中で1時間の大気酸化処
理 以上の電極について、実施例1と同様の加速寿命試験を
実施した。その結果を表1に示す。表1に示されるよう
に、ブラスト後にエッチング処理を施した本発明の実施
例の方が長寿命を示すことが分かる。
Examples 2, 3 and Comparative Examples 3, 4 An electrode was prepared in the same manner as in Example 1 except that the etching conditions were as follows. (Example 2) 1.5% to a 43% sulfuric acid solution kept at 65 ° C.
Time immersion (Example 3) 2 in a 17.5% hydrochloric acid solution kept at 70 ° C
Time Immersion Next, an electrode was produced in the same manner as in Example 1 except that the following treatment was performed instead of the etching treatment in Example 1. (Comparative Example 3) No etching treatment (Comparative Example 4) Atmospheric oxidation treatment for 1 hour in an electric furnace at 450 ° C The same accelerated life test as in Example 1 was performed on the above electrodes. Table 1 shows the results. As shown in Table 1, it can be seen that the examples of the present invention in which the etching treatment is performed after the blast show a longer life.

【0020】実施例4 市販のチタン板の化学エッチング処理が30%弗酸水溶
液を用いて25℃で15分間エッチングする処理である
事以外は実施例1と同様の方法で電極を作製した。本電
極について実施例1と同様の加速寿命試験を実施した。
結果を表1に示す。
Example 4 An electrode was prepared in the same manner as in Example 1 except that the commercially available titanium plate was chemically etched using a 30% aqueous solution of hydrofluoric acid at 25 ° C. for 15 minutes. The same accelerated life test as in Example 1 was performed on this electrode.
The results are shown in Table 1.

【0021】実施例5、6、7、8 電極活物質を形成する際に用いる塗布液の組成の内、T
aCl5 を185mgに代えて各々39、82、13
1、317mgにした以外は実施例1と同様の方法で電
極を作製し、各々実施例5、6、7、8とした。本電極
について実施例1と同様の加速寿命試験を実施した。結
果を表1に示す。
Examples 5, 6, 7, 8 Of the composition of the coating liquid used for forming the electrode active material, T
Substituting 185 mg of aCl 5 for 39, 82, 13 respectively
Electrodes were produced in the same manner as in Example 1 except that the amounts were changed to 1,317 mg, and the electrodes were set as Examples 5, 6, 7, and 8, respectively. The same accelerated life test as in Example 1 was performed on this electrode. The results are shown in Table 1.

【0022】実施例9 市販のチタン板表面のブラスト処理の際に粒度#36の
アルミナグリットを用い、かつ、電極活物質を形成する
際に用いる塗布液の組成の内、TaCl5 を185mg
に代えて493mgにした以外は実施例1と同様の方法
で電極を作製した。本電極について実施例1と同様の加
速寿命試験を実施した。結果を表1に示す。
Example 9 A commercially available titanium plate surface was blasted with alumina grit having a grain size of # 36, and 185 mg of TaCl 5 was contained in the composition of the coating solution used for forming the electrode active material.
An electrode was produced in the same manner as in Example 1 except that the amount was changed to 493 mg. The same accelerated life test as in Example 1 was performed on this electrode. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明によれば、電極の金属基体上にブ
ラスト及び化学エッチング処理により緻密でピンホール
の少ないタンタル又はその合金の薄膜中間層を形成させ
ることができる。また、ブラストによる基体の粗面化
は、主に電極活物質被覆層に対する基体のアンカー効果
をもたらし、活物質被覆層の剥離脱落が極めて少なく、
さらにこれにより電極活物質の厚目付けによる延命化も
可能となる。また、クラックや空隙の少ない均質な皮膜
構造により、多量のガス発生や流動条件下における電解
液のエロージョン等にも高い耐性を示す。したがって本
発明による陽極は、腐食性の強い電解液中(浴温度や酸
濃度の高い条件下)での使用や、液の流速が大きくしか
も高電流密度による多量の酸素発生を伴う電解において
も長時間にわたりその機能を維持することができる。
According to the present invention, a thin film intermediate layer of tantalum or its alloy, which is dense and has few pinholes, can be formed on a metal substrate of an electrode by blasting and chemical etching. Further, the roughening of the substrate by blasting mainly brings about an anchoring effect of the substrate with respect to the electrode active material coating layer, and peeling and dropping of the active material coating layer are extremely small,
Further, this also makes it possible to prolong the life by weighting the electrode active material. Further, due to the uniform film structure with few cracks and voids, it exhibits high resistance to a large amount of gas generation and erosion of the electrolytic solution under flowing conditions. Therefore, the anode according to the present invention can be used for a long time in an electrolytic solution having a strong corrosive property (a condition in which the bath temperature and the acid concentration are high) and an electrolysis with a large flow rate of the solution and a large amount of oxygen generation due to a high current density. It can maintain its function over time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属チタン又はその合金からなる導電性
金属基体の表面をブラスト処理により粗面化し、次いで
化学エッチング処理を施して中心線平均粗さRaが3〜
8μmの範囲にした後、スパッタリング法によりタンタ
ル又はその合金よりなる中間層を設け、その表面に白金
族金属酸化物を含む電極活物質被覆層を設けることを特
徴とする酸素発生用陽極の製法。
1. A surface of a conductive metal substrate made of metallic titanium or its alloy is roughened by blasting and then subjected to chemical etching to obtain a center line average roughness Ra of 3 to 3.
A method for producing an oxygen generating anode, characterized by providing an intermediate layer made of tantalum or an alloy thereof by a sputtering method after setting the thickness to 8 μm, and providing an electrode active material coating layer containing a platinum group metal oxide on the surface thereof.
【請求項2】 タンタル又はその合金よりなる中間層の
厚みが1〜5μmである請求項1に記載の酸素発生用陽
極の製法。
2. The method for producing an oxygen generating anode according to claim 1, wherein the intermediate layer made of tantalum or its alloy has a thickness of 1 to 5 μm.
【請求項3】 電極活物質が白金族金属酸化物およびチ
タン、タンタル、ニオブ、ジルコニウム金属からなる群
より選ばれたバルブ金属の1種以上の金属の酸化物とか
らなる混合酸化物である請求項1又は2に記載の酸素発
生用陽極の製法。
3. The electrode active material is a mixed oxide composed of a platinum group metal oxide and an oxide of one or more kinds of valve metals selected from the group consisting of titanium, tantalum, niobium and zirconium metals. Item 3. A method for producing an oxygen generating anode according to Item 1 or 2.
【請求項4】 電極活物質が金属換算で白金族金属を1
0〜97重量%およびバルブ金属を90〜3重量%含有
する白金族金属酸化物とバルブ金属酸化物の混合物から
なる請求項3に記載の酸素発生用陽極の製法。
4. The platinum-group metal as the electrode active material is 1 in terms of metal.
The method for producing an oxygen generating anode according to claim 3, which comprises a mixture of a platinum group metal oxide containing 0 to 97% by weight and a valve metal of 90 to 3% by weight, and a valve metal oxide.
【請求項5】 電極活物質が金属換算でイリジウム60
〜95重量%及びタンタル40〜5重量%を含有する酸
化イリジウムと酸化タンタルの混合物からなる請求項4
に記載の酸素発生用陽極の製法。
5. The electrode active material is iridium 60 in terms of metal.
5. A mixture of iridium oxide and tantalum oxide containing .about.95% by weight and 40-5% by weight tantalum.
The method for producing an oxygen generating anode according to 1.
JP7021920A 1994-08-16 1995-02-09 Manufacturing method of anode for oxygen generation Expired - Lifetime JP3045031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021920A JP3045031B2 (en) 1994-08-16 1995-02-09 Manufacturing method of anode for oxygen generation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19236294 1994-08-16
JP6-192362 1994-08-16
JP7021920A JP3045031B2 (en) 1994-08-16 1995-02-09 Manufacturing method of anode for oxygen generation

Publications (2)

Publication Number Publication Date
JPH08109490A true JPH08109490A (en) 1996-04-30
JP3045031B2 JP3045031B2 (en) 2000-05-22

Family

ID=26359069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021920A Expired - Lifetime JP3045031B2 (en) 1994-08-16 1995-02-09 Manufacturing method of anode for oxygen generation

Country Status (1)

Country Link
JP (1) JP3045031B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048643A1 (en) * 2002-11-27 2004-06-10 Asahi Kasei Chemicals Corporation Bipolar zero-gap electrolytic cell
JP2005539135A (en) * 2002-03-14 2005-12-22 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Anode for generating oxygen and support therefor
JP2007138254A (en) * 2005-11-18 2007-06-07 Koji Hashimoto Electrode for oxygen generation and method of manufacturing the same
JP2008291335A (en) * 2007-05-28 2008-12-04 Tanaka Kikinzoku Kogyo Kk Electrode for electrolysis
KR101397582B1 (en) * 2012-09-28 2014-05-21 재단법인 포항산업과학연구원 Apparatus for manufacuring non-melting positive electrode for electro galvanic process and metod for thereof
CN104451764A (en) * 2013-09-18 2015-03-25 株式会社神户制钢所 Metal plate for electrode and electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539135A (en) * 2002-03-14 2005-12-22 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Anode for generating oxygen and support therefor
WO2004048643A1 (en) * 2002-11-27 2004-06-10 Asahi Kasei Chemicals Corporation Bipolar zero-gap electrolytic cell
US7323090B2 (en) 2002-11-27 2008-01-29 Asahi Kasei Chemicals Corporation Bipolar zero-gap type electrolytic cell
JP2007138254A (en) * 2005-11-18 2007-06-07 Koji Hashimoto Electrode for oxygen generation and method of manufacturing the same
JP2008291335A (en) * 2007-05-28 2008-12-04 Tanaka Kikinzoku Kogyo Kk Electrode for electrolysis
KR101397582B1 (en) * 2012-09-28 2014-05-21 재단법인 포항산업과학연구원 Apparatus for manufacuring non-melting positive electrode for electro galvanic process and metod for thereof
CN104451764A (en) * 2013-09-18 2015-03-25 株式会社神户制钢所 Metal plate for electrode and electrode
EP2851453A1 (en) * 2013-09-18 2015-03-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Metal plate for electrode and electrode

Also Published As

Publication number Publication date
JP3045031B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
AU2006303250B2 (en) Method for forming an electrocatalytic surface on an electrode and the electrode
US5366598A (en) Method of using a metal substrate of improved surface morphology
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
JP2003507580A (en) Cathode usable for electrolysis of aqueous solution
JP2002030495A (en) Electrode characterized by surface catalytic layer having extremely high adhesive property
CA2018670A1 (en) Metal substrate of improved surface morphology
US5167788A (en) Metal substrate of improved surface morphology
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JP4638672B2 (en) Anode for generating oxygen and support therefor
US5262040A (en) Method of using a metal substrate of improved surface morphology
JP3430479B2 (en) Anode for oxygen generation
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
JPH05171483A (en) Manufacture of anode for generating oxygen
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JP3422885B2 (en) Electrode substrate
JPH10330998A (en) Electroplating method
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JP3149629B2 (en) Oxygen generating electrode
JPH06146047A (en) Anode for generating oxygen and its production
JP7168729B1 (en) Electrodes for industrial electrolytic processes
JP3700661B2 (en) Metal foil manufacturing equipment
JPH06128781A (en) High durable electrode for electrolysis

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

EXPY Cancellation because of completion of term