JPH08104590A - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal

Info

Publication number
JPH08104590A
JPH08104590A JP12817994A JP12817994A JPH08104590A JP H08104590 A JPH08104590 A JP H08104590A JP 12817994 A JP12817994 A JP 12817994A JP 12817994 A JP12817994 A JP 12817994A JP H08104590 A JPH08104590 A JP H08104590A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
raw material
material rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12817994A
Other languages
Japanese (ja)
Other versions
JP2833478B2 (en
Inventor
Takao Abe
孝夫 阿部
Yasuhiro Ikeda
泰弘 池田
Masaki Kimura
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP12817994A priority Critical patent/JP2833478B2/en
Publication of JPH08104590A publication Critical patent/JPH08104590A/en
Application granted granted Critical
Publication of JP2833478B2 publication Critical patent/JP2833478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To grow a silicon single crystal free from disturbance in the crystal with one time of an FZ stage while preventing the polycrystallization and disturbance of the single crystal occurring in the polycrystal grains peeled from a raw material rod. CONSTITUTION: This method for growing the silicon single crystal by the FZ method comprises growing the silicon single crystal 3 by heating and melting the silicon raw material rod 1 by an induction heating coil 2 installed in a growth furnace 5. This induction heating coil 2 is provided with annular members 10 on the front surface side and/or lower surface side thereof. The inner peripheral edge 1a of the annular members 10 is inserted into a melting zone 4 where the silicon raw material rod 1 is melted. The silicon single crystal is grown by one time of the FZ stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン単結晶成長方
法に関する。さらに詳しくは、FZ法(フロートゾーン
法又は浮遊帯域溶融法)により、シリコン原料棒から1
回の工程でシリコン単結晶を成長させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a silicon single crystal. More specifically, by the FZ method (float zone method or floating zone melting method), 1
The present invention relates to a method for growing a silicon single crystal in a single process.

【0002】[0002]

【発明の背景技術】シリコン単結晶を成長させる方法と
しては、主としてFZ法とCZ法(チョクラルスキー
法)が挙げられるが、FZ法はCZ法に比べて不純物に
よる汚染の少ない高純度のシリコン単結晶を成長できる
という特徴があり、例えば、大電力用半導体素子の製造
を用途とする高抵抗シリコン単結晶を製造する場合に有
利である。
BACKGROUND OF THE INVENTION FZ method and CZ method (Czochralski method) are mainly used as a method for growing a silicon single crystal. The FZ method is a high-purity silicon which is less contaminated by impurities than the CZ method. It has a feature that a single crystal can be grown, and is advantageous when, for example, a high-resistance silicon single crystal is used for producing a high-power semiconductor element.

【0003】図3は、FZ法によりシリコン単結晶を成
長させる際に従来より用いられているシリコン単結晶成
長装置の全体構成を示す概略断面図である。成長炉5内
には、上軸8に保持された所定直径のシリコン多結晶原
料棒1と下軸7に保持された種結晶6が収容されてい
る。また、前記原料棒1の下端を部分的に加熱溶融する
ための輪環状の高周波誘導加熱コイル(以下「誘導加熱
コイル」と言う。)2が前記原料棒1を囲繞するように
該原料棒1と同軸に配置されている。
FIG. 3 is a schematic cross-sectional view showing the overall structure of a silicon single crystal growth apparatus that has been conventionally used when growing a silicon single crystal by the FZ method. Inside the growth furnace 5, a silicon polycrystalline raw material rod 1 having a predetermined diameter held by an upper shaft 8 and a seed crystal 6 held by a lower shaft 7 are housed. The raw material rod 1 is surrounded by a ring-shaped high-frequency induction heating coil (hereinafter referred to as “induction heating coil”) 2 for partially heating and melting the lower end of the raw material rod 1. It is arranged coaxially with.

【0004】この装置を用いてシリコン単結晶を成長さ
せる場合、まず上軸8により保持された原料棒1の下端
に下軸7により保持された種結晶6を接触させるととも
に、両者の接触部付近が誘導加熱コイル2と同一面(加
熱面)に来るように原料棒1及び種結晶6を移動させ
る。そして、原料棒1の下端を誘導加熱コイル2によっ
て融解し、その溶融帯に種結晶6を融着した後、種絞り
によって無転位化しつつ原料棒1と種結晶6とを一体化
する。
When a silicon single crystal is grown using this apparatus, first, the seed crystal 6 held by the lower shaft 7 is brought into contact with the lower end of the raw material rod 1 held by the upper shaft 8 and the vicinity of the contact portion between the two. The raw material rod 1 and the seed crystal 6 are moved so that is on the same surface (heating surface) as the induction heating coil 2. Then, the lower end of the raw material rod 1 is melted by the induction heating coil 2, the seed crystal 6 is fused to the melting zone, and then the raw material rod 1 and the seed crystal 6 are integrated while dislocation-free by a seed drawing.

【0005】次に、原料棒1及び種結晶6を回転させな
がら微速度で降下させ、誘導加熱コイル2の加熱面を原
料棒1の下端から上端へ相対的に移動させる。このと
き、原料棒1の誘導加熱コイル2の加熱面にある領域は
溶融し、溶融帯4が形成される。溶融帯4は、加熱面を
過ぎるに従い輻射熱を発しながら徐々に冷却し、種結晶
の結晶方位に従って単結晶化する。そして、この溶融帯
4が原料棒1の下端から上端まで移動することによって
単結晶棒3が得られる。
Next, the raw material rod 1 and the seed crystal 6 are lowered at a slow speed while rotating, and the heating surface of the induction heating coil 2 is relatively moved from the lower end to the upper end of the raw material rod 1. At this time, the region on the heating surface of the induction heating coil 2 of the raw material rod 1 is melted and the melting zone 4 is formed. The melting zone 4 gradually cools while emitting radiant heat as it passes over the heating surface, and becomes a single crystal according to the crystal orientation of the seed crystal. Then, the melting zone 4 moves from the lower end to the upper end of the raw material rod 1 to obtain the single crystal rod 3.

【0006】従来、FZ法でシリコン単結晶3を成長さ
せる場合、誘導加熱コイル2により原料棒1を加熱溶融
して溶融帯4を前記原料棒1の下端から上端まで移動さ
せる工程(FZ工程)を通常2回行ってシリコン単結晶
3を得ていた。これは、1回のFZ工程では原料棒1が
完全に単結晶化し難く、また得られた単結晶に乱れが生
じる場合もあったからである。この原因は、原料棒1か
ら剥離した多結晶粒に起因すると考えられる。
Conventionally, when the silicon single crystal 3 is grown by the FZ method, the step of heating and melting the raw material rod 1 by the induction heating coil 2 to move the melting zone 4 from the lower end to the upper end of the raw material rod 1 (FZ step). Was normally performed twice to obtain a silicon single crystal 3. This is because it is difficult for the raw material rod 1 to be completely made into a single crystal in one FZ process, and the obtained single crystal may be disturbed. It is considered that this cause is caused by the polycrystalline grains separated from the raw material rod 1.

【0007】すなわち、図4に示すように、原料棒1側
の固液界面1aから多結晶粒9が剥離し、溶融帯4中の
対流によって下方へ移動し、多結晶粒9が融けきれずに
単結晶棒3側の固液界面3aに到達した途端に、成長中
の単結晶が多結晶化してしまうものである。このため、
1回目のFZ工程(プレゾーニング)で中間シリコン多
結晶棒を育成して多結晶粒9が剥離しづらくした後に、
2回目のFZ工程(無転位化ゾーニング)で前記中間シ
リコン多結晶棒を原料棒としてシリコン単結晶3を成長
させていた。
That is, as shown in FIG. 4, the polycrystal grains 9 are separated from the solid-liquid interface 1a on the raw material rod 1 side, and are moved downward by convection in the melting zone 4, so that the polycrystal grains 9 cannot be completely melted. As soon as it reaches the solid-liquid interface 3a on the single crystal rod 3 side, the growing single crystal is polycrystallized. For this reason,
After growing the intermediate silicon polycrystalline rod in the first FZ step (prezoning) to make it difficult for the polycrystalline grains 9 to peel off,
In the second FZ step (dislocation free zoning), the silicon single crystal 3 was grown using the intermediate silicon polycrystal rod as a raw material rod.

【0008】[0008]

【発明が解決しようとする課題】しかし、FZ工程は1
回行うのに相当な時間を要するので、FZ工程を2回行
うことはシリコン単結晶を製造する上で生産効率の点で
不利である。そこで本発明は、原料棒から剥離した多結
晶粒による単結晶の多結晶化や乱れを防止し、1回のF
Z工程で結晶の乱れのないシリコン単結晶を成長するこ
とができるシリコン単結晶成長方法を提供することを目
的とする。
However, the FZ process is one
Since it takes a considerable amount of time to perform the process once, performing the FZ process twice is disadvantageous in terms of production efficiency in manufacturing a silicon single crystal. Therefore, the present invention prevents the single crystal from being polycrystallized or disturbed by the polycrystal grains separated from the raw material rod.
It is an object of the present invention to provide a silicon single crystal growth method capable of growing a silicon single crystal without crystal disorder in the Z step.

【0009】[0009]

【課題を解決するための手段】本発明はかかる技術的課
題を達成するために、成長炉内に設けた誘導加熱コイル
によりシリコン原料棒を加熱溶融してシリコン単結晶を
成長させるFZ法によるシリコン単結晶成長方法におい
て、前記誘導加熱コイルの上面側及び/又は下面側にリ
ング状部材を設け、該リング状部材の内周縁を前記シリ
コン原料棒が溶融した溶融帯に挿入し、1回のFZ工程
でシリコン単結晶を成長させるようにした。
In order to achieve the above technical object, the present invention uses the FZ method to grow a silicon single crystal by heating and melting a silicon raw material rod by an induction heating coil provided in a growth furnace. In the single crystal growth method, a ring-shaped member is provided on the upper surface side and / or the lower surface side of the induction heating coil, the inner peripheral edge of the ring-shaped member is inserted into the melting zone where the silicon raw material rod is melted, and the FZ is performed once The silicon single crystal was grown in the process.

【0010】前記リング状部材は、石英、サファイアま
たは窒化珪素からなるのが好ましい。また、前記溶融帯
に静磁場を印加するのが好ましい。
The ring-shaped member is preferably made of quartz, sapphire or silicon nitride. It is also preferable to apply a static magnetic field to the melting zone.

【0011】[0011]

【作用】本発明は、多結晶粒9の比重が溶融シリコン
(溶融帯4)よりも10%程度小さいので、該溶融帯4
の表面上に浮き上がり易いという性質を利用したもので
ある。
In the present invention, since the specific gravity of the polycrystalline grains 9 is about 10% smaller than that of the molten silicon (melting zone 4), the melting zone 4
The property of being easily floated on the surface of is used.

【0012】図2に示すように、シリコン原料棒1を加
熱溶融する誘導加熱コイル2の上面側及び/又は下面側
にリング状部材10を設け、該リング状部材10の内周
縁を前記シリコン原料棒1が溶融した溶融帯4に挿入す
ると、該溶融帯4の表面上に浮き上がり該溶融帯4の表
面上を下方へ移動する多結晶粒9は、前記リング状部材
10で受け止められるので、多結晶粒9が直接成長界面
3aに付着することが抑制される。
As shown in FIG. 2, a ring-shaped member 10 is provided on the upper surface side and / or the lower surface side of an induction heating coil 2 for heating and melting the silicon raw material rod 1, and the inner peripheral edge of the ring-shaped member 10 is made of the silicon raw material. When the rod 1 is inserted into the molten zone 4 melted, the polycrystalline grains 9 floating on the surface of the molten zone 4 and moving downward on the surface of the molten zone 4 are received by the ring-shaped member 10, so that The crystal grains 9 are suppressed from directly adhering to the growth interface 3a.

【0013】前記リング状部材10は、石英、サファイ
アまたは窒化珪素からなるのが好ましい。特に合成石英
からなる場合には、前記リング状部材10からの汚染の
心配をより減少させることができる。
The ring-shaped member 10 is preferably made of quartz, sapphire or silicon nitride. In particular, when it is made of synthetic quartz, the risk of contamination from the ring-shaped member 10 can be further reduced.

【0014】前記リング状部材10で受け止められた多
結晶粒9は、該リング状部材10付近に留って融解する
か又は溶融帯4中に入る。該溶融帯4中に入った多結晶
粒9は対流に乗って移動するが、溶融帯4に静磁場を印
加すると、該溶融帯4における溶融シリコンの対流を抑
制することができるので、多結晶粒9が単結晶3側の成
長界面3aに到達するまでの時間を長くして多結晶粒を
完全に融解し、単結晶成長部位の多結晶化や結晶の乱れ
をさらに抑制することができる。
The polycrystalline grains 9 received by the ring-shaped member 10 stay near the ring-shaped member 10 and either melt or enter the melting zone 4. The polycrystalline grains 9 that have entered the melting zone 4 move along with convection, but when a static magnetic field is applied to the melting zone 4, convection of molten silicon in the melting zone 4 can be suppressed, so that polycrystalline It is possible to lengthen the time required for the grains 9 to reach the growth interface 3a on the single crystal 3 side to completely melt the polycrystal grains, and further suppress polycrystallization and crystal disorder at the single crystal growth site.

【0015】[0015]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に説明する。但し、この実施例に記載されてい
る構成部品の寸法、材質、形状、その相対配置等は、特
に特定的な記載がない限りはこの発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be exemplarily described below with reference to the drawings. However, the dimensions, materials, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto only unless otherwise specified, and are simply described. It's just an example.

【0016】図1は、本発明のシリコン単結晶成長方法
の一実施例を示す概略図である。基本構成は図3に示し
た従来の成長方法と同じであるが、本実施例の方法は、
誘導加熱コイル2の下面側に合成石英からなるリング状
部材10が設けられている。このリング状部材10の内
周縁10aは、前記シリコン原料棒が溶融した溶融帯に
挿入されている。
FIG. 1 is a schematic view showing an embodiment of the silicon single crystal growth method of the present invention. The basic structure is the same as the conventional growth method shown in FIG. 3, but the method of this embodiment is
A ring-shaped member 10 made of synthetic quartz is provided on the lower surface side of the induction heating coil 2. An inner peripheral edge 10a of the ring-shaped member 10 is inserted into a melting zone where the silicon raw material rod is melted.

【0017】図2は、リング状部材10を含む部分拡大
図である。図のように、原料棒1側の固液界面1aから
剥離した多結晶粒9のうち、溶融帯4の表面上に浮上し
た多結晶粒9は重力によって溶融帯4の表面を下方へ移
動するが、リング状部材10によってその移動を阻止さ
れ、該リング状部材10付近に留って融解するか又は溶
融帯4中に入る。該溶融帯4中に入った多結晶粒9は、
対流に乗って移動しながら融解する。
FIG. 2 is a partially enlarged view including the ring-shaped member 10. As shown in the figure, among the polycrystalline grains 9 separated from the solid-liquid interface 1a on the raw material rod 1 side, the polycrystalline grains 9 floating on the surface of the melting zone 4 move downward on the surface of the melting zone 4 due to gravity. Is prevented from moving by the ring-shaped member 10 and remains near the ring-shaped member 10 to melt or enter the melting zone 4. The polycrystalline grains 9 that have entered the melting zone 4 are
Melting while moving by convection.

【0018】従来の成長方法を用いて1回のFZ工程で
シリコン単結晶を成長した場合には、単結晶化率は30
%以下であり、結晶に乱れも生じていたが、本実施例の
成長方法を用いて1回のFZ工程でシリコン単結晶を成
長した場合、単結晶化率は90%以上となり、結晶の乱
れも見られなかった。
When a silicon single crystal is grown in one FZ step using the conventional growth method, the single crystallization rate is 30.
%, And crystal disorder was generated, but when a silicon single crystal was grown in one FZ step using the growth method of this example, the single crystallization rate was 90% or more, and crystal disorder was observed. Could not be seen.

【0019】なお、本実施例においてはリング状部材を
誘導加熱コイルの下面側に設置したが、リング状部材を
誘導加熱コイルの上面側に設置してもよい。
Although the ring-shaped member is installed on the lower surface side of the induction heating coil in this embodiment, the ring-shaped member may be installed on the upper surface side of the induction heating coil.

【0020】また、溶融帯4に300〜1000gau
ssの静磁場を印加すると、該溶融帯4における溶融シ
リコンの対流が抑制されるので、対流に乗った多結晶粒
9は単結晶3側の成長界面3aに到達するまでに完全に
融解し、単結晶成長部位の多結晶化や結晶の乱れをさら
に抑制することができる。
In the melting zone 4, 300-1000 gau
When a static magnetic field of ss is applied, the convection of molten silicon in the melting zone 4 is suppressed, so that the polycrystalline grains 9 riding on the convection are completely melted by the time they reach the growth interface 3a on the single crystal 3 side. It is possible to further suppress polycrystallization of the single crystal growth site and crystal disorder.

【0021】[0021]

【発明の効果】以上説明した通り、本発明によれば、シ
リコン原料棒から1回のFZ工程で結晶の乱れのないシ
リコン単結晶を成長することができ、高い生産性で高品
質のシリコン単結晶を製造することができる。
As described above, according to the present invention, a silicon single crystal without crystal disorder can be grown from a silicon raw material rod by one FZ step, and a high-quality silicon single crystal with high productivity can be obtained. Crystals can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリコン単結晶成長方法の一実施例を
示す概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a silicon single crystal growth method of the present invention.

【図2】図1における溶融帯付近の部分拡大図である。FIG. 2 is a partially enlarged view of the vicinity of a melting zone in FIG.

【図3】従来のシリコン単結晶成長方法の一例を示す概
略断面図である。
FIG. 3 is a schematic cross-sectional view showing an example of a conventional silicon single crystal growth method.

【図4】図3における溶融帯付近の部分拡大図である。4 is a partially enlarged view of the vicinity of the melting zone in FIG.

【符合の説明】[Description of sign]

1 原料棒 1a 固液界面 2 誘導加熱コイル 3 単結晶棒 3a 成長界面 4 溶融帯 5 成長炉 6 種結晶 7 下軸 8 上軸 9 多結晶粒 10 リング状部材 1 Raw material rod 1a Solid-liquid interface 2 Induction heating coil 3 Single crystal rod 3a Growth interface 4 Melting zone 5 Growth furnace 6 Seed crystal 7 Lower axis 8 Upper axis 9 Polycrystalline grain 10 Ring-shaped member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成長炉内に設けた誘導加熱コイルにより
シリコン原料棒を加熱溶融してシリコン単結晶を成長さ
せるFZ法によるシリコン単結晶成長方法において、前
記誘導加熱コイルの上面側及び/又は下面側にリング状
部材を設け、該リング状部材の内周縁を前記シリコン原
料棒が溶融した溶融帯に挿入し、1回のFZ工程でシリ
コン単結晶を成長させることを特徴とするシリコン単結
晶成長方法。
1. A method for growing a silicon single crystal by an FZ method in which a silicon raw material rod is heated and melted by an induction heating coil provided in a growth furnace to grow a silicon single crystal, the upper surface side and / or the lower surface of the induction heating coil. A silicon single crystal growth characterized in that a ring-shaped member is provided on the side, the inner peripheral edge of the ring-shaped member is inserted into the melting zone where the silicon raw material rod is melted, and a silicon single crystal is grown in one FZ step. Method.
【請求項2】 前記リング状部材は、石英、サファイア
または窒化珪素からなる請求項1記載のシリコン単結晶
成長方法。
2. The method for growing a silicon single crystal according to claim 1, wherein the ring-shaped member is made of quartz, sapphire or silicon nitride.
【請求項3】 前記溶融帯に静磁場を印加することを特
徴とする請求項1または請求項2記載のシリコン単結晶
成長方法。
3. The method for growing a silicon single crystal according to claim 1, wherein a static magnetic field is applied to the melting zone.
JP12817994A 1994-05-18 1994-05-18 Silicon single crystal growth method Expired - Lifetime JP2833478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12817994A JP2833478B2 (en) 1994-05-18 1994-05-18 Silicon single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12817994A JP2833478B2 (en) 1994-05-18 1994-05-18 Silicon single crystal growth method

Publications (2)

Publication Number Publication Date
JPH08104590A true JPH08104590A (en) 1996-04-23
JP2833478B2 JP2833478B2 (en) 1998-12-09

Family

ID=14978382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12817994A Expired - Lifetime JP2833478B2 (en) 1994-05-18 1994-05-18 Silicon single crystal growth method

Country Status (1)

Country Link
JP (1) JP2833478B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942032A (en) * 1997-08-01 1999-08-24 Memc Electronic Materials, Inc. Heat shield assembly and method of growing vacancy rich single crystal silicon
US6350703B1 (en) 1998-07-08 2002-02-26 Canon Kabushiki Kaisha Semiconductor substrate and production method thereof
JP2005529046A (en) * 2002-05-06 2005-09-29 ペーファオ シリコン フォルシュングス− ウント プロドゥクツィオンス アクチエンゲゼルシャフト Apparatus for producing a crystal rod having a predetermined cross-section and columnar polycrystalline structure by continuous crystallization without crucible
CN101871124A (en) * 2010-06-02 2010-10-27 王敬 System for manufacturing polycrystalline ingot with improved charging capability
CN101892518A (en) * 2010-07-08 2010-11-24 王敬 System and method for manufacturing polycrystalline ingots
CN102808216A (en) * 2012-08-22 2012-12-05 北京京运通科技股份有限公司 Float-zone monocrystalline silicon production process and float-zone thermal field
CN102912414A (en) * 2012-10-15 2013-02-06 天津英利新能源有限公司 Polycrystalline silicon ingot production furnace and crucible thereof
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials
WO2014075650A1 (en) * 2012-11-19 2014-05-22 Forschungsverbund Berlin E.V. Device for non-crucible zone pulling of crystal rods
CN104264220A (en) * 2014-07-02 2015-01-07 洛阳金诺机械工程有限公司 Direct silicon core drawing method using product material
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942032A (en) * 1997-08-01 1999-08-24 Memc Electronic Materials, Inc. Heat shield assembly and method of growing vacancy rich single crystal silicon
US6350703B1 (en) 1998-07-08 2002-02-26 Canon Kabushiki Kaisha Semiconductor substrate and production method thereof
JP2005529046A (en) * 2002-05-06 2005-09-29 ペーファオ シリコン フォルシュングス− ウント プロドゥクツィオンス アクチエンゲゼルシャフト Apparatus for producing a crystal rod having a predetermined cross-section and columnar polycrystalline structure by continuous crystallization without crucible
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials
CN101871124A (en) * 2010-06-02 2010-10-27 王敬 System for manufacturing polycrystalline ingot with improved charging capability
CN101892518A (en) * 2010-07-08 2010-11-24 王敬 System and method for manufacturing polycrystalline ingots
CN102808216A (en) * 2012-08-22 2012-12-05 北京京运通科技股份有限公司 Float-zone monocrystalline silicon production process and float-zone thermal field
CN102912414A (en) * 2012-10-15 2013-02-06 天津英利新能源有限公司 Polycrystalline silicon ingot production furnace and crucible thereof
WO2014075650A1 (en) * 2012-11-19 2014-05-22 Forschungsverbund Berlin E.V. Device for non-crucible zone pulling of crystal rods
CN104264220A (en) * 2014-07-02 2015-01-07 洛阳金诺机械工程有限公司 Direct silicon core drawing method using product material

Also Published As

Publication number Publication date
JP2833478B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
JP2833478B2 (en) Silicon single crystal growth method
US5556461A (en) Method for producing a silicon single crystal by a float-zone method
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JP5648642B2 (en) Method for producing silicon single crystal
JP2004315258A (en) Production method for single crystal
JPH11130592A (en) Production of silicon single crystal
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JPH11180793A (en) Method for controlling single crystal pulling-up rate
JP2833432B2 (en) Silicon single crystal growth method
JP4273793B2 (en) Single crystal manufacturing method
US5968260A (en) Method for fabricating a single-crystal semiconductor
JP2004175620A (en) Manufacturing method of single crystal
JPH0367994B2 (en)
JP4200690B2 (en) GaAs wafer manufacturing method
JPH07330482A (en) Method and apparatus for growing single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2000234108A (en) Spherical metal titanium, and manufacture of titanium compound
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JPH01160894A (en) Apparatus for pulling up single crystal
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JP2835804B2 (en) Semiconductor single crystal manufacturing equipment
JPH0465387A (en) Growing method for single crystal
CN114577561A (en) High-purity germanium single crystal Hall test sample wafer and method for preparing same by adopting zone melting method
JPH09227279A (en) Method for growing single crystal