JPH0786560A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH0786560A
JPH0786560A JP22916793A JP22916793A JPH0786560A JP H0786560 A JPH0786560 A JP H0786560A JP 22916793 A JP22916793 A JP 22916793A JP 22916793 A JP22916793 A JP 22916793A JP H0786560 A JPH0786560 A JP H0786560A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
layer
mask
difference
mask material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22916793A
Other languages
Japanese (ja)
Inventor
Toru Nishibe
徹 西部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22916793A priority Critical patent/JPH0786560A/en
Publication of JPH0786560A publication Critical patent/JPH0786560A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form the microstructure without fluctuation in sizes at a specified level readily in excellent reproducibility by cutting a mask material layer with a notch as the starting point with the difference in thermal expansions, selectively exposing the surface of a semiconductor substrate, and performing specified processing on the surface of the semiconductor substrate. CONSTITUTION:Notched parts 9 of SiO2 are provided so as to face each other based on the difference in coefficients of thermal expansions in heating and temperature increase in an SiO2 film 8. Then, a semiconductor substrate 7, wherein the notched parts 9 are provided in SiO2, is inserted and set in a MOCVD chamber. The semiconductor substrate 7 is heated. The SiO2 film is cut along the line connecting the corresponding marker patterns 9 by utilizing the difference in the coefficients of thermal expansions of an InP buffer layer 6 and the SiO2 film 8. Thin linear grooves 10 are formed. The surface of the specified region of the InP buffer layer 6 is linearly exposed. Then, a multiplex quantum well structure 11 containing a well layer and a barrier layer is formed at a level of several tens of mum in each linear groove 10. After the SiO2 film 8 is removed, a multiplex quantum well later is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の製造方法に
係り、特に半導体基板面に微細なマスキングを行い、こ
のマスクを利用して所要の加工を施し、半導体素子化す
る半導体素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor element, and more particularly, to a method of manufacturing a semiconductor element in which a semiconductor substrate surface is finely masked and the mask is used to perform a required process to form a semiconductor element. Regarding

【0002】[0002]

【従来の技術】周知のように、たとえば集積半導体装置
(集積半導体素子)などの製造においては、微細なパタ
ーニングなどが必須である。つまり、微細領域の選択的
なエッチング加工、微小領域への選択的な気相成長、微
小領域への選択的な不純物のドーピングなどが不可欠で
あり、これらの目的は、通常所要領域を選択的に露出さ
せるマスキングによって、達成されている。そして、半
導体基板への微細な加工、たとえば量子細線などの極微
細構造化に当たっては、一般的に、いわゆるレジスト層
を電子ビーム露光して、マスキングする手段が利用され
ている。図4 (a)〜 (c)は、微細構造の形成例として量
子細線を作製(形成)するときの実施態様を、模式的に
示したものである。この場合、先ず、多重量子井戸構造
をもつ半導体基板1を用意し、図4 (a)に断面的に示す
ように、前記半導体基板1面上に酸化膜2を形成した
後、前記酸化膜2面上に電子ビーム用ポジ型レジストを
塗布し、電子ビーム露光を行いレジストを微細なパター
ン3化する。
2. Description of the Related Art As is well known, in the manufacture of, for example, an integrated semiconductor device (integrated semiconductor element), fine patterning is essential. In other words, selective etching of fine areas, selective vapor phase growth of minute areas, and selective doping of impurities into minute areas are essential. Achieved by exposing masking. For fine processing of a semiconductor substrate, for example, for forming an ultrafine structure such as a quantum wire, a so-called resist layer is generally exposed to an electron beam to mask it. 4 (a) to 4 (c) schematically show an embodiment for producing (forming) a quantum wire as an example of forming a fine structure. In this case, first, a semiconductor substrate 1 having a multiple quantum well structure is prepared, and an oxide film 2 is formed on the surface of the semiconductor substrate 1 as shown in a sectional view in FIG. A positive resist for electron beam is applied on the surface, and electron beam exposure is performed to form the resist into a fine pattern 3.

【0003】次いで、前記レジストパターン3をマスク
とし、たとえばCF4 などのガスを用いて、酸化膜2をド
ライエッチングしてから、レジストパターン3および酸
化膜2をマスクとして、半導体基板1面を選択的にエッ
チングして、量子細線4を形成する(図4(b))。ここ
で、前記選択的なエッチングによって形成した量子細線
4が、その側面が露出することに伴う悪影響を回避する
ため、図4 (c)に断面的に示すごとく、量子細線4形成
面に半導体結晶を成長(成膜)して、その半導体結晶で
量子細線4を埋め込むこともある。
Next, using the resist pattern 3 as a mask, the oxide film 2 is dry-etched using a gas such as CF 4 , and then the surface of the semiconductor substrate 1 is selected using the resist pattern 3 and the oxide film 2 as a mask. To form quantum wires 4 (FIG. 4 (b)). Here, in order to avoid an adverse effect caused by exposing the side surface of the quantum wire 4 formed by the selective etching, as shown in a sectional view in FIG. May be grown (formed) and the quantum wires 4 may be embedded in the semiconductor crystal.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記量子細
線4が所要の量子効果を発揮するためには、細線幅が数
10nm以下で、かつ量子細線4の特性が細線幅に敏感なの
で、理想的には原子オーダーで幅の揺らぎを抑える必要
がある。しかし、前記レジストパターン3化に使用する
電子ビームのビーム径は、数nmが限界であり、またレジ
ストの特性限界から最小線幅は10nm程度で、しかも幅の
揺らぎも振動や磁場変動のために同程度あり、理想的な
量子細線4の形成は技術的に不可能であった。加えて、
半導体結晶の選択的なエッチングに用いる酸化膜2マス
クは、レジスト3をマスクにしてエッチングしてマスク
化(マスク形成)している過程で、レジスト3のサイド
からの後退(サイドエッチング)が進行することに起因
し、側壁が垂直な量子細線4をエッチングにより形成し
得ない。つまり、酸化膜2マスクの側壁形状を反映し
て、半導体基板1面のエッチング形状も異方性が乏しい
ため、実効的な量子細線幅がずれることになる。
By the way, in order for the quantum wire 4 to exert the required quantum effect, the width of the wire is several.
Since the characteristics of the quantum wire 4 are less than 10 nm and the characteristics of the quantum wire 4 are sensitive to the wire width, it is ideally necessary to suppress the width fluctuation on the atomic order. However, the beam diameter of the electron beam used for forming the resist pattern 3 is limited to several nm, and the minimum line width is about 10 nm due to the characteristic limit of the resist, and the fluctuation of the width is caused by the vibration and the fluctuation of the magnetic field. The same degree exists, and it was technically impossible to form the ideal quantum wire 4. in addition,
The oxide film 2 mask used for the selective etching of the semiconductor crystal progresses receding from the side of the resist 3 (side etching) in the process of masking (mask formation) by using the resist 3 as a mask. Due to this, the quantum wires 4 whose sidewalls are vertical cannot be formed by etching. That is, since the etching shape of the surface of the semiconductor substrate 1 lacks anisotropy reflecting the side wall shape of the oxide film 2 mask, the effective quantum thin line width deviates.

【0005】上記のように、従来半導体素子の製造方法
において、一般的に採られている微細加工方法では、た
とえば幅の揺らぎのない量子細線構造を、数10nm以下の
レベルで再現よく形成することが事実上不可能というの
が実態である。
As described above, in the conventional microfabrication method generally used in the method of manufacturing a semiconductor element, for example, a quantum wire structure having no width fluctuation is formed with good reproduction at a level of several tens of nm or less. The reality is that is virtually impossible.

【0006】本発明は上記のような不都合な問題を解消
し、数10nm以下のレベルで寸法サイズに揺らぎのない微
細構造を容易に、また再現性よく形成し得る工程を備え
た半導体素子の製造方法の提供を目的とする。
The present invention solves the above-mentioned inconvenient problems, and manufactures a semiconductor device having a process capable of easily and reproducibly forming a fine structure having no fluctuation in size and size at a level of several tens nm or less. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体素子
の製造方法は、半導体基板面上に、前記半導体基板の熱
膨脹率よりも小さい熱膨脹率を有するマスク材料層を形
成する工程と、前記マスク材料層の所要領域に、マスク
材料層の切り離れ起点となる切り欠きを設ける工程と、
前記マスク材料層に切り欠きを設けた半導体基板を加熱
昇温し、熱膨脹率差によって、前記切り欠きを起点とし
て、前記マスク材料層を切り、前記半導体基板面を選択
的に露出させる工程と、前記線状に露出させた半導体基
板面に所要の加工を施す工程とを具備して成ることを特
徴とする。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming a mask material layer having a thermal expansion coefficient smaller than that of the semiconductor substrate on a semiconductor substrate surface, and the mask. A step of providing a notch serving as a separation starting point of the mask material layer in a required region of the material layer,
A step of heating the semiconductor substrate provided with a notch in the mask material layer to raise the temperature, cutting the mask material layer from the notch as a starting point by a difference in thermal expansion coefficient, and selectively exposing the semiconductor substrate surface; A step of subjecting the linearly exposed semiconductor substrate surface to a required process.

【0008】すなわち、本発明は半導体基板面にマスク
パターニングするに当たり、半導体基板よりも熱膨脹率
の小さい材質のマスク層を被覆・形成し、加熱昇温した
ときの熱膨脹率差を巧みに利用して、前記マスク層を所
定位置で線状に引き離し、選択的に半導体基板面を微細
な幅で露出させ、この線状露出面に所要の製造加工、た
とえばエッチング加工,不純物の注入加工,あるいは気
相成長などを行い、微細構造の半導体素子を形成するこ
とを骨子としている。
That is, according to the present invention, when mask patterning is performed on the surface of a semiconductor substrate, a mask layer made of a material having a smaller thermal expansion coefficient than that of the semiconductor substrate is coated and formed, and the difference in thermal expansion coefficient when the temperature is increased by heating is skillfully utilized. , The mask layer is linearly separated at a predetermined position to selectively expose the semiconductor substrate surface with a fine width, and the linear exposed surface is subjected to a required manufacturing process such as etching process, impurity implantation process, or vapor phase. The main idea is to grow a semiconductor element with a fine structure.

【0009】さらに、言及すると、熱応力の入り易いマ
スク層を所定位置で線状に引き離し、選択的に半導体基
板面を微細な幅で線状に露出させるため、前記マスク層
の引き離し(もしくはクラック形成)の起点となる切り
欠き部(マーカーパターン)を対応して設けておき、加
熱昇温したときの熱膨脹率差の利用により、対応する切
り欠き部間を結んで線状に引き離しスリット(溝)を形
成し、側壁が垂直なマスクパターンとして機能させ、再
現性のよい微細構造の形成(作製)を可能にしたもので
ある。そして、前記対応する切り欠き部(マーカーパタ
ーン)は、互いに対向く面を尖らせた形状としておくこ
とにより、引き離し(もしくはクラック形成)の起点と
して、より効果的に機能する。また、前記線状に引き離
しスリット(溝)を形成する領域(位置)に沿って、副
切り欠き部(副マーカーパターン)を設定しておくと、
線状に引き離し形成するスリット(溝)幅を容易に制御
し得る。しかし、この副マーカーパターンは、その後の
工程で支障を及ぼす場合、前記加熱昇温処理してから再
びマスキングする。
Further, to mention, in order to linearly separate the mask layer which is likely to receive thermal stress at a predetermined position and selectively expose the semiconductor substrate surface linearly with a fine width, the mask layer is separated (or cracked). A notch (marker pattern) as a starting point of (formation) is provided correspondingly, and by utilizing the difference in coefficient of thermal expansion when heating and heating, the corresponding notches are linearly separated and slits (grooves) are formed. 2) is formed and the side wall functions as a vertical mask pattern, thereby enabling the formation (fabrication) of a fine structure with good reproducibility. The corresponding notch portions (marker patterns) function more effectively as a starting point of separation (or crack formation) by making the surfaces facing each other sharpened. Further, if a sub cutout portion (sub marker pattern) is set along the region (position) where the linearly separated slits (grooves) are formed,
The width of slits (grooves) formed by separating them linearly can be easily controlled. However, if this sub-marker pattern interferes with the subsequent process, it is masked again after the heating and heating process.

【0010】上記したように、本発明においては、熱膨
脹率差を利用して、マスク材層に線状スリットを形成す
るため、マスク材としては半導体基板よりも熱膨脹率の
小さい材質を選択する必要がある。また、前記マスク材
層に線状スリットを形成するための加熱昇温の温度、そ
の温度に保持する時間(放置時間)などは、半導体基板
やマスク材の材質・種類、マスク材層の厚さなど考慮し
て設定すればよいが、さらには半導体基板の応力分布な
ど予め測定(もしくは確認)しておくと、より高精度な
マスクパターニングを行い得る。
As described above, in the present invention, since the linear slits are formed in the mask material layer by utilizing the difference in the coefficient of thermal expansion, it is necessary to select a material having a coefficient of thermal expansion smaller than that of the semiconductor substrate as the mask material. There is. In addition, the temperature of heating and heating for forming the linear slits in the mask material layer, the time (holding time) of maintaining the temperature, etc. are determined by the material and type of the semiconductor substrate or the mask material, the thickness of the mask material layer. However, if the stress distribution of the semiconductor substrate is measured (or confirmed) in advance, more accurate mask patterning can be performed.

【0011】[0011]

【作用】上記、熱膨脹率差を利用するマスクパターニン
グを骨子とする本発明によれば、従来の電子ビーム露光
などの利用では形成できなかった微細な線幅を有するマ
スクパターンを容易に形成し得るので、エッチングや選
択成長などの組み合わせで微細構造を再現性よく、また
高精度に作製することが可能である。たとえば、選択的
なエッチングによる量子細線の形成において、線幅など
サイズの揺らぎを原子オーダーに抑えることもでき、量
子効果を利用した半導体素子を提供し得るし、また、マ
スク層の厚さの調節、あるいは細線を気相成長などで形
成(作製)するときの半導体基板温度の調節などによ
り、細線の幅をnmオーダーに制御することも可能であ
る。
According to the present invention, which has as its essence the mask patterning utilizing the difference in coefficient of thermal expansion, it is possible to easily form a mask pattern having a fine line width, which cannot be formed by the conventional use such as electron beam exposure. Therefore, it is possible to fabricate a fine structure with high reproducibility and high precision by combining etching, selective growth and the like. For example, in the formation of quantum wires by selective etching, size fluctuations such as line width can be suppressed to the atomic order, and a semiconductor element using the quantum effect can be provided, and the thickness of the mask layer can be adjusted. Alternatively, the width of the thin line can be controlled to the nm order by adjusting the temperature of the semiconductor substrate when forming (manufacturing) the thin line by vapor phase growth or the like.

【0012】より具体的に説明すると、マスク層が切り
離れて形成する溝(スリット)幅は、マスク材質の熱膨
張率と半導体基板との熱膨張率の差、マスク層と半導体
基板との間に存在する歪、半導体基板の温度、対応する
マーカーパターの間隔などにより左右され、また、前記
溝(スリット)ないしクラックが発生する半導体基板の
温度は、マスク材質の強度により主に決まる。たとえ
ば、半導体基板が InPでマスク材質が SiO2 の場合、半
導体基板の処理温度差が引っ張り力に対応していると考
えられ、 SiO2 の膜厚が5000A のときは、 575℃以上で
クラックが発生した。 SiO2 の成膜温度で半導体基板と
の歪みはないが、常温に戻したときに、 SiO2 が圧縮さ
れ、歪みが緩和された状態になっていると考えられる。
また、前記対応するマーカーパターンを強制的に設ける
理由は、所定の箇所に溝を形成するためであり、マスク
材質が SiO2 で、かつその厚さを10nmに固定し、マーカ
ーパターン間隔を 1〜 100μm に変えて 600℃で熱処理
し、その温度で InPを、膜厚10nm選択成長させてから S
iO2 膜を除去した後、 AFM(原子間力顕微鏡)で幅を測
定した結果を図1に示す。マーカーパターン間隔を 1μ
m 以下にすると 1nmオーダーの幅の溝が形成されること
を示している。
More specifically, the width of the groove (slit) formed by separating the mask layer is determined by the difference between the coefficient of thermal expansion of the mask material and the coefficient of thermal expansion of the semiconductor substrate, the difference between the mask layer and the semiconductor substrate. Of the semiconductor substrate, the temperature of the semiconductor substrate, the spacing between the corresponding marker patterns, etc., and the temperature of the semiconductor substrate where the grooves (slits) or cracks occur is mainly determined by the strength of the mask material. For example, when the semiconductor substrate is InP and the mask material is SiO 2 , it is considered that the difference in processing temperature of the semiconductor substrate corresponds to the tensile force.When the SiO 2 film thickness is 5000 A, cracks occur at 575 ° C or higher. Occurred. Although there is no distortion with the semiconductor substrate at the SiO 2 film formation temperature, it is considered that when the temperature is returned to room temperature, the SiO 2 is compressed and the distortion is relaxed.
Further, the reason for forcibly providing the corresponding marker pattern is to form a groove at a predetermined position, the mask material is SiO 2 , and its thickness is fixed to 10 nm, and the marker pattern interval is 1 to Heat treatment was performed at 600 ℃, changing to 100 μm, and InP was grown at that temperature to a film thickness of 10 nm.
Fig. 1 shows the result of measuring the width with an AFM (atomic force microscope) after removing the iO 2 film. Marker pattern interval is 1μ
It is shown that a groove with a width of 1 nm order is formed when the thickness is less than m.

【0013】[0013]

【実施例】以下図2 (a)〜 (g)および図3 (a)〜 (c)を
参照して本発明の実施例を説明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS. 2 (a) to 2 (g) and 3 (a) to 3 (c).

【0014】実施例1 この実施例は、 InGaAsP/InP をベースとして、多重量
子井戸構造を採ったレーザの製造例である。
Example 1 This example is a production example of a laser having a multiple quantum well structure based on InGaAsP / InP.

【0015】図2 (a)〜 (g)は、多重量子井戸レーザの
製造工程の実施態様を模式的に、示したものである。先
ず、図2(a) に断面的に示すような、n型 InP基板5面
上にn型 InPバッファ層6を成長(成膜)させて成る半
導体基板7を用意し、この半導体基板7のn型 InPバッ
ファ層6面上に、図2 (b)に断面的に示すごとく、 400
℃下での熱 CVD法によって厚さ 500nmの SiO2 膜8を成
膜した。次いで、前記SiO2 膜8に、図2 (c)に平面的
に示すごとく、後述する加熱昇温時における熱膨脹率差
に基づいて、 SiO2 膜8の切り離れ起点となる切り欠き
部(マーカーパターン)9を対応させてそれぞれ設け
る。
2 (a) to 2 (g) schematically show an embodiment of a manufacturing process of a multi-quantum well laser. First, as shown in a sectional view in FIG. 2 (a), a semiconductor substrate 7 formed by growing (depositing) an n-type InP buffer layer 6 on the surface of the n-type InP substrate 5 is prepared. On the n-type InP buffer layer 6 surface, as shown in cross section in FIG.
A SiO 2 film 8 having a thickness of 500 nm was formed by a thermal CVD method at ℃. Then, the on SiO 2 films 8, as shown in plan view in FIG. 2 (c), based on the coefficient of thermal expansion difference at the time of heating temperature increase to be described later, cut away starting point becomes notched portion of the SiO 2 film 8 (Marker Pattern 9 is provided correspondingly.

【0016】次に、上記 SiO2 膜8に切り離れ起点とな
る切り欠き部9を設けた半導体基板7を、 MOCVDチャン
バ(図示せず)内に挿入・セットし、半導体基板7を 6
00℃に加熱し、 InPバッファ層6と SiO2 膜8との熱膨
張率の差(線膨張率で比較すると、 InP: 4.5×10-6
SiO2 :0.54×10-6( K-1))を利用して、 InPバッフ
ァ層6の熱膨張により SiO2 膜8を引っ張って、前記対
応するマーカーパターン9を結ぶ線に沿い SiO2 膜8を
裂いて、図2 (d)に平面的に示すように、細い線状の溝
10が形成され、前記 InPバッファ層6の所定領域面が線
状に露出される。ここで、対応する切り欠き部9先端の
間隔 100μm で、幅 200nmの線状スリット(溝)が形成
された。
Next, the semiconductor substrate 7 having the notch 9 as a starting point of separation in the SiO 2 film 8 is inserted and set in a MOCVD chamber (not shown), and the semiconductor substrate 7 is removed.
After heating to 00 ° C., the difference in coefficient of thermal expansion between the InP buffer layer 6 and the SiO 2 film 8 (comparing in terms of linear expansion coefficient, InP: 4.5 × 10 −6 ,
SiO 2: 0.54 × 10 -6 using the (K -1)), pull the SiO 2 film 8 by thermal expansion of the InP buffer layer 6, along a line connecting the markers pattern 9 the corresponding SiO 2 film 8 Tear it apart to create a thin linear groove, as shown in the plan view of Figure 2 (d).
10 is formed, and the predetermined region surface of the InP buffer layer 6 is linearly exposed. Here, linear slits (grooves) having a width of 200 nm were formed at intervals of 100 μm between the tips of the corresponding notches 9.

【0017】この後、そのままの状態で、同一チャンバ
内にて MOCVD法により、図2 (e)に拡大断面的に示すよ
うに、前記形成された線状の溝10内に、PL波長が1.55μ
m の組成のウエル層 InGaAsP、およびPL波長が 1.1μm
の組成のバリア層 InGaAsPを含む多重量子井戸構造11を
選択成長(成膜)する。前記多重量子井戸構造(量子細
線構造)11の選択成長(成膜)後、マスクとして機能し
た SiO2 膜8を、弗化アンモニウムと弗酸との混合液で
エッチング除去した(図2(f))。その後、図2(g)に断
面的に示すごとく、前記量子細線構造11形成面にp型ク
ラッド層12およびコンタクト層13を順次成長(成膜)し
てから、両側に電極を形成して多重量子井戸レーザを得
た。
After that, as it is, by the MOCVD method in the same chamber, as shown in an enlarged cross section in FIG. 2 (e), the PL wavelength is 1.55 in the formed linear groove 10. μ
Well layer of m composition InGaAsP, and PL wavelength is 1.1 μm
A multi-quantum well structure 11 containing a barrier layer InGaAsP having the above composition is selectively grown (deposited). After selective growth (film formation) of the multiple quantum well structure (quantum wire structure) 11, the SiO 2 film 8 functioning as a mask was removed by etching with a mixed solution of ammonium fluoride and hydrofluoric acid (FIG. 2 (f)). ). Then, as shown in a sectional view in FIG. 2 (g), a p-type cladding layer 12 and a contact layer 13 are sequentially grown (deposited) on the surface where the quantum wire structure 11 is formed, and then electrodes are formed on both sides to form multiple layers. A quantum well laser was obtained.

【0018】なお、熱応力により SiO2 膜8は、前記切
り離れないしクラックにより、側壁がほぼ垂直を成して
割れる(溝を形成する)が、半導体基板7の InPバッフ
ァ層6は応力により結晶にダメージが入ることはなかっ
た。強度的に SiO2 膜8の方が薄いこともあって弱いの
で、クラックが入り易く、 InPバッファ層6に影響が何
等及ばないといえる。
Although the SiO 2 film 8 is cracked due to the thermal stress due to the non-separation and cracks, the sidewalls are almost vertical and form a groove (a groove is formed). Was never damaged. Since the SiO 2 film 8 is weak in strength because it is thinner, cracks are likely to occur, and it can be said that the InP buffer layer 6 is not affected at all.

【0019】実施例2 この実施例は、高電子移動度トランジスタ(HEMT)の製
造方法例で、図3 (a)〜 (c)は、この製造工程の実施態
様を模式的に示したものである。先ず、高電子移動度ト
ランジスタ(HEMT)用半導体基板14面上に、 CVD温度を
400℃に設定し、図3 (a)に断面的に示すごとく、厚さ
100nmの SiO2 膜15を熱 CVD法によって形成する。次い
で、前記 SiO2 膜15に、図3 (b)に平面的に示すごと
く、後述する加熱昇温時における熱膨脹率差に基づい
て、 SiO2 膜15の切り離れ起点となる切り欠き部(マー
カーパターン)16を対応させてそれぞれ設ける一方、そ
れら対を成すところの対応するマーカーパターン16間
に、副マーカーパターン17を設ける。ここで、図3 (c)
に平面的に示すごとく、前記副マーカーパターン17を設
けたのは、対応するマーカーパターン16間を結ぶ線に沿
って、 SiO2 膜15を引き裂き所定の幅の細い溝18が形成
されるとき、所定の幅 Dを制御するのはマーカーパター
ン16の間隔 L(隣合うゲート間の距離に対応する)と幅
を、副マーカーパターン17の溝幅 Wによって、容易に制
御し得るからである。
Example 2 This example is an example of a method for manufacturing a high electron mobility transistor (HEMT), and FIGS. 3 (a) to 3 (c) schematically show an embodiment of this manufacturing process. is there. First, the CVD temperature is set on the surface of the semiconductor substrate 14 for high electron mobility transistor (HEMT).
Set the temperature to 400 ° C and set the thickness as shown in the cross section in Figure 3 (a).
A 100 nm SiO 2 film 15 is formed by a thermal CVD method. Then, the SiO 2 film 15, as shown in plan view in FIG. 3 (b), based on the coefficient of thermal expansion difference at the time of heating temperature increase to be described later, the cutout portion to be cut away starting point of the SiO 2 film 15 (a marker Patterns 16 are provided in correspondence with each other, and a sub marker pattern 17 is provided between the corresponding marker patterns 16 forming the pair. Here, Fig. 3 (c)
As shown in plan view, the sub marker pattern 17 is provided along the line connecting the corresponding marker patterns 16 when the SiO 2 film 15 is torn and a narrow groove 18 having a predetermined width is formed. The predetermined width D is controlled because the interval L (corresponding to the distance between adjacent gates) and the width of the marker pattern 16 can be easily controlled by the groove width W of the sub marker pattern 17.

【0020】なお、副マーカーパターン17を、ゲート間
の中心に位置させると、 Dは D=△α×(△T)×(L−W) ここで、Δα:半導体基板と SiO2 膜の線膨張率の差
( SiO2 膜の方が小さい)、△T :基板処理温度差 でほぼ与えられる。副マーカーパターン17を設けること
により、マーカーパターン16の間隔 Lが固定されても、
溝18の幅 Dを自由に変えることができる。たとえばマー
カーパターン16の間隔 Lを 500μm 、副マーカーパター
ン17幅を 150μmとすると熱処理温度 T1 : 500℃の
時、ゲート幅に対応する溝18の幅 D: 0.1μm の幅の溝
18をもつ SiO2 膜15を形成することができた。また、そ
の SiO2 膜15をマスクとして、n-GaAsを塩素とアルゴン
との混合ガスを用いた反応性イオンビームエッチングを
行って、HEMT用半導体基板(n-AlGaAs)14の表面でエッ
チングを停止させ、n-AlGaAs層14の表面を露出させる。
その後、ゲート領域に電極を形成しショットキー接合を
作製した。なお、前記HEMT用半導体基板(n-AlGaAs)14
のエッチング形状は、マスクを成す SiO2 膜15の側壁が
垂直なことを反映して垂直であり、ゲート幅が狭くなっ
ても寸法ずれは認められなかった。
When the sub marker pattern 17 is located at the center between the gates, D is D = Δα × (ΔT) × (L−W) where Δα is the line between the semiconductor substrate and the SiO 2 film. The difference in expansion coefficient (SiO 2 film is smaller), ΔT: Substrate processing temperature difference is almost given. By providing the sub marker pattern 17, even if the interval L of the marker pattern 16 is fixed,
The width D of the groove 18 can be freely changed. For example, if the spacing L between the marker patterns 16 is 500 μm and the width of the sub-marker pattern 17 is 150 μm, when the heat treatment temperature T 1 is 500 ° C., the width D of the groove 18 corresponding to the gate width D is 0.1 μm.
A SiO 2 film 15 having 18 could be formed. Also, using the SiO 2 film 15 as a mask, reactive ion beam etching is performed on n-GaAs using a mixed gas of chlorine and argon to stop etching on the surface of the HEMT semiconductor substrate (n-AlGaAs) 14. Then, the surface of the n-AlGaAs layer 14 is exposed.
After that, an electrode was formed in the gate region to produce a Schottky junction. The HEMT semiconductor substrate (n-AlGaAs) 14
The etching shape was vertical because the side wall of the SiO 2 film 15 forming the mask was vertical, and no dimensional deviation was observed even when the gate width was narrowed.

【0021】上記実施例では、 SiO2 をマスク材質とし
た例を説明したが、半導体基板とマスク材質との熱膨張
率の差を利用するのが本発明の骨子なので、マスク材質
の熱膨張率が半導体基板の膨張率よりも小さい組み合わ
せを選ぶ限り、半導体基板やマスク材質に左右されず、
上記の作用・効果が得られる。また、マスク層に細溝を
形成し、所要のパターン化を行った後のプロセスは、エ
ッチングや選択成長に限られるものではなく、イオン注
入、陽極酸化などさまざまなプロセスを施すことが可能
である。
In the above embodiment, an example in which SiO 2 is used as the mask material has been described, but since the essence of the present invention is to utilize the difference in coefficient of thermal expansion between the semiconductor substrate and the mask material, the coefficient of thermal expansion of the mask material is used. As long as you choose a combination that is smaller than the expansion coefficient of the semiconductor substrate, regardless of the semiconductor substrate and mask material,
The above actions and effects can be obtained. Further, the process after forming the fine groove in the mask layer and performing the required patterning is not limited to etching and selective growth, and various processes such as ion implantation and anodic oxidation can be performed. .

【0022】[0022]

【発明の効果】本発明による半導体素子の製造方法によ
れば、数10nmレベル以下の寸法サイズに揺らぎのない微
細構造を原子オーダーで制御して形成し得るので、たと
えば量子効果を利用した半導体素子(半導体装置)の高
性能化を実現できる。
According to the method of manufacturing a semiconductor device according to the present invention, since a fine structure having no fluctuation in size and size of several tens nm level or less can be controlled by atomic order, a semiconductor device utilizing, for example, a quantum effect is used. Higher performance of (semiconductor device) can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体素子の製造方法における対
応するマーカーパターン間隔と形成されるマスク溝の幅
との関係例を示す特性図。
FIG. 1 is a characteristic diagram showing an example of a relationship between corresponding marker pattern intervals and a width of a mask groove formed in a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明に係る半導体素子の製造方法の実施態様
例を模式的に示すもので、 (a)は用いた半導体基板の断
面図、 (b)はマスク材質層を設けた状態の断面図、 (c)
はマスク材質層にマーカーパターンを設けた状態の平面
図、 (d)は対応するマーカーパターン間に線状の切り離
れ部(溝)を設けた状態の平面図、 (e)は線状に露出し
た半導体基板面に多重量子井戸構造を設けた状態の拡大
断面図、 (f)はマスク材質層を除去し量子細線を露出し
た状態の断面図、 (g)は量子細線をクラッド層などで埋
め込んだ状態の断面図。
FIG. 2 schematically shows an embodiment of a method for manufacturing a semiconductor device according to the present invention, in which (a) is a cross-sectional view of a semiconductor substrate used and (b) is a cross-section in a state where a mask material layer is provided. Figure, (c)
Is a plan view of a state where a marker pattern is provided on the mask material layer, (d) is a plan view of a state where a linear separation portion (groove) is provided between the corresponding marker patterns, and (e) is a linear exposure Enlarged cross-sectional view of the state in which the multiple quantum well structure is provided on the surface of the semiconductor substrate, (f) is a cross-sectional view of the quantum wire exposed by removing the mask material layer, (g) Embedding the quantum wire with a cladding layer etc. Cross-sectional view in the open state.

【図3】本発明に係る半導体素子の他の製造方法の実施
態様例を模式的に示すもので、 (a)はマスク材質層を設
けた半導体基板の断面図、 (b)はマスク材質層にマーカ
ーパターンおよび副マーカーパターンを設けた状態の拡
大平面図、 (c)は対応するマーカーパターン間に線状の
切り離れ部(溝)を設けた状態の拡大平面図。
FIG. 3 schematically shows an embodiment of another method for manufacturing a semiconductor device according to the present invention, in which (a) is a cross-sectional view of a semiconductor substrate provided with a mask material layer, and (b) is a mask material layer. FIG. 3 is an enlarged plan view showing a state in which a marker pattern and a sub-marker pattern are provided in FIG. 7, and FIG.

【図4】従来の半導体素子の製造方法の実施態様例を模
式的に示すもので、 (a)は半導体基板面にレジストマス
クを設けた状態の断面図、 (b)エッチング処理して多重
量子井戸構造を設けた状態の断面図、 (c)は量子細線を
クラッド層などで埋め込んだ状態の断面図。
FIG. 4 schematically shows an example of an embodiment of a conventional method for manufacturing a semiconductor device, (a) is a cross-sectional view of a state in which a resist mask is provided on the surface of a semiconductor substrate, and (b) is an etching treatment for multiquantum. A cross-sectional view of a state in which a well structure is provided, and (c) is a cross-sectional view of a state in which a quantum wire is embedded with a cladding layer or the like.

【符号の説明】[Explanation of symbols]

1…多重量子井戸構造をもつ半導体基板 2,8,15
…酸化膜 3ポジ型レジストパターン 4…量子細
線 5… InP基板 6…バッファ層 7…半導体
基板 9,16…切り欠き部(マーカーパターン)
10,18…線状の溝(半導体基板の線状露出面) 11…
多重量子井戸構造 12…クラッド層 13…コンタクト層 14…HEMT用半導体基板 17…副
マーカーパターン
1 ... Semiconductor substrate having multiple quantum well structure 2, 8, 15
... oxide film 3 positive resist pattern 4 ... quantum wire 5 ... InP substrate 6 ... buffer layer 7 ... semiconductor substrate 9, 16 ... notch (marker pattern)
10, 18… Linear groove (Linear exposed surface of semiconductor substrate) 11…
Multiple quantum well structure 12 ... Cladding layer 13 ... Contact layer 14 ... HEMT semiconductor substrate 17 ... Sub marker pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板面上に、前記半導体基板の熱
膨脹率よりも小さい熱膨脹率を有するマスク材料層を形
成する工程と、 前記マスク材料層の所要領域に、マスク材料層の切り離
れ起点となる切り欠きを設ける工程と、 前記マスク材料層に切り欠きを設けた半導体基板を加熱
昇温し、熱膨脹率差によって前記切り欠きを起点にし
て、前記マスク材料層を切り、前記半導体基板面を選択
的に露出させる工程と、 前記線状に露出させた半導体基板面に所要の加工を施す
工程とを具備して成ることを特徴とする半導体素子の製
造方法。
1. A step of forming a mask material layer having a coefficient of thermal expansion smaller than that of the semiconductor substrate on a surface of the semiconductor substrate, and a starting point of separation of the mask material layer in a required region of the mask material layer. And a step of providing a notch formed by heating the semiconductor substrate provided with the notch in the mask material layer, starting from the notch due to the difference in coefficient of thermal expansion, the mask material layer is cut, the semiconductor substrate surface A method of manufacturing a semiconductor device, comprising: a step of selectively exposing the semiconductor substrate surface; and a step of subjecting the linearly exposed semiconductor substrate surface to a required process.
JP22916793A 1993-09-14 1993-09-14 Manufacture of semiconductor element Withdrawn JPH0786560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22916793A JPH0786560A (en) 1993-09-14 1993-09-14 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22916793A JPH0786560A (en) 1993-09-14 1993-09-14 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH0786560A true JPH0786560A (en) 1995-03-31

Family

ID=16887842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22916793A Withdrawn JPH0786560A (en) 1993-09-14 1993-09-14 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH0786560A (en)

Similar Documents

Publication Publication Date Title
JP3149030B2 (en) Semiconductor quantum box device and method of manufacturing the same
JPS6118135A (en) Selectively etching method and method of producing mass transport beridox hetero structure laser
JP3007928B2 (en) Method for manufacturing optical semiconductor device
JPH0786560A (en) Manufacture of semiconductor element
JP2705400B2 (en) Semiconductor fine wire forming method
JPH06275908A (en) Formation of minute structure of compound semiconductor
JP2600588B2 (en) Method of forming dry etching mask
JP5152715B2 (en) Three-dimensional fine processing method and three-dimensional fine structure
JP2932968B2 (en) Method for manufacturing semiconductor device
JPS6249625A (en) Manufacture of semiconductor device
JPH0257701B2 (en)
JPS6122645A (en) Substrate for semiconductor device and manufacture thereof
JPS60147119A (en) Manufacture of semiconductor element
JP3881041B2 (en) Method for manufacturing compound semiconductor device
JPS62273791A (en) Manufacture of semiconductor quantum well laser
KR100250460B1 (en) Method of manufacturing a silicon quantum wire
JPH09135017A (en) Fabrication of quantum device
JPS5947480B2 (en) Manufacturing method of semiconductor device
JPS61115364A (en) Manufacture of semiconductor laser
JPS58155720A (en) Semicondutor device
JPH0586659B2 (en)
JPS63281488A (en) Manufacture of optical component
JPH03254169A (en) Forming method of multi-quantum thin line
JPH07142703A (en) Quantum thin wire containing branch structure and its manufacture
JPH01309392A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128