JPH0780692B2 - Conductive glass and manufacturing method thereof - Google Patents

Conductive glass and manufacturing method thereof

Info

Publication number
JPH0780692B2
JPH0780692B2 JP2161413A JP16141390A JPH0780692B2 JP H0780692 B2 JPH0780692 B2 JP H0780692B2 JP 2161413 A JP2161413 A JP 2161413A JP 16141390 A JP16141390 A JP 16141390A JP H0780692 B2 JPH0780692 B2 JP H0780692B2
Authority
JP
Japan
Prior art keywords
film
alkali
glass
conductive
barrier film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2161413A
Other languages
Japanese (ja)
Other versions
JPH03232745A (en
Inventor
英一 安藤
松本  潔
純一 海老沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to SG1996006789A priority Critical patent/SG43272A1/en
Priority to DE69027590T priority patent/DE69027590T2/en
Priority to PCT/JP1990/000982 priority patent/WO1991002102A1/en
Priority to EP90911700A priority patent/EP0436741B1/en
Priority to KR1019910700334A priority patent/KR0185716B1/en
Publication of JPH03232745A publication Critical patent/JPH03232745A/en
Priority to US07/936,281 priority patent/US5354446A/en
Priority to US08/323,579 priority patent/US5605609A/en
Priority to US08/429,845 priority patent/US5772862A/en
Publication of JPH0780692B2 publication Critical patent/JPH0780692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [従来の技術] 本発明は、アルカリ含有ガラスのガラス下地からアルカ
リイオン拡散するのを防ぐアルカリバリアー膜付電導性
ガラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] The present invention relates to a conductive glass with an alkali barrier film which prevents alkali ions from diffusing from a glass substrate of alkali-containing glass.

透明材料としてのガラス板は、化学的に安定で表面硬度
に優れ、かつ500℃〜700℃程度までの高温に耐え、更に
電気絶縁性、光学的性質が優れているため、建築用、車
輌用、航空機用の窓ガラス材料としては勿論のこと、光
学部品、電気部品電子部品等に用いられている。特に、
最近ではガラス板面に電導性被膜を形成した電導性ガラ
ス板が液晶素子、エレクトロクロミック素子、電場発光
素子などの表示素子やアモルファス太陽電池基板等に用
いられている。これら電導性ガラス板のガラス基板とし
ては、最も汎用され、価格的にも安価なソーダライムシ
リカガラス板が使用される傾向があるが、このソーダラ
イムシリカガラス板は組成的に10〜20wt%程度のナトリ
ウム、カリウム等のアルカリ成分を含んでいるため、長
期間の使用によりガラス下地からの表面へのアルカリイ
オンの拡散によるコーティングされた電導膜の性能劣化
を起すという欠点を生ずる。例えば、電導性ガラス板の
電導膜に白濁が生じたり透明度が低下したり、あるいは
電導膜の抵抗値が増大したり、化学的物理的耐久性が低
下したりする。
The glass plate as a transparent material is chemically stable, has excellent surface hardness, withstands high temperatures of about 500 ° C to 700 ° C, and has excellent electrical insulation and optical properties. Not only as a window glass material for aircraft, but also as an optical component, an electrical component, an electronic component, and the like. In particular,
Recently, an electrically conductive glass plate having an electrically conductive coating formed on the surface of a glass plate has been used as a display element such as a liquid crystal element, an electrochromic element, an electroluminescent element, or an amorphous solar cell substrate. As the glass substrate for these conductive glass plates, soda lime silica glass plate, which is the most widely used and inexpensive, tends to be used, but this soda lime silica glass plate is compositionally about 10 to 20 wt%. Since it contains alkali components such as sodium and potassium, it has a drawback that the performance of the coated conductive film deteriorates due to the diffusion of alkali ions from the glass substrate to the surface after long-term use. For example, white turbidity may occur in the conductive film of the conductive glass plate, the transparency may decrease, the resistance value of the conductive film may increase, or the chemical and physical durability may decrease.

すなわち、液晶表示素子では、ガラスから拡散してきた
アルカリにより表示電極表面で酸化還元反応が起り透明
電極材料である酸化インジウム膜(ITO膜)、または酸
化錫膜(ネサ膜)を変質させ、更には液晶自体も電気分
解を起して劣化する。エレクトロクロミック素子でも同
様な理由で電極が損耗しエレクトロクロミック材料であ
る酸化タングステンや酸化モリブデンの耐久性の低下の
原因となり素子を劣化させる。また電場発光素子の場合
にも拡散によってガラス表面から出てきたアルカリは電
導膜を貫通して蛍光体材料に入りこみ発光効率や発光色
までも変化させる。更にアモルファス太陽電池の場合に
は、電導膜の抵抗値が増大し、光電変換効率が著しく低
下してしまうし、時には電極を貫通して出てきたアルカ
リはアモルファスシリコン中に拡散して変換効率を低下
させる恐れもあるとされている。
That is, in the liquid crystal display element, the alkali that diffuses from the glass causes a redox reaction on the surface of the display electrode to change the quality of the transparent electrode material, the indium oxide film (ITO film) or the tin oxide film (nesa film). The liquid crystal itself also undergoes electrolysis and deteriorates. Even in the electrochromic device, the electrode is worn out for the same reason, and the durability of the electrochromic material such as tungsten oxide or molybdenum oxide is deteriorated to deteriorate the device. Also in the case of an electroluminescent device, the alkali that has emerged from the glass surface due to diffusion penetrates the conductive film and enters the phosphor material to change the luminous efficiency and the emission color. Furthermore, in the case of an amorphous solar cell, the resistance value of the conductive film increases and the photoelectric conversion efficiency decreases significantly, and sometimes the alkali that penetrates through the electrode diffuses into the amorphous silicon to improve the conversion efficiency. It is said that there is a risk of lowering it.

あるいは又、ソーダライムシリカガラスのようなアルカ
リ含有ガラスは、高温処理時にアルカリイオンが移動し
やすくなる傾向があり、電導性ガラス、あるい各種コー
トガラスの製造時の高温処理時のアルカリイオンの拡散
により、電導膜、あるいは各種コート膜の性能が低下す
るという欠点も生じる。
Alternatively, in alkali-containing glass such as soda lime silica glass, alkali ions tend to move during high temperature treatment, and diffusion of alkali ions during high temperature treatment during production of conductive glass or various coated glasses. As a result, there is a drawback that the performance of the conductive film or various coated films is deteriorated.

かかる欠点の解決法として代表的なのは、通常のソーダ
ライムシリカガラス表面に何らかのアルカリ拡散を阻止
する薄膜を形成する方法であり、シリカ膜が一般に用い
られている。酸化ケイ素膜(例えばSiO2膜)をアルカリ
拡散防止に用いる理由は膜がアモルファスで、この上に
別の薄膜たとえば電導膜等を形成する場合、実質的にガ
ラス上に形成したと同じ膜を形成できることと酸化ケイ
素膜の屈折率がガラスよりも若干低いがガラスに近く、
又通常板ガラスよりも広い範囲の光に対して、透明であ
るためにガラスの透明性が損なわれないことによる。
A typical solution to this drawback is to form a thin film on the surface of ordinary soda lime silica glass to prevent alkali diffusion, and a silica film is generally used. The reason why a silicon oxide film (eg, SiO 2 film) is used to prevent alkali diffusion is that the film is amorphous, and when another thin film, such as a conductive film, is formed on top of this, the same film as that formed on glass is formed. What can be done and the refractive index of the silicon oxide film is slightly lower than glass, but close to glass,
In addition, the transparency of glass is not impaired because it is transparent to a wider range of light than that of ordinary plate glass.

[発明の解決しようとする課題] しかしながら、アルカリバリアー膜の上に形成される電
導膜が大面積にわたり均一な膜を高速で形成可能な直流
スパッタリング法で成膜されているのに対し、酸化ケイ
素膜は、Siターゲットを用いて直流スパッタリング法で
成膜しようとすると、スパッタ中にSiターゲットの表面
が酸化されて電導性が低下し、スパッタを安定的に持続
させることができないため直流スパッタリング法では成
膜できず、この為酸化物ターゲットを用いたRFスパッタ
リング法やCVD法等で成膜されていた。
[Problems to be Solved by the Invention] However, while the conductive film formed on the alkali barrier film is formed by the direct current sputtering method capable of forming a uniform film over a large area at high speed, silicon oxide is used. If you try to form a film by a DC sputtering method using a Si target, the surface of the Si target will be oxidized during sputtering and the electrical conductivity will decrease, making it impossible to maintain stable sputtering. Since the film could not be formed, the film was formed by the RF sputtering method or the CVD method using the oxide target.

このため電導膜の形成方法とは別に二酸化ケイ素膜のRF
スパッタリングのチューニングやスパッタ雰囲気制御等
が必要とされ、あるいは別の装置でCVD法により成膜し
なくてはならないため、インラインで電導膜と連続して
二酸化ケイ素膜を形成することができず、生産性に劣る
という課題を有していた。
Therefore, the RF of the silicon dioxide film is different from the method of forming the conductive film.
Since it is necessary to tune the sputtering and control the sputtering atmosphere, or to form a film by the CVD method using another device, it is not possible to form a silicon dioxide film continuously with the conductive film in-line. It had the problem of being inferior in sex.

[課題を解決する為の手段] 本発明は上述の課題に基づき直流スパッタリング法で成
膜できる新規なアルカリバリアー膜を見出してなされた
ものであって、アルカリ含有ガラスの表面に、該ガラス
からのアルカリ拡散を抑制するアルカリバリアー膜、及
び電導膜を順次積層した電導性ガラスであって、上記ア
ルカリバリアー膜は、直流スパッタリング法により成膜
され、Zr,Hf,Nb,Sn,Laのうち少なくとも1種の金属とSi
とを含む酸化物を主成分とするアモルファスな膜であっ
て、該膜中におけるSi原子の含有割合は、前記金属とSi
との総和に対してSiが5原子以上96原子以下であること
を特徴とする電導性ガラスおよびその製造方法を提供す
るものである。
[Means for Solving the Problems] The present invention has been made based on the above problems by finding a new alkali barrier film that can be formed by a direct current sputtering method. An alkali barrier film for suppressing alkali diffusion, and a conductive glass in which a conductive film is sequentially laminated, wherein the alkali barrier film is formed by a DC sputtering method, and at least one of Zr, Hf, Nb, Sn, and La is formed. Seed metal and Si
An amorphous film containing an oxide containing as a main component, wherein the content ratio of Si atoms in the film is
The present invention provides an electrically conductive glass, characterized in that Si is 5 atoms or more and 96 atoms or less, and a method for producing the same.

本発明のアルカリバリアー膜は、Zr,Hf,Nb,Sn,Laのうち
少なくとも1種とSiを含む酸化物を主成分とするアルカ
リバリアー膜を主成分とする膜である。又、本発明のア
ルカリバリアー膜は所望によりTi,Ta,Mo,W,Crのうち少
なくとも1種を含んでいても良い。
The alkali barrier film of the present invention is a film whose main component is an alkali barrier film whose main component is an oxide containing at least one of Zr, Hf, Nb, Sn and La and Si. Further, the alkali barrier film of the present invention may contain at least one of Ti, Ta, Mo, W and Cr, if desired.

本発明のアルカリバリアー膜の組成としては、Zr,Hf等
の金属合計量95原子に対してSi5原子以上の割合でSiを
含有している。Si含有量がこの割合未満だと膜が結晶質
となりアルカリバリアー能が顕著に低下するからであ
る。又、Zr等の金属の合計量4原子に対してSi96原子以
下の割合でSiを含有している。Si含有量がこの割合を超
えるだと、ターゲットの表面酸化により、安定的に直流
スパッタリング法で成膜できなくなる。すなわち、本発
明におけるアルカリバリアー膜は、Zr,Hf,Nb,Sn,Laのう
ち少なくとも1種の金属とSiとを含み、該膜中における
Si原子の含有割合は、前記金属とSiとの総和に対してSi
が5原子%以上96原子%以下である。
As the composition of the alkali barrier film of the present invention, Si is contained at a ratio of 5 atoms or more with respect to the total amount of 95 atoms of metals such as Zr and Hf. This is because if the Si content is less than this proportion, the film becomes crystalline and the alkali barrier ability is significantly reduced. Further, Si is contained at a ratio of 96 atoms or less to a total amount of 4 atoms of metals such as Zr. If the Si content exceeds this ratio, the target cannot be stably deposited by the DC sputtering method due to the surface oxidation of the target. That is, the alkali barrier film in the present invention contains at least one metal selected from Zr, Hf, Nb, Sn and La and Si, and
The content ratio of Si atoms is Si based on the sum of the metal and Si.
Is 5 at% or more and 96 at% or less.

本発明のアルカリバリアー膜の屈折率はその組成により
自由に調節することができる。金属としてZrを用いた場
合のアルカリバリアー膜の組成による屈折率変化を表1
に示す。
The refractive index of the alkali barrier film of the present invention can be freely adjusted by its composition. Table 1 shows the change in refractive index depending on the composition of the alkali barrier film when Zr is used as the metal.
Shown in.

従って、電導膜としてITO膜(錫を含有する酸化インジ
ウム膜)等の透明電極が形成された表示素子等の透明電
極板としての電導性ガラスの場合には、本発明のアルカ
リバリアー膜の組成をかかる透明電極と同様の屈折率に
なるようにすれば、アルカリバリアー膜上に透明電極パ
ターンが形成された部分と透明電極が形成されずにアル
カリバリアー膜のみが形成された部分との屈折率の差が
生じないため、透明電極パターンが目立たず、いわゆる
透明電極パターンの“骨見え”現象を防止できる。例え
ば、ガラス板/ZrとSiを含む酸化物からなるアルカリバ
リアー膜/ITO膜の構成の電導性ガラスにおいては、ITO
膜の屈折率約1.9に合わせて表1よりZr:Si=70:30程度
とすればよい。あるいはディスプレー用素子等の製造に
おいて、位置合せの点で、透明電極パターンが見える方
が好まれるような場合にはITO膜と異なる屈折率とする
のが適当であり、Siの割合を多くして低屈折率とするこ
ともできる。このように、本発明のアルカリバリアー膜
の組成は、その上に形成される電導膜の屈折率に応じて
適宜選択することができる。
Therefore, in the case of conductive glass as a transparent electrode plate of a display element or the like having a transparent electrode such as an ITO film (tin-containing indium oxide film) as a conductive film, the composition of the alkali barrier film of the present invention is If the refractive index is the same as that of the transparent electrode, the refractive index of the portion where the transparent electrode pattern is formed on the alkali barrier film and the portion where only the alkali barrier film is formed without forming the transparent electrode are Since there is no difference, the transparent electrode pattern is inconspicuous, and the so-called "bone-like" phenomenon of the transparent electrode pattern can be prevented. For example, in a conductive glass having a structure of glass plate / alkali barrier film / ITO film made of oxide containing Zr and Si, ITO
According to the refractive index of the film of about 1.9, from Table 1, Zr: Si = 70: 30 may be set. Alternatively, in the manufacture of display elements, etc., in terms of alignment, when it is desired to see the transparent electrode pattern, it is appropriate to set the refractive index different from that of the ITO film, and increase the proportion of Si. It can also have a low refractive index. As described above, the composition of the alkali barrier film of the present invention can be appropriately selected according to the refractive index of the conductive film formed thereon.

本発明のアルカリバリアー膜の膜厚は、十分なアルカリ
バリアー能が発揮されるように、50Å以上とするのが好
ましい。中でも、100Å〜5000Åの範囲が最も実用的で
ある。
The thickness of the alkali barrier film of the present invention is preferably 50 Å or more so that a sufficient alkali barrier ability is exhibited. Of these, the range of 100Å to 5000Å is the most practical.

また、本発明の電導性ガラスに適用できるガラスとして
は、最も汎用されているNaやKを10〜20wt%含むソーダ
ライムシリカ・ガラスは勿論、その他各種アルカリ含有
ガラス等が挙げられる。
Further, as the glass applicable to the conductive glass of the present invention, not only the most widely used soda lime silica glass containing 10 to 20 wt% of Na or K, but also various other alkali-containing glasses can be cited.

本発明の電導性ガラスにおいて、上述のアルカリバリア
ー膜上に形成される電導膜としては、ITO膜、FやSb等
がドープされたSnO2膜、Al等がドープされたZnO膜等の
透明電導性酸化物膜や、Ag,Au等の電導性金属膜等、ア
ルカリイオンによって劣化する可能性のある電導膜であ
れば良く、特に限定されない。
In the conductive glass of the present invention, the conductive film formed on the alkali barrier film is a transparent conductive film such as an ITO film, a SnO 2 film doped with F or Sb, or a ZnO film doped with Al. There is no particular limitation as long as it is a conductive film such as a conductive oxide film or a conductive metal film such as Ag or Au, which may be deteriorated by alkali ions.

[実施例] 実施例1 10cm×10cm×3mmのアルカリ成分R2O(R:Na,K)を15%含
む普通ガラス板(ソーダ・ライムシリカガラス板)を洗
剤で十分に洗浄し、水洗乾燥した。このガラス板をスパ
ッタリング装置の真空槽内に配置して同槽内を1×10-5
Torrまで排気した後、ZrとSiからなるターゲット(Zr:S
i=10:90)を2×10-3Torrのアルゴンと酸素の混合ガス
中で直流スパッタリングを行なって、Zr0.1Si0.9O2膜を
約1000Å形成した。
Example 1 An ordinary glass plate (soda / lime silica glass plate) containing 15% of 10 cm × 10 cm × 3 mm alkali component R 2 O (R: Na, K) was thoroughly washed with a detergent, washed with water and dried. did. This glass plate is placed in the vacuum chamber of the sputtering system and the inside of the chamber is set to 1 × 10 -5.
After exhausting to Torr, a target composed of Zr and Si (Zr: S
i = 10: 90) was subjected to DC sputtering in a mixed gas of 2 × 10 −3 Torr of argon and oxygen to form a Zr 0.1 Si 0.9 O 2 film of about 1000 Å.

比較例1 実施例1と同様のガラス板にSiH4とO2ガスを用いてCVD
法によってSiO2膜を1000Å形成した。
Comparative Example 1 CVD using SiH 4 and O 2 gas on the same glass plate as in Example 1
A SiO 2 film of 1000 Å was formed by the method.

実施例1品と比較例1品をそれぞれ純水に接触させて90
℃に24時間保持した後、純水中に溶出したNa+の量を測
ってアルカリバリアー性を調べたところ実施例1品では
0.60μg/cm2、比較例1品では0.61μg/cm2であった。
又、実施例1品と比較例1品をそれぞれ5%NaOHで洗浄
し、次に純水に室温で24時間接触させて純水中に溶出し
たNa+の量(上記洗浄中に吸着したNa+の量)を測ってア
ルカリ吸着性を調べたところ、実施例1品で0.13μg/cm
2、比較例1品で0.14μg/cm2であった。このことから、
実施例1品は比較例とほぼ同等の特性があることがわか
った。
The product of Example 1 and the product of Comparative Example 1 were each brought into contact with pure water to obtain 90
After keeping at ℃ for 24 hours, the amount of Na + eluted in pure water was measured to examine the alkali barrier property.
It was 0.60 μg / cm 2 , and the product of Comparative Example 1 was 0.61 μg / cm 2 .
Further, the product of Example 1 and the product of Comparative Example 1 were each washed with 5% NaOH, and then contacted with pure water at room temperature for 24 hours to elute the amount of Na + eluted in the pure water (the Na adsorbed during the cleaning). The amount of + ) was measured to check the alkali adsorptivity, and it was 0.13 μg / cm in Example 1 product.
2 , the product of Comparative Example 1 was 0.14 μg / cm 2 . From this,
It was found that the product of Example 1 has substantially the same characteristics as the comparative example.

実施例2 実施例1と同様にして、Zr0.1Si0.9O2膜を約200Å形成
した。
Example 2 In the same manner as in Example 1, a Zr 0.1 Si 0.9 O 2 film was formed to a thickness of about 200 Å.

実施例3 ターゲットとしてZrSi2ターゲット(Zr:Si=1:2)を用
い、他は実施例1と同様にして、Zr0.33Si0.66O2膜を約
200Å形成した。
ZrSi 2 target as in Example 3 target (Zr: Si = 1: 2 ) with the other in the same manner as in Example 1, about a Zr 0.33 Si 0.66 O 2 film
200Å formed.

実施例4 実施例3と同様にして、Zr0.33Si0.66O2膜を約500Å形
成した。
Example 4 In the same manner as in Example 3, a Zr 0.33 Si 0.66 O 2 film was formed to a thickness of about 500 Å.

実施例2〜4品につき、それぞれ純水に接触させて、85
℃に24時間保存した後、アルカリバリアー性およびアル
カリ吸着性を測定したところ表2のようになった。
Each of Examples 2 to 4 was contacted with pure water to obtain 85
After storing at 24 ° C. for 24 hours, the alkali barrier property and alkali adsorptivity were measured and the results are shown in Table 2.

実施例1〜4品につき、直流スパッタリング法で各アル
カリバリアー膜を形成後、かかるアルカリバリアー膜上
に直流スパッタリング法により連続してITO膜を形成
し、その後、90℃に24時間保存したが、ITO膜の外観変
化はなかった。
For each of the products of Examples 1 to 4, after forming each alkali barrier film by a DC sputtering method, an ITO film was continuously formed on the alkali barrier film by a DC sputtering method, and then stored at 90 ° C. for 24 hours. There was no change in the appearance of the ITO film.

又、Hf,Nb,Sn,LaをZrの代わりに用いた場合でも上記実
施例と同様の結果を示し、アルカリバリアー性能が確認
された。
Further, even when Hf, Nb, Sn, and La were used instead of Zr, the same results as in the above-mentioned examples were shown, and the alkali barrier performance was confirmed.

[作用] 本発明において、Zr,Hf等の金属とSiからなるターゲッ
トにおいて、Zr,Ti,Ta,Hf,Mo,W,Nb,La,Cr等は大部分珪
素化合物として、又、SnはSi-Sn合金として存在し、Si
に比べ酸素に対する活性が小さいため酸化されにくく、
直流スパッタリング中のターゲットの表面酸化による導
電性の低下を抑制するように働くため、直流スパッタリ
ング法で安定的に成膜可能であると考えられる。
[Operation] In the present invention, in a target made of metal such as Zr and Hf and Si, Zr, Ti, Ta, Hf, Mo, W, Nb, La and Cr are mostly silicon compounds, and Sn is Si. -Exists as Sn alloy, Si
Less active than oxygen as compared to
Since it works to suppress the decrease in conductivity due to surface oxidation of the target during DC sputtering, it is considered that the film can be stably formed by the DC sputtering method.

[発明の効果] 本発明の電導性ガラスのアルカリバリアー膜は、直流ス
パッタリング法により成膜できるので、大面積にわたり
均一な膜を高速で安定的に形成し提供することができ
る。これは、アルカリバリアー膜上に形成される電導膜
を直流スパッタリング法で形成する場合にはインライン
式でアルカリバリアー膜と電導膜を連続して成膜できる
ので特に生産性の上で大きな利点となる。
EFFECT OF THE INVENTION Since the alkali barrier film of the conductive glass of the present invention can be formed by the DC sputtering method, a uniform film over a large area can be stably formed at high speed and provided. This is a great advantage especially in terms of productivity because the alkali barrier film and the conductive film can be continuously formed by an in-line method when the conductive film formed on the alkali barrier film is formed by the DC sputtering method. .

本発明のアルカリバリアー膜付電導性ガラスは、液晶素
子、エレクトロクロミック素子、電場発光素子などの表
示素子やアモルファス太陽電池基板等に用いられる電導
性ガラスのアルカリ拡散防止膜として特に最適であり、
表1からわかるように耐熱性も有しており、かかる表示
素子、太陽電池等の製造過程やその後の種々の環境条件
に対しても安定で劣化することがない。勿論これらの他
にも、自動車、航空機、鉄道車輌その他各種交通車輌
用、建築用、各種装置用、光学部品用、電気部品用、電
子部品用のガラス板に電導性被膜、その他各種機能を持
った被膜を形成する際の下地コートに対し有用に適用で
きるものである。
The conductive glass with an alkali barrier film of the present invention is particularly suitable as a liquid crystal element, an electrochromic element, a display element such as an electroluminescent element or an alkali diffusion preventive film of a conductive glass used for an amorphous solar cell substrate or the like,
As can be seen from Table 1, it also has heat resistance, and is stable and does not deteriorate even in the manufacturing process of such display elements and solar cells and in various environmental conditions thereafter. Of course, in addition to these, it has a conductive coating on glass plates for automobiles, aircraft, railway vehicles and other various transportation vehicles, construction, various devices, optical parts, electric parts, electronic parts, and various other functions. It can be usefully applied to a base coat when forming a coating.

又、液晶セル等の周辺をシールする際、シール剤とガラ
スの間に本発明のアルカリバリアー膜を介在させると、
アルカリによるシール剤の剥離をも防止することができ
る。
Further, when the periphery of a liquid crystal cell or the like is sealed, if the alkali barrier film of the present invention is interposed between the sealant and glass,
It is also possible to prevent peeling of the sealant due to alkali.

又、本発明のアルカリバリアー膜はZr等の金属とSiの割
合を変えることにより所望の屈折率とすることができる
ので、上記各種用途に広範囲に利用できる。
Further, since the alkali barrier film of the present invention can be made to have a desired refractive index by changing the ratio of metal such as Zr and Si, it can be widely used for the above various uses.

又、本発明のアルカリバリアー膜は、アルカリ吸着性も
低いため、液晶セル等の製造において、アルカリ含有液
で洗浄する工程があったとしても、十分使用できるもの
である。
Further, since the alkali barrier film of the present invention has a low alkali adsorption property, it can be sufficiently used even if there is a step of washing with an alkali-containing liquid in the production of liquid crystal cells and the like.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アルカリ含有ガラスの表面に、該ガラスか
らのアルカリ拡散を抑制するアルカリバリアー膜、及び
電導膜を順次積層した電導性ガラスであって、上記アル
カリバリアー膜は、直流スパッタリング法により成膜さ
れ、Zr,Hf,Nb,Sn,Laのうち少なくとも1種の金属とSiと
を含む酸化物を主成分とするアモルファスな膜であっ
て、該膜中におけるSi原子の含有割合は、前記金属とSi
との総和に対してSiが5原子%以上96原子%以下である
ことを特徴とする電導性ガラス。
1. A conductive glass comprising an alkali-containing glass, an alkali barrier film for suppressing alkali diffusion from the glass, and a conductive film, which are sequentially laminated on the surface of the alkali-containing glass, wherein the alkali barrier film is formed by a DC sputtering method. An amorphous film which is formed into a film and contains an oxide containing at least one metal selected from Zr, Hf, Nb, Sn and La as the main component, and the content of Si atoms in the film is Metal and Si
Si is 5 atomic% or more and 96 atomic% or less with respect to the sum of the above.
【請求項2】アルカリバリアー膜が、Ti,Ta,Mo,W,Crの
うち少なくとも1種を含有することを特徴とする請求項
1記載の電導性ガラス。
2. The conductive glass according to claim 1, wherein the alkali barrier film contains at least one of Ti, Ta, Mo, W and Cr.
【請求項3】アルカリ含有ガラスの表面に、Zr,Hf,Nb,S
n,Laのうち少なくとも1種の金属とSiとを含み、かつ、
Si原子の含有割合は、前記金属とSiとの総和に対してSi
が5原子%以上96原子%以下である酸化物を主成分とす
るアモルファスなアルカリバリアー膜を直流スパッタリ
ング法により形成し、次いで電導膜を形成することを特
徴とする電導性ガラスの製造方法。
3. Zr, Hf, Nb, S on the surface of alkali-containing glass
contains at least one metal of n and La and Si, and
The content ratio of Si atoms is Si based on the sum of the metal and Si.
A method for producing a conductive glass, which comprises forming an amorphous alkali barrier film containing an oxide whose main content is 5 at% or more and 96 at% or less as a main component by a DC sputtering method, and then forming a conductive film.
【請求項4】電導膜を、アルカリバリアー膜と連続して
直流スパッタリング法によって形成することを特徴とす
る請求項3記載の電導性ガラスの製造方法。
4. The method for producing an electrically conductive glass according to claim 3, wherein the electrically conductive film is formed continuously with the alkali barrier film by a DC sputtering method.
JP2161413A 1988-03-03 1990-06-21 Conductive glass and manufacturing method thereof Expired - Fee Related JPH0780692B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SG1996006789A SG43272A1 (en) 1989-08-01 1990-08-01 Film based on silicon dioxide and production thereof
DE69027590T DE69027590T2 (en) 1989-08-01 1990-08-01 Process for the production of layers based on silicon dioxide using DC sputtering and target therefor
PCT/JP1990/000982 WO1991002102A1 (en) 1989-08-01 1990-08-01 Film based on silicon dioxide and production thereof
EP90911700A EP0436741B1 (en) 1989-08-01 1990-08-01 DC sputtering method and target for producing films based on silicon dioxide
KR1019910700334A KR0185716B1 (en) 1989-08-01 1991-04-01 Laminated glass structure
US07/936,281 US5354446A (en) 1988-03-03 1992-08-28 Ceramic rotatable magnetron sputtering cathode target and process for its production
US08/323,579 US5605609A (en) 1988-03-03 1994-10-17 Method for forming low refractive index film comprising silicon dioxide
US08/429,845 US5772862A (en) 1988-03-03 1995-04-27 Film comprising silicon dioxide as the main component and method for its productiion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-197993 1989-08-01
JP19799389 1989-08-01

Publications (2)

Publication Number Publication Date
JPH03232745A JPH03232745A (en) 1991-10-16
JPH0780692B2 true JPH0780692B2 (en) 1995-08-30

Family

ID=16383731

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2161413A Expired - Fee Related JPH0780692B2 (en) 1988-03-03 1990-06-21 Conductive glass and manufacturing method thereof
JP16141490A Expired - Lifetime JP2917432B2 (en) 1989-08-01 1990-06-21 Method for producing conductive glass
JP2201149A Expired - Fee Related JP2669120B2 (en) 1989-08-01 1990-07-31 Method for forming a film containing silicon dioxide as a main component
JP20114890A Expired - Fee Related JP2917456B2 (en) 1989-08-01 1990-07-31 Glowless glass

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP16141490A Expired - Lifetime JP2917432B2 (en) 1989-08-01 1990-06-21 Method for producing conductive glass
JP2201149A Expired - Fee Related JP2669120B2 (en) 1989-08-01 1990-07-31 Method for forming a film containing silicon dioxide as a main component
JP20114890A Expired - Fee Related JP2917456B2 (en) 1989-08-01 1990-07-31 Glowless glass

Country Status (1)

Country Link
JP (4) JPH0780692B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780691B2 (en) * 1989-12-26 1995-08-30 旭硝子株式会社 Glass with anti-reflection film with excellent durability
JP3486640B2 (en) * 1993-03-26 2004-01-13 独立行政法人産業技術総合研究所 Target for manufacturing superconducting thin film, method for manufacturing the same, and method for manufacturing superconductor using the same
US5403458A (en) * 1993-08-05 1995-04-04 Guardian Industries Corp. Sputter-coating target and method of use
FR2730990B1 (en) * 1995-02-23 1997-04-04 Saint Gobain Vitrage TRANSPARENT SUBSTRATE WITH ANTI-REFLECTIVE COATING
JPH08268732A (en) * 1995-03-30 1996-10-15 Central Glass Co Ltd Heat ray reflecting glass
JP4295833B2 (en) * 1995-07-31 2009-07-15 東芝ライテック株式会社 Method for producing glass molded body
US7167309B2 (en) * 2004-06-25 2007-01-23 Northrop Grumman Corporation Optical compensation of cover glass-air gap-display stack for high ambient lighting
US7153578B2 (en) * 2004-12-06 2006-12-26 Guardian Industries Corp Coated article with low-E coating including zirconium silicon oxynitride and methods of making same
WO2010048975A1 (en) * 2008-10-31 2010-05-06 Leybold Optics Gmbh Hafnium oxide coating
JP5559483B2 (en) * 2009-03-17 2014-07-23 株式会社ブリヂストン Heat ray shielding glass and multilayer glass using the same
JP5620334B2 (en) * 2011-05-18 2014-11-05 株式会社神戸製鋼所 CIGS solar cells
JP2014004700A (en) * 2012-06-22 2014-01-16 Kyushu Institute Of Technology Method of decorative treatment of metal surface
WO2014134204A1 (en) * 2013-02-27 2014-09-04 Lotus Applied Technology, Llc Mixed metal-silicon-oxide barriers
JP6619139B2 (en) * 2014-12-26 2019-12-11 株式会社マテリアル・コンセプト Protective glass for solar cell and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100943A (en) * 1980-12-10 1982-06-23 Asahi Glass Co Ltd Substrate coated with silicon oxide having excellent durability
JPS61167546A (en) * 1985-12-25 1986-07-29 東レ株式会社 Laminated film
JPS62216944A (en) * 1985-12-06 1987-09-24 ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of window glass with high permeability characteristics within visible spectrum scope and high reflective characteristics against heat ray

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138512A (en) * 1976-05-14 1977-11-18 Kogyo Gijutsuin Glass having excellent alkali resistance and production thereof
DE3417732A1 (en) * 1984-05-12 1986-07-10 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR APPLYING SILICON-CONTAINING LAYERS TO SUBSTRATES BY CATODIZING AND SPRAYING CATODE FOR CARRYING OUT THE METHOD
JPS6151333A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synrhetic resin body having permeability resistance
JPS6273202A (en) * 1985-09-27 1987-04-03 Hamamatsu Photonics Kk Production of thin optical film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100943A (en) * 1980-12-10 1982-06-23 Asahi Glass Co Ltd Substrate coated with silicon oxide having excellent durability
JPS62216944A (en) * 1985-12-06 1987-09-24 ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of window glass with high permeability characteristics within visible spectrum scope and high reflective characteristics against heat ray
JPS61167546A (en) * 1985-12-25 1986-07-29 東レ株式会社 Laminated film

Also Published As

Publication number Publication date
JPH03177568A (en) 1991-08-01
JPH03232745A (en) 1991-10-16
JP2917456B2 (en) 1999-07-12
JP2669120B2 (en) 1997-10-27
JP2917432B2 (en) 1999-07-12
JPH03232746A (en) 1991-10-16
JPH03164449A (en) 1991-07-16

Similar Documents

Publication Publication Date Title
EP0071865B1 (en) Glass body provided with an alkali diffusion-preventing silicon oxide layer
US5605609A (en) Method for forming low refractive index film comprising silicon dioxide
US6180247B1 (en) Thermally-insulating coating system
JP2917432B2 (en) Method for producing conductive glass
JP3453805B2 (en) Transparent conductive film
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPH08336923A (en) Heat resistant window or window shield having high transmission and low radiation rate and manufacture thereof
HU224414B1 (en) Glazing panel
HU224415B1 (en) Glazing panel
NL1017143C2 (en) Glass object and glass substrate for a picture plate.
JPH02168507A (en) Fluorine doped tin oxide film and method of reducing resistance thereof
JP2000109342A5 (en)
HU223651B1 (en) Glazing panel
KR0179462B1 (en) Alkali metal diffusion barrier layer
JP3392000B2 (en) Insulated glass
CN1980868A (en) Sheet of glass for application of a metallic deposit and resistant to a coloration possibly induced by such a deposit
JP2004050643A (en) Thin film laminated body
JPH06191894A (en) Electric conductive glass and its production
JPH0742572B2 (en) Transparent conductive film
JPH01227307A (en) Transparent electric conductor
JP2000159546A (en) Heat ray reflecting glass and multilayer glass using the same
JPH07130307A (en) Substrate provided with anti-reflection film
JPS6230148B2 (en)
JPS61225713A (en) Transparent electroconductive film and making thereof
JP2941086B2 (en) Transparent electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees