JPS6230148B2 - - Google Patents

Info

Publication number
JPS6230148B2
JPS6230148B2 JP56122420A JP12242081A JPS6230148B2 JP S6230148 B2 JPS6230148 B2 JP S6230148B2 JP 56122420 A JP56122420 A JP 56122420A JP 12242081 A JP12242081 A JP 12242081A JP S6230148 B2 JPS6230148 B2 JP S6230148B2
Authority
JP
Japan
Prior art keywords
film
glass
alkali
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56122420A
Other languages
Japanese (ja)
Other versions
JPS5826051A (en
Inventor
Mamoru Mizuhashi
Yoshio Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12242081A priority Critical patent/JPS5826051A/en
Publication of JPS5826051A publication Critical patent/JPS5826051A/en
Publication of JPS6230148B2 publication Critical patent/JPS6230148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルカリ含有ガラスのガラス下地か
らアルカリイオン拡散するのを防ぐアルカリ拡散
防止シリカ膜付ガラス体の改良に関するものであ
る。 透明材料としてのガラス板は、化学的に安定で
表面硬度に優れ、かつ500℃〜700℃程度までの高
温に耐え、更に電気絶縁性、化学的性質が優れて
いるため、建築用、車輌用、航空機用の窓ガラス
材料としては勿論のこと、光学部品、電気部品、
電子部品等に用いられている。特に、最近ではガ
ラス板面に電導性被膜を形成した電導性ガラス板
が、液晶素子、エレクトロクロミツク素子、電場
発光素子などの表示素子やアモルフアス太陽電池
基板等に用いられている。これら電導性ガラス板
のガラス基板としては、最も汎用され、価格的に
も安価なソーダライムシリカガラス板が使用され
る傾向があるが、このソーダライムシリカガラス
板は組成的に10〜20wt%程度のナトリウム、カ
リウム等のアルカリ成分を含んでいるため、長期
間の使用によりガラス下地からの表面へのアルカ
リイオンの拡散によるコーテイングされた電導膜
の性能劣化を起すという欠点が生ずる。例えば、
電導性ガラス板の電導膜に白濁が生じたり透明度
が低下したり、あるいは電導膜の抵抗値が増大し
たり、化学的、物理的耐久性が低下したりする。 すなわち、液晶表示素子では、ガラスから拡散
してきたアルカリにより表示電極表面で酸化還元
反応が起り透明電極材料である酸化インジウム膜
(ITO膜)、または酸化錫膜(ネサ膜)を変質さ
せ、更には液晶自体も電気分解を起して劣化す
る。エレクトロクロミツク素子でも同様な理由で
電極が損耗しエレクトロクロミツク材料である酸
化タングステンや酸化モリブデンの電蝕や変質の
原因となり素子を劣化させる。また電場発光素子
の場合にも拡散によつてガラス表面から出てきた
アルカリは電導膜を貫通して蛍光体材料に入りこ
み発光効率や発光色までも変化させる。更にアモ
ルフアス太陽電池の場合には、電極を貫通して出
てきたアルカリはアモルフアスシリコン中に拡散
して変換効率を低下させる恐れがあるとされてい
る。 あるいは又、ソーダライムシリカガラスの様な
アルカリ含有ガラスは、高温処理時にアルカリイ
オンが移動しやすくなる傾向があり、電導性ガラ
ス、あるいは各種コートガラスの構造時の高温処
理時のアルカリイオンの拡散により電導膜あるい
は各種コート膜の性能が低下するという欠点も生
じる。 普通板ガラスのこれらの欠点を補なうために従
来3通りの解決法が用意されている。ひとつはア
ルカリ拡散が問題にならないような組成の板ガラ
ス、例えばシリカガラス、高シリカガラス(バイ
コール)、無アルカリのアルミノシリケートガラ
ス(CGW#7059など)、低アルカリのボロシリケ
ート(パイレツクスなど)を用いる方法である。
しかしながらこれらのガラスは高価であり、また
常に容易に入手しうるものでなく、また表面平滑
性の点でも劣るために表面を再研摩したりする必
要がある。実際極端な場合には薄い板ガラスの形
で入手することが困難なために数ミリ厚のガラス
を削り、研摩して1mmの板ガラスを得るという事
も行なわれている。これは材料資源及びエネルギ
ーの節約の点から誠に好ましからざる事態であ
る。 2番目の解決法はソーダライムシリカガラス表
面層からアルカリ成分をあらかじめ除去ないし減
少させる方法で、高温で硫黄粉と接触させる方法
や真空中で300℃以上の高温にして直流電界をか
けてNa+イオンをITO(ネサ)コート面と反対側
に掃き寄せる方法、更に塩酸や硫黄などの酸中で
煮る方法などが提唱されている。この方法は時間
がかかる事と再現性に充分でない点があることで
ある。 3番目の解決法は通常のソーダライムシリカガ
ラス表面に何らかのアルカリ拡散を阻止する薄膜
を形成する方法であり、シリカ膜が一般に用いら
れている。酸化ケイ素膜(例えばSiO2膜)をア
ルカリ拡散防止に用いる理由は膜がアモルフアス
で、この上に別の薄膜たとえば電導膜などを形成
する場合、実質的にガラス上に形成したと同じ膜
を形成できることと酸化ケイ素膜の屈折率がガラ
スよりも若干低いがガラスに近く、また通常板ガ
ラスよりも広い範囲の光に対して透明であるため
にガラスの透明性が損われないことによる。以上
にのべた酸化ケイ素膜は広義であり、詳しくは純
粋な酸化ケイ素膜の場合と適当な不純物を混入し
た酸化ケイ素膜例えば硼素や燐を微量添加してア
ルカリイオンの拡散の阻止能力を高めた酸化ケイ
素膜がある。この様なアルカリ拡散防止酸化ケイ
素膜を形成する方法としては、膜を緻密化してア
ルカリ阻止能を高めることができる様にできるだ
け高真空下においてスパツター法、真空蒸着法あ
るいはイオンプレーテイング法又はCVD法によ
り純粋なSiOx(0<x≦2)等の酸化ケイ素膜
を形成する方法、ゾル/ゲル法により同上の純粋
な酸化ケイ素膜を形成する方法、あるいは、硼素
や燐の添加物の混入が容易なゾル/ゲル法により
硼素含有酸化ケイ素膜や燐含有酸化ケイ素膜を形
成する方法などが代表的な方法として挙げられ
る。 この様に各種方法により形成されるアルカリ拡
散防止酸化ケイ素膜は、それぞれ効果の程度の違
いこそあれ、ある程度アルカリ拡散阻止効果があ
るが、いまだ充分ではなく、又製造方法、製造条
件等により性能が大きく異なるという欠点を有し
ていた。 本発明者らは、上記した様に従来のアルカリ拡
散防止酸化ケイ素膜における諸欠点、例えばアル
カリ拡散防止酸化ケイ素膜形成時の製造条件制
御、組成制御、原料調整等の製造上の制約が厳し
いという欠点がなく、かつ従来のアルカリ拡散防
止酸化ケイ素膜よりもアルカリ拡散防止効果が高
いアルカリ拡散防止酸化ケイ素膜について検討の
結果、酸化ケイ素膜中にシリコン(Si)と結合し
たフツ素、又はこのフツ素とシリコンと結合した
水素とを組合わせて含有させることにより、即
ち、酸化ケイ素膜中の−O−Si−O−結合の一部
にSi−F結合を存在させるか又はSi−F結合とSi
−H結合とを混在させることにより、従来におい
て優れたアルカリ拡散阻止作用を有するものとし
て知られた燐や硼素を含む酸化ケイ素膜よりも更
にガラス中のアルカリの拡散を抑制できることを
見出し、本発明として提案するに到つたものであ
る。 即ち、本発明は、アルカリ含有のガラスの表面
に、該ガラスからのアルカリ拡散を抑制するアル
カリ拡散防止酸化ケイ素膜を形成したガラスにお
いて、上記アルカリ拡散防止酸化ケイ素膜がシリ
コンと結合したフツ素又はシリコンと結合したフ
ツ素とシリコンと結合した水素とを含有すること
を特徴とするアルカリ拡散防止酸化ケイ素膜付ガ
ラス体に関するものである。 本発明のアルカリ拡散防止酸化ケイ素膜により
ガラスからのアルカリ拡散阻止能が増大する理由
は明確ではないが、酸化ケイ素膜中の−O−Si−
O−結合の一部に−Si−F結合又は−Si−F結合
と−Si−H結合とをもたせることにより酸化ケイ
素膜の網目構造が緻密化したり構造欠陥がなくな
つたりする効果、及び末端のF又はFとHが正に
帯電してNa+やK+のアルカリイオンの移動を妨害
する効果等により、ガラス内部からその表面に被
覆された被膜材料との間の濃度差あるいは電気的
な誘因によりアルカリイオンがガラス表面に浸出
するのを防止するためと考えられる。 本発明において、アルカリ拡散防止酸化ケイ素
膜中のシリコンとの結合にあずかるフツ素又はフ
ツ素と水素の含有量は、0.01〜20%の範囲が好ま
しい。更に好ましくは0.1〜10%が最適である。
かかるSi−F結合又はSi−F結合とSi−H結合の
存在は、例えば赤外分光法により確認できる。こ
の検出法を利用してアルカリ拡散量との関係を調
べた結果、上記した様に0.01%〜20%のフツ素含
有量又はフツ素及び水素含有量で優れたアルカリ
阻止能力があることが判明した。フツ素含有量又
はフツ素及び水素含有量が20%を越えると、アル
カリ拡散防止酸化ケイ素膜の硬度が低下し、膜に
傷が付きやすくなつたりして好ましくない。例え
ば、表示用素子の透明電極板にアルカリ拡散防止
酸化ケイ素膜を適用した場合には、膜の硬度の低
下のため、製造工程での取扱いの容易さの点で問
題となり好ましくない。又0.01%より少ないと、
アルカリ拡散防止能力が弱まつてくるので好まし
くない。 なお、酸化ケイ素膜中には、シリコンと結合し
たフツ素又は水素のほかにF2やH2の形で含まれ
るフツ素又は水素が存在する場合もあるが、本発
明の酸化ケイ素膜中のフツ素含有率、水素含有率
は、シリコンと結合したフツ素、又は水素、即ち
Si−F結合、又はSi−H結合になつているフツ素
又は水素の含有率を表わすものである。 本発明のアルカリ拡散防止酸化ケイ素膜の膜厚
は、充分なアルカリ拡散阻止能が発揮される様
に、50Å以上とするのが好ましい。中でも、100
Å〜5000Åの範囲が最も実用的である。 又、本発明のアルカリ拡散防止酸化ケイ素膜を
適用できるガラスとしては、最も汎用されている
NaやKを10〜20wt%含むソーダライムシリカガ
ラスは勿論、その他各種アルカリ含有ガラスが挙
げられる。 又、本発明のアルカリ拡散防止酸化ケイ素膜の
形成方法としては、真空蒸着法、スパツター法、
イオンプレーテイング法等のPVD法、CVD法、
減圧CVD法、ゾル/ゲル法のほか、各種被膜形
成法が使用できる。なお、PVD法の場合には、
蒸着源ターゲツトにSiO2を使つて被着する方法
の他にSi又はSiOを蒸着源ターゲツトに使つて反
応性蒸着又は反応性スパツターして被着する方法
などが採用される。フツ素又は水素を酸化ケイ素
被膜中に導入させる方法としては真空蒸着法、ス
パツター法、イオンプレーテイング法などの
PVD法においては真空槽の中にフツ素ガス、フ
ツ素化合物ガス、又は水素ガス、水素化合物ガス
を導入して被膜形成時にSi−F結合又はSi−F結
合とSi−H結合ができる様にする方法、又、
CVD法においてはフツ素ガス、フツ素化合物ガ
ス、又はH2ガス、水素化合物ガスと酸化ケイ素
を生成するケイ素化合物ガスとを接触させてSi−
F結合又はSi−F結合とSi−H結合ができる様に
する方法が代表的な方法として挙げられるが、こ
れらのほかに、酸化ケイ素膜を形成後フツ素雰囲
気中又はフツ素及び水素雰囲気中で熱処理する方
法とか、酸化ケイ素膜を形成後、フツ素イオン又
はフツ素イオンと水素イオンをイオン打込みによ
つて導入する方法などが挙げられる。 本発明のアルカリ拡散防止酸化ケイ素膜は、従
来の添加物を添加したアルカリ拡散防止酸化ケイ
素膜の様に添加物を固形成分の形で含んでいるの
ではなく、アモルフアス状態であり、かつその三
次元網目構造の一部にSi−F結合、又はSi−F結
合とSi−H結合を含ませてある点において、従来
のアルカリ拡散防止膜とは異なる。従つて、本発
明のアルカリ拡散酸化ケイ素膜は、固形の添加物
を含まないために、原料調整段階での作業が容易
であり、又、膜形成作業でも真空蒸着の場合に起
り易い分留や、スパツタリングでの添加成分の逸
散などの心配がなく、膜形成の作業が容易とな
る。 次に、本発明の実施例について説明する。 実施例 1 10cm×10cm×3mmのアルカリ成分R2O(R:
Na、K)を15%含む普通ガラス板(ソーダライ
ムシリカガラス板)を洗剤で充分に洗浄し、水洗
乾燥した。このガラス板の真空蒸着装置の真空槽
内に配置して同槽内を1×10-5torrまで排気した
のち、15%の水素ガス及び5%のCF4ガスを含む
アルゴンガスを導入して2×10-4torrとし、高周
波電磁界(周波数13.56MHz)をかけて導入ガス
をイオン化する一方、蒸着源(SiO2粉末)を電
子ビーム加熱法により加熱して約10Å/秒の蒸着
速度で高周波イオンプレーテイング法により約
1000ÅのSiO2膜を形成した。次いで、上記真空
槽内に乾燥空気をバリアブルリークバルブから導
入して、3×10-3torrとした後、酸化アンチモン
の添加された酸化錫を蒸着源として普通の真空蒸
着法により約2000ÅのSnO2電導膜を形成した。
なお、SiO2膜とSnO2膜の形成時の蒸着源とガラ
ス基板間の距離は40cmとし、基板温度は室温とし
た。 この様にして得られたサンプル1のフツ素含有
率、水素含有率及びアルカリ拡散阻止能を第1表
に示す。 実施例 2 実施例1と同様のガラス板を洗剤で充分に洗
浄、水洗乾燥した。このガラス板をRF2極スパツ
ター装置の真空槽内に配置して同槽内を1×
10-5torrまで排気した後15%の水素ガス及び5%
のCF4ガスを含むアルゴンガスを導入して3×
10-2torrとし、熔融石英ターゲツトを用いてRF2
極スパツター法で約1000ÅのSiO2膜を形成し
た。次にSiO2膜の形成されたガラス基板を真空
蒸着装置に移し、この真空槽内を3×10-4torrと
した後酸化アンチモンの添加された酸化錫を蒸着
源として普通の真空蒸着法により約2000Åの
SnO2電導膜を形成した。なお、スパツタリング
時のガラス基板温度は約300℃とし、蒸着時のガ
ラス基板温度は室温とした。 この様にして得られたサンプル2のフツ素含有
率、水素含有率及びアルカリ拡散阻止能を第1表
に示す。 実施例 3 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板をRFマグネト
ロンスパツター装置の真空槽内に配置して同槽内
を1×10-5torrまで排気した後15%の水素ガス及
び5%のCF4ガスを含むアルゴンガスを導入して
3×10-3torrとし、熔融石英ターゲツトを用いて
RFマグネトロンスパツター法で1000ÅのSiO2
を形成した。次にSiO2膜の形成されたガラス基
板を真空蒸着装置に移し、この真空槽内を3×
10-4torrとした後酸化アンチモンの添加された酸
化錫を蒸着源として普通の真空蒸着法により約
2000ÅのSnO2電導膜を形成した。なお、スパツ
タリング時のガラス基板温度は約300℃とし、蒸
着時のガラス基板温度は室温とした。 この様にして得られたサンプル3のフツ素含有
率、水素含有率及びアルカリ拡散阻止能を第1表
に示す。 実施例 4 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板面にCVD法に
より5%のSiF4とSiH4ガスとO2ガスを用いて約
1000ÅのSiO2膜を基板温度300℃、400℃、450
℃、550℃で形成した。なお、O2:(SiH4
SiF4)の比は約10:1で行なつた。次にこれら
SiO2膜の形成されたガラス基板を真空蒸着装置
の真空槽内に配し、この真空槽内を3×10-4torr
とした後酸化アンチモンの添加された酸化錫を蒸
着源として通常の真空蒸着法により約2000Åの
SnO2電導膜を形成した。なお、蒸着時のガラス
基板温度は室温とした。 これら4枚のサンプルのうち、基板温度を300
℃としてSiO2膜を形成したものをサンプル4、
基板温度を400℃としてSiO2膜を形成したものを
サンプル5、基板温度を450℃としてSiO2膜を形
成したものをサンプル6、基板温度を550℃とし
てSiO2膜を形成したものをサンプル7とした。 これら各サンプルについてのフツ素含有率、水
素含有率及びアルカリ拡散阻止能を第1表に示
す。 実施例 5 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗し乾燥した。このガラス板を真空蒸着装
置の真空槽内に配置して同槽内を1×10-5torrま
で排気したのち、SiF4ガスを導入して2×
10-4torrとするとともに真空槽を200℃に加熱し
た状態で高周波電磁界(周波数13.56MHz)をか
けて導入ガスをイオン化する一方、蒸着源
(SiO2粉末)を電子ビーム加熱法により加熱して
約10Å/秒の蒸着速度で高周波イオンプレーテイ
ング法により約1000ÅのSiO2膜を形成した。次
いで、上記真空槽内に乾燥空気をバリアブルリー
クバルブから導入して、3×10-3torrとした後、
酸化アンチモンの添加された酸化錫を蒸着源とし
て普通の真空蒸着法により約2000ÅのSnO2電導
膜を形成した。なお、SiO2膜とSnO2膜の形成時
の蒸着源とガラス基板間の距離は40cmとし、基板
温度は室温とした。 この様にして得られたサンプル8のフツ素含有
率及びアルカリ拡散阻止能を第1表に示す。 実施例 6 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板をRF2極スパツ
ター装置の真空槽内に配置して同槽内を1×
10-5torrまで排気した後SiF4ガスを導入して3×
10-2torrとするとともに真空槽を200℃に加熱し
た状態で熔融石英ターゲツトを用いてRF2極スパ
ツター法で約1000ÅのSiO2膜を形成した。次に
SiO2膜の形成されたガラス基板を真空蒸着装置
に移し、この真空槽内を3×10-4torrとした後酸
化アンチモンの添加された酸化錫を蒸着源として
普通の真空蒸着法により約2000ÅのSnO2電導膜
を形成した。なお、スパツタリング時のガラス基
板温度は約300℃とし、蒸着時のガラス基板温度
は室温とした。 この様にして得られたサンプル9のフツ素含有
率及びアルカリ拡散阻止能を第1表に示す。 実施例 7 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板をRFマグネト
ロンスパツター装置の真空槽内に配置して同槽内
を1×10-5torrまで排気した後SiF4ガスを導入し
て3×10-3torrとするとともに真空槽を200℃に
加熱した状態で熔融石英ターゲツトを用いてRF
マグネトロンスパツター法で約1000ÅのSiO2
を形成した。次にSiO2膜の形成されたガラス基
板を真空蒸着装置に移し、この真空槽内を3×
10-4torrとした後酸化アンチモンの添加された酸
化錫を蒸着源として普通の真空蒸着法により約
2000ÅのSnO2電導膜を形成した。なお、スパツ
タリング時のガラス基板温度は室温とした。 この様にして得られたサンプル10のフツ素含有
率及びアルカリ拡散阻止能を第1表に示す。 実施例 8 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板面にCVD法に
よりSiF4ガスとO2ガス及び水蒸気を用いて約
1000ÅのSiO2膜を基板温度350℃、450℃、550℃
で形成した。なお、O2:SiF4:H2Oの比は10:
1:0.1で行なつた。次にこれらSiO2膜の形成さ
れたガラ基板を真空蒸着装置の真空槽内に配し、
この真空槽内を3×10-4torrとした後酸化アンチ
モンの添加された酸化錫を蒸着源として通常の真
空蒸着法により約2000ÅのSnO2電導膜を形成し
た。なお、蒸着時のガラス基板温度は室温とし
た。 これら3枚のサンプルのうち、基板温度を350
℃としてSiO2膜を形成したものをサンプル11、
基板温度を450℃としてSiO2膜を形成したものを
サンプル12、基板温度を550℃としてSiO2膜を形
成したものをサンプル13とした。 これら各サンプルについてのフツ素含有率及び
アルカリ拡散阻止能を第1表に示す。 比較例 1 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板を真空蒸着装置
の真空槽内に配置して同槽内を5×10-5torrまで
排気したのち、蒸着源(SiO2粉末)を電子ビー
ム加熱法により加熱して約10Å/秒の蒸着速度で
通常の真空蒸着法により約1000ÅのSiO2膜を形
成した。次いで、上記真空槽内に乾燥空気をバリ
アプルリークバルブから導入して、3×10-3torr
とした後、酸化アンチモンの添加された酸化錫を
蒸着源として普通の真空蒸着法により約2000Åの
SnO2電導膜を形成した。なお、SiO2膜とSnO2
の形成時の蒸着源とガラス基板間の距離は40cmと
し、基板温度は室温とした。 この様にして得られたサンプル14のアルカリ拡
散阻止能を第1表に示す。 比較例 2 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板をRF2極スパツ
ター装置の真空槽内に配置して同槽内を1×
10-5torrまで排気した後、アルゴンガスを導入し
て3×10-2torrとし、熔融石英ターゲツトを用い
てRF2極スパツター法で約1000ÅのSiO2膜を形成
した。次にSiO2膜の形成されたガラス基板を真
空蒸着装置に移し、この真空槽内を3×10-4torr
とした後酸化アンチモンの添加された酸化錫を蒸
着源として普通の真空蒸着法により約2000Åの
SnO2電導膜を形成した。なお、スパツタリング
時のガラス基板温度は約300℃とし、蒸着時のガ
ラス基板温度は室温とした。 この様にして得られたサンプル15のアルカリ拡
散阻止能を第1表に示す。 比較例 3 実施例1と同様のガラス板を洗剤で充分に洗浄
し、水洗乾燥した。このガラス板を真空蒸着装置
の真空槽内に配置して同槽内を3×10-3torrに排
気した後、酸化アンチモンの添加された酸化錫を
蒸着源として電子ビーム加熱法により加熱しなが
ら通常の真空蒸着法により約2000ÅのSnO2電導
膜を形成した。なお、SnO2膜の形成時の蒸着源
とガラス基板間の距離は40cmとし、基板温度は室
温とした。 この様にして得られたサンプル16のアルカリ拡
散阻止能を第1表に示す。
The present invention relates to an improvement in a glass body with an alkali diffusion-preventing silica film that prevents alkali ions from diffusing from the glass base of an alkali-containing glass. Glass plates as a transparent material are chemically stable, have excellent surface hardness, can withstand high temperatures of about 500℃ to 700℃, and have excellent electrical insulation and chemical properties, so they are used for construction and vehicles. , as well as aircraft window glass materials, optical parts, electrical parts,
Used in electronic parts, etc. In particular, recently, conductive glass plates with conductive coatings formed on the glass plate surfaces have been used for display elements such as liquid crystal elements, electrochromic elements, and electroluminescent elements, amorphous solar cell substrates, and the like. As the glass substrate for these conductive glass plates, there is a tendency to use soda lime silica glass plates, which are the most commonly used and inexpensive. Since it contains alkaline components such as sodium and potassium, it has the disadvantage that the performance of the coated conductive film deteriorates due to the diffusion of alkali ions from the glass base to the surface after long-term use. for example,
The conductive film of the conductive glass plate may become cloudy or lose its transparency, or the resistance value of the conductive film may increase or its chemical and physical durability may decrease. In other words, in liquid crystal display elements, alkali diffused from glass causes a redox reaction on the surface of the display electrode, altering the indium oxide film (ITO film) or tin oxide film (NESA film), which are the transparent electrode materials, and furthermore. The liquid crystal itself also deteriorates due to electrolysis. Electrochromic elements also wear out their electrodes for the same reason, causing electrolytic corrosion and deterioration of the electrochromic materials such as tungsten oxide and molybdenum oxide, leading to deterioration of the element. Furthermore, in the case of an electroluminescent device, alkali released from the glass surface by diffusion penetrates the conductive film and enters the phosphor material, changing the luminous efficiency and even the luminous color. Furthermore, in the case of amorphous solar cells, it is said that the alkali that comes out through the electrodes may diffuse into the amorphous silicon and reduce the conversion efficiency. Alternatively, in alkali-containing glasses such as soda lime silica glass, alkali ions tend to move easily during high-temperature processing, and due to the diffusion of alkali ions during high-temperature processing in the structure of conductive glass or various coated glasses. Another drawback is that the performance of the conductive film or various coating films is degraded. Three solutions are conventionally available to compensate for these drawbacks of plain glass. One method is to use plate glass with a composition in which alkali diffusion is not a problem, such as silica glass, high silica glass (Vycor), alkali-free aluminosilicate glass (CGW#7059, etc.), or low alkali borosilicate (Pyrex, etc.). It is.
However, these glasses are expensive, not always readily available, and have poor surface smoothness, requiring the surface to be re-polished. In fact, in extreme cases, because it is difficult to obtain glass in the form of thin sheets, glass several millimeters thick is shaved and polished to obtain sheets of 1 mm. This is a very unfavorable situation from the point of view of saving material resources and energy. The second solution is to remove or reduce the alkali component from the soda lime silica glass surface layer in advance, by contacting it with sulfur powder at high temperature, or by heating it to a temperature of 300°C or higher in a vacuum and applying a DC electric field to remove Na + Methods that have been proposed include sweeping ions to the side opposite to the ITO (NESA) coated surface, and boiling them in acids such as hydrochloric acid or sulfur. This method is time consuming and has insufficient reproducibility. The third solution is to form a thin film on the surface of ordinary soda-lime silica glass to prevent some kind of alkali diffusion, and silica film is generally used. The reason why a silicon oxide film (e.g., SiO 2 film) is used to prevent alkali diffusion is that the film is amorphous, and when another thin film, such as a conductive film, is formed on top of it, it is essentially the same film that is formed on glass. This is because the refractive index of the silicon oxide film is slightly lower than that of glass, but it is close to that of glass, and because it is transparent to a wider range of light than normal plate glass, the transparency of glass is not impaired. The silicon oxide film mentioned above has a broad meaning, and in detail, it can be a pure silicon oxide film or a silicon oxide film mixed with appropriate impurities, such as a silicon oxide film mixed with a small amount of boron or phosphorus to increase its ability to prevent the diffusion of alkali ions. There is a silicon oxide film. Methods for forming such a silicon oxide film for preventing alkali diffusion include the sputtering method, vacuum evaporation method, ion plating method, or CVD method under as high a vacuum as possible to make the film denser and increase the alkali blocking ability. A method of forming a pure silicon oxide film such as pure SiOx (0<x≦2), a method of forming the same pure silicon oxide film using the sol/gel method, or a method of easily incorporating additives such as boron or phosphorus. Typical methods include forming a boron-containing silicon oxide film or a phosphorus-containing silicon oxide film by a sol/gel method. As described above, silicon oxide films for preventing alkali diffusion formed by various methods have alkali diffusion inhibiting effect to some extent, although the degree of effectiveness varies, but it is still not sufficient, and the performance may vary depending on the manufacturing method, manufacturing conditions, etc. They had the disadvantage of being very different. As mentioned above, the present inventors have discovered that the conventional alkali diffusion-preventing silicon oxide films have various drawbacks, such as severe manufacturing constraints such as manufacturing condition control, composition control, and raw material adjustment during formation of the alkali diffusion-preventing silicon oxide film. As a result of research into an alkali diffusion prevention silicon oxide film that has no defects and has a higher alkali diffusion prevention effect than conventional alkali diffusion prevention silicon oxide films, we found that fluorine combined with silicon (Si) in the silicon oxide film or this fluorine By containing a combination of hydrogen and hydrogen bonded to silicon, in other words, by making Si-F bonds exist in a part of -O-Si-O- bonds in the silicon oxide film, or by combining them with Si-F bonds. Si
-H bond, it was discovered that the diffusion of alkali in glass could be suppressed more than the silicon oxide film containing phosphorus and boron, which was known to have an excellent alkali diffusion inhibiting effect, and the present invention was made based on the present invention. This is what we have come to propose. That is, the present invention provides a glass in which an alkali diffusion-preventing silicon oxide film is formed on the surface of the alkali-containing glass to suppress alkali diffusion from the glass, in which the alkali diffusion-preventing silicon oxide film is made of fluorine or fluorine bonded to silicon. This invention relates to a glass body with a silicon oxide film for preventing alkali diffusion, characterized in that it contains fluorine bonded to silicon and hydrogen bonded to silicon. The reason why the silicon oxide film for preventing alkali diffusion of the present invention increases the ability to prevent alkali diffusion from glass is not clear, but -O-Si-
By having a -Si-F bond or a -Si-F bond and a -Si-H bond in some of the O- bonds, the network structure of the silicon oxide film becomes denser and there are no structural defects, and the terminal Due to the effect that F or F and H are positively charged and obstruct the movement of alkali ions such as Na + and K + , there is a concentration difference between the inside of the glass and the coating material coated on the surface, or an electrical This is thought to be to prevent alkali ions from leaching to the glass surface due to triggers. In the present invention, the content of fluorine or fluorine and hydrogen that participates in bonding with silicon in the alkali diffusion preventing silicon oxide film is preferably in the range of 0.01 to 20%. More preferably, the optimum content is 0.1 to 10%.
The existence of such Si-F bonds or Si-F bonds and Si-H bonds can be confirmed by, for example, infrared spectroscopy. As a result of investigating the relationship with the amount of alkali diffusion using this detection method, it was found that, as mentioned above, there is excellent alkali blocking ability with a fluorine content of 0.01% to 20% or a fluorine and hydrogen content. did. If the fluorine content or the fluorine and hydrogen content exceeds 20%, the hardness of the alkali diffusion-preventing silicon oxide film decreases and the film becomes easily scratched, which is undesirable. For example, when an alkali diffusion-preventing silicon oxide film is applied to a transparent electrode plate of a display element, the hardness of the film decreases, which poses a problem in terms of ease of handling during the manufacturing process, which is undesirable. Also, if it is less than 0.01%,
This is not preferable because the ability to prevent alkali diffusion is weakened. Note that in addition to fluorine or hydrogen bonded to silicon, fluorine or hydrogen contained in the form of F 2 or H 2 may also exist in the silicon oxide film, but in the silicon oxide film of the present invention, The fluorine content and hydrogen content are fluorine or hydrogen combined with silicon, i.e.
It represents the content of fluorine or hydrogen that forms Si-F bonds or Si-H bonds. The thickness of the silicon oxide film for preventing alkali diffusion of the present invention is preferably 50 Å or more so as to exhibit sufficient alkali diffusion inhibiting ability. Among them, 100
A range of Å to 5000 Å is most practical. In addition, the most commonly used glass to which the alkali diffusion prevention silicon oxide film of the present invention can be applied is
Examples include soda lime silica glass containing 10 to 20 wt% of Na and K, as well as various other alkali-containing glasses. Further, methods for forming the alkali diffusion preventing silicon oxide film of the present invention include vacuum evaporation method, sputtering method,
PVD method such as ion plating method, CVD method,
In addition to the low pressure CVD method and the sol/gel method, various film formation methods can be used. In addition, in the case of PVD method,
In addition to the method of depositing SiO 2 on the deposition source target, methods such as reactive vapor deposition or reactive sputtering using Si or SiO as the deposition source target are adopted. Methods for introducing fluorine or hydrogen into the silicon oxide film include vacuum evaporation, sputtering, and ion plating.
In the PVD method, fluorine gas, fluorine compound gas, hydrogen gas, or hydride compound gas is introduced into a vacuum chamber to form Si-F bonds or Si-F bonds and Si-H bonds during film formation. How to do it, and
In the CVD method, Si-
A typical method is to form an F bond or a Si-F bond and a Si-H bond, but in addition to these methods, after forming a silicon oxide film, it may be formed in a fluorine atmosphere or in a fluorine and hydrogen atmosphere. For example, after forming a silicon oxide film, fluorine ions or fluorine ions and hydrogen ions are introduced by ion implantation. The alkali diffusion-preventing silicon oxide film of the present invention does not contain additives in the form of solid components like conventional alkali diffusion-preventing silicon oxide films containing additives, but is in an amorphous state and its tertiary form. It differs from conventional alkali diffusion prevention films in that a part of the original network structure includes Si--F bonds, or both Si--F and Si--H bonds. Therefore, since the alkali-diffusion silicon oxide film of the present invention does not contain solid additives, it is easy to work in the raw material preparation stage, and the film formation process does not require fractional distillation or other problems that tend to occur in vacuum evaporation. There is no need to worry about the dissipation of additive components during sputtering, and the film formation process becomes easier. Next, examples of the present invention will be described. Example 1 Alkaline component R 2 O (R:
An ordinary glass plate (soda lime silica glass plate) containing 15% Na, K) was thoroughly washed with detergent, washed with water, and dried. After placing this glass plate in a vacuum chamber of a vacuum evaporation device and evacuating the chamber to 1×10 -5 torr, argon gas containing 15% hydrogen gas and 5% CF 4 gas was introduced. At 2×10 -4 torr, a high-frequency electromagnetic field (frequency 13.56 MHz) was applied to ionize the introduced gas, while the evaporation source (SiO 2 powder) was heated by electron beam heating at a deposition rate of about 10 Å/sec. By high frequency ion plating method, approx.
A 1000 Å SiO 2 film was formed. Next, dry air was introduced into the vacuum chamber from the variable leak valve to a pressure of 3 x 10 -3 torr, and then about 2000 Å of SnO was deposited using the ordinary vacuum evaporation method using tin oxide added with antimony oxide as the evaporation source. 2 conductive films were formed.
Note that the distance between the evaporation source and the glass substrate during the formation of the SiO 2 film and the SnO 2 film was 40 cm, and the substrate temperature was set to room temperature. Table 1 shows the fluorine content, hydrogen content, and alkali diffusion inhibiting ability of Sample 1 thus obtained. Example 2 A glass plate similar to Example 1 was thoroughly washed with a detergent, washed with water, and dried. This glass plate was placed in the vacuum chamber of the RF2 pole sputtering device, and the inside of the chamber was
15% hydrogen gas and 5% after exhausting to 10 -5 torr
3x by introducing argon gas containing CF4 gas.
RF2 using a fused silica target at 10 -2 torr.
An approximately 1000 Å SiO 2 film was formed using the polar sputtering method. Next, the glass substrate on which the SiO 2 film was formed was transferred to a vacuum evaporation apparatus, and after setting the inside of this vacuum chamber to 3 × 10 -4 torr, it was subjected to ordinary vacuum evaporation using tin oxide added with antimony oxide as a evaporation source. Approximately 2000Å
A SnO 2 conductive film was formed. Note that the glass substrate temperature during sputtering was approximately 300°C, and the glass substrate temperature during vapor deposition was room temperature. Table 1 shows the fluorine content, hydrogen content, and alkali diffusion inhibiting ability of Sample 2 thus obtained. Example 3 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate was placed in a vacuum chamber of an RF magnetron sputtering device, and after the chamber was evacuated to 1×10 -5 torr, argon gas containing 15% hydrogen gas and 5% CF 4 gas was introduced. 3×10 -3 torr using a fused silica target.
A 1000 Å SiO 2 film was formed using the RF magnetron sputtering method. Next, the glass substrate on which the SiO 2 film was formed was transferred to a vacuum evaporation device, and the inside of this vacuum chamber was heated 3×.
After reducing the temperature to 10 -4 torr, it was evaporated using a normal vacuum evaporation method using tin oxide to which antimony oxide was added as a evaporation source.
A 2000 Å SnO 2 conductive film was formed. Note that the glass substrate temperature during sputtering was approximately 300°C, and the glass substrate temperature during vapor deposition was room temperature. Table 1 shows the fluorine content, hydrogen content, and alkali diffusion inhibiting ability of Sample 3 thus obtained. Example 4 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate surface was coated with approximately 5% SiF 4 , SiH 4 gas and O 2 gas by CVD
1000Å SiO 2 film at substrate temperature of 300℃, 400℃, 450℃
℃, formed at 550℃. Note that O 2 :(SiH 4 +
SiF 4 ) ratio was approximately 10:1. Then these
The glass substrate on which the SiO 2 film has been formed is placed in a vacuum chamber of a vacuum evaporation device, and the inside of this vacuum chamber is heated to 3×10 -4 torr.
After that, a film of about 2000 Å was deposited using the normal vacuum evaporation method using tin oxide added with antimony oxide as the evaporation source.
A SnO 2 conductive film was formed. Note that the glass substrate temperature during vapor deposition was room temperature. Among these four samples, the substrate temperature was set to 300
Sample 4 is the one with SiO 2 film formed at ℃.
Sample 5 has a SiO 2 film formed at a substrate temperature of 400°C, Sample 6 has a SiO 2 film formed at a substrate temperature of 450°C, and Sample 7 has a SiO 2 film formed at a substrate temperature of 550°C. And so. Table 1 shows the fluorine content, hydrogen content, and alkali diffusion inhibition ability for each of these samples. Example 5 A glass plate similar to Example 1 was thoroughly washed with a detergent, washed with water, and dried. This glass plate was placed in a vacuum chamber of a vacuum evaporation device, and the chamber was evacuated to 1×10 -5 torr, and then SiF 4 gas was introduced and 2×
With the vacuum chamber heated to 10 -4 torr and 200°C, a high-frequency electromagnetic field (frequency 13.56MHz) is applied to ionize the introduced gas, while the evaporation source (SiO 2 powder) is heated by electron beam heating. A SiO 2 film with a thickness of about 1000 Å was formed by high-frequency ion plating at a deposition rate of about 10 Å/sec. Next, dry air was introduced into the vacuum chamber from the variable leak valve to a pressure of 3×10 -3 torr, and then
A SnO 2 conductive film with a thickness of approximately 2000 Å was formed by a normal vacuum deposition method using tin oxide doped with antimony oxide as a deposition source. Note that the distance between the evaporation source and the glass substrate during the formation of the SiO 2 film and the SnO 2 film was 40 cm, and the substrate temperature was set to room temperature. Table 1 shows the fluorine content and alkali diffusion inhibiting ability of Sample 8 thus obtained. Example 6 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate was placed in the vacuum chamber of the RF2 pole sputtering device, and the inside of the chamber was
After exhausting to 10 -5 torr, SiF 4 gas was introduced and 3×
A SiO 2 film of about 1000 Å was formed using a fused silica target by the RF two-pole sputtering method under conditions of 10 -2 torr and heating the vacuum chamber to 200°C. next
The glass substrate on which the SiO 2 film was formed was transferred to a vacuum evaporation apparatus, and the inside of this vacuum chamber was set to 3 × 10 -4 torr, and then a film of about 2,000 Å was deposited using a normal vacuum evaporation method using tin oxide added with antimony oxide as the evaporation source. A SnO 2 conductive film was formed. Note that the glass substrate temperature during sputtering was approximately 300°C, and the glass substrate temperature during vapor deposition was room temperature. Table 1 shows the fluorine content and alkali diffusion inhibiting ability of Sample 9 thus obtained. Example 7 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate was placed in a vacuum chamber of an RF magnetron sputter device, and the chamber was evacuated to 1×10 -5 torr, and then SiF 4 gas was introduced to reduce the pressure to 3×10 -3 torr, and the vacuum chamber was closed. RF using a fused silica target heated to 200℃
An approximately 1000 Å SiO 2 film was formed using the magnetron sputtering method. Next, the glass substrate on which the SiO 2 film was formed was transferred to a vacuum evaporation device, and the inside of this vacuum chamber was heated 3×.
After reducing the temperature to 10 -4 torr, it was evaporated using a normal vacuum evaporation method using tin oxide to which antimony oxide was added as a evaporation source.
A 2000 Å SnO 2 conductive film was formed. Note that the glass substrate temperature during sputtering was set to room temperature. Table 1 shows the fluorine content and alkali diffusion inhibiting ability of Sample 10 thus obtained. Example 8 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate surface is coated with SiF 4 gas, O 2 gas and water vapor using CVD method.
1000Å SiO 2 film at substrate temperature of 350℃, 450℃, 550℃
It was formed with. The ratio of O 2 :SiF 4 :H 2 O is 10:
I did it at 1:0.1. Next, the glass substrate on which these SiO 2 films have been formed is placed in a vacuum chamber of a vacuum evaporation device,
After setting the inside of this vacuum chamber to 3×10 -4 torr, a SnO 2 conductive film of about 2000 Å was formed by a normal vacuum evaporation method using tin oxide to which antimony oxide was added as a evaporation source. Note that the glass substrate temperature during vapor deposition was room temperature. Among these three samples, the substrate temperature was set to 350
Sample 11 is the one with SiO 2 film formed at ℃.
Sample 12 was a sample in which a SiO 2 film was formed at a substrate temperature of 450°C, and Sample 13 was a SiO 2 film formed at a substrate temperature of 550°C. Table 1 shows the fluorine content and alkali diffusion inhibiting ability of each of these samples. Comparative Example 1 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate was placed in a vacuum chamber of a vacuum evaporation device, and the chamber was evacuated to 5×10 -5 torr, and then the evaporation source (SiO 2 powder) was heated by electron beam heating at approximately 10 Å/second. A SiO 2 film with a thickness of approximately 1000 Å was formed using a conventional vacuum evaporation method at a deposition rate of . Next, dry air was introduced into the vacuum chamber from the barrier pull leak valve to 3×10 -3 torr.
After that, a film with a thickness of about 2000 Å was deposited using a normal vacuum evaporation method using tin oxide added with antimony oxide as a deposition source.
A SnO 2 conductive film was formed. Note that the distance between the evaporation source and the glass substrate during the formation of the SiO 2 film and the SnO 2 film was 40 cm, and the substrate temperature was set to room temperature. Table 1 shows the alkali diffusion inhibiting ability of Sample 14 thus obtained. Comparative Example 2 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate was placed in the vacuum chamber of the RF2 pole sputtering device, and the inside of the chamber was
After evacuation to 10 -5 torr, argon gas was introduced to bring the pressure to 3 x 10 -2 torr, and a SiO 2 film of about 1000 Å was formed by RF bipolar sputtering using a fused silica target. Next, the glass substrate on which the SiO 2 film was formed was transferred to a vacuum evaporation device, and the inside of this vacuum chamber was heated to 3×10 -4 torr.
After that, a film of approximately 2000 Å was deposited using the ordinary vacuum evaporation method using tin oxide added with antimony oxide as the evaporation source.
A SnO 2 conductive film was formed. Note that the glass substrate temperature during sputtering was approximately 300°C, and the glass substrate temperature during vapor deposition was room temperature. Table 1 shows the alkali diffusion inhibiting ability of Sample 15 thus obtained. Comparative Example 3 A glass plate similar to Example 1 was thoroughly washed with detergent, washed with water, and dried. This glass plate was placed in a vacuum chamber of a vacuum evaporation device, and the chamber was evacuated to 3×10 -3 torr, and then heated using an electron beam heating method using tin oxide added with antimony oxide as a deposition source. A SnO 2 conductive film with a thickness of approximately 2000 Å was formed using a conventional vacuum evaporation method. Note that the distance between the evaporation source and the glass substrate during formation of the SnO 2 film was 40 cm, and the substrate temperature was room temperature. Table 1 shows the alkali diffusion inhibiting ability of Sample 16 thus obtained.

【表】 上記表におけるSiO2膜中のフツ素含有率
(%)及び水素含有率(%)は、赤外分光法によ
りSiO2膜中のSi−F結合になつているフツ素の有
率及びSi−H結合になつている水素の含有率を求
めたものであり、又アルカリ拡散阻止能は、
SiO2膜を通してのアルカリの浸出量で評価した
ものであり、その測定法は、各サンプルを550℃
で30分間熱処理してガラスからのアルカリ拡散を
促進させ、次に表層のSnO2膜を(HCl+Zn)の
エツチング液で溶出し、このエツチング液中に溶
出されて含まれるナトリウムを原子吸光法により
測定したものである。 本発明のアルカリ拡散防止酸化ケイ素膜付ガラ
ス体は、上記表から明らかなように、酸化ケイ素
膜中にシリコンと結合したフツ素又はフツ素と水
素とを導入することにより、かかるフツ素又はフ
ツ素と水素とを導入しない酸化ケイ素膜に比べア
ルカリの浸出を防止しうることが認められる。し
かも、従来において最もアルカリ拡散阻止能力が
優れていると考えられたゾル/ゲル法により形成
される燐を含むSiO2膜と同等かあるいはそれ上
の性能を有するものである。 しかも、本発明のアルカリ拡散防止酸化ケイ素
膜付ガラス体は、製造方法、製造条件等の制約が
少なく、高いアルカリ拡散阻止能力を得ることが
できる。 更に、本発明のアルカリ拡散酸化ケイ素膜付ガ
ラス体は、ガラス体との硬度、付着性、光安定
性、400℃程度までの熱安定性を有しており、
種々の環境条件、処理加工条件に対しても充分に
安定である。 本発明のアルカリ拡散酸化ケイ素膜付ガラス体
は、液晶素子、エレクトロクロミツク素子、電場
発光素子などの表示素子やアモルフアス太陽電池
基板等に用いられる電導性ガラスのアルカリ拡散
防止膜として特に最適であり、かかる表示素子、
太陽電池等の製造過程やその後の種々の環境条件
に対しても安定で劣化することがない。勿論これ
らの他にも、自動車、航空機、鉄道車輌その他各
種交通車輌用、建築用、各種装置用、光学部品
用、電気部品用、電子部品用のガラス板に電導性
被膜、熱線反射被膜、無反射防止被膜、反射被
膜、着色被膜、その他各種機能を持つた被膜を形
成する際の下地コートに対し有用に適用できるも
のである。
[Table] The fluorine content (%) and hydrogen content (%) in the SiO 2 film in the above table are determined by infrared spectroscopy to determine the percentage of fluorine that forms Si-F bonds in the SiO 2 film. and the content of hydrogen forming Si-H bonds, and the alkali diffusion inhibition ability is
The evaluation was based on the amount of alkali leached through the SiO 2 membrane, and the measurement method was to heat each sample at 550℃.
heat treatment for 30 minutes to promote alkali diffusion from the glass, then the surface SnO 2 film was eluted with an etching solution of (HCl + Zn), and the sodium contained in the eluted solution was measured by atomic absorption spectrometry. This is what I did. As is clear from the table above, the glass body with a silicon oxide film for preventing alkali diffusion of the present invention is produced by introducing fluorine bonded to silicon or fluorine and hydrogen into the silicon oxide film. It is recognized that leaching of alkali can be prevented compared to a silicon oxide film that does not introduce hydrogen or hydrogen. Moreover, it has performance equivalent to or superior to that of the phosphorous-containing SiO 2 film formed by the sol/gel method, which was conventionally considered to have the best ability to inhibit alkali diffusion. Moreover, the glass body with a silicon oxide film for preventing alkali diffusion of the present invention has fewer restrictions on manufacturing methods, manufacturing conditions, etc., and can obtain high alkali diffusion inhibiting ability. Furthermore, the glass body with an alkali-diffused silicon oxide film of the present invention has hardness, adhesion, light stability, and thermal stability up to about 400°C with respect to the glass body.
It is sufficiently stable under various environmental conditions and processing conditions. The glass body with an alkali-diffusion silicon oxide film of the present invention is particularly suitable as an alkali-diffusion prevention film for conductive glasses used in display devices such as liquid crystal devices, electrochromic devices, and electroluminescent devices, and amorphous solar cell substrates. , such a display element,
It is stable and does not deteriorate during the manufacturing process of solar cells, etc. and during various environmental conditions thereafter. Of course, in addition to these, we also provide electrically conductive coatings, heat ray reflective coatings, and non-conductive coatings for glass plates for automobiles, aircraft, railway vehicles, and other various transportation vehicles, for construction, for various devices, for optical parts, for electrical parts, and for electronic parts. It can be usefully applied to base coats for forming antireflective coatings, reflective coatings, colored coatings, and other coatings with various functions.

Claims (1)

【特許請求の範囲】 1 アルカリ含有ガラスの表面に、該ガラスから
のアルカリ拡散を抑制するアルカリ拡散防止酸化
ケイ素膜の形成されたガラスにおいて、上記アル
カリ拡散防止酸化ケイ素膜がシリコンと結合した
フツ素を含有することを特徴とするアルカリ拡散
防止酸化ケイ素膜の形成されたガラス体。 2 アルカリ拡散防止酸化ケイ素膜がシリコンと
結合したフツ素及びシリコンと結合した水素を含
有することを特徴とする特許請求の範囲第1項記
載のアルカリ拡散防止酸化ケイ素膜の形成された
ガラス体。 3 アルカリ拡散防止酸化ケイ素膜中のシリコン
との結合にあずかるフツ素の含有量が、0.01〜20
%であることを特徴とする特許請求の範囲第1項
記載のアルカリ拡散防止酸化ケイ素膜の形成され
たガラス体。 4 アルカリ拡散防止酸化ケイ素膜中のシリコン
との結合にあずかるフツ素と水素との和が0.01〜
20%であることを特徴とする特許請求の範囲第2
項記載のアルカリ拡散防止酸化ケイ素膜の形成さ
れたガラス体。
[Scope of Claims] 1. A glass in which an alkali diffusion-preventing silicon oxide film is formed on the surface of the alkali-containing glass to suppress alkali diffusion from the glass, wherein the alkali diffusion-preventing silicon oxide film is composed of fluorine bonded to silicon. A glass body formed with an alkali diffusion-preventing silicon oxide film, characterized by containing: 2. A glass body on which a silicon oxide film for preventing alkali diffusion is formed according to claim 1, wherein the silicon oxide film for preventing alkali diffusion contains fluorine bonded to silicon and hydrogen bonded to silicon. 3 The content of fluorine that participates in bonding with silicon in the silicon oxide film for preventing alkali diffusion is 0.01 to 20
%. A glass body on which a silicon oxide film for preventing alkali diffusion is formed according to claim 1. 4 The sum of fluorine and hydrogen that participates in bonding with silicon in the alkali diffusion prevention silicon oxide film is 0.01~
Claim 2 characterized in that 20%
A glass body on which a silicon oxide film for preventing alkali diffusion is formed as described in 2.
JP12242081A 1981-08-06 1981-08-06 Glass body having formed alkali diffusion preventing silicon oxide film Granted JPS5826051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12242081A JPS5826051A (en) 1981-08-06 1981-08-06 Glass body having formed alkali diffusion preventing silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12242081A JPS5826051A (en) 1981-08-06 1981-08-06 Glass body having formed alkali diffusion preventing silicon oxide film

Publications (2)

Publication Number Publication Date
JPS5826051A JPS5826051A (en) 1983-02-16
JPS6230148B2 true JPS6230148B2 (en) 1987-06-30

Family

ID=14835381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12242081A Granted JPS5826051A (en) 1981-08-06 1981-08-06 Glass body having formed alkali diffusion preventing silicon oxide film

Country Status (1)

Country Link
JP (1) JPS5826051A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027623A (en) * 1983-07-22 1985-02-12 Toyota Motor Corp Window glass shielding electromagnetic radiation
JPS6027624A (en) * 1983-07-22 1985-02-12 Toyota Motor Corp Window glass shielding electromagnetic radiation
US6849872B1 (en) 1991-08-26 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
JP2009155169A (en) * 2007-12-27 2009-07-16 Asahi Glass Co Ltd Heat-ray reflecting glass and method for manufacturing heat-ray reflecting glass
JP2012240851A (en) * 2011-05-13 2012-12-10 Sustainable Titania Technology Inc Method of preventing or reducing elution of alkali metal on surface of substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516475A (en) * 1974-06-06 1976-01-20 Rca Corp 2sankashirikonhimakunoshoriho
JPS5392812A (en) * 1977-01-27 1978-08-15 Hiroshi Sakai Method of decorating earthenware*hard earthenware or ceramics with gold lacquer
JPS57196744A (en) * 1981-05-29 1982-12-02 Nippon Sheet Glass Co Ltd Surface treatment of glass containing alkali metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516475A (en) * 1974-06-06 1976-01-20 Rca Corp 2sankashirikonhimakunoshoriho
JPS5392812A (en) * 1977-01-27 1978-08-15 Hiroshi Sakai Method of decorating earthenware*hard earthenware or ceramics with gold lacquer
JPS57196744A (en) * 1981-05-29 1982-12-02 Nippon Sheet Glass Co Ltd Surface treatment of glass containing alkali metal

Also Published As

Publication number Publication date
JPS5826051A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
JPS6215496B2 (en)
JP5841074B2 (en) Glass substrate coated with a layer of improved mechanical strength
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JP3453805B2 (en) Transparent conductive film
JP2917432B2 (en) Method for producing conductive glass
JP2001270740A (en) Glass article and glass substrate for display
CN104962865A (en) Ion-source auxiliary ITO film thermal evaporation process
JP2000109342A5 (en)
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JPS6230148B2 (en)
JPH0742572B2 (en) Transparent conductive film
CN112209627A (en) Glass substrate with film and method for producing same
JPS63195149A (en) Transparent electrically conductive film
JP2004149400A (en) Heat insulating glass and method for manufacture the same
CN101728008A (en) Method for forming transparent metal oxide film
JPH01227307A (en) Transparent electric conductor
JPH06191894A (en) Electric conductive glass and its production
US20110020621A1 (en) Glass-type substrate coated with thin layers and production method
JPS63102109A (en) Transparent conducting film
WO2013099768A1 (en) Glass substrate and process for producing glass substrate
JPH0867980A (en) Production of silicon nitride film
JPS61225713A (en) Transparent electroconductive film and making thereof
CN116395981B (en) Glass substrate with transparent conductive film and method for manufacturing same
JPS63102108A (en) Transparent conducting film
JPS6380413A (en) Transparent conductor