JPH02168507A - Fluorine doped tin oxide film and method of reducing resistance thereof - Google Patents

Fluorine doped tin oxide film and method of reducing resistance thereof

Info

Publication number
JPH02168507A
JPH02168507A JP1245181A JP24518189A JPH02168507A JP H02168507 A JPH02168507 A JP H02168507A JP 1245181 A JP1245181 A JP 1245181A JP 24518189 A JP24518189 A JP 24518189A JP H02168507 A JPH02168507 A JP H02168507A
Authority
JP
Japan
Prior art keywords
tin oxide
fluorine
film
resistance
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1245181A
Other languages
Japanese (ja)
Other versions
JPH07105166B2 (en
Inventor
Kazuo Sato
一夫 佐藤
Yoshio Goto
後藤 芳夫
Hiromichi Nishimura
啓道 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1245181A priority Critical patent/JPH07105166B2/en
Publication of JPH02168507A publication Critical patent/JPH02168507A/en
Publication of JPH07105166B2 publication Critical patent/JPH07105166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a transparent conductive film having a high degree of transparency, high resistance against active hydrogen type and coudnctivity improved with the active hydrogen type by controlling the amount of fluorine added to a conductor and conductive electron density within a specified range. CONSTITUTION:A transparent electrode 3 comprising a alkali barrier coat 2 and a fluorine doped tin oxide, a photoelectric conversion layer 4 comprising amorphous silicon hydroxide and a conductive film 5 are respectively formed in sequence on a transparent substrate 1, thereby forming a solar battery. An electrode a has a transparent conductive film of tin oxide composed of 0.01 to 4mol% of fluorine added to tin oxide and the conductive electron density thereof is controlled within 5X10<19> to 4X10<20>cm<-2>. According to the aforesaid construction, a highly transparent film of a small absorption amount is obtained. Also, when the film is exposed to a hydrogen plasma in the formation of alpha-Si and the like, the resistance value of the film is reduced to about 1/5 maximum. As a result, high transparency and resistance quality is obtained and the conduc tivity of the film is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高性能を有する酸化錫膜、特に太陽電池用基
板として有用な酸化錫膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a tin oxide film having high performance, particularly a tin oxide film useful as a substrate for solar cells.

[従来の技術] 一般に酸化物透明導電膜では低抵抗、高透明であること
が要求されるが、導電性を左右する電導電子密度を高く
するにつれて可視光域で徐々に光吸収が増加するという
矛盾する側面をもっているため一般に低抵抗、高透明を
両立させることは極めて困難である。しかし、電力用太
陽電池用透明導電基板においては電導性を出来るだけ高
く維持したまま透明化を図ることが重要であるとされて
おり、特性の良い基板の開発が必要とされている。
[Prior art] In general, oxide transparent conductive films are required to have low resistance and high transparency, but it is said that as the conduction electron density, which affects conductivity, increases, light absorption gradually increases in the visible light range. Generally, it is extremely difficult to achieve both low resistance and high transparency because they have contradictory aspects. However, in transparent conductive substrates for power solar cells, it is important to achieve transparency while maintaining conductivity as high as possible, and there is a need to develop substrates with good characteristics.

透明導電膜としてはガラス基板上に堆積した酸化錫や酸
化インジウムなどが知られており、太陽電池用基体、液
晶、電場発光素子等の表示素子用電極等に広く利用され
ている。特に酸化錫膜は化学的に安定な材料であり、ま
た低価格であることから大面積導電基板として有用であ
り、主としてアモルファス太陽電池用基板用として活発
な研究が行なわれている。現在、ガラス基板上に酸化錫
膜を形成する一般的な方法は、四塩化錫を用いたスプレ
ー法、またはCVD法(化学気相蒸着法)であるが、特
に高性能な導電膜を形成する場合はCVD法を用いて、
活剤としてフッ素(F)を導入する手法が一般的である
As a transparent conductive film, tin oxide, indium oxide, etc. deposited on a glass substrate are known, and are widely used for solar cell substrates, liquid crystals, electrodes for display elements such as electroluminescent elements, and the like. In particular, tin oxide film is a chemically stable material and is inexpensive, so it is useful as a large-area conductive substrate, and active research is being carried out mainly as a substrate for amorphous solar cells. Currently, the common methods for forming a tin oxide film on a glass substrate are a spray method using tin tetrachloride or a CVD method (chemical vapor deposition method). In this case, use the CVD method,
A common method is to introduce fluorine (F) as an activator.

しかしこのようにフッ素(F)をドーピングする場合、
酸化錫導電膜の比抵抗は1O−4Ω・cm台まで到達し
、導電性の高い膜が比較的容易に得られる利点を有する
反面、逆に透過率の高い膜は逆に得にくい傾向があった
。これはフッ素を用いた場合、電導電子密度を比較的容
易に増大することが低抵抗化を可能にしている訳である
が、電導電子の増加は光学吸収を招(ため透過率は逆に
減少してしまうためである。これに対して、逆に電導電
子密度の少ない膜では透過率は向上するものの、抵抗増
大が著しく、太陽電池等に使用可能な実用的な低抵抗膜
は得にくかった。電導電子密度の少ない膜を低抵抗化す
るためには膜厚を厚くする必要があるがこれは吸収増大
を招く。結果的に高透明と低抵抗の両立は困難であった
However, when doping with fluorine (F) in this way,
The specific resistance of the tin oxide conductive film reaches the level of 1O-4Ω・cm, and while it has the advantage that a film with high conductivity can be obtained relatively easily, on the other hand, it tends to be difficult to obtain a film with high transmittance. Ta. This is because when using fluorine, it is possible to lower the resistance by increasing the conduction electron density relatively easily, but an increase in the conduction electrons causes optical absorption (conversely, the transmittance decreases). On the other hand, a film with a low conductive electron density improves transmittance, but the resistance increases significantly, making it difficult to obtain a practical low-resistance film that can be used in solar cells, etc. In order to reduce the resistance of a film with a low conduction electron density, it is necessary to increase the film thickness, but this leads to increased absorption.As a result, it has been difficult to achieve both high transparency and low resistance.

一方、一般の上記の導電膜は、たとえばJ、 H。On the other hand, the above-mentioned general conductive films are, for example, J, H.

Thomasm (Appl、Phys、Lett、、
 42(1983)794)、 Y。
Thomasm (Appl, Phys, Lett,,
42 (1983) 794), Y.

Tawada AND Y、Hamakawa(Pro
c、 Int’l PVSEC−1゜Kobe、 Ja
pan (1984) 179)等に明らかにされてい
るように活性還元種に脆弱であり、この導電膜を水素プ
ラズマにさらすと導電膜は黒(変色し透明性を失い、甚
だしい場合は粉状になり基板から剥離する。酸化錫膜を
形成した導電体上にアモルファスシリコン(a −SL
)太陽電池を形成する最も一般的な方法はグロー放電法
を用いるプラズマCVD法である。この方法を用いる場
合アモルファスシリコン(a −Si)゛形成初期に導
電膜は必ず水素プラズマにさらされるため、水素プラズ
マによる導電膜の劣化が問題となる。従ってプラズマに
さらされる前に高透過率を有していても、僅かでもプラ
ズマにより劣化が生じた場合、この基体を太陽電池に用
いれば、導電膜は光の入射側になるため導電体の黒化は
変換効率を低下させる原因となる。即ち太陽電池用の基
板としての透明導電体においてはまず高透明であること
と同時に水素プラズマによる導電膜の透明性が損なわれ
ない特性を有することが極めて重要である。しかし現在
までこれらの要件を満たす有効な解決策は見出されてい
ない。
Tawada AND Y, Hamakawa (Pro
c, Int'l PVSEC-1゜Kobe, Ja
(1984) 179), it is vulnerable to active reducing species, and when this conductive film is exposed to hydrogen plasma, it becomes black (discolored), loses transparency, and in extreme cases becomes powdery. Amorphous silicon (a-SL) is deposited on the conductor on which the tin oxide film is formed.
) The most common method of forming solar cells is plasma CVD using a glow discharge method. When this method is used, the conductive film is always exposed to hydrogen plasma in the early stages of forming amorphous silicon (a-Si), so deterioration of the conductive film due to the hydrogen plasma poses a problem. Therefore, even if it has a high transmittance before being exposed to plasma, if even a small amount of deterioration occurs due to plasma, if this substrate is used in a solar cell, the conductive film will be on the light incident side, so the conductor will become black. This causes a decrease in conversion efficiency. That is, it is extremely important for a transparent conductor to be used as a substrate for a solar cell to be highly transparent and at the same time to have characteristics that the transparency of the conductive film is not impaired by hydrogen plasma. However, to date no effective solution has been found that meets these requirements.

〔発明の解決しようとする課題] 本発明は、従来技術が有していた前述の欠点を解消し、
低抵抗で高透過率を有し、かつ水素プラズマや水素イオ
ンなどの水素活性種に対して高耐久性を有する高品位の
フッ素ドープの透明導電膜、特にa−Si太陽電池用基
板として有用な透明性導電膜を提供することを目的とす
る。
[Problems to be solved by the invention] The present invention solves the above-mentioned drawbacks of the prior art, and
A high-grade fluorine-doped transparent conductive film that has low resistance, high transmittance, and high durability against hydrogen active species such as hydrogen plasma and hydrogen ions, and is particularly useful as a substrate for a-Si solar cells. The purpose is to provide a transparent conductive film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前述の課題を解決すべくなされたものであり、
導電体中のフッ素添加量と電導電子密度を特定の範囲に
制御することにより、膜の吸収量が極めて少なく高透明
で、かつ活性水素種に対して高耐久であり、活性水素種
により導電性が従来技術とは逆に向上する透明導電膜を
提供するものである。即ち、フッ素を酸化錫に対し0.
01〜4m01%含み、電導電子密度が5大101g〜
4 X 10”cm−”であるフッ素ドープ酸化錫膜を
提供するものである。
The present invention has been made to solve the above-mentioned problems,
By controlling the amount of fluorine added in the conductor and the conductive electron density within a specific range, the film has extremely low absorption, is highly transparent, has high durability against active hydrogen species, and is highly conductive due to active hydrogen species. The present invention provides a transparent conductive film that has improved performance in contrast to the conventional technology. That is, 0.0% fluorine to tin oxide.
Contains 01~4m01%, conductive electron density is 101g~
A fluorine-doped tin oxide film having a size of 4 x 10"cm-" is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは酸化錫透明導電膜の透過率を向上させるた
め、酸化錫透明導電体膜中のフッ素添加量を酸化錫に対
して0.O1〜4 mo1%、かつ導電電子密度が5 
X 10”Cm−”以上4 X 10”cm−”以下の
範囲に制御した場合においてのみ、膜の吸収量が極めて
少ない高透明膜が得られ、かつa−Si等の形成時の水
素プラズマに曝露すると導電膜の抵抗値が最大で約11
5まで低抵抗化する現象を見出した。これらの膜は非酸
化性雰囲気にさらしてから10秒たらずで導電性が大き
く向上し、透過率は全く変化せずプラズマ耐性に優れて
いる。
In order to improve the transmittance of the tin oxide transparent conductive film, the present inventors added fluorine in the tin oxide transparent conductive film in an amount of 0.00% relative to tin oxide. O1-4 mo1%, and conductive electron density is 5
A highly transparent film with extremely low film absorption can be obtained only when controlled within the range of X 10"cm-" or more and 4x 10"cm-" or less, and can be resistant to hydrogen plasma during the formation of a-Si, etc. When exposed, the resistance value of the conductive film increases to approximately 11
We have discovered a phenomenon in which the resistance decreases up to 5. The conductivity of these films is greatly improved in less than 10 seconds after exposure to a non-oxidizing atmosphere, the transmittance does not change at all, and the film has excellent plasma resistance.

本発明のフッ素ドープ酸化錫膜はスプレー法、CVD法
の他、真空蒸着、スパッタリング等PVD法等でも製膜
可能であるが、量産性が高く良質な膜が容易に得られる
CVD法が特に好ましい。
The fluorine-doped tin oxide film of the present invention can be formed by a spray method, a CVD method, or a PVD method such as vacuum evaporation or sputtering, but the CVD method is particularly preferable because it is highly mass-producible and can easily produce a high-quality film. .

また、太陽電池の透明電極として用いる場合には、本発
明のフッ素ドープ酸化錫膜の膜厚は、透過率、抵抗値の
両方を考慮すると500人〜2μm人程度が好ましい。
Further, when used as a transparent electrode of a solar cell, the thickness of the fluorine-doped tin oxide film of the present invention is preferably about 500 to 2 μm in consideration of both transmittance and resistance value.

本発明のフッ素ドープ酸化錫膜は非酸化性雰囲気に曝露
することによって、透過率抵抗値を最大で約115まで
低抵抗化することができる。
By exposing the fluorine-doped tin oxide film of the present invention to a non-oxidizing atmosphere, the transmittance resistance value can be lowered to a maximum of about 115.

非酸化性雰囲気としては酸素分圧が100Torr以下
であることが好ましい(第8図参照)。
The non-oxidizing atmosphere preferably has an oxygen partial pressure of 100 Torr or less (see FIG. 8).

かかる非酸化性雰囲気において、酸素以外の成分として
は、窒素、 H,0,Ar等が使用でき特に限定されな
い。
In such a non-oxidizing atmosphere, components other than oxygen may include nitrogen, H, 0, Ar, etc., and are not particularly limited.

又、非酸化性雰囲気に曝露する際の基板温度としては、
低抵抗化が顕著に行えるという点から150℃以上、特
に200℃以上であることが好ましい(第9図参照)。
In addition, the substrate temperature when exposed to a non-oxidizing atmosphere is as follows:
The temperature is preferably 150° C. or higher, particularly 200° C. or higher, since the resistance can be significantly lowered (see FIG. 9).

非酸化性雰囲気として水素プラズマを用いる場合には、
水素分圧が0.3〜1.5 Torr、放電電力がlO
〜50mW/cm”程度の水素プラズマ中に基板温度が
100〜300℃において10〜120秒間曝露すると
最も低抵抗化が顕著に行なえるので好ましい。
When using hydrogen plasma as a non-oxidizing atmosphere,
Hydrogen partial pressure is 0.3 to 1.5 Torr, discharge power is 1O
It is preferable to expose the substrate to a hydrogen plasma of about 50 mW/cm" at a temperature of 100 to 300 DEG C. for 10 to 120 seconds, since the most significant reduction in resistance can be achieved.

第3図は、本発明のフッ素ドープ酸化錫膜を透明電極と
して用いた太陽電池の一例の一部縦断面図を示したもの
である。第3図において、1は透光性基板、2はアルカ
リバリヤーコート、3は本発明のフッ素ドープ酸化錫膜
からなる第1透明電極、4は水素化アモルファスシリコ
ン(a−3t:H)からなる光電変換層、5は第2導電
膜であり、導線6によって光電変換層4において得られ
た起電力を取り出すようにしたものである。〜 本発明のフッ素ドープ酸化錫膜3を形成する透光性基板
1としては、透明性、光学的特性、耐久性、電気的特性
等の点から、ソーダライムシリケートガラス板、アルミ
ノシリケートガラス板、硼珪酸塩ガラス板、リチウムア
ルミノシリケートガラス板等のアルカリ含有ガラス板、
低アルカリ含有ガラス板、あるいは無アルカリガラス板
、石英ガラス板などが好ましいが、場合によっては透明
性プラスチック板、あるいは透明性プラスチックフィル
ムを使用することもできる。なお、ソーダライムシリケ
ートガラス板などのアルカリ含有ガラス板、あるいは低
アルカリ含有ガラス板においては、その表面のアルカリ
成分が溶出して、その上に形成された透明導電膜にヘイ
ズ(jlす)が発生する場合があるので、これを防止す
るために上記ガラス板の透明導電膜形成面側に、Sin
□、Al2O3、ZrC1a等の酸化物を主体とするア
ルカリバリャーコート2を形成しておくのが好ましい。
FIG. 3 shows a partial vertical cross-sectional view of an example of a solar cell using the fluorine-doped tin oxide film of the present invention as a transparent electrode. In FIG. 3, 1 is a transparent substrate, 2 is an alkali barrier coat, 3 is a first transparent electrode made of a fluorine-doped tin oxide film of the present invention, and 4 is made of hydrogenated amorphous silicon (a-3t:H). The photoelectric conversion layer 5 is a second conductive film, and the electromotive force obtained in the photoelectric conversion layer 4 is taken out through a conductive wire 6. ~ As the light-transmitting substrate 1 on which the fluorine-doped tin oxide film 3 of the present invention is formed, soda lime silicate glass plates, aluminosilicate glass plates, Alkali-containing glass plates such as borosilicate glass plates and lithium aluminosilicate glass plates,
A low alkali-containing glass plate, a non-alkali glass plate, a quartz glass plate, or the like is preferable, but a transparent plastic plate or a transparent plastic film may also be used depending on the case. In addition, in the case of an alkali-containing glass plate such as a soda lime silicate glass plate, or a low-alkali content glass plate, the alkaline component on the surface of the glass plate dissolves, causing haze (jelsu) on the transparent conductive film formed thereon. In order to prevent this, a sinusoid is placed on the side of the glass plate on which the transparent conductive film is formed.
It is preferable to form an alkali barrier coat 2 mainly composed of oxides such as □, Al2O3, and ZrC1a.

本発明のフッ素ドープ酸化錫膜は、上述のように、酸素
分圧が100Torr以下の非酸化性雰囲気中、例えば
水素分圧が0.3〜1.5Torr、放電電力がlO〜
50mW/cm”程度の水素プラズマ中に基板温度が1
00〜300℃の条件で10〜120秒間曝露すると高
透過率を維持したまま最も顕著に低抵抗化が行なえる。
As mentioned above, the fluorine-doped tin oxide film of the present invention can be used in a non-oxidizing atmosphere with an oxygen partial pressure of 100 Torr or less, for example, with a hydrogen partial pressure of 0.3 to 1.5 Torr and a discharge power of 10 to 10 Torr.
When the substrate temperature is 1 in hydrogen plasma of about 50 mW/cm"
When exposed for 10 to 120 seconds at a temperature of 00 to 300°C, the resistance can be most significantly lowered while maintaining high transmittance.

一方、透明導電膜上にグロー放電によりa−Si:Hを
製膜する際、a−Si:H膜が最低20人程度形成され
ると、グロー放電による水素プラズマが透明導電膜に影
響を与えることはほとんどなくなる。従って、本発明の
フッ素ドープ酸化錫膜上にグロー放電によってa−Si
:H膜を形成する際、上述の低抵抗化の条件でグロー放
電を行ない、最も低抵抗が得られたところでそれ以上の
水素プラズマの影響を受けないようにすることが大変好
ましい。即ち、a−3t:H膜の最初の約20人を10
〜120秒間に製膜すれば、最も低抵抗のドープ酸化錫
膜上にa−Si:H膜を形成でき、太陽電池の変換効率
の向上に大きく寄与することが期待される。
On the other hand, when forming an a-Si:H film on a transparent conductive film by glow discharge, if at least 20 a-Si:H films are formed, the hydrogen plasma caused by the glow discharge will affect the transparent conductive film. That will almost never happen. Therefore, a-Si is deposited on the fluorine-doped tin oxide film of the present invention by glow discharge.
When forming the :H film, it is very preferable to perform glow discharge under the above-mentioned conditions for lowering the resistance, and to avoid being affected by hydrogen plasma any further when the lowest resistance is obtained. That is, the first 20 or so members of the a-3t:H film were
If the film is formed for ~120 seconds, an a-Si:H film can be formed on the doped tin oxide film with the lowest resistance, and it is expected to greatly contribute to improving the conversion efficiency of solar cells.

[作用] 本発明においてフッ素を酸化錫に対し0.01〜4mo
l%含み、電導電子密度が5 X 10”〜4×10”
cm’″″であるフッ素ドープ酸化錫膜をNz、HzO
やAr等の不活性ガス等の非酸化性雰囲気にさらすこと
によって、酸化錫膜から酸素原子が一部除去され酸素不
足の状態となって粒界近傍のキャリア濃度が増大し、ホ
ール移動度が増大するため、低抵抗化が促進されるもの
と考えられる。
[Function] In the present invention, fluorine is added in an amount of 0.01 to 4 mo relative to tin oxide.
Contains 1%, conductive electron density is 5 x 10" to 4 x 10"
cm''''' fluorine-doped tin oxide film is heated to Nz, HzO
By exposing the tin oxide film to a non-oxidizing atmosphere such as an inert gas such as or Ar, some of the oxygen atoms are removed from the tin oxide film, resulting in an oxygen-deficient state, which increases the carrier concentration near the grain boundaries and decreases the hole mobility. It is thought that this increases the resistance, thereby promoting a reduction in resistance.

又、水素プラズマ中に曝露することによって、酸化錫の
粒界の電荷を水素が中和し、結晶粒界におけるポテンシ
ャルバリアの高さを低下させホール移動度を増大させる
ために低抵抗化が促進されるものと考えられる。
Furthermore, by exposure to hydrogen plasma, hydrogen neutralizes the charge at the grain boundaries of tin oxide, lowers the height of the potential barrier at the grain boundaries, and increases hole mobility, promoting lower resistance. It is considered that

以上のような効果は、フッ素が酸化錫に対し4 mo1
%以下含まれ、キャリア濃度が4 X 10”cl”以
下であるようなフッ素ドープ酸化錫膜において、最も顕
著であると考えられる。
The above effects are due to the fact that fluorine is 4 mo1 relative to tin oxide.
% or less, and is considered to be most noticeable in a fluorine-doped tin oxide film with a carrier concentration of 4 x 10"cl" or less.

本発明において、酸化錫膜中のフッ素含有量が4 mo
1%以下の膜において顕著な低抵抗化が認められるのは
、フッ素が4 mo1%以上含まれていると膜中にSn
 −F結合ができたり、粒界にFが偏析したりする為に
、酸素原子が除去されてホール移動度が移動するのが妨
げられるからと考えられる。
In the present invention, the fluorine content in the tin oxide film is 4 mo
The reason why a remarkable reduction in resistance is observed in a film with a concentration of 1% or less is that when 4 mo1% or more of fluorine is contained in the film, Sn
This is thought to be because -F bonds are formed or F is segregated at grain boundaries, which removes oxygen atoms and prevents hole mobility from moving.

又、電導電子密度を4 X 10”cl”以下の膜にお
いて顕著な低抵抗化が認められるのは、4x102°c
m−”以上となるとFの粒界への偏析が発生し、やはり
同様に、酸素原子が除去されてボール移動度が増大する
のが妨げられるからと考えられる。又、電導電子密度が
4 X 10”cm−”以上になると、自由電子による
吸収が多(なり、透過率が低くなってしまうという欠点
もある。
In addition, a remarkable reduction in resistance is observed in a film with a conductive electron density of 4 x 10"cl" or less at 4 x 102°c.
It is thought that this is because when the conduction electron density exceeds 4X, segregation of F to the grain boundaries occurs, which similarly removes oxygen atoms and prevents the ball mobility from increasing. When it exceeds 10"cm-", absorption by free electrons increases, which also has the disadvantage of lowering the transmittance.

又、フッ素含有量が0. O1mo1%未満であると、
酸化錫膜の結晶性が悪くなり、抵抗値が高い膜となって
しまい、又、抵抗値は電導電子密度と移動度の積に反比
例するため、電導電子密度が5 X 10”cm−’未
満であると、抵抗値の絶対値が高くなり、低抵抗の透明
導電膜として実用的な膜が得られないため、好ましくな
い。
In addition, the fluorine content is 0. If O1mo is less than 1%,
The crystallinity of the tin oxide film deteriorates, resulting in a film with a high resistance value, and the resistance value is inversely proportional to the product of the conduction electron density and mobility, so if the conduction electron density is less than 5 x 10"cm-' This is not preferable because the absolute value of the resistance becomes high and a film that is practical as a low-resistance transparent conductive film cannot be obtained.

[実施例] 以下、本発明の実施例及び比較例について説明する。[Example] Examples and comparative examples of the present invention will be described below.

実施例および比較例1 E水素プラズマによる低抵抗化] アルカリバリアーコートとして約1000人の膜厚のシ
リカ膜が形成されたガラス基板(locmxlocmX
 l mm)を用意し、充分に洗浄した後、シリカ膜上
に常圧CVD法により四塩化錫を主原料とし、水との加
水分解反応により表2のような各種酸化錫透明導電膜を
形成した。膜中のフッ素添加量および電気特性の制御は
ドーパントであるフッ酸の供給量を変化させることによ
り行なった。またフッ素ドーピングを促進させるためメ
タノールの添加を行なった。基板温度は500℃から6
00℃の範囲で製膜した。サンプルとして表2に示すよ
うに各種の抵抗及び透過率を有する膜を作成した。膜中
のフッ素含有量は酸化錫膜を亜鉛を含む塩酸中で溶解し
た後、ガスクロマトグラフィーにより定量分析を行なっ
た。フッ素含有量は酸化錫に対するモル%で表わした。
Example and Comparative Example 1 Low resistance by E-hydrogen plasma] A glass substrate (locmxlocmX
1 mm), and after thorough washing, various tin oxide transparent conductive films as shown in Table 2 are formed on the silica film using the atmospheric pressure CVD method using tin tetrachloride as the main raw material and hydrolysis reaction with water. did. The amount of fluorine added to the film and the electrical properties were controlled by changing the amount of hydrofluoric acid, which is a dopant, supplied. Furthermore, methanol was added to promote fluorine doping. The substrate temperature is from 500℃ to 6
The film was formed in a temperature range of 00°C. As samples, membranes having various resistances and transmittances as shown in Table 2 were prepared. The fluorine content in the film was quantitatively analyzed by gas chromatography after dissolving the tin oxide film in hydrochloric acid containing zinc. The fluorine content was expressed in mol% relative to tin oxide.

又電子密度はホール効果(van derPauw法)
の測定により求めた。これらについて表1に示す条件で
水素プラズマ曝露試験を行なった。結果を表2に示す。
Also, the electron density is determined by the Hall effect (van der Pauw method)
It was determined by the measurement of A hydrogen plasma exposure test was conducted on these under the conditions shown in Table 1. The results are shown in Table 2.

表  1 表2 表2から明らかなようにフッ素濃度がモル比で0. O
1mo1%以上、4m01%以下にある膜は成膜時にお
いて高い透過率を示し、プラズマ処理後にも透過率は変
化しない。又電気特性(表面抵抗)は成膜後には比較的
高い値を示していてもプラズマ曝露後には抵抗値が最大
で115まで減少するため、低抵抗となる。特にサンプ
ル1に示すような電子密度の低い膜では透過率は86%
と極めて高いが抵抗も高いが、プラズマ曝露後には充分
低抵抗化し高透明低抵抗化が実現されることがわかる。
Table 1 Table 2 As is clear from Table 2, the fluorine concentration is 0. O
A film having a content of 1mol% or more and 4mol% or less shows a high transmittance during film formation, and the transmittance does not change even after plasma treatment. Furthermore, although the electrical properties (surface resistance) show a relatively high value after film formation, the resistance value decreases to a maximum of 115 after plasma exposure, resulting in low resistance. Especially for a film with low electron density as shown in sample 1, the transmittance is 86%.
It can be seen that although the resistance is extremely high, the resistance is sufficiently reduced after plasma exposure, achieving high transparency and low resistance.

これに対してサンプル6に示すようにフッ素含有量が0
.01モル%未満の膜では抵抗の減少は見られるがもと
もとその絶対値が高いためプラズマ処理後にも実用的な
低抵抗値(10数Ω/口以下)は得られない。またサン
プル7に見られるようにフッ素濃度が電子濃度に対して
特に高い膜では透過率が低((サンプル3に比べ)抵抗
の減少度も小さいため全体としての特性はよくならない
。このように本発明の導電基板は水素プラズマ処理後に
電気特性の向上が見られ、高透明、低抵抗となるため太
陽電池用基板として最適なものとなる。
On the other hand, as shown in sample 6, the fluorine content is 0.
.. Although a decrease in resistance can be seen in films with less than 0.01 mol %, since the absolute value is originally high, a practical low resistance value (10-odd Ω/mouth or less) cannot be obtained even after plasma treatment. In addition, as seen in sample 7, a film with a particularly high fluorine concentration relative to the electron concentration has low transmittance (compared to sample 3), and the reduction in resistance is also small, so the overall characteristics do not improve. The electrically conductive substrate of the invention exhibits improved electrical properties after hydrogen plasma treatment, and has high transparency and low resistance, making it ideal as a substrate for solar cells.

第1図に、プラズマ曝露時の表面抵抗変化の水素プラズ
マ曝露時間依存性をサンプルlとサンプル5について表
3の条件で調べた結果を示す。
FIG. 1 shows the results of investigating the dependence of surface resistance change upon plasma exposure on hydrogen plasma exposure time for Samples 1 and 5 under the conditions shown in Table 3.

表  3 サンプル1の場合(曲線A)、10秒後に抵抗値は11
5に低下し 120秒まで一定の抵抗値を保つ。これに
対してサンプル5の場合(曲線B)、抵抗値は殆ど変化
しない。300秒以上の処理により膜に還元が生じるた
めいずれの膜の抵抗も急増する。
Table 3 For sample 1 (curve A), the resistance value is 11 after 10 seconds.
5 and maintains a constant resistance value until 120 seconds. On the other hand, in the case of sample 5 (curve B), the resistance value hardly changes. Treatment for 300 seconds or more causes reduction in the films, so the resistance of all films increases rapidly.

第2図に、水素プラズマ曝露時の表面抵抗変化の基板温
度依存性をサンプル1とサンプル5について表4の条件
で調べた結果を示す。
FIG. 2 shows the results of examining the substrate temperature dependence of surface resistance change upon exposure to hydrogen plasma for Samples 1 and 5 under the conditions shown in Table 4.

表  4 サンプル1の場合(曲線C)、約100℃以上で抵抗値
は1/2から115に低下し300℃までの温度範囲で
低抵抗化する。350℃でも低抵抗であるが僅かに透過
率に劣化が見られるため実用的な温度範囲は100℃以
上300℃以下の範囲に限られる。これに対して、サン
プル5の場合(曲線D)、抵抗値は300℃まで殆ど変
化せず、350℃以上で増加の傾向が見られる。このよ
うに実施例の場合プラズマ処理による電気特性の改善が
見られるが比較例の場合全く向上は見られないことがわ
かる。
Table 4 In the case of sample 1 (curve C), the resistance value decreases from 1/2 to 115 at temperatures above about 100°C, and the resistance decreases in the temperature range up to 300°C. Although the resistance is low even at 350°C, there is a slight deterioration in transmittance, so the practical temperature range is limited to 100°C or higher and 300°C or lower. On the other hand, in the case of sample 5 (curve D), the resistance value hardly changes up to 300°C, and tends to increase above 350°C. As described above, it can be seen that in the case of the example, an improvement in electrical characteristics is observed due to the plasma treatment, but in the case of the comparative example, no improvement is observed at all.

第4図に酸化錫膜中のフッ素含有量と、表1に示した条
件による水素プラズマ曝露試験の前後の表面抵抗率化と
の関係、第5図に酸化錫膜中の電導電子密度と、表1に
示した条件による水素プラズマ曝露試験の前後の表面抵
抗率化との関係を示す。
Figure 4 shows the relationship between the fluorine content in the tin oxide film and the surface resistivity before and after the hydrogen plasma exposure test under the conditions shown in Table 1, and Figure 5 shows the conductive electron density in the tin oxide film. The relationship between surface resistivity before and after the hydrogen plasma exposure test under the conditions shown in Table 1 is shown.

フッ素濃度が4 mo1%以下、又、電導電子密度4 
X 10”cm−”以下のときに、水素プラズマ曝露に
よる低抵抗化の効果が得られていることがわかる。
Fluorine concentration is 4 mo1% or less, and conduction electron density is 4
It can be seen that the effect of lowering resistance due to hydrogen plasma exposure is obtained when X 10"cm-" or less.

以上示したようにフッ素濃度と電導電子密度をある特定
の範囲に制御することにより、透過率の高い透明導電膜
が実現できることに加えて、a−Si影形成の水素プラ
ズマ雰囲気下にさらした場合、基板温度100℃以上3
00℃以下の広い温度範囲において120秒以下の曝露
により電気特性を大きく向上させることが可能である。
As shown above, by controlling the fluorine concentration and conduction electron density within a certain range, a transparent conductive film with high transmittance can be realized.In addition, when exposed to a hydrogen plasma atmosphere that forms an a-Si shadow, , substrate temperature 100℃ or higher 3
It is possible to greatly improve electrical properties by exposure for 120 seconds or less in a wide temperature range of 00° C. or less.

電気的特性の向上に伴う光学的特性の変化は全くない。There is no change in the optical properties due to the improvement in the electrical properties.

従って、これらの基板を太陽電池基板に用いた場合、高
透明性、低抵抗、プラズマ耐性の3要素の相乗効果によ
り、その変換効率を大きく向上させることが可能となる
Therefore, when these substrates are used as solar cell substrates, the conversion efficiency can be greatly improved due to the synergistic effect of the three elements of high transparency, low resistance, and plasma resistance.

実施例および比較例2 [窒素アニールによる低抵抗化] 上記実施例1と同様の方法で表5に示すような各種の抵
抗及び透過率を有する膜を作成した。フッ素含有量及び
透過率を有する膜を作成した。フッ素含有量及び電子密
度も実施例1と同様にして測定した。
Examples and Comparative Example 2 [Reducing resistance by nitrogen annealing] Films having various resistances and transmittances as shown in Table 5 were prepared in the same manner as in Example 1 above. A membrane with fluorine content and transmittance was created. Fluorine content and electron density were also measured in the same manner as in Example 1.

表5 表  6 第6図に酸化錫膜中のフッ素含有量と、N2約100%
、常圧、500℃、10分の窒素アニール処理の前後の
表面抵抗変化との関係、7図に酸化錫膜中の電導電子密
度と、N2約100%、常圧、500℃、10分の窒素
アニール処理の前後の表面抵抗変化との関係を示す。
Table 5 Table 6 Figure 6 shows the fluorine content in the tin oxide film and the approximately 100% N2 content.
Figure 7 shows the conduction electron density in the tin oxide film and the relationship between the change in surface resistance before and after nitrogen annealing at normal pressure, 500°C for 10 minutes, and after nitrogen annealing at about 100% N2, normal pressure, 500°C for 10 minutes. The relationship between surface resistance change before and after nitrogen annealing treatment is shown.

フッ素濃度が4mol%以下、又、電導電子密度が4 
X 10”cm−”以下のときに、窒素アニール処理に
よる低抵抗化の効果が得られていることがわかる。
The fluorine concentration is 4 mol% or less, and the conductive electron density is 4
It can be seen that when X10"cm-" or less, the effect of lowering the resistance by nitrogen annealing treatment is obtained.

表5から明らかなようにフッ素濃度がモル比で0.01
%以上、4%以下にある膜は成膜時において高い透過率
を示し、窒素雰囲気中アニール処理後にも透過率は変化
しない。また、電気特性(表面抵抗)は成膜後には比較
的高い値を示していてもアニール後には抵抗値が最大で
175まで減少するため、低抵抗となる。
As is clear from Table 5, the fluorine concentration is 0.01 in molar ratio.
% or more and 4% or less exhibits high transmittance during film formation, and the transmittance does not change even after annealing in a nitrogen atmosphere. Further, even if the electrical property (surface resistance) shows a relatively high value after film formation, the resistance value decreases to a maximum of 175 after annealing, resulting in low resistance.

特にサンプルlに示す様に、電子密度の低い膜では、透
過率は85%と極めて高いが・抵抗も高い膜はアニール
後には充分低抵抗化し高透明低抵抗が実現されることが
わかる。これに対してサンプル5に示すようにフッ素含
有量が0.01モル%以下の膜では抵抗の減少は見られ
るがもともとその絶対値が高いためアニール処理後にも
実用的な低抵抗値(10数Ω/口以下)は得られない。
In particular, as shown in sample 1, it can be seen that a film with a low electron density has an extremely high transmittance of 85%, but a film with a high resistance becomes sufficiently low in resistance after annealing, achieving high transparency and low resistance. On the other hand, as shown in sample 5, a decrease in resistance can be seen in a film with a fluorine content of 0.01 mol% or less, but its absolute value is originally high, so even after annealing, it has a practical low resistance value (10s). Ω/mouth) cannot be obtained.

またサンプル5に見られるようにフッ素濃度が電子濃度
に対して特に高い膜では透過率が低い(サンプル3に比
べ)上に抵抗の変化もみられず全体としての特性は良く
ならない。
Further, in a film where the fluorine concentration is particularly high relative to the electron concentration, as seen in Sample 5, the transmittance is low (compared to Sample 3) and no change in resistance is observed, so the overall characteristics are not improved.

このように本発明の導電基板は窒素アニール後に電気特
性の向上が見られ、高透明、低抵抗となるため太陽電池
用基板として最適なものとなる。
As described above, the conductive substrate of the present invention exhibits improved electrical properties after nitrogen annealing, and has high transparency and low resistance, making it ideal as a substrate for solar cells.

以上示したようにフッ素濃度と電導電子密度をある特定
の範囲に制御することにより、本透過率の高い透明導電
膜が実現できる。
As shown above, by controlling the fluorine concentration and the conductive electron density within a certain range, a transparent conductive film with high transmittance can be realized.

第8図に窒素アニール処理(常圧、500℃、10分間
)による表面抵抗変化の窒素雰囲気中の酸素分圧依存性
を示す。酸素分圧100Torr以下でアニール処理効
果が得られていることがわかる。
FIG. 8 shows the dependence of surface resistance change on oxygen partial pressure in a nitrogen atmosphere due to nitrogen annealing treatment (normal pressure, 500° C., 10 minutes). It can be seen that the annealing effect is obtained at an oxygen partial pressure of 100 Torr or less.

第9図に窒素アニール処理(常圧、N2約100%、1
0分間)による表面抵抗変化のアニール処理時の基板温
度依存性を示す。基板温度150℃以上、特に200℃
以上で顕著なアニール処理効果が得られていることがわ
かる。
Figure 9 shows nitrogen annealing treatment (normal pressure, approximately 100% N2, 1
3 shows the dependence of surface resistance change on substrate temperature during annealing treatment (0 minutes). Substrate temperature 150℃ or higher, especially 200℃
It can be seen from the above that a remarkable annealing treatment effect was obtained.

なお、アニール処理時間については、水素プラズマ曝露
時とほぼ同様で、10秒程度で低抵抗化の効果があられ
れる。
Note that the annealing treatment time is almost the same as that for hydrogen plasma exposure, and the effect of lowering the resistance can be achieved in about 10 seconds.

これらの特性向上は酸素分圧が100Torr以下であ
れば窒素以外の不活性ガス雰囲気でも可能である。使用
ガスとしてはアルゴン、ネオン、ヘリウム等の希ガス、
または還元雰囲気ガスである水素が適当である。また真
空下でも同等のアニール効果が得られる。
These characteristics can be improved even in an inert gas atmosphere other than nitrogen as long as the oxygen partial pressure is 100 Torr or less. Gases used include rare gases such as argon, neon, helium, etc.
Alternatively, hydrogen, which is a reducing atmosphere gas, is suitable. Furthermore, the same annealing effect can be obtained even under vacuum.

なおフッ素濃度と電導密度の範囲はそれぞれ0、O2N
2 mo1%、5 X 10”〜4 X 10”cm−
’、特に0.1〜4 mo1%、I X 10”〜4 
X 10”cm−”の範囲が望ましく、この場合特に高
透明低抵抗の優れた透明導電膜が得られる。
The ranges of fluorine concentration and conductivity density are 0 and O2N, respectively.
2 mo1%, 5 X 10”~4 X 10”cm-
', especially 0.1-4 mo1%, I x 10"-4
A range of X 10"cm-" is desirable, and in this case, an excellent transparent conductive film with particularly high transparency and low resistance can be obtained.

アニール後の膜は電気的特性の向上に伴う光学的特性の
変化は全(見られない。従って、これらの基板を太陽電
池に用いた場合、高透明性、低抵抗の相乗効果により、
その変換効率を太き(向上させることが可能となる。
After annealing, the film shows no change in optical properties due to improvement in electrical properties. Therefore, when these substrates are used in solar cells, due to the synergistic effect of high transparency and low resistance,
It becomes possible to increase (improve) the conversion efficiency.

[発明の効果] 本発明によれば、透明導電膜の透過率を高く維持したま
ま水素プラズマ雰囲気下に僅かlO秒程度さらすことに
より抵抗値を大きく減少させることが可能となる。従っ
て、高透明性、低抵抗、水素プラズマ耐性が必要とされ
る太陽電池基板に用いた場合、アモルファス層形成後に
おいて、これらのすべての要件を満足するため、その変
換効率を太き(向上させることが可能となる。
[Effects of the Invention] According to the present invention, it is possible to greatly reduce the resistance value by exposing the transparent conductive film to a hydrogen plasma atmosphere for only about 10 seconds while maintaining the transmittance of the transparent conductive film high. Therefore, when used in a solar cell substrate that requires high transparency, low resistance, and hydrogen plasma resistance, it is necessary to thicken (improve) the conversion efficiency after forming the amorphous layer in order to satisfy all these requirements. becomes possible.

又、本発明のフッ素ドープ酸化錫膜は窒素雰囲気、ある
いはH20雰囲気、アルゴン等の不活性ガスなどの非酸
化性雰囲気中に放置することによっても、高透過率のま
ま低抵抗を得ることができるので他方面に応用可能であ
る。
Further, the fluorine-doped tin oxide film of the present invention can be left in a non-oxidizing atmosphere such as a nitrogen atmosphere, an H20 atmosphere, or an inert gas such as argon to obtain low resistance while maintaining high transmittance. Therefore, it can be applied to the other side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、フッ素ドープ酸化錫膜における水素
プラズマ曝露時の表面低抵抗変化の水素プラズマ曝露時
間依存性、基板温度依存性をそれぞれ示すグラフである
。 第3図は本発明のフッ素ドープ酸化錫膜を透明電極とし
て用いた太陽電池の一例の一部縦断面図である。 第4図、第5図は、フッ素ドープ酸化錫膜におけるフッ
素含有量、及び電導電子密度と、水素プラズマ曝露試験
による表面抵抗変化との関係をそれぞれ示すグラフであ
る。 第6図、第7図は、フッ素ドープ酸化錫膜におけるフッ
素含有量、及び電導電子密度と、窒素アニール処理によ
る表面抵抗変化との関係をそれぞれ示すグラフである。 第8図、第9図は、フッ素ドープ酸化錫膜における窒素
アニール処理時の表面抵抗変化のアニール雰囲気中の酸
素分圧依存性、基板温度依存性をそれぞれ示すグラフで
ある。 1:透光性基板 2:アルカリバリヤーコート 3:本発明のフッ素ドープ酸化錫膜からなる第1透明電
極 4:水素化アモルファスシリコン(a−Si:H)から
なる光電変換層 5:第2導電膜 6:導 線 Ro:非酸化性雰囲気曝露前の表面抵抗R9:非酸化性
雰囲気曝露後の表面抵抗ム紙1N 第 図 水素デラズ女県露8+聞(かり) 第1図 フ6.S、′6禍t (−)、−/′)第4図 電かI釜斥(月Q” csr ”) 第テ図 7ツ象茗屓t(輌I/2 第 図 電4t)e&(ylo′6cmJカ 第7図 第 図 1001勢 200   300   400   5
00h救シム康じC) 第9図
FIGS. 1 and 2 are graphs showing the dependence of the surface resistance change of a fluorine-doped tin oxide film upon exposure to hydrogen plasma on the hydrogen plasma exposure time and on the substrate temperature, respectively. FIG. 3 is a partial longitudinal sectional view of an example of a solar cell using the fluorine-doped tin oxide film of the present invention as a transparent electrode. FIGS. 4 and 5 are graphs respectively showing the relationship between the fluorine content and conduction electron density in a fluorine-doped tin oxide film and the change in surface resistance due to a hydrogen plasma exposure test. FIGS. 6 and 7 are graphs respectively showing the relationship between the fluorine content and conduction electron density in a fluorine-doped tin oxide film and the change in surface resistance due to nitrogen annealing treatment. FIGS. 8 and 9 are graphs showing the dependence of the surface resistance change during nitrogen annealing on a fluorine-doped tin oxide film on the oxygen partial pressure in the annealing atmosphere and on the substrate temperature, respectively. 1: Transparent substrate 2: Alkali barrier coat 3: First transparent electrode made of the fluorine-doped tin oxide film of the present invention 4: Photoelectric conversion layer 5 made of hydrogenated amorphous silicon (a-Si:H): Second conductive layer Membrane 6: Conductor Ro: Surface resistance before exposure to non-oxidizing atmosphere R9: Surface resistance after exposure to non-oxidizing atmosphere S, '6 獍t (-), -/') 4th figure ka I kama 斥 (month Q "csr") 4th figure 7 zomei t (vehicle I/2 1st figure 4t) e & ( ylo'6cmJ Figure 7 Figure 1001 group 200 300 400 5
00h Rescue Sim Yasuji C) Figure 9

Claims (8)

【特許請求の範囲】[Claims] (1)フッ素を酸化錫に対し0.01〜4mol%含み
、電導電子密度が5×10^1^8〜4×10^2^0
cm^−^3であるフッ素ドープ酸化錫膜。
(1) Contains 0.01 to 4 mol% of fluorine based on tin oxide, and has a conductive electron density of 5 x 10^1^8 to 4 x 10^2^0
Fluorine-doped tin oxide film with cm^-^3.
(2)基板上に形成した請求項1記載のフッ素ドープ酸
化錫膜を非酸化性雰囲気に曝露することを特徴とするフ
ッ素ドープ酸化錫膜の低抵抗化方法。
(2) A method for lowering the resistance of a fluorine-doped tin oxide film, which comprises exposing the fluorine-doped tin oxide film according to claim 1 formed on a substrate to a non-oxidizing atmosphere.
(3)酸素分圧が100Torr以下の非酸化性雰囲気
に請求項1記載のフッ素ドープ酸化錫膜を曝露すること
を特徴とする請求項2記載のフッ素ドープ酸化錫膜の低
抵抗化方法。
(3) The method for reducing the resistance of a fluorine-doped tin oxide film according to claim 2, which comprises exposing the fluorine-doped tin oxide film according to claim 1 to a non-oxidizing atmosphere having an oxygen partial pressure of 100 Torr or less.
(4)基板温度150℃以上で非酸化性雰囲気に曝露す
ることを特徴とする請求項2又は3記載のフッ素ドープ
酸化錫膜の低抵抗化方法。
(4) The method for lowering the resistance of a fluorine-doped tin oxide film according to claim 2 or 3, characterized in that the substrate is exposed to a non-oxidizing atmosphere at a temperature of 150° C. or higher.
(5)水素分圧が0.3〜1.5Torrで放電電圧が
10〜50mW/cm^2の水素プラズマ中で、基板温
度100〜300℃において10〜120秒間曝露する
ことを特徴とする請求項2記載のフッ素ドープ酸化錫膜
の低抵抗化方法。
(5) A claim characterized in that the substrate is exposed for 10 to 120 seconds at a substrate temperature of 100 to 300°C in hydrogen plasma with a hydrogen partial pressure of 0.3 to 1.5 Torr and a discharge voltage of 10 to 50 mW/cm^2. Item 2. A method for reducing the resistance of a fluorine-doped tin oxide film.
(6)透光性基板上にフッ素を酸化錫に対し0.01〜
4mol%含み、電導電子密度が5×10^1^9〜4
×10^2^0cm^−^3であるフッ素ドープ酸化錫
膜からなる第1透明電極を形成し、次いで水素プラズマ
を用いたグロー放電によってa−Si光電変換層を形成
し、次いで第2導電膜を形成することを特徴とする太陽
電池の製造方法。
(6) Fluorine on a transparent substrate with a ratio of 0.01 to tin oxide
Contains 4 mol%, conductive electron density is 5 x 10^1^9~4
A first transparent electrode made of a fluorine-doped tin oxide film of x10^2^0cm^-^3 is formed, then an a-Si photoelectric conversion layer is formed by glow discharge using hydrogen plasma, and then a second conductive A method for manufacturing a solar cell, comprising forming a film.
(7)a−Si光電変換層の最初の20Åを水素分圧が
0.3〜1.5Torr、放電電圧10〜50mW/c
m^2のグロー放電を用いて120秒以内に製膜するこ
とを特徴とする請求項6記載の太陽電池の製造方法。
(7) The first 20 Å of the a-Si photoelectric conversion layer has a hydrogen partial pressure of 0.3 to 1.5 Torr and a discharge voltage of 10 to 50 mW/c.
7. The method for manufacturing a solar cell according to claim 6, wherein the film is formed within 120 seconds using glow discharge of m^2.
(8)透光性基板上に、フッ素を酸化錫に対し0.01
〜4mol%含み、電導電子密度が5×10^1^9〜
4×10^2^0cm^−^3であるフッ素ドープ酸化
錫膜からなる第1透明電極、a−Si光電変換層、第2
導電膜を順次積層してなる太陽電池。
(8) On a transparent substrate, fluorine is added at a ratio of 0.01 to tin oxide.
~ Contains 4 mol%, conductive electron density is 5 x 10^1^9 ~
A first transparent electrode made of a fluorine-doped tin oxide film with a size of 4×10^2^0 cm^-^3, an a-Si photoelectric conversion layer, and a second
A solar cell made by sequentially stacking conductive films.
JP1245181A 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof Expired - Lifetime JPH07105166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245181A JPH07105166B2 (en) 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-236257 1988-09-22
JP23625788 1988-09-22
JP1245181A JPH07105166B2 (en) 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof

Publications (2)

Publication Number Publication Date
JPH02168507A true JPH02168507A (en) 1990-06-28
JPH07105166B2 JPH07105166B2 (en) 1995-11-13

Family

ID=26532574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245181A Expired - Lifetime JPH07105166B2 (en) 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof

Country Status (1)

Country Link
JP (1) JPH07105166B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013237A1 (en) * 1998-08-26 2000-03-09 Nippon Sheet Glass Co., Ltd. Photovoltaic device
JP2001210144A (en) * 1999-11-10 2001-08-03 Asahi Glass Co Ltd Substrate having transparent conductive layer and its manufacturing method
JP2003081633A (en) * 2001-09-10 2003-03-19 Asahi Glass Co Ltd Method for producing resistance-reduced fluorine-doped tin oxide film
WO2004102677A1 (en) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited Transparent conductive substrate for solar battery and method for producing same
WO2005027229A1 (en) * 2003-08-29 2005-03-24 Asahi Glass Company, Limited Base with transparent conductive film and method for producing same
JP2006140388A (en) * 2004-11-15 2006-06-01 Asahi Glass Co Ltd Manufacturing method of low resistance fluorine doped tin oxide film and solar cell
US7179527B2 (en) 2001-10-19 2007-02-20 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
WO2007049653A1 (en) * 2005-10-28 2007-05-03 Asahi Glass Co., Ltd. Transparent substrate with thin film and method for manufacturing transparent substrate with circuit pattern wherein such transparent substrate with thin film is used
JP2007153701A (en) * 2005-12-07 2007-06-21 Fujikura Ltd Heat ray reflection glass, film forming apparatus and film forming method
JP2011504293A (en) * 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
KR101021141B1 (en) * 2007-08-22 2011-03-14 한국세라믹기술원 Transparent Conductive F-dopped tin oxide glass for defogging and fabrication of it
JP2013100577A (en) * 2011-11-08 2013-05-23 Asahi Glass Co Ltd Method for forming fluorine-doped tin oxide film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328355A2 (en) 2022-08-23 2024-02-28 Indian Oil Corporation Limited Process of reusing bi-facial metal substrates for photoactive semiconductor materials for solar water splitting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186478A (en) * 1985-02-15 1986-08-20 Central Glass Co Ltd Forming of conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186478A (en) * 1985-02-15 1986-08-20 Central Glass Co Ltd Forming of conductive film

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115160A1 (en) * 1998-08-26 2001-07-11 Nippon Sheet Glass Co., Ltd. Photovoltaic device
US6395973B2 (en) 1998-08-26 2002-05-28 Nippon Sheet Glass Co., Ltd. Photovoltaic device
WO2000013237A1 (en) * 1998-08-26 2000-03-09 Nippon Sheet Glass Co., Ltd. Photovoltaic device
EP1115160A4 (en) * 1998-08-26 2006-01-04 Nippon Sheet Glass Co Ltd Photovoltaic device
JP2001210144A (en) * 1999-11-10 2001-08-03 Asahi Glass Co Ltd Substrate having transparent conductive layer and its manufacturing method
JP2003081633A (en) * 2001-09-10 2003-03-19 Asahi Glass Co Ltd Method for producing resistance-reduced fluorine-doped tin oxide film
US7179527B2 (en) 2001-10-19 2007-02-20 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7883789B2 (en) 2001-10-19 2011-02-08 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7364808B2 (en) 2001-10-19 2008-04-29 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
WO2004102677A1 (en) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited Transparent conductive substrate for solar battery and method for producing same
JPWO2004102677A1 (en) * 2003-05-13 2006-07-13 旭硝子株式会社 Transparent conductive substrate for solar cell and method for producing the same
JP5068946B2 (en) * 2003-05-13 2012-11-07 旭硝子株式会社 Transparent conductive substrate for solar cell and method for producing the same
JP2011181975A (en) * 2003-05-13 2011-09-15 Asahi Glass Co Ltd Method of manufacturing transparent conductive substrate for solar cell
WO2005027229A1 (en) * 2003-08-29 2005-03-24 Asahi Glass Company, Limited Base with transparent conductive film and method for producing same
JP2006140388A (en) * 2004-11-15 2006-06-01 Asahi Glass Co Ltd Manufacturing method of low resistance fluorine doped tin oxide film and solar cell
JP2007123076A (en) * 2005-10-28 2007-05-17 Osaka Univ Electronic circuit device and its manufacturing method
WO2007049653A1 (en) * 2005-10-28 2007-05-03 Asahi Glass Co., Ltd. Transparent substrate with thin film and method for manufacturing transparent substrate with circuit pattern wherein such transparent substrate with thin film is used
KR101282580B1 (en) * 2005-10-28 2013-07-04 아사히 가라스 가부시키가이샤 Method for manufacturing transparent substrate with circuit pattern
JP2007153701A (en) * 2005-12-07 2007-06-21 Fujikura Ltd Heat ray reflection glass, film forming apparatus and film forming method
KR101021141B1 (en) * 2007-08-22 2011-03-14 한국세라믹기술원 Transparent Conductive F-dopped tin oxide glass for defogging and fabrication of it
JP2011504293A (en) * 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
US9181124B2 (en) 2007-11-02 2015-11-10 Agc Flat Glass North America, Inc. Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
JP2013100577A (en) * 2011-11-08 2013-05-23 Asahi Glass Co Ltd Method for forming fluorine-doped tin oxide film

Also Published As

Publication number Publication date
JPH07105166B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US9255029B2 (en) Method of making heat treated coated article using TCO and removable protective film
JPS6215496B2 (en)
KR101352779B1 (en) Transparent electrode for solar cell and method for preparing the same
JP5841074B2 (en) Glass substrate coated with a layer of improved mechanical strength
JPH02168507A (en) Fluorine doped tin oxide film and method of reducing resistance thereof
JP3453805B2 (en) Transparent conductive film
JP2917432B2 (en) Method for producing conductive glass
JPS61227946A (en) Electroconductive glass
US20130319523A1 (en) Conductive transparent glass substrate for photovoltaic cell
JP5647130B2 (en) Transparent conductive zinc oxide display film and method for producing the same
JPH06163955A (en) Solar cell substrate and solar cell
JPH01194208A (en) Transparent conductive membrane
JPH07131044A (en) Transparent conductive substrate
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
CN115093128A (en) Glass substrate with film and method for producing same
JPH01227307A (en) Transparent electric conductor
JPH0742572B2 (en) Transparent conductive film
JPS63195149A (en) Transparent electrically conductive film
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JP2012162761A (en) Method for forming fluorine-doped tin oxide film
JPH0733301Y2 (en) Photoelectric conversion device
KR101095004B1 (en) The manufacturing method and Indium Tin OxideITO transparent conductive films deposited on the diffusion barrier layer coated Soda lime glass substrate.
JPH06191894A (en) Electric conductive glass and its production
JPS63102109A (en) Transparent conducting film
JPS6230148B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

EXPY Cancellation because of completion of term