JPH0778774B2 - 短待ち時間データ回復装置及びメッセージデータの同期化方法 - Google Patents

短待ち時間データ回復装置及びメッセージデータの同期化方法

Info

Publication number
JPH0778774B2
JPH0778774B2 JP3324389A JP32438991A JPH0778774B2 JP H0778774 B2 JPH0778774 B2 JP H0778774B2 JP 3324389 A JP3324389 A JP 3324389A JP 32438991 A JP32438991 A JP 32438991A JP H0778774 B2 JPH0778774 B2 JP H0778774B2
Authority
JP
Japan
Prior art keywords
data
clock
input
circuit
message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3324389A
Other languages
English (en)
Other versions
JPH0628288A (ja
Inventor
ロバート、ベッツ
ハワード、トマス、オルノウィッチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPH0628288A publication Critical patent/JPH0628288A/ja
Publication of JPH0778774B2 publication Critical patent/JPH0778774B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M9/00Parallel/series conversion or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • H04L49/256Routing or path finding in ATM switching fabrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3081ATM peripheral units, e.g. policing, insertion or extraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals
    • H04L7/0338Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals the correction of the phase error being performed by a feed forward loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/044Speed or phase control by synchronisation signals using special codes as synchronising signal using a single bit, e.g. start stop bit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1881Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with schedule organisation, e.g. priority, sequence management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5625Operations, administration and maintenance [OAM]
    • H04L2012/5627Fault tolerance and recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer And Data Communications (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は通信およびディジタルコ
ンピュータ入力/出力システムおよび非同期シリアルデ
ータを受信するそれらの能力に関し、そしてシリアルデ
ータ伝送におけるシリアルデータをクロックするための
クロック回復装置および方法を提供するものである。 【0002】 【従来の技術及び課題】現代のディジタルシステムでは
シリアルデータがそのシステムの種々のエレメント間で
転送される。これは種々のシステムで行われる。このた
めには米国特許第4169212号明細書に示されるよ
うに半二重または全二重通信チャンネルで利用しうる多
重モードディジタル暗号化システムが提案されている。
また米国特許第4785469号明細書に示されるよう
に並列データ伝送のための非同期または同期アプリケー
ション用の周辺インターフェースに対するプロセッサも
提案されている。可変速度のデータは米国特許第408
7681号明細書に示されるように非常に複雑な方法に
より回復されている。米国特許第4756010号明細
書も複雑であって、これは受信データがデータ伝送クロ
ックより高速のクロックを含む場合にはより低い伝送速
度について動作する回復方法を示している。 【0003】送信器と受信号が互いに非同期のクロック
を含むときには、データを正しく受信するには各入力シ
リアルデータと受信器とを同期化しなくてはならない。
これを行うには受信器は入力データと同期するクロック
を発生しそしてそのクロックを用いてそのデータを受信
しなければならない。 【0004】非常に高い伝送速度については伝送速度よ
りかなり高速のクロックを用いない方がよく、そしてパ
ターン認識を必要としない固定データ速度で動作するシ
ステムが必要である。本発明は直列データ伝送に関し、
そのデータをクロックするためのクロックを回復する。
この場合、米国特許第4817117号明細書において
は局部クロック信号を発生しそしてそれから周波数は等
しいが位相のずれた複数の局部クロック信号を発生した
後、データ送信器から入る交互となった半ビットからな
る第1ビットシーケンスからデータ受信器でのビットク
ロックを決定するために入力データと同期したN相クロ
ックから選んでいる。これは広く用いられてはおらず、
そして予め定めた最小時間インターバルにおいてこれら
局所クロック出力信号の内の少くとも1個からビットク
ロックを発生しなくてはならない。このシステムはコー
ドレス電話器を目的としたものであって、一つのパター
ンを同期化し認識するためにビットストリング(約16
ビット/ストリング)を発生しなくてはならない。これ
には複雑なハードウェアが必要である。 【0005】広く用いられているシリアルデータ回復法
は位相固定ループ(PLL)発振器にもとづいており、
これはPLLが入力シリアルデータに同期することが出
来るようにする見出しを有するメッセージとしてシリア
ルデータを送ることを含んでいる。更に、このデータメ
ッセージは例えば8ビット/10ビットコードのような
特殊なコードにコード化されて数ビット毎に入力データ
が変換するようにする。これはメッセージの期間中PL
Lを連続的に校正するために用いられ、それによりそれ
が入力データと同期したままとなる。これらの方法は特
に長いメッセージについては満足なものである。長いメ
ッセージは見出しおよびPLLの連続校正についてのオ
ーバヘッドを長時間にわたり無視しうるようにするよう
に小さくする。 【0006】しかしながら、並列処理については短待ち
時間シリアルデータ回復法すなわち非常に小さいオーバ
ヘッドで短いメッセージを効率よく処理する方法が必要
である。従来の方法は見出しを介してPLL発振器を同
期化するに必要な時間が少量のデータを送信する時間よ
りかなり長いから短待ち時間要件については有効でな
い。そのような方法はパフォーマンスにとって非常に有
害である。 【0007】更に、同期化を高速で変更する必要が相互
接続ネットワークおよび多くの異なるクロック源を用い
るシステムにある。例えば、回復法は第1メッセージの
受信のために高速で同期化し次に第2のメッセージを直
ちに受けるために異なる非同期源に直ちに再び同期化し
なければならない。 【0008】データが非同期で回復される場合には回路
が不安定となる可能性すなわち不安定度があり、そして
これを考慮しなければならない。 【0009】要約すると、将来のために、非常に高速度
の直列固定データ速度位置についてのより高速でより安
価であって、よりフレキシブルなそして複雑でない方法
が必要である。 【0010】 【課題を解決するための手段及び作用】本発明は受信装
置を入力シリアルデータメッセージと同期化させること
の出来るようにする装置に関する。これは単一の同期化
ビットをメッセージのはじめに長い見出しの代りに付加
するだけでよい。この同期化ビットがまず送られそして
これは常に論理「1」である。このシステムに必要なハ
ードウェアは簡単な一つのセットであり、この単一の同
期化ビットでシリアルデータのクロックのためのクロッ
クを回復する。この装置は分散システム用のバスのアプ
リケーションおよび他のアプリケーションで有効であ
る。 【0011】受信装置での同期化は入力データと同一の
周波数で動作するN個の位相のずれたクロックを発生す
ることの出来るクロックシステムにより行われる。これ
らN個のクロックは互いにほぼ等しい量だけシフトして
いる。N個のクロックはクロックの可能性をすべてカバ
ーするから、N個のクロックの内の少くとも1個のクロ
ックが入力データと同期することになる。本発明の装置
の目的はN個のクロックの内、入力シリアルデータと最
もよく同期する一つを選びそしてメッセージを正しく受
信することである。クロック選択決定は夫々の入力メッ
セージについてなされる。N個のクロックの内の1つの
選択は同期化ビットが受信装置に入る時間全体において
なされる。この選択は入力同期化ビットをサンプリング
しそしてN個のクロックの内、入力データに最もよく同
期する1つを直ちに選びそしてそれを用いて以降のメッ
セージを受信するものである。 【0012】この方法には限界がある。送信および受信
装置は同一周波数で通信を行わねばならず、すなわち両
者は同一の正確な周波数を発生する発振器にもとづきメ
ッセージを発生し受信しなければならない。しかしなが
ら、そのような発振器は完全には整合せず二つの発振器
で発生される周波数間にはわずかなずれ、すなわちエラ
ーがある。このエラーのために入力データを選択された
クロックと完全に同期したままとすることは出来ない。
同期化はメッセージが長すぎる場合には二つの発振器間
の精度の問題である時間がたまたま失われることがあ
る。今日の発振器の精度では異なる発振器間で生じる許
容可能な最大周波数誤差は約1000クロック時間に同
期化損失を生じさせるものと考えられる。これは、短い
メッセージを1000データビット長に維持するとすれ
ばこのメッセージの期間に同期損失が生じないというこ
とを意味する。 【0013】 【実施例】N個の位相のずれたクロックを受信器で発生
する場合であるN=4について説明する。各入力メッセ
ージが受信器に生じるとき、4個のクロックの1つが特
定のメッセージの受信に最適なものとして選ばれる。こ
の例におけるNは2より大であれば任意であり、4に限
られるものではない。 【0014】データと非同期で回復するときは回路の不
安定度があり、これを考慮しなければならない。この実
施例における不安定度の形は図7に示すIBM Technical
Disclosure Bulletin Vol.32 No.10A March 1990,
「Metastability ProofLatch 」 D.C. Banker, J.A.
Dorler, G.A. Maley and H.T. Olnowich 著に示され
るものである。 【0015】図1において、シリアルデータ回復システ
ム10は回路12、すなわちN相クロック発生器、回路
14、すなわちワン・オブ・Nクロック選択回路(one
ofN-clock selection circuit)、回路16、すなわち
入力データ整合回路、回路18、すなわちメッセージの
入力データ部分を受信するために用いられる入力データ
シフトレジスタ、およびオプション回路19すなわちメ
ッセージエラー検出回路、を含む。 【0016】図2は2信号シリアルインターフェースの
実施例を介して送られるメッセージについてのタイミン
グを示しており、2信号とは+VALIDおよび+DA
TAである。+DATA信号は実際には同期化ビットと
それに続く入力シリアルデータメッセージを含む。図1
の+DATAは200MHz(5nsに1ビットずつ)で
のNRZデータの直列伝送のためのものである。これは
1クロック時間=5ns以下(目標の5nsから伝送回路に
より僅かに縮まることがある)の同期化ビットで固定さ
れる。+VALIDはデータ伝送をブラケットする信号
であり、メッセージのエンドの検出に使用しうる。 【0017】図1、3において、回路12は発振器2
0、L1−ラッチ22、L2−ラッチ24を含む。本発
明の目的は受信システム10が1クロック時間で入力デ
ータと同期化しうるようにすることである。このため、
回路12は4個の移相のずれたクロックを発生する。こ
れは1.25ns間上レベルで次の1.25ns間下レベル
となる方形波出力を出す発振器20により与えられる4
00MHzおよびその逆数にもとづき、4つの位相のず
れた200MHzのクロックを発生する。これはラッチ
22と24でつくられる2段シフトレジスタを用い、4
つのクロックの発生に400MHzでの帰還とクロック
を必要とする。クロック1と3は逆であり2と4もそう
である。図3のタイミング図は4個の200MHzクロ
ックの波形およびいかにして夫々が互いに1.25nsだ
けスキューされるかを示している。 【0018】図1、4、5、7において、回路14はラ
ッチ30−37、ANDゲート40−52、ORゲート
52を含む。回路14の目的は入力同期化ビットにもと
づき回路12からの4個のクロックの内の1つを選ぶこ
とである。同期化ビットはまず各入力シリアルデータメ
ッセージに対し論理1に固定されて入り、そして夫々が
回路12からの4つのクロックの1つでクロックされる
4個のラッチ30,32,34,36によりサンプリン
グされる。4個のラッチの1個はデータとクロックが整
合していないから不安定条件となりうるのであり、これ
らは同時に変化して正常なラッチを不安定に(不確率な
レベルあるいは発振状態になる)させる。このように、
本発明はラッチ30〜37が耐不安定ラッチであり二重
ラッチとして構成されるとき有効であり、何故ならば二
重ラッチングは好適なラッチを用いずに不安定度を低下
させるために広く認識された方法であるからである。好
適なラッチ30〜37は図7に示すラッチであるとよ
い。 【0019】4個のL1ラッチ30,32,34,36
の1個は他よりも早くこの同期化ビットでセットされ
る。何故ならばこれらクロックはスタガー状(staggere
d)であるからである。例えば、図3のタイミング図に
おいて、これら4個のクロックに関し、同期化ビットの
ランダムな発生を示す。この例では同期化ビットはクロ
ック1が0となった後に立上がり、それ故クロック1は
この同期化ビットに出会わず、クロック1でクロックさ
れるラッチ30はセットとならない。しかしながら、ク
ロック2と同期化ビットは重なるからクロック2は同期
化ビットと一致し、ラッチ32をはじめにセットされる
ものとする。次に1.25ns後にラッチ34が次にセッ
トされそしてその1.25ns後に36がセットされる。
ラッチ32から前のラッチ30への帰還によりラッチ3
0のセットが防止される。 【0020】このように4個の内の3個のラッチは同期
化ビットが検出されるときセットとなりうる。これら4
個のラッチはL1ラッチに対し内部的となる帰還ループ
によりこの初期状態に凍結される。これらの状態を変え
ることの出来るのはそのメッセージのエンドで0になる
+VALID信号である。0になる+VALID信号は
これらラッチをすべてリセットし次のメッセージの同期
化ビットの処理に備えさせる。 【0021】同期化ビットの中心に最も近いクロックを
選ぶために3個のラッチの内の第2のラッチをセットす
るクロックが入力データメッセージを回復するために用
いられるべきクロックとして選ばれる。この例ではラッ
チ34はクロック3により2番目にセットされ、それ故
クロック3が選ばれる。クロック選択回路14は4個の
ANDゲート44,45,46,47を用いる簡単な組
合せロジックでつくられる。一つの選択についてこれら
ANDゲートの3個が0を、残りの1個が1を出す。選
択は4個の二重ラッチ30〜37にもとづきなされる。
この例では二重ラッチ32のS2出力、ラッチ34と3
5のS3出力およびラッチ36,37のS4出力はすべ
て1であり、ラッチ30,31のS1出力は0である
(その逆−S1は1である)。ラッチ30〜37はAN
Dゲート44〜47に入力を与えこれらがANDゲート
を1にゲート44,45,46を0にする。その結果、
クロック3が回路14のANDゲート50とORゲート
52により選ばれて入力データメッセージのクロックの
ためにL1ラッチ60にこの選ばれたクロックを与え
る。 【0022】この回復動作の最終段階では、この選択さ
れたクロックで回路16内の入力データを整合させ、回
路18にそれを記憶しそして回路19を用いてそのエラ
ーを検査する。回路16はラッチ60と62からなる。
L1ラッチ60はインバータ64で発生されるこの選ば
れたクロックの反転でラッチ60の出力をクロックする
ことによりL1ラッチ60で発生されるシリアル波形を
250nsだけ遅延する。 【0023】回路18はANDゲート66と68、イン
バータ70、ORゲート72および入力シフトレジスタ
80からなる。回路18はメッセージ全体をレジスタ8
0に移動させ、そして受信器による処理のためそこに保
持する。受信器は一般に、4クロックの内のどの1つが
各入力メッセージにより選ばれてもランダムには変化し
ない1つの局部クロックで動作する。この例では受信器
はその局部クロックとしてクロック1を用いるものとし
ている。それ故、レジスタ80は図3からのクロック1
により常にクロックされる。 【0024】クロック1でクロックするためにレジスタ
80に入力データを整合させるために入力データ選択が
ANDゲート66,68で行われる。この入力データ選
択はクロック3がORゲート74とインバータ70とに
より選ばれたかクロック4がそのように選ばれたかにも
とづき、ラッチ60または62から行われる。クロック
3または4が選ばれると、ANDゲート66とORゲー
ト72によりラッチ60の出力がクロック1による受信
のためにレジスタ80に送られるべきものとして選ばれ
る。クロック1または2が選ばれるとANDゲート68
とORゲート72によりラッチ62の出力がクロック1
での受信のためにレジスタ80に送られるべきものとし
て選ばれる。図6はこの動作のタイミングの例を示す。 【0025】回路19はデータメッセージが回路18に
完全に入った後でそのエラーの検出を行うためにオプシ
ョンとして用いられる。エラー検出はパリティ、ECC
またはCRCのような所望の方法にもとづき行うことが
出来る。不安定により誤ってデータが回復されれば回路
19はこれらおよび他のエラーを検出する。 【0026】この実施例は図7に示す耐不安定ラッチを
用いる。図7は不安定状態に対するディジタルラッチの
感度を下げる回路構成である。非同期システムではほぼ
同一時点で変化する2つの信号によりノイズスパイクが
生じるような例がある。そのようなスパイクはラッチに
小さいエネルギーパケットをそう入するに充分な大きさ
をもつことが出来そしてそれを不安定にする。この不安
定性には二通りある。これによりラッチが帰還ループに
より発振するかあるいはラッチ出力が不確定な電圧レベ
ルを生じさせる。いずれの場合でもそれが一たん生じる
と、不安定条件がなくなる前のある不定の時間にわたり
存在しそして一般に不規則なハードウェア故障を生じ
る。 【0027】この問題を明確にするためにいくつかの簡
単な仮定を用いるが、その第1のものは、スパイクがラ
ッチをセットするかそれを安定なままにするかは、その
ラッチが不安定とならない限り問題ではないとするもの
である。多くの場合、安定な結果は望ましく、そして予
め定めたように論理的に扱うことが出来る。次の仮定は
不安定性(一般にデータとクロック)を生じさせうる2
つの信号はスパイクが両者が同時に1のときにのみ生じ
るように論理AND処理されるとするものである。最後
は、二つの信号のANDがそのラッチのセットにのみ用
いられるとするものである。セットしてしまうとそのラ
ッチは、図7にそのタイミングを示す他の信号(−RE
SET)にもとづき全く別のバスを介してリセットされ
る。 【0028】不安定性の解決法は図7に示すシュミット
トリガ(ST)回路を用いるものである。図7はラッチ
L1とL2からなるレベル感応スキャン設計(LL4S
SD)二重ラッチをつくる2個のシュミットトリガ、O
Rゲート1(OR1)、3個のANDゲート(A1,A
2,A3)間の相互接続を示す。STは標準型のインバ
ータエレメントから僅かに異なり、上および下のしきい
値を有する。信号入力によりSTはこの上のしきい値を
越えてSTの出力の状態を変化(下レベルへ)させる。
立下り入力を伴う信号は下のしきい値より下となりST
の出力の状態を変化(上のレベルへ)させる。上下のレ
ベル間に差があるからシュミットトリガはパルス伸張器
となりそして信号内の検出されたスパイクを増幅するた
めに用いられる。 【0029】スパイクは同時に非同期で変化するCLO
CK入力とDATA入力によりゲートA1で生じ、すな
わち−CCLKが「0」から「1」に変化するときデー
タが「1」から「0」に変化する。CLOCKがDAT
A前に短時間僅かに変化すればA1の出力は「1」(ス
パイク)となりあるいは「1」になるとし、そして次に
正常状態「0」にもどる。スパイクのサイズは回路速度
と変化する信号が同時に1となる時間の長さによりきま
る。 【0030】スパイクによりLSSDラッチ出力(L1
またはL2段の)に不安定条件を生じさせる場合には問
題であり、次の場合にはこれを除去しなくてはならな
い。 【0031】第1の場合は、スパイクがゲートA1また
はOR1を通り伝播して問題を生じさせるには小さすぎ
るときである。しかしながらこれがOR1を通るとスパ
イクはST1に入り第2の場合となる。 【0032】第2の場合はスパイクがST1の上のしき
い値を越えるには充分大きくなく、問題を生じない場合
である。しかしながら、これがST1の上のしきい値を
越えるとすればST1はパルスのサイズを伸張または増
加させる。必要であればST1の出力は図示のようにS
T1の入力に小さいコンデンサを付加することで更に伸
張しうる。非不安定動作を保証するために、このパルス
は帰還ループを閉じさせるに充分に伸張しなければなら
ない(「0」へと変わるST1によりST2が「1」に
変わりそしてA3またはOR1を通って帰還してST1
の入力を1にとどまるようにさせる)。 【0033】第3の場合は第2の変形である。ST1の
入力が上のしきい値レベルのすぐ下まで上がるがそれを
越えないならば、ST1の出力はその上の出力レベル近
辺で発振する。そのような発振はST2の下のしきい値
にまたがらずST2でスケッチされるからこれがST2
が必要な理由である。 【0034】第4の場合はスパイクの立下り時間がしき
い値を変えるに必要な内部ST時間より短く、複数のし
きい値越えを生じさせるときに生じる。これは、ST回
路の設計において、入力を与える回路が立下がるよりも
高速でしきい値が変化するようにすることで回避出来
る。STの入力に小さいコンデンサを付加することで図
7に示すように入力の立下り時間を低下させることが出
来る。他の実施例 図1−6に示す実施例の変更が可能である。それらはこ
れまで述べた原理を用いてつくることが出来る。例え
ば、この回復装置はより長いメッセージに適用出来、そ
してその場合にも現存の8B/10B法よりかなり効率
が高い。図8において、5nsのデッドタイムにわたり+
VALIDを下げそしてそれを再び上げて次のデータに
再び同期ビットを固定することにより任意の時点で入力
データを再同期化させることが出来る。回復ロジックは
これを新しい伝送とみて再同期化を行う。 【0035】また、+DATAおよび+VALID以外
の信号を入力データの伝送に用いることが出来る。この
方法によればクロック選択ラッチは命令されたまたは予
めセットされたビットカウントにもとづき伝送のエンド
でリセットされる。 【0036】図9に示すように多重ラインシリアル転
送、例えばバイトシリアル伝送にこの方法を用いること
も出来る。この場合、これらラインは一般に互いにそし
て同一周波数で同期して送られるが受信器とは同期して
いない。これらラインの夫々はそれ自体の同期化ビット
を含むが1本の+VALIDラインを図4のANDゲー
ト90で示すようにすべてのデータラインで共用しても
よい。これには二つの形があり、受信器で別の同期化ロ
ジックを夫々のデータラインに用いるか、あるいは一つ
のセットをすべてのデータラインで共用する。その選択
は多重データライン間でのスキューの制御の密度により
きまる。これが緊密に制御されてそして小さいものであ
れば、すべての同期化ビットはANDゲート90でAN
D処理されて一つの共用される回路14に送られる(各
入力データラインはそれ自体の回路16,18,19を
必要とすることになる)。スキューが大きければ各デー
タラインは個々の回復回路14,16,18,19を必
要とする。 【0037】図10、11において、更に不安定性を避
けるために同期化ビットは1クロック時間更に拡張され
そしてクロック決定を2クロック時間にわたり延長す
る。これにより各ダブルラッチ30〜37は第2ラッチ
と同じクロックでクロックされる第3ラッチ100,1
02,104,106(図11)により1サイクル後だ
け延ばされる。これにより不安定性を解決するために1
クロック時間に1ラッチ時間を加えた時間が付加され
る。 【0038】図12において、付加的ハードウェアを用
いて不安定の発生を完全に除去するために、クロック選
択回路14を取り除きその代りに回路18と19からな
る3セット以上のロジックを用いることができ、それに
より、4個の入力データシフトレジスタ200,20
4,208,212と4個のエラー検出ブロック20
2,206,210,214をつくる。これにより入力
データを夫々が回路12で発生される異なる位相のクロ
ックでクロックするようにして4個のロジックセットで
回復することが出来る。エラー検出は4組のエラー検出
回路202,206,210,214と制御ブロック2
15により4つのメッセージについて行うことが出来
る。その場合にはエラー検出チェックを正しく通すレジ
スタ200,204,208,212の内の任意のもの
に記憶されるデータ群について用いるために選択され
る。 【0039】これら実施例において、この単一ビット同
期化法は各入力メッセージについて個々の整合を与え、
そして異なるソースからのバック・ツー・バックメッセ
ージに直ちに応答することが出来る。受信側での同期化
は入力データと同一の周波数で動作するN個の移相クロ
ックを発生することの出来るクロックシステムを用いて
行われる。このようにこの方法は、局部クロック信号を
発生しそしてそれから周波数の等しいN個の位相のずれ
に局部クロック信号を発生することによりデータ送信器
からのビットの第1ビットシーケンスからデータ受信器
内のビットクロックを決定する。これらN個のクロック
は互いにほぼ等しい量だけシフトされそして同期化装置
は入力シリアルデータを見てそれとこれらN個のクロッ
クの内のどれが同期しているかを決定しそしてこのシリ
アルデータにより与えられる各メッセージに対する個々
のクロック整合と同期させる。これら位相のずれた局部
信号は同一周波数ではあるが発生位相差のため時間と共
に変化する。しかしながら、入力シリアルデータと最も
よく同期する、これらN個のクロックの内の1つを決定
することによりどのクロックの選択が行われるべきかに
ついての決定がなされ、そしてこれは入力メッセージ毎
に行われる。この選択は好適には1である単一の同期化
ビットが受信装置に入る時間で完全に行われる。入力同
期ビットはサンプリングされそしてN個のクロック時間
の内の1つが入力データと最もよく同期するものとして
選ばれそしてそのクロック時間が次のメッセージの受信
に用いられる。元のクロックは、選択のため比較される
各クロック時間が互いにほぼ等しい量だけシフトされる
ように位相のずれた単一のクロックである。本発明の装
置の目的はN個のクロックの内、入力シリアルデータと
最もよく同期する1つのクロックを選択しそしてメッセ
ージを正しく受信することである。
【図面の簡単な説明】 【図1】本発明による、各受信ユニットで用いるための
データ回復システムの概略図。 【図2】単一の同期化ビットを付した入力シリアルメッ
セージ用の代表的タイミング波形を示す図。 【図3】N=4の場合について4個のほぼ等しく位相の
ずれたクロックを発生するための回路を示す図。 【図4】単一の同期化ビットのみを受けるための一群の
ラッチ(N個のクロックの夫々について1個)を示す
図。 【図5】図3のN個のラッチの状態にもとづきN個のク
ロックの内の1個を選択する方法並びに選択されたクロ
ックをどのようにして固定した受信クロックと入力デー
タと整合させるかを示す図。 【図6】入力メッセージの同期化と受信についてのタイ
ミング波形を示す図。 【図7】本データ回復装置に使用するに適した耐不安定
性ラッチとその好適なタイミングを示す図。 【図8】元の同期化選択を維持するには長すぎるデータ
メッセージを再同期化させるためのタイミング波形を示
す図。 【図9】共通の+VALID信号を共用する多重シリア
ルライントランスファについてのタイミング波形を示す
図。 【図10】2個の同期化ビットを有するデータトランス
ファ用のタイミング波形を示す図。 【図11】付加不安定性低下ラッチを含む2同期化ビッ
トの概念を実行するための回路を示す図。 【図12】夫々N個の位相クロックの内の1つによりク
ロックされる冗長ハードウェアにおける各データメッセ
ージの他の受信およびチェック方法を実施するための回
路を示す図。 【符号の説明】 10 シリアルデータ回復システム 12 N相クロック発生回路 14 ワン・オブ・Nクロック選択回路 16 入力データ整合回路 18 入力データシフトレジスタ 19 エラー検出回路 20 発振器 22,24,30,37 ラッチ 40〜51,60〜68 ANDゲート 52,72 ORゲート
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−225640(JP,A) 特開 昭62−202624(JP,A)

Claims (1)

  1. 【特許請求の範囲】 【請求項1】下記要件を含む短待ち時間データ回復装
    置: N相クロック発生回路; Nクロック中の1クロックを選択するワン・オブ・Nク
    ロック選択回路; データ整合回路; このデータ整合回路に接続された入力データシフトレジ
    スタ回路を含み、送信装置と非同期で動作する受信装置
    で直列伝送されるディジタルデータを回復するための入
    力同期化手段、 前記ワン・オブ・Nクロック選択回路とデータ整合回路
    を接続する接続手段であって、この接続手段は、前記直
    列ディジタルデータに対し1つの同期化セットを付加す
    るための転送同期化ビット手段を含みそれによって、入
    来メッセージを1クロック時間内に完全に受信器クロッ
    クと同期化する、接続手段。 【請求項】前記ワン・オブ・Nクロック選択回路とデ
    ータ整合回路は前記入来メッセージの回復のための固有
    で最良に整合したN相シフトクロックを選ぶことにより
    各入来メッセージに動的に同期化させる請求項の装
    置。 【請求項】前記ワン・オブ・Nクロック選択回路は夫
    々前記N相クロック発生回路により発生されるN相の異
    なるクロックにより別々にクロックされるN個のラッチ
    に前記同期化ビットをクロックすることにもとづき一つ
    の決定を行う請求項の装置。 【請求項4】前記ワン・オブ・Nクロック選択回路は同
    期化ビットをサンプリングする前記N個のラッチにその
    同期化ビットをサンプリングするはじめのN−1個のラ
    ッチのみをセットさせ、そのラッチのセッティングを入
    力メッセージの期間にわたりフリーズさせ、入力メッセ
    ージを受けるたのN相のシフトクロックの内の最適のも
    のを選択するように組合せロジックで使用させ、そして
    上記N個のラッチに不安定度の効果を低下させる請求項
    の装置。 【請求項】前記データ整合回路は入力データメッセー
    ジを動的に受けてその夫々のビットを、その前記選択さ
    れたクロックでクロックされる第1ラッチとその選択さ
    れたクロックの逆によりクロックされる第2ラッチで、
    2個の直列ラッチに一時的にバッファする請求項の装
    置。 【請求項】前記入力データシフトレジスタ回路は前記
    2個のデータ整合ラッチの内、入力データメッセージを
    正しく受信する方を、前記ワン・オブ・Nクロック選択
    回路内の前記N個のラッチのセッティングにもとづき動
    的に選択する請求項の装置。 【請求項】特殊なインターフェース信号を用い、前記
    入力直列データをブラケットし、それにより入力データ
    の有効なときを識別する請求項の装置。 【請求項】有効データを決定するための前記特殊なイ
    ンターフェース信号は周期的または任意の時点で用いら
    れて進行中の伝送の中間で受信装置を、1以上のクロッ
    クサイクルで不活性としそして活性状態にもどし、それ
    と同時に他の1つのクロックペリオド同期化ビットを入
    力データストリームに入れることにより同期化させる請
    求項の装置。 【請求項】有効データを決定するための前記特殊なイ
    ンターフェース信号は、同一周波数で同期化されそして
    夫々が入力データメッセージの一部を含む複数のシリア
    ルデータラインをブラケットするために用いられる請求
    の装置。 【請求項10】M個のシリアルデータラインは同一周波
    数で同期化されそして夫々が入力データメッセージの一
    部を含んでおり、前記データ回復装置は固有のワン・オ
    ブ・Nクロック選択回路と、データ整合回路と、入力デ
    ータシフトレジスタと、夫々入力ラインに関連したエラ
    ー検出回路と、M本のラインで共用される1個のN相ク
    ロック発生回路を含む請求項の装置。 【請求項11】M本のシリアルデータラインは同一周波
    数で同期化されそして夫々が入力データメッセージの一
    部を含み、前記データ回復装置は固有のデータ整合回路
    と、入力データシフトレジスタ回路と、夫々入力ライン
    に関連したエラー検出回路と、M本のラインに共用され
    る1個のN相クロック発生回路および1個のワン・オブ
    ・Nクロック選択回路と、M本の入力データラインを受
    けてそれらの信号の論理ANDを上記ワン・オブ・Nク
    ロック選択回路への合成同期化ビット入力として与える
    1個のANDゲートと、を含む請求項の装置。 【請求項12】N相クロック発生回路と、N個のデータ
    整合回路と、N個の入力データシフトレジスタ回路と、
    送信装置と非同期に動作する受信装置で直列に伝送され
    るディジタルデータメッセージの夫々のN個のコピーを
    回復するためのN個のエラー検出回路と、を含む短待ち
    時間データ回復装置。 【請求項13】前記エラー検出回路は前記N個の入力デ
    ータシフトレジスタ回路に記憶された入力メッセージの
    N個のコピーの内のどれが正しく受信されたかを決定
    し、それにもとづき受信装置で用いられるべき正しいコ
    ピーを選択する請求項12の装置。 【請求項14】2個のシュミットトリガ回路、1個のO
    Rゲートおよび2個のラッチ段を形成する3個のAND
    ゲートを含む、複数の不安定度証明レベル感応走査デュ
    アルラッチを含む請求項1の装置。 【請求項15】入力データメッセージの期間中に1本の
    有効ラインをドロップし、そしてそれを再び上げて回復
    ロジックに、この上げられたライン上の次のデータが同
    期化ビットを有するときそのラインがその新しいデータ
    を伝送するようにさせるための手段を含む請求項1の装
    置。 【請求項16】命令されたあるいはプリセットされたビ
    ットカウントにもとづき、伝送の終了時に装置をリセッ
    トさせるためのクロック選択ラッチ手段を含む請求項1
    の装置。 【請求項17】複数の入力ラインおよび、各入力ライン
    に1つの同期化ビットを与える手段を含み、1本の上げ
    られた有効ラインをすべてのデータラインが共用する請
    求項1の装置。 【請求項18】前記複数の入力ラインの夫々に設けられ
    た別々の同期化ロジックを含む請求項17の装置。 【請求項19】複数の入力ラインからなる入力ラインセ
    ットが共用同期化ロジックを有し、同期ビットが共用さ
    れて共通の利用回路に送られる請求項17の装置。 【請求項20】各データラインは個々の回復回路を有す
    る請求項17の装置。 【請求項21】複数のクロック時間にわたり行われるべ
    きクロック決定のための時間を拡大する手段を含み、不
    安定度1付加クロック時間に1付加ラッチ時間を加えた
    ものをセットしうるようにした請求項14の装置。 【請求項22】下記要件を含む短待ち時間データ回復装
    置: N相クロック発生回路; 複数の入力データシフトレジスタ; 上記クロック発生回路により発生される異なる位相のク
    ロックでクロックされる複数のエラー検出回路; このエラー検出回路に接続し、上記入力データシフトレ
    ジスタの夫々に接続する入力を有し、一つの入力メッセ
    ージについて用いるために、受信装置における上記レジ
    スタの内の1個に記憶された複数の入力メッセージセッ
    トの内の1つのメッセージを、送信装置に対し非同期で
    入力メッセージを受けるために選ぶためのデータ整合制
    御回路。 【請求項23】各入力メッセージについて単一ビット同
    期化個々整合を決定するための手段を設け、この手段が
    異なるソースからのバック・ツー・バックメッセージに
    瞬時的に応答し、そして入力データと同一の周波数で動
    作するN個の移相クロックを発生することの出来るクロ
    ックシステムをつくることにより受信装置における同期
    化を達成するネットワークまたはケーブル間のメッセー
    ジデータの同期化方法。 【請求項24】前記手段はデータ送信器から入るビット
    の第1ビットシーケンスからデータ受信器におけるビッ
    トクロックを、互いにほぼ等しい量だけシフトされた等
    しい周波数の複数のN個の移相クロック信号を発生する
    ことにより決定し、前記同期化手段は入力シリアルデー
    タを見て入力シリアルデータと最もよく同期した上記N
    個の移相クロック信号の内の一つを決定し、そして受信
    器は上記入力シリアルデータにより与えられる各入力メ
    ッセージに対し、個々のクロック整合により同期化され
    る請求項23の方法。 【請求項25】前記移相信号は、すべてが同一周波数で
    動作しても位相差があるため時間と共に変化し、N個の
    クロックは互いにほぼ等しい量だけシフトされる請求項
    23の方法。 【請求項26】N個のクロックの内、入力シリアルデー
    タと最もよく同期する1つのクロックを決定し、単一の
    同期化ビットが受信器に入る時点およびその期間を各入
    力メッセージについて選ぶため入力メッセージデータに
    最もよく同期するクロックを決定し、そしてそのクロッ
    クを用いて次の入力メッセージデータを受信する段階を
    含む請求項23の方法。 【請求項27】元のクロックは、選択のために比較され
    る各クロック時間が互いにほぼ等しい量だけシフトされ
    るように位相シフトされた単一のクロックであり、N個
    のクロックの内、入力シリアルデータと最もよく同期す
    る1つのクロックを選びそしてメッセージを正しく受信
    するために選択が行われる請求項23の方法。
JP3324389A 1991-02-22 1991-12-09 短待ち時間データ回復装置及びメッセージデータの同期化方法 Expired - Lifetime JPH0778774B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65919991A 1991-02-22 1991-02-22
US659199 1991-02-22

Publications (2)

Publication Number Publication Date
JPH0628288A JPH0628288A (ja) 1994-02-04
JPH0778774B2 true JPH0778774B2 (ja) 1995-08-23

Family

ID=24644466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324389A Expired - Lifetime JPH0778774B2 (ja) 1991-02-22 1991-12-09 短待ち時間データ回復装置及びメッセージデータの同期化方法

Country Status (2)

Country Link
US (1) US5610953A (ja)
JP (1) JPH0778774B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982831A (en) * 1996-02-21 1999-11-09 Hewlett-Packard Company Feed forward method and apparatus for generating a clock signal
IT1284718B1 (it) * 1996-07-31 1998-05-21 Cselt Centro Studi Lab Telecom Dispositivo e procedimento per allineare temporalmente segnali numerici, ad esempio un segnale di orologio ed un flusso di dati.
US5748569A (en) * 1996-12-19 1998-05-05 Dsc Telecom L.P. Apparatus and method for clock alignment and switching
WO1998049802A1 (de) * 1997-04-25 1998-11-05 Siemens Aktiengesellschaft Programmierbare phasenanpassung
US5910742A (en) * 1997-06-16 1999-06-08 Cypress Semiconductor Corp. Circuit and method for data recovery
US6092155A (en) * 1997-07-10 2000-07-18 International Business Machines Corporation Cache coherent network adapter for scalable shared memory processing systems
US6044438A (en) * 1997-07-10 2000-03-28 International Business Machiness Corporation Memory controller for controlling memory accesses across networks in distributed shared memory processing systems
US6205191B1 (en) * 1997-07-21 2001-03-20 Rambus Inc. Method and apparatus for synchronizing a control signal
US6930995B1 (en) * 1999-06-23 2005-08-16 Cingular Wireless Ii, Llc Apparatus and method for synchronization in a multiple-carrier communication system by observing a plurality of synchronization indicators
US7333570B2 (en) * 2000-03-14 2008-02-19 Altera Corporation Clock data recovery circuitry associated with programmable logic device circuitry
US7227918B2 (en) * 2000-03-14 2007-06-05 Altera Corporation Clock data recovery circuitry associated with programmable logic device circuitry
US7061939B1 (en) * 2001-06-13 2006-06-13 Juniper Networs, Inc. Source synchronous link with clock recovery and bit skew alignment
DE10161631B4 (de) * 2001-12-14 2004-01-22 Siemens Ag Verfahren zur Korrektur des Beginns der Abtastung einer seriellen Bitfolge eines Ausgangssignals eines Filters
US7167476B1 (en) * 2002-04-12 2007-01-23 Juniper Networks, Inc. Systems and methods for routing data in a network device
FR2852466B1 (fr) * 2003-03-14 2005-06-10 Procede et dispositif d'interfacage serie-parallele ou parallele-serie
US8705603B2 (en) * 2008-02-05 2014-04-22 Vitesse Semiconductor Corporation Adaptive data recovery system with input signal equalization
US8185739B2 (en) * 2009-01-09 2012-05-22 Silicon Image, Inc. Method and system for detecting successful authentication of multiple ports in a time-based roving architecture
US8284888B2 (en) * 2010-01-14 2012-10-09 Ian Kyles Frequency and phase acquisition of a clock and data recovery circuit without an external reference clock
FR2979506B1 (fr) * 2011-08-30 2013-08-30 Bull Sas Procede de synchronisation d'une grappe de serveurs et grappe de serveurs mettant en oeuvre ce procede
US11646861B2 (en) 2021-09-24 2023-05-09 International Business Machines Corporation Low-latency, high-availability and high-speed SerDes interface having multiple synchronization modes
US11907074B2 (en) 2021-09-24 2024-02-20 International Business Machines Corporation Low-latency deserializer having fine granularity and defective-lane compensation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169212A (en) * 1975-04-14 1979-09-25 Datotek, Inc. Multi-mode digital enciphering system
US4087681A (en) * 1976-06-11 1978-05-02 Schiller Industries, Inc. Asynchronous to synchronous converter
NL183214C (nl) * 1980-01-31 1988-08-16 Philips Nv Inrichting voor het synchroniseren van de fase van een lokaal opgewekt kloksignaal met de fase van een ingangssignaal.
JPS59225640A (ja) * 1983-06-06 1984-12-18 Nitsuko Ltd クロツク位相同期方式
US4672639A (en) * 1984-05-24 1987-06-09 Kabushiki Kaisha Toshiba Sampling clock pulse generator
US4700347A (en) * 1985-02-13 1987-10-13 Bolt Beranek And Newman Inc. Digital phase adjustment
JPS62202624A (ja) * 1985-10-18 1987-09-07 Hitachi Ltd 高速デ−タ受信回路方式
US4756010A (en) * 1985-11-07 1988-07-05 Motorola, Inc. Asynchronous/synchronous data receiver circuit
DE3627135C2 (de) * 1986-08-09 1994-11-24 Philips Patentverwaltung Bitsynchronisation eines Datenblocks in einem Empfänger
US4841551A (en) * 1987-01-05 1989-06-20 Grumman Aerospace Corporation High speed data-clock synchronization processor
US4785469A (en) * 1987-02-12 1988-11-15 Advanced Micro Devices, Inc. Processor to peripheral interface for asynchronous or synchronous applications
US4791488A (en) * 1987-08-12 1988-12-13 Rca Licensing Corporation Line-locked clock signal generation system
JPH0795731B2 (ja) * 1987-10-30 1995-10-11 株式会社ケンウッド データ受信装置の最適クロック形成装置
US5022057A (en) * 1988-03-11 1991-06-04 Hitachi, Ltd. Bit synchronization circuit
ATE110505T1 (de) * 1989-02-23 1994-09-15 Siemens Ag Verfahren und anordnung zum anpassen eines taktes an ein plesiochrones datensignal und zu dessen abtakten mit dem angepassten takt.
US4965884A (en) * 1989-11-22 1990-10-23 Northern Telecom Limited Data alignment method and apparatus
US5185768A (en) * 1990-10-09 1993-02-09 International Business Machines Corporation Digital integrating clock extractor
US5245637A (en) * 1991-12-30 1993-09-14 International Business Machines Corporation Phase and frequency adjustable digital phase lock logic system

Also Published As

Publication number Publication date
US5610953A (en) 1997-03-11
JPH0628288A (ja) 1994-02-04

Similar Documents

Publication Publication Date Title
JPH0778774B2 (ja) 短待ち時間データ回復装置及びメッセージデータの同期化方法
JPH055711Y2 (ja)
US6606360B1 (en) Method and apparatus for receiving data
EP0688447B1 (en) De-skewer for serial data bus
US6838945B2 (en) Data resynchronization circuit
US5509038A (en) Multi-path data synchronizer system and method
US4979190A (en) Method and apparatus for stabilized data transmission
US4811364A (en) Method and apparatus for stabilized data transmission
JPH0248816A (ja) 不安定防止回路
EP0661842A2 (en) Clock recovery using gated phase lock loop
JPH11514765A (ja) マスタ・クロックを用いて位相ずれした受信データ・ストリームを再同期させる方法およびシステム
US4717914A (en) Methods for receiving and converting high speed serial data pattern input signals to parallel data pattern outputs
JPH03131138A (ja) 直列データ通信システム用のクロック回復装置とその方法
US7054374B1 (en) Differential simultaneous bi-directional receiver
EP0237238B1 (en) Decoder
CN1324835C (zh) 使用初始化序列的时钟恢复pll
JPH0654475B2 (ja) 遷移の誤りを検出する装置
US5418496A (en) Serial data clock recovery circuit using dual oscillator circuit
EP1442353B1 (en) Clocking and synchronization circuitry
WO1995014340A1 (en) Source synchronized data transmission circuit
JP2510750B2 (ja) フォ―ルト・トレラント・システム及びその冗長系間の同期方法並びに多重化クロツク発振器
JPH11331137A (ja) 信号同期装置
JPS60235549A (ja) nB1C符号信号のCビツト同期方式
KR0172459B1 (ko) 클럭재생방법 및 장치
JPH0766731A (ja) Cmi符号復号回路