JPH0777221B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0777221B2
JPH0777221B2 JP62114810A JP11481087A JPH0777221B2 JP H0777221 B2 JPH0777221 B2 JP H0777221B2 JP 62114810 A JP62114810 A JP 62114810A JP 11481087 A JP11481087 A JP 11481087A JP H0777221 B2 JPH0777221 B2 JP H0777221B2
Authority
JP
Japan
Prior art keywords
insulating film
film
forming
active layer
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62114810A
Other languages
Japanese (ja)
Other versions
JPS63281471A (en
Inventor
崇 藍郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62114810A priority Critical patent/JPH0777221B2/en
Publication of JPS63281471A publication Critical patent/JPS63281471A/en
Publication of JPH0777221B2 publication Critical patent/JPH0777221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 GaAsと窒化シリコン膜(Si3N4膜)との熱膨張係数の差
によって発生した応力でGaAs中に誘起される電荷を利用
してFETのピンチオフ耐性を向上させる。
DETAILED DESCRIPTION OF THE INVENTION [Overview] The pinch-off resistance of the FET is improved by utilizing the electric charge induced in GaAs by the stress generated by the difference in thermal expansion coefficient between GaAs and the silicon nitride film (Si 3 N 4 film). Improve.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特にピンチオフ耐圧を
向上させたGaAs FETの製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a GaAs FET having an improved pinch-off breakdown voltage.

〔従来の技術〕[Conventional technology]

従来の化合物半導体装置例えばGaAs FETの製造方法を第
2図を参照して説明すると、GaAs活性層12、GaAsバッフ
ァ層13から成るGaAsウエハ11の表面に絶縁膜となる第1
の酸化膜(第 1 SiO2膜)14を第2図(a)に示される
如く成長する。
A conventional method of manufacturing a compound semiconductor device, for example, a GaAs FET will be described with reference to FIG. 2. First, an insulating film is formed on the surface of a GaAs wafer 11 including a GaAs active layer 12 and a GaAs buffer layer 13.
An oxide film (first SiO 2 film) 14 is grown as shown in FIG. 2 (a).

次に第2図(b)に示される如く、第 1 SiO2膜14上に
レジスト15を塗布し、それをパターニングし、レジスト
15をマスクに第 1 SiO2膜14をウエット・ケミカルプロ
セスでオーバーエッチングし、レジスト15の幅よりやや
小なる幅の第 1 SiO2膜14を残す。なお第2図(b)以
下において、GaAs活性層12、GaAsバッファ層13は省略し
てGaAsウエハ11のみを図示する。
Next, as shown in FIG. 2 (b), a resist 15 is applied on the first SiO 2 film 14 and patterned to form a resist.
The first SiO 2 film 14 is overetched by a wet chemical process using 15 as a mask to leave the first SiO 2 film 14 having a width slightly smaller than the width of the resist 15. 2 (b) and below, the GaAs active layer 12 and the GaAs buffer layer 13 are omitted and only the GaAs wafer 11 is shown.

次いで、第2図(c)に示される如く全面にオーミック
電極材〔例えば金−ゲルマニウム(AuGe)〕を蒸着し、
リフトオフ法でレジスト15とその上のオーミック電極材
を除去し、オーミック電極、すなわちソース電極16、ド
レイ電極17を残す。第2図(b)を参照して説明した如
く、第 1 SiO2膜のエッチングはオーバーエッチングし
たので、残った第 1 SiO2膜14とソース,ドレイン電極
との間には図にA,A′で示す隙間部分が発生し、この部
分でGaAsウエハ11の活性層が露出する。
Then, as shown in FIG. 2 (c), an ohmic electrode material [eg, gold-germanium (AuGe)] is vapor-deposited on the entire surface,
The resist 15 and the ohmic electrode material on the resist 15 are removed by the lift-off method to leave the ohmic electrodes, that is, the source electrode 16 and the drain electrode 17. As described with reference to FIG. 2 (b), since the etching of the first SiO 2 film is over-etched, A and A are shown between the remaining first SiO 2 film 14 and the source and drain electrodes. A gap portion indicated by'is generated, and the active layer of the GaAs wafer 11 is exposed at this portion.

次に、前記した隙間を埋め露出したGaAsウエハ表面を絶
縁するために、第2図(d)に示される如く全面に第 2
SiO2膜18を堆積する。
Next, in order to fill the above-mentioned gap and insulate the exposed surface of the GaAs wafer, a second layer is formed on the entire surface as shown in FIG. 2 (d).
The SiO 2 film 18 is deposited.

次に、第2図(e)に示される如く全面にレジスト19を
塗布し、それをパターニングしてゲート電極窓20を窓開
けする。
Next, as shown in FIG. 2 (e), a resist 19 is applied on the entire surface and patterned to open a gate electrode window 20.

次いで、第2図(f)に示される如く、レジスト19をマ
スクに第 2 SiO2膜18と第 1 SiO2膜14とドライエッチン
グする。その後ウエットエッチングでオーバーエッチン
グし、GaAsウエハ11の表面も僅かにエッチングする。
Then, as shown in FIG. 2F, the second SiO 2 film 18 and the first SiO 2 film 14 are dry-etched using the resist 19 as a mask. After that, overetching is performed by wet etching, and the surface of the GaAs wafer 11 is slightly etched.

次に、第2図(g)に示される如くゲート電極材例えば
Alを蒸着し、リフトオフ法によってレジスト19とその上
のAlを除去し、ゲート電極21を残す。このようにして作
ったGaAs FETにおいて、ソース電極16接地され、ゲート
電極21には−の、またドレイン電極17には+の電圧が印
加される。
Next, as shown in FIG. 2 (g), a gate electrode material such as
Al is vapor-deposited, the resist 19 and Al on the resist 19 are removed by a lift-off method, and the gate electrode 21 is left. In the GaAs FET manufactured in this manner, the source electrode 16 is grounded, and the negative voltage is applied to the gate electrode 21 and the positive voltage is applied to the drain electrode 17.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した構造のFETのピンチオフ耐圧(ゲートピンチオ
フ状態で、ドレインバイアスを増加させた場合に素子が
バーンアウトするときのドレインバイアス値)を測定す
ると、ゲート長約1μm、ゲート幅約100μmの場合
に、約30Vである。この値は、FETの大振幅動作を考えた
ときにまだ不十分であり、ピンチオフ耐圧の向上が要求
されている。
When the pinch-off withstand voltage (drain bias value when the device burns out when the drain bias is increased in the gate pinch-off state) of the FET having the above structure is measured, the gate length is about 1 μm and the gate width is about 100 μm. It is about 30V. This value is still insufficient when considering large-amplitude operation of the FET, and improvement in pinch-off breakdown voltage is required.

本発明はこのような点に鑑みて創作されたもので、前記
したピンチ耐圧が向上せしめられるFETを製造する方法
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing an FET in which the pinch breakdown voltage is improved.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、GaAs活性層上に酸化シリコンよりなる第
1絶縁膜を形成する工程と、前記第1絶縁膜上にソース
およびドレイン電極形成領域に開口を有するレジスト膜
を形成する工程と、前記レジスト膜をマスクとしてエッ
チングを行い、ソースおよびドレイン電極形成領域上の
前記第1絶縁膜およびレジスト膜下の前記第1絶縁膜の
一部をサイドエッチングして、前記GaAs活性層を露出す
る工程と、前記サイドエッチングによって庇状となった
前記レジスタ膜をマスクとして、前記第1絶縁膜と離間
して、前記露出したGaAs活性層上にソースおよびドレイ
ン電極を形成する工程と、前記ソース電極とドレイン電
極との間の前記第1絶縁膜を選択的にエッチングし、庇
状のゲート形成窓を形成するとともに、当該窓からエッ
チャントを注入して、前記GaAs活性層にリセス部を形成
する工程と、前記ゲート形成窓をマスクとして、前記リ
セス部上にゲート電極を選択的に形成する工程とを有す
る半導体装置の製造方法において、前記ソースおよびド
レイン電極と前記第1絶縁膜との間の離間部に露出した
前記GaAs活性層表面に窒化シリコンよりなる第2絶縁膜
を形成し、当該離間部においては、第2絶縁膜を最表層
とする工程が含まれてなることを特徴とする半導体装置
の製造方法を提供することによって解決される。
The above problems include the step of forming a first insulating film made of silicon oxide on the GaAs active layer, the step of forming a resist film having openings in the source and drain electrode formation regions on the first insulating film, Etching using the resist film as a mask to side-etch the first insulating film on the source and drain electrode formation regions and part of the first insulating film under the resist film to expose the GaAs active layer; A step of forming source and drain electrodes on the exposed GaAs active layer separated from the first insulating film using the eave-shaped register film as a mask by the side etching, and the source electrode and the drain. The first insulating film between the electrodes is selectively etched to form an eave-shaped gate forming window, and an etchant is injected from the window, In the method of manufacturing a semiconductor device, comprising: forming a recess in the GaAs active layer; and selectively forming a gate electrode on the recess using the gate forming window as a mask, the source and drain electrodes A step of forming a second insulating film made of silicon nitride on the surface of the GaAs active layer exposed in the space between the first insulating film and the first insulating film, and using the second insulating film as the outermost layer in the space. This is solved by providing a method for manufacturing a semiconductor device, which is characterized by being included.

〔作用〕[Action]

ピンチオフ耐圧を決める要因の1つは、第2図(g)を
参照すると、隙間部分Aでの電解集中であると理解され
る。そこで、この電解集中を緩和することがピンチオフ
耐圧の向上につながると判断し、従来の第 2 SiO2膜に
代えて窒化シリコン膜を用いた。
It is understood that one of the factors that determines the pinch-off breakdown voltage is electrolytic concentration in the gap portion A, with reference to FIG. Therefore, it was judged that the relaxation of this electrolytic concentration would lead to an improvement in the pinch-off breakdown voltage, and a silicon nitride film was used instead of the conventional second SiO 2 film.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

再び第2図(g)を参照すると、ドレインバイアスをか
けたときドレイン電極17の端部とゲート電極21との間に
は、同図に矢印Iで模式的に示す方向の電解が発生す
る。
Referring to FIG. 2 (g) again, when a drain bias is applied, electrolysis occurs between the end of the drain electrode 17 and the gate electrode 21 in the direction indicated by the arrow I in the figure.

ここで、第 1 SiO2膜14と第 2 SiO2膜18との間の関係を
第2図(g)の隙間部分Aの拡大図である第2図(h)
を参照して説明すると、隙間部分に埋められた第 2 SiO
2膜には矢印Iで示す方向に圧縮力が働き、この圧縮力
によて第 2 SiO2膜直下のGaAs活性層表面で+の分極電
荷が発生し、この分極電荷は第2図(g)に矢印I′で
模式的に示す方向の電解を発生させ、その結果、矢印I
とI′によって示されるように、ドレイン電極端での電
解集中が大きくなりピンチオフ耐圧を低下させる。
Here, the relationship between the first SiO 2 film 14 and the second SiO 2 film 18 is an enlarged view of the gap portion A in FIG. 2 (g).
The second SiO 2 filled in the gap is described with reference to
A compressive force acts on the 2 film in the direction indicated by the arrow I, and this compressive force generates + polarized charge on the surface of the GaAs active layer immediately below the 2nd SiO 2 film, and this polarized charge is shown in FIG. ), Electrolysis is generated in the direction schematically indicated by the arrow I ', and as a result, the arrow I'
As indicated by I and I ′, the concentration of electrolysis at the drain electrode end increases and the pinch-off breakdown voltage decreases.

本発明においては、従来の第 2 SiO2膜に代えて窒化シ
リコンで部分Aを埋め込み、窒化シリコンとGaAsとの接
触部では、SiO2とは反対方向の窒化シリコンの応力によ
って第1図に−印を付して示す負の分極電荷がGaAs中に
誘起され、これによって生じる電解はGaAsからドレイン
電極端に向く。他方、ドレインバイアスによる電界は、
前記した如くドレイン電極端からGaAs側に向かっている
から、分極電荷によって生じた電界はドレイン電極端で
の電界集中を緩和するものであると解される。
In the present invention, the portion A is filled with silicon nitride instead of the conventional second SiO 2 film, and at the contact portion between silicon nitride and GaAs, the stress of silicon nitride in the opposite direction to SiO 2 causes Negative polarization charge, marked with a mark, is induced in GaAs and the resulting electrolysis is directed from GaAs to the drain electrode edge. On the other hand, the electric field due to the drain bias is
As described above, since it is directed from the drain electrode end toward the GaAs side, it is understood that the electric field generated by the polarization charge alleviates the electric field concentration at the drain electrode end.

そこで、本発明の方法においては、第2図を参照して説
明した工程を実施するが、第2図(d)参照して説明し
た第 2 SiO2膜18の堆積に代えて、窒化シリコン膜を堆
積する。窒化シリコンの成長は通常の技術により、SiH4
とNH3とを下式に示す如く反応させる。
Therefore, in the method of the present invention, the process described with reference to FIG. 2 is carried out, but instead of the deposition of the second SiO 2 film 18 described with reference to FIG. Deposit. The growth of silicon nitride is carried out by conventional techniques using SiH 4
And NH 3 are reacted as shown in the following formula.

3SiH4+4NH3→Si3H4+12H2 成長温度は約300℃であり、本発明の一実施例では、第
1 SiO2膜14上に1000Åの膜厚にある程度に成長した。
The growth temperature of 3SiH 4 + 4NH 3 → Si 3 H 4 + 12H 2 is about 300 ° C. In one embodiment of the present invention,
1 The SiO 2 film 14 has grown to a film thickness of 1000 Å to some extent.

以下の工程も従来例と同様であり、従来例との相違は第
2 SiO2膜18に代えて窒化シリコン膜22を成長させた点
だけである。
The following steps are similar to the conventional example, and the difference from the conventional example is
2 The only difference is that a silicon nitride film 22 is grown instead of the SiO 2 film 18.

第1図に示した実施例において本発明者がピンチオフ耐
圧を測定したところ、約35Vの値が得られ、従来例に比
べ5Vも高く、本発明によれば、FETの高耐圧化、言いか
えると大振幅動作が可能になり、FETから大電力を取り
出すことが可能になった。
When the inventor measured the pinch-off breakdown voltage in the embodiment shown in FIG. 1, a value of about 35 V was obtained, which was 5 V higher than the conventional example. According to the present invention, the FET has a higher breakdown voltage. And large-amplitude operation became possible, and it became possible to take out a large amount of power from the FET.

〔発明の効果〕〔The invention's effect〕

以上述べてきたように本発明によれば、窒化シリコン膜
とGaAs層との接触で窒化シリコン膜の応力によってGaAs
中に誘起された分極電荷が電界集中を緩和し、FETの大
振幅動作が可能になる効果が得られた。
As described above, according to the present invention, the contact between the silicon nitride film and the GaAs layer causes the stress of the silicon nitride film to cause the GaAs
The effect that the polarization charge induced inside relaxes the electric field concentration and enables the large-amplitude operation of the FET is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例断面図、 第2図(a)〜(h)は従来例断面図である。 第1図と第2図において、 11はGaAsウエハ、 12はGaAs活性層、 13はGaAsバッファ層、 14は第 1 SiO2膜、 15はレジスト、 16はソース電極、 17はドレイン電極、 18は第 2 SiO2膜、 19はレジスト、 20はゲート電極窓、 21はゲート電極、 22は窒化シリコン膜である。1 is a sectional view of an embodiment of the present invention, and FIGS. 2A to 2H are sectional views of a conventional example. In FIGS. 1 and 2, 11 is a GaAs wafer, 12 is a GaAs active layer, 13 is a GaAs buffer layer, 14 is a first SiO 2 film, 15 is a resist, 16 is a source electrode, 17 is a drain electrode, and 18 is The second SiO 2 film, 19 is a resist, 20 is a gate electrode window, 21 is a gate electrode, and 22 is a silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】GaAs活性層上に酸化シリコンよりなる第1
絶縁膜を形成する工程と、 前記第1絶縁膜上にソースおよびドレイン電極形成領域
に開口を有するレジスト膜を形成する工程と、 前記レジスト膜をマスクとしてエッチングを行い、ソー
スおよびドレイン電極形成領域上の前記第1絶縁膜およ
びレジスト膜下の前記第1絶縁膜の一部をサイドエッチ
ングして、前記GaAs活性層を露出する工程と、 前記サイドエッチングによって庇状となった前記レジス
ト膜をマスクとして、前記第1絶縁膜と離間して、前記
露出したGaAs活性層上にソースおよびドレイン電極を形
成する工程と、 前記ソース電極とドレイン電極との間の前記第1絶縁膜
を選択的にエッチングし、庇状のゲート形成窓を形成す
るとともに、当該窓からエッチャントを注入して、前記
GaAs活性層にリセス部を形成する工程と、 前記ゲート形成窓をマスクとして、前記リセス部上にゲ
ート電極を選択的に形成する工程とを有する半導体装置
の製造方法において、 前記ソースおよびドレイン電極と前記第1絶縁膜との間
の離間部に露出した前記GaAs活性層表面に窒化シリコン
よりなる第2絶縁膜を形成し、当該離間部においては、
第2絶縁膜を最表層とする工程が含まれてなることを特
徴とする半導体装置の製造方法。
1. A first GaAs active layer comprising silicon oxide.
Forming an insulating film; forming a resist film having openings in the source and drain electrode forming regions on the first insulating film; and etching using the resist film as a mask to form the source and drain electrode forming regions. Of the first insulating film and a part of the first insulating film below the resist film to expose the GaAs active layer, and using the resist film formed into an eave shape by the side etching as a mask. A step of forming source and drain electrodes on the exposed GaAs active layer so as to be separated from the first insulating film, and selectively etching the first insulating film between the source electrode and the drain electrode. , Forming an eave-shaped gate forming window, and injecting an etchant through the window,
A method of manufacturing a semiconductor device, comprising: forming a recess in a GaAs active layer; and selectively forming a gate electrode on the recess using the gate formation window as a mask, wherein the source and drain electrodes are A second insulating film made of silicon nitride is formed on the surface of the GaAs active layer exposed in the space between the first insulating film and the space, and in the space,
A method of manufacturing a semiconductor device, comprising the step of using the second insulating film as an outermost layer.
JP62114810A 1987-05-13 1987-05-13 Method for manufacturing semiconductor device Expired - Lifetime JPH0777221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114810A JPH0777221B2 (en) 1987-05-13 1987-05-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114810A JPH0777221B2 (en) 1987-05-13 1987-05-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63281471A JPS63281471A (en) 1988-11-17
JPH0777221B2 true JPH0777221B2 (en) 1995-08-16

Family

ID=14647251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114810A Expired - Lifetime JPH0777221B2 (en) 1987-05-13 1987-05-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0777221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179539B2 (en) 2003-01-15 2008-11-12 富士通株式会社 Compound semiconductor device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135774A (en) * 1983-01-24 1984-08-04 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS63281471A (en) 1988-11-17

Similar Documents

Publication Publication Date Title
JPS598375A (en) Insulated gate field-effect transistor
JPH0777221B2 (en) Method for manufacturing semiconductor device
JPH0351095B2 (en)
JPH0472381B2 (en)
JP2002141499A (en) Field effect transistor and manufacturing method thereof
JPH08274118A (en) Field-effect semiconductor device and its manufacture
JP2001116718A (en) Field effect transistor for sensor and production method thereof
JPH06333954A (en) Field effect transistor and its manufacture
JP3211786B2 (en) Method for manufacturing semiconductor device
JP2503667B2 (en) Method for manufacturing semiconductor device
JPH04329644A (en) Manufacture of gate electrode
JP3075245B2 (en) Method for manufacturing compound semiconductor
JP2712394B2 (en) Method for manufacturing semiconductor device
JP2591162B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby
KR950009803B1 (en) Patterning method of tft
JP2000058560A (en) Field effect transistor and its manufacture
JPH05190854A (en) Manufacture of semiconductor device
JPH0513451A (en) Manufacture of field-effect transistor
JPS6323665B2 (en)
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPH0695530B2 (en) Method for manufacturing semiconductor device
JPH03110854A (en) Manufacture of semiconductor device
JPH0260213B2 (en)
JPH0282621A (en) Manufacture of semiconductor device
JPH04367234A (en) Manufacture of field-effect transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 12