JPH0776754A - Production of anisotropy rare earth alloy powder for peamanent magnet - Google Patents

Production of anisotropy rare earth alloy powder for peamanent magnet

Info

Publication number
JPH0776754A
JPH0776754A JP5180072A JP18007293A JPH0776754A JP H0776754 A JPH0776754 A JP H0776754A JP 5180072 A JP5180072 A JP 5180072A JP 18007293 A JP18007293 A JP 18007293A JP H0776754 A JPH0776754 A JP H0776754A
Authority
JP
Japan
Prior art keywords
powder
gas
rare earth
treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5180072A
Other languages
Japanese (ja)
Other versions
JP3481653B2 (en
Inventor
Takashi Ikegami
尚 池上
Hiroyuki Tomizawa
浩之 冨澤
Minoru Uehara
稔 上原
Satoru Hirozawa
哲 広沢
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18007293A priority Critical patent/JP3481653B2/en
Publication of JPH0776754A publication Critical patent/JPH0776754A/en
Application granted granted Critical
Publication of JP3481653B2 publication Critical patent/JP3481653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PURPOSE:To provide a producing method capable of obtaining R-T-(M)-B series anisotropy rare earth alloy powder for a permanent magnet in which magnetic anisotropy characteristic of the raw material alloy is completely attained, constituted of extrafine crystals and showing high coercive force with high mass- productivity regardless of the amt. to be treated. CONSTITUTION:The temp. of the coarsely crushed powder of an R-T-(M)-B alloy is raised to the 9 range of >=750 deg.C at 10 to 200 deg.C/min temp. rising rate in an atmosphere of gaseous hydrogen, and furthermore, heat treatment is executed at 750 to 900 deg.C in hydrogen, by which an R2T14B phase as the nucleus deciding the crystal orientation at the thime of recrystallization can be left by a suitable amt. Successively, it is subjected to dehydrogenation heat treatment at 700 to 900 deg.C in an evacuated air flow under 100Pa to 50kPa absolute pressure by gaseous Ar or He and is cooled, by which the R-T-(M)-B series rare earth alloy powder for a permanent magnet simultaneously having high coercive force and high magnetic anisotropy can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等に用いることが可能な高保磁力を有する
R(希土類元素)−T(鉄属元素)−(M)−B系のボ
ンド磁石用および焼結磁石用異方性永久磁石粉末の製造
方法に係り、本系粗粉砕粉を特定昇温速度で昇温しH2
ガス中で加熱処理して4相の混合組織となし、さらに所
定雰囲気で加熱保持する脱H2処理を行い、結晶粒を1
μm以下の極微細結晶とした高保磁力を有するR−T−
(M)−B系永久磁石用異方性希土類合金粉末の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R (rare earth element) -T (iron group element)-(M) -B type bond magnet having a high coercive force which can be used in various motors, actuators and the like. According to the method for producing anisotropic permanent magnet powder for a sintered magnet, the coarsely pulverized powder of this system is heated at a specific heating rate to generate H 2
Heat treatment is performed in gas to form a four-phase mixed structure, and H 2 treatment for heating and holding in a predetermined atmosphere is performed to make crystal grains 1
R-T- which has a high coercive force as an ultrafine crystal of μm or less
(M) -B relates to a method for producing an anisotropic rare earth alloy powder for a permanent magnet.

【0002】[0002]

【従来の技術】希土類系永久磁石粉末を水素処理法によ
り製造する方法は、例えば特開平1−132106号公
報に開示されている。すなわち、かかる水素処理法と
は、R−T−(M)−B系原料合金インゴットまたは粉
末を、H2ガス雰囲気またはH2ガスと不活性ガスの混合
雰囲気中で温度500℃〜1000℃に保持して上記合
金のインゴットまたは粉末にH2吸蔵させた後、H2ガス
圧力13Pa(1×10-1Torr)以下の真空雰囲気
またはH2ガス分圧13Pa(1×10-1Torr)以
下の不活性ガス雰囲気になるまで温度500℃〜100
0℃で脱H2処理し、ついで冷却することによりR−T
−(M)−B系合金磁石粉末を得る製造方法である。
2. Description of the Related Art A method for producing rare earth-based permanent magnet powder by a hydrogen treatment method is disclosed, for example, in JP-A-1-132106. That is, such a hydrogen treatment method means that an RT- (M) -B-based raw material alloy ingot or powder is heated to a temperature of 500 ° C. to 1000 ° C. in a H 2 gas atmosphere or a mixed atmosphere of H 2 gas and an inert gas. after H 2 occluded in ingot or powder of the alloy is held, the H 2 gas pressure 13Pa (1 × 10 -1 Torr) or less of vacuum atmosphere or H 2 gas partial pressure 13Pa (1 × 10 -1 Torr) or less Temperature of 500 ℃ to 100
By removing H 2 treatment at 0 ° C. and then cooling, RT
-(M) -B is a method for producing a B-based alloy magnet powder.

【0003】上記手法で製造されたR−T−(M)−B
系合金磁石粉末は、大きな保磁力と磁気異方性を有す
る。これは上記処理によって、非常に微細な再結晶粒
径、実質的には0.1μm〜1μmの平均再結晶粒径を
持つ組織となり、磁気的には正方晶Nd2Fe14B系化
合物の単磁区臨界粒径に近い結晶粒径となっており、な
おかつこれらの極微細結晶がある程度結晶方位を揃えて
再結晶しているためである。
RT- (M) -B manufactured by the above method
The system alloy magnet powder has a large coercive force and magnetic anisotropy. This treatment results in a structure having a very fine recrystallized grain size, that is, an average recrystallized grain size of substantially 0.1 μm to 1 μm, which is magnetically a tetragonal Nd 2 Fe 14 B-based compound. This is because the crystal grain size is close to the magnetic domain critical grain size, and these ultrafine crystals are recrystallized with their crystal orientations aligned to some extent.

【0004】また、特開平2−4901号公報には水素
処理法による種々のヒートパターンが開示され、更にイ
ンゴットの均質化処理を付加することも提案されてお
り、例えば、インゴットを600℃〜1200℃で均質
化して合金粉末をH2中又はH2と不活性ガスの混合雰囲
気中で500℃〜1000℃に保持してH2を吸蔵さ
せ、その後500℃〜1000℃で真空脱気して、冷却
する方法が示されている。さらに、特開平3−1466
08号公報には、水素処理中の温度変化による特性変動
を小さくする手法として、蓄熱材とともに水素処理を行
う方法が提案されている。すなわち、水素処理法では、
処理過程において大きな反応熱を伴う化学反応が起こっ
ており、この反応熱による温度変化のために磁気特性の
にばらつきが生じる。そこで熱容量の大きな蓄熱材を用
いて反応熱による温度変化を最小限にしようというもの
である。
Further, Japanese Patent Application Laid-Open No. 2-4901 discloses various heat patterns by a hydrogen treatment method, and it is also proposed to add an ingot homogenizing treatment. For example, the ingot is heated at 600 ° C. to 1200 ° C. And homogenize the alloy powder in H 2 or in a mixed atmosphere of H 2 and H 2 and an inert gas at 500 ° C. to 1000 ° C. to occlude H 2 and then degas it under vacuum at 500 ° C. to 1000 ° C. , A method of cooling is shown. Furthermore, JP-A-3-1466
As a method for reducing the characteristic fluctuation due to the temperature change during the hydrogen treatment, Japanese Patent Publication No. 08-008 proposes a method of performing the hydrogen treatment together with the heat storage material. That is, in the hydrotreating method,
A chemical reaction involving a large amount of heat of reaction occurs in the treatment process, and variations in magnetic characteristics occur due to temperature changes due to the heat of reaction. Therefore, it is intended to minimize the temperature change due to the reaction heat by using a heat storage material having a large heat capacity.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記手法で
製造されたR−T−(M)−B系磁石用合金粉末の磁気
的性質は、特に磁気異方性については不充分であり、原
料合金そのものが本質的に有する磁気異方性に達してお
らず、磁気特性的には残留磁束密度Brが小さいという
欠点があった。これは粉末粒子中に多数存在する結晶粒
の磁化容易方向が特定の一方向に十分そろっておらず、
その結果、粉末粒子の平均残留磁束密度が小さくなるこ
とによる。また、原料処理量によって磁気特性、特に保
磁力が変化するという、量産に不向きな非常に重要な問
題を内在していた。上述した蓄熱材を用いて温度変化を
小さくする方法では実用上、原料処理量に対して大きな
設備を要したり、熱容量が大きいため加熱、冷却に多大
の時間とエネルギーを要するという問題が新に生じる。
しかも、水素処理法による磁気特性、特に保磁力の変動
の原因が単に水素化時の発熱反応による温度上昇や脱水
素時の吸熱反応による温度低下ではないため、蓄熱材を
用いても保磁力のばらつきや低下の問題は解消されな
い。
However, the magnetic properties of the R-T- (M) -B magnet alloy powder produced by the above method are insufficient in terms of magnetic anisotropy in particular. The alloy itself does not reach the magnetic anisotropy inherently possessed, and the magnetic properties have a drawback that the residual magnetic flux density Br is small. This is because the easy magnetization direction of many crystal grains present in powder particles is not aligned in one specific direction,
As a result, the average residual magnetic flux density of the powder particles becomes small. In addition, there is a very important problem that magnetic properties, especially coercive force, change depending on the amount of raw material processed, which is not suitable for mass production. In the method of reducing the temperature change using the heat storage material described above, there is a new problem that, in practice, a large facility is required for the amount of raw material to be processed and a large amount of heat capacity requires a lot of time and energy for heating and cooling. Occurs.
Moreover, the cause of the fluctuations in the magnetic properties, especially the coercive force, due to the hydrogen treatment method is not simply the temperature rise due to the exothermic reaction during hydrogenation or the temperature decrease due to the endothermic reaction during dehydrogenation, so even if a heat storage material is used, the coercive force The problems of variation and deterioration cannot be solved.

【0006】これらの諸問題は、例えば特開平2−49
01号公報では第1に、水素処理法によって得られる磁
性粉末が再結晶集合組織を有することを指摘しながら
も、再結晶組織に決定的な影響を与える前組織、すなわ
ち水素中熱処理による中間生成物の金属組織が最適化し
ておらず、第2には、その最適な中間生成物の組織を生
成させるための水素化条件を限定していないためであ
る。
These problems are caused by, for example, Japanese Patent Laid-Open No. 2-49.
First, in JP-A No. 01-101, although it is pointed out that the magnetic powder obtained by the hydrogen treatment method has a recrystallized texture, a prestructure that has a decisive influence on the recrystallized texture, that is, intermediate formation by heat treatment in hydrogen. This is because the metallographic structure of the product is not optimized, and secondly, the hydrogenation conditions for producing the optimum structure of the intermediate product are not limited.

【0007】その結果、開示されている方法によると水
素吸蔵後の中間生成物がR−H、T−B、T相の3相組
織になってしまい、これを真空排気により脱水素化して
も、実質的に等方性の組織となり、高い磁化は得られな
い。また、H2処理の昇温時のH2圧力を1気圧とし、8
30℃まで昇温し、5Torr〜850TorrのH2
圧力下で830℃で5時間保持した後、1×10-5To
rrに排気してAr中で急冷した試料が磁気的に異方性
となることが開示されているが、製造されたボンド磁石
のBrは磁界中成形品で5.1kG〜7.2kGであ
り、磁性粉末100%に換算すると6.3kG〜9.0
kG(0.63T〜0.90T)である。この値は異方
性化が完全になった場合の値(約1.2T〜1.5T)
に比較し、十分高くなく異方性が完全とはいえない。
As a result, according to the disclosed method, the intermediate product after hydrogen storage has a three-phase structure of RH, TB and T phases, which is dehydrogenated by evacuation. , The structure is substantially isotropic, and high magnetization cannot be obtained. In addition, the H 2 pressure during the temperature rise of the H 2 treatment is set to 1 atm,
The temperature is raised to 30 ° C. and H 2 of 5 Torr to 850 Torr
After maintaining under pressure at 830 ° C. for 5 hours, 1 × 10 −5 To
It is disclosed that a sample that is evacuated to rr and rapidly cooled in Ar is magnetically anisotropic. However, Br of the manufactured bonded magnet is 5.1 kG to 7.2 kG in a magnetic field molded product. , 6.3 kG to 9.0 when converted to 100% magnetic powder
It is kG (0.63T-0.90T). This value is the value when anisotropy is complete (about 1.2T to 1.5T)
Compared with, the anisotropy is not sufficiently high and the anisotropy cannot be said to be perfect.

【0008】この発明は、R−T−(M)−B系永久磁
石用希土類合金粉末を水素処理法により製造する方法に
おいて、原料合金そのものが本質的に有する磁気異方性
を完全に達成し、極微細結晶で高保磁力を発揮するR−
T−(M)−B系永久磁石用異方性希土類合金粉末を量
産性よく得ることができる製造方法の提供を目的として
いる。
The present invention completely achieves the magnetic anisotropy inherent in the raw material alloy itself in the method for producing the R-T- (M) -B system rare earth alloy powder for permanent magnets by the hydrogen treatment method. , R- that exhibits high coercive force with ultrafine crystals
An object of the present invention is to provide a manufacturing method capable of obtaining anisotropic rare earth alloy powders for T- (M) -B type permanent magnets with good mass productivity.

【0009】[0009]

【課題を解決するための手段】この発明は、上記残留磁
束密度Brを大きくするため、原料組成および処理条件
の金属組織的検討を行った結果、水素化の条件を工夫す
ることで大きな異方性が得られることを見い出したもの
である。すなわち、発明者らは、水素処理法にてR−T
−(M)−B系永久磁石用希土類合金粉末を得る際に磁
性粉末を完全に異方性化する方法を目的に原料組成およ
び処理条件の金属組織的検討を種々行った結果、水素化
によって得られる中間生成物がR214B相を含有し、
その外にR−H、T−B化合物、T相が存在することが
高い残留磁化を得るための必須条件であること、そし
て、その中間生成物を生成させるための条件は、水素化
時に特定の温度領域を、充分速やかに通過させることが
必要であることを知見し、この発明を完成した。さら
に、脱水素処理時の水素分圧をR水素化物の平衡水素解
離圧、例えばNdH2では850℃で1kPaより大き
く下げることなく、平衡水素解離圧近傍で徐々に脱水素
反応を起こさせることで、核生成量、核成長速度を適正
化することにより、原料処理量にかかわらず高保磁力を
得ることができることを知見し、この発明を完成した。
In order to increase the residual magnetic flux density Br in the present invention, a metallographic examination of the raw material composition and the processing conditions was conducted, and as a result, a large anisotropy was obtained by devising the hydrogenation conditions. It has been found that sex can be obtained. That is, the inventors of the present invention have adopted the RT method by the hydrogen treatment
As a result of various metallographic examinations of raw material composition and processing conditions for the purpose of completely anisotroping the magnetic powder when obtaining the (M) -B rare earth alloy powder for permanent magnets, hydrogenation The resulting intermediate product contains the R 2 T 14 B phase,
The presence of R—H, T—B compound and T phase in addition to the above is an essential condition for obtaining high residual magnetization, and the condition for producing the intermediate product is specified at the time of hydrogenation. The present invention has been completed by finding that it is necessary to pass through the temperature range of 1. sufficiently quickly. Further, the hydrogen partial pressure during the dehydrogenation treatment can be gradually raised near the equilibrium hydrogen dissociation pressure without lowering the equilibrium hydrogen dissociation pressure of R hydride, for example, NdH 2 at 850 ° C. less than 1 kPa. It was found that a high coercive force can be obtained regardless of the amount of raw material processed by optimizing the amount of nucleation and the growth rate of nuclei, and completed the present invention.

【0010】すなわち、この発明は、R:10〜20a
t%(R:Yを含む希土類元素の少なくとも1種で、か
つPrまたはNdの1種または2種をRのうち50at
%以上含有)、T:67〜85at%(T:Feまたは
Feの一部を50at%以下のCoで置換)、B:4〜
10at%である合金鋳塊を粗粉砕して、平均粒度が5
0〜5000μmの少なくとも80vol%以上が正方
晶構造Nd2Fe14B型化合物からなる粗粉砕粉となし
た後、前記粗粉砕粉を原料粉末としてこれを10〜10
00kPaのH2ガス中で、600℃〜750℃以下の
温度域を昇温速度10℃/min〜200℃/minで
昇温し、さらに750℃〜900℃に15分〜8時間加
熱保持し、組織をR水素化物、T−B化合物、T相、R
214B化合物の少なくとも4相の混合組織とした後、
さらにArガス又はHeガスによる絶対圧100Pa〜
50kPaの減圧気流中にて700℃〜900℃に5分
〜8時間保持する脱H2処理を行い、ついで冷却して平
均結晶粒径が0.05μm〜1μmである磁気的に異方
性を有する合金粉末を得ることを特徴とする永久磁石用
希土類合金粉末の製造方法である。
That is, according to the present invention, R: 10 to 20a
t% (R: at least one of rare earth elements including Y, and one or two of Pr or Nd of 50 at R
% Or more), T: 67 to 85 at% (T: Fe or a part of Fe is replaced with 50 at% or less of Co), B: 4 to
The alloy ingot of 10 at% is roughly crushed to have an average particle size of 5
At least 80 vol% of 0 to 5000 μm is made into a coarsely pulverized powder composed of a tetragonal crystal structure Nd 2 Fe 14 B type compound, and then 10 to 10
In H 2 gas of 00 kPa, the temperature range of 600 ° C. to 750 ° C. or lower is raised at a heating rate of 10 ° C./min to 200 ° C./min, and further heated and held at 750 ° C. to 900 ° C. for 15 minutes to 8 hours. , Tissue R hydride, TB compound, T phase, R
After forming a mixed structure of at least four phases of 2 T 14 B compound,
Further, the absolute pressure of 100 Pa or more by Ar gas or He gas
A de-H 2 treatment of maintaining at 700 ° C. to 900 ° C. for 5 minutes to 8 hours in a reduced pressure air flow of 50 kPa is performed, and then cooling is performed to obtain magnetic anisotropy with an average crystal grain size of 0.05 μm to 1 μm. A method for producing a rare earth alloy powder for a permanent magnet, characterized in that the obtained alloy powder is obtained.

【0011】また、この発明は、R:10〜20at%
(R:Yを含む希土類元素の少なくとも1種で、かつP
rまたはNdの1種または2種をRのうち50at%以
上含有)、T:67〜85at%(T:FeまたはFe
の一部を50at%以下のCoで置換)、M:10at
%以下(M:Al、Ti、V、Cr、Ni、Ga、Z
r、Nb、Mo、In、Sn、Hf、Ta、Wのうち1
種または2種以上)、B:4〜10at%である合金鋳
塊を粗粉砕して平均粒度が50μm〜5000μmの少
なくとも80vol%以上が正方晶構造Nd2Fe14
型化合物からなる粗粉砕粉となした後、前記粗粉砕粉を
原料粉末としてこれを10〜1000kPaのH2ガス
中で、600℃〜750℃以下の温度域を昇温速度10
℃/min〜200℃/min以上で昇温し、さらに7
50℃〜900℃に15分〜8時間加熱保持し、組織を
R水素化物、T−B化合物、T相、R214B化合物の
少なくとも4相の混合組織とした後、さらにArガス又
はHeガスによる絶対圧100Pa〜50kPaの減圧
気流中にて700℃〜900℃に5分〜8時間保持する
脱H2処理を行い、ついで冷却して平均結晶粒径が0.
05μm〜1μmである磁気的に異方性を有する合金粉
末を得ることを特徴とする永久磁石用希土類合金粉末の
製造方法である。
The present invention is also characterized in that R: 10 to 20 at%.
(R: at least one rare earth element including Y, and P
One or two of r or Nd is contained in R at 50 at% or more), T: 67 to 85 at% (T: Fe or Fe
Is replaced with 50 at% or less of Co), M: 10 at
% Or less (M: Al, Ti, V, Cr, Ni, Ga, Z
1 of r, Nb, Mo, In, Sn, Hf, Ta, W
Or 2 or more), B: 4 to 10 at% of an alloy ingot is coarsely crushed, and at least 80 vol% or more having an average particle size of 50 μm to 5000 μm has a tetragonal structure Nd 2 Fe 14 B.
After forming a coarsely pulverized powder of a type compound, the coarsely pulverized powder is used as a raw material powder in a H 2 gas of 10 to 1000 kPa and a temperature range of 600 ° C. to 750 ° C.
℃ / min ~ 200 ℃ / min or more to raise the temperature, 7
After heating and holding at 50 ° C. to 900 ° C. for 15 minutes to 8 hours to make the structure a mixed structure of at least four phases of R hydride, TB compound, T phase, and R 2 T 14 B compound, Ar gas or He gas which resulted in the removal of H 2 by keeping 5 minutes to 8 hours 700 ° C. to 900 ° C. under vacuum in a stream of absolute pressure 100Pa~50kPa by, then the average crystal grain size cooled to 0.
A method for producing a rare earth alloy powder for a permanent magnet, characterized in that an alloy powder having a magnetic anisotropy of 05 μm to 1 μm is obtained.

【0012】組成の限定理由 この発明に使用する原料合金に用いるRすなわち希土類
元素は、Y、La、Ce、Pr、Nd、Sm、Gd、T
b、Dy、Ho、Er、Tm、Luが包括され、このう
ち少なくとも1種以上で、Pr、Ndのうち少なくとも
1種または2種をRのうち50at%以上含有し、さら
にRの全てがPr、Ndのうち1種または2種の場合が
ある。Rの50at%以上をPr、Ndのうち少なくと
も1種以上とするのは、50at%未満では充分な磁化
が得られないためである。Rは、10at%未満ではα
Fe相の析出により保磁力が低下し、また20at%を
超えると、目的とする正方晶Nd2Fe14B型化合物以
外に、Rリッチの第2相が多く析出し、この第2相が多
すぎると合金の磁化を低下させる。従ってRの範囲は1
0〜20at%とする。
Reason for limiting the composition R used in the raw material alloy used in the present invention, that is, the rare earth element, is Y, La, Ce, Pr, Nd, Sm, Gd, T.
b, Dy, Ho, Er, Tm, and Lu are included, at least one of which contains at least one or two of Pr and Nd in an amount of 50 at% or more of R, and all of R is Pr. , Nd may be one or two. The reason why 50 at% or more of R is at least one of Pr and Nd is that sufficient magnetization cannot be obtained at less than 50 at%. R is less than 10 at% α
When the coercive force decreases due to precipitation of the Fe phase, and when it exceeds 20 at%, a large amount of R-rich second phase is precipitated in addition to the target tetragonal Nd 2 Fe 14 B type compound, and this second phase is often contained. If too much, the magnetization of the alloy is reduced. Therefore, the range of R is 1
It is set to 0 to 20 at%.

【0013】Tは鉄属元素であって、Fe、Coを包含
する。Tが67at%未満では低保磁力、低磁化の第2
相が析出して磁気的特性が低下し、また85at%を超
えるとαFe相の析出により保磁力、角型性が低下する
ため、Tは67〜85at%とする。また、Feのみで
も必要な磁気的性質は得られるが、Coの適量の添加
は、キュリー温度の向上に有用であり、Coは必要に応
じて添加できる。FeとCoの原子比においてFeが5
0%以下となるとNd2Fe14B型化合物の飽和磁化そ
のものの減少量が大きくなってしまうため、Tのうち原
子比でFeを50%以上とした。
T is an iron group element and includes Fe and Co. When T is less than 67 at%, it has a low coercive force and low magnetization.
The phase is precipitated to deteriorate the magnetic properties, and when it exceeds 85 at%, the coercive force and the squareness are deteriorated due to the precipitation of the αFe phase, so T is set to 67 to 85 at%. Further, even if only Fe is used, the necessary magnetic properties can be obtained, but addition of an appropriate amount of Co is useful for improving the Curie temperature, and Co can be added if necessary. Fe is 5 in atomic ratio of Fe and Co
When it is 0% or less, the amount of decrease in the saturation magnetization itself of the Nd 2 Fe 14 B type compound becomes large, so that Fe in the atomic ratio of T is set to 50% or more.

【0014】添加元素Mの効果は、水素化時に母相の分
解反応を完全に終了させずに、母相すなわちR214
相を安定化して故意に残存させるのに有効な元素が望ま
れる。特に顕著な効果を持つものとして、Ni、Ga、
Zr、Hfがある。また、Mのうち、Al、Ni、G
a、Zr、In、Sn、Hfは、脱H2処理時の再結晶
粒を0.1μm〜1μmのサイズにまで成長させ、粉末
に磁気異方性を付与するのに有用な元素である。Ti、
V、Cr、Nb、Mo、Ta、Wは、脱H2処理時の再
結晶粒が、1μm以上に粗大化するのを防止し、結果と
して保磁力が低下するのを抑制する効果を有する。従っ
て、Mとしては、上記の元素を目的に応じて組み合わせ
て用いることが得策である。添加量は、全く加えなくて
もよいが、添加する場合は10at%を超えると強磁性
でない第2相が析出して磁化を低下させることから、M
は10at%以下とした。
The effect of the additional element M is that the decomposition reaction of the mother phase is not completely completed during hydrogenation, and the mother phase, that is, R 2 T 14 B
An element effective in stabilizing the phase and intentionally remaining is desired. Ni, Ga, and
There are Zr and Hf. Also, of M, Al, Ni, G
a, Zr, In, Sn, and Hf are elements useful for growing recrystallized grains at the time of H 2 removal treatment to a size of 0.1 μm to 1 μm and imparting magnetic anisotropy to the powder. Ti,
V, Cr, Nb, Mo, Ta, and W have the effect of preventing the recrystallized grains during the H 2 removal treatment from coarsening to 1 μm or more, and consequently suppressing the decrease in coercive force. Therefore, it is advisable to use, as M, a combination of the above elements according to the purpose. The addition amount may not be added at all, but if it exceeds 10 at%, the second phase that is not ferromagnetic precipitates to lower the magnetization.
Was 10 at% or less.

【0015】Bについては、正方晶Nd2Fe14B型結
晶構造を安定して析出させるためには必須である。添加
量は、4at%以下ではR217相が析出して保磁力を
低下させ、また減磁曲線の角型性が著しく損なわれる。
また、10at%を超えて添加した場合は、磁化の小さ
い第2相が析出して粉末の磁化を低下させる。従って、
Bは、4〜10at%とした。
B is essential for stable precipitation of a tetragonal Nd 2 Fe 14 B type crystal structure. If the addition amount is 4 at% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired.
Further, when it is added in excess of 10 at%, the second phase having a small magnetization precipitates to reduce the magnetization of the powder. Therefore,
B was set to 4 to 10 at%.

【0016】この発明において、粗粉砕粉の80vol
%以上が正方晶Nd2Fe14B型化合物としたのは、該
化合物が80vol%未満であると磁気特性が低下す
る。より具体的には、混在する第2相がαFe相の場合
は保磁力を低下させ、Rリッチ相やBリッチ相の場合に
は磁化が低下するため、正方晶Nd2Fe14B型化合物
の存在比を80vol%以上とした。体積比で80%以
上の正方晶Nd2Fe14B型化合物を有する粗粉砕を得
るためには、合金の鋳塊を900℃〜1200℃の温度
で1時間以上焼鈍するか、造塊工程で鋳型の冷却速度を
制御するなど、適宜選定すれば良い。
In the present invention, 80 vol of coarsely crushed powder
% Or more is the tetragonal Nd 2 Fe 14 B type compound, the magnetic properties are deteriorated when the compound is less than 80 vol%. More specifically, the coercive force is reduced when the mixed second phase is the αFe phase, and the magnetization is reduced when the mixed second phase is the R-rich phase or the B-rich phase, so that the tetragonal Nd 2 Fe 14 B-type compound The abundance ratio was 80 vol% or more. In order to obtain a coarse pulverization having a tetragonal Nd 2 Fe 14 B type compound in a volume ratio of 80% or more, the alloy ingot is annealed at a temperature of 900 ° C. to 1200 ° C. for 1 hour or more, or in an ingot making process. It may be appropriately selected, for example, by controlling the cooling rate of the mold.

【0017】製造条件の限定理由 水素処理法とは、所要粒度の粗粉砕粉が外観上その大き
さを変化させることなく、極微細結晶組織の集合体が得
られることを特徴とする。すなわち、正方晶Nd2Fe
14B型化合物に対し、高温、実際上は600℃〜900
℃の温度範囲でH2ガスと反応させると、RH2■3、α
Fe、Fe2Bなどに相分離し、さらに同温度域でH2
スを脱H2処理により除去すると、再度正方晶Nd2Fe
14B型化合物の再結晶組織が得られる。しかしながら、
現実には、水素化処理条件によって分解生成物の結晶粒
径、反応の度合いが異なり、水素化状態の金属組織は、
水素化温度750℃未満と750℃以上で明らかに異な
る。この金属組織上の違いが、脱水素処理を行った後の
磁粉の磁気的性質に大きく影響する。さらに、脱水素化
処理条件によって、正方晶Nd2Fe14B型化合物の再
結晶状態が大きく影響を受け、水素処理法によって作成
した磁性粉の磁気的性質、特に保磁力に大きく影響す
る。
Reasons for limiting manufacturing conditions The hydrogen treatment method is characterized in that a coarsely pulverized powder having a required particle size does not change its size in appearance and an aggregate having an extremely fine crystal structure can be obtained. That is, tetragonal Nd 2 Fe
14 B-type compound, high temperature, practically 600 ℃ ~ 900
When reacted with H 2 gas in the temperature range of ℃, RH 2 ■ 3 , α
When phase separation into Fe, Fe 2 B, etc. is carried out, and H 2 gas is removed by de-H 2 treatment in the same temperature range, tetragonal Nd 2 Fe is again obtained.
14 A recrystallized structure of the B-type compound is obtained. However,
In reality, the crystal grain size of the decomposition product and the degree of reaction differ depending on the hydrotreatment conditions, and the metallographic structure in the hydrogenated state is
The hydrogenation temperature is clearly different between less than 750 ° C and above 750 ° C. This difference in metal structure has a great influence on the magnetic properties of the magnetic powder after the dehydrogenation treatment. Further, the dehydrogenation treatment conditions greatly influence the recrystallized state of the tetragonal Nd 2 Fe 14 B type compound, and greatly affect the magnetic properties of the magnetic powder produced by the hydrogen treatment method, especially the coercive force.

【0018】出発原料の粗粉砕法は、従来の機械的粉砕
法やガスアトマイズ法の他、H2吸蔵による、いわゆる
水素粉砕法を用いてもよく、工程の簡略化のためにこの
水素粉砕による粗粉砕工程と、極微細結晶を得るための
水素処理法を同一装置内で連続して行っても良い。
The starting material may be coarsely pulverized by a conventional mechanical pulverization method or a gas atomization method, or a so-called hydrogen pulverization method by H 2 occlusion may be used. The crushing step and the hydrogen treatment method for obtaining ultrafine crystals may be continuously performed in the same apparatus.

【0019】この発明において、粗粉砕粉の平均粒度を
50μm〜5000μmに限定したのは、50μm未満
では粉末の酸化による磁性劣化の恐れがあり、また50
00μmを超えると水素処理によって大きな磁気異方性
を持たせることが困難となるからである。
In the present invention, the average particle size of the coarsely crushed powder is limited to 50 μm to 5000 μm. If the average particle size is less than 50 μm, there is a risk of magnetic deterioration due to oxidation of the powder.
This is because if it exceeds 00 μm, it becomes difficult to give a large magnetic anisotropy by hydrogen treatment.

【0020】この発明において、H2ガス中での加熱に
際し、H2ガス圧力が10kPa未満では前述の分解反
応が充分に進行せず、また1000kPaを超えると処
理設備が大きくなりすぎ、工業的にコスト面、また安全
面で好ましくないため、圧力範囲を10〜1000kP
aとした。さらに好ましい圧力範囲は50〜150kP
aである。
[0020] In this invention, when heating with H 2 gas, H 2 gas pressure not above the decomposition reaction proceed sufficiently at lower than 10 kPa, also exceeding 1000kPa and processing equipment too large, industrially The pressure range is 10 to 1000 kP because it is not preferable in terms of cost and safety.
a. More preferable pressure range is 50 to 150 kP
a.

【0021】H2ガス中での加熱処理温度は、600℃
未満ではRH2■3、αFe、Fe2Bなどへの分解反応
が起こらない。また、600℃〜750℃の温度範囲で
は分解反応がほぼ完全に進行してしまい、分解生成物中
に適量のR214B相が残存せず、脱水素処理後に磁気
的、また結晶方位的に充分な異方性が得られない。また
900℃を超えるとRH2■3が不安定となりかつ生成
物が粒成長して正方晶Nd2Fe14B型化合物極微細結
晶組織を得ることが困難になる。水素化の温度範囲が7
50℃〜900℃の領域であれば、脱水素時の再結晶反
応の核となるR214B相が分散して適量残存するた
め、脱水素後のR214B相の結晶方位が残存R214
相によって決定され、結果的に再結晶組織の結晶方位が
原料インゴットの結晶方位と一致し、少なくとも原料イ
ンゴットの結晶粒径の範囲内では大きな異方性を示すこ
とになる。従って、水素化処理の温度範囲を750℃〜
900℃とする。また、加熱処理時の保持時間について
は、上記の分解反応を充分に行わせるためには15分以
上必要であり、また、8時間を越えると残存R214
相が減少するため、脱水素後の異方性が低下するので好
ましくない、よって、15分〜8時間の加熱保持とす
る。
The heat treatment temperature in H 2 gas is 600 ° C.
If it is less than the above, the decomposition reaction into RH 2 3 , αFe, Fe 2 B, etc. does not occur. Further, in the temperature range of 600 ° C. to 750 ° C., the decomposition reaction proceeds almost completely, and an appropriate amount of R 2 T 14 B phase does not remain in the decomposition product. Sufficient anisotropy cannot be obtained. On the other hand, if the temperature exceeds 900 ° C., RH 2 3 becomes unstable , and the product grains grow to make it difficult to obtain a tetragonal Nd 2 Fe 14 B type compound ultrafine crystal structure. Hydrogenation temperature range is 7
In the range of 50 ° C. to 900 ° C., the R 2 T 14 B phase, which is the nucleus of the recrystallization reaction during dehydrogenation, disperses and remains in an appropriate amount, so the crystal orientation of the R 2 T 14 B phase after dehydrogenation Remains R 2 T 14 B
The crystal orientation of the recrystallized structure is determined by the phase, and as a result, the crystal orientation of the recrystallized structure coincides with the crystal orientation of the raw material ingot, and exhibits a large anisotropy at least within the range of the crystal grain size of the raw material ingot. Therefore, the temperature range of the hydrotreatment is 750 ° C to
It is set to 900 ° C. Regarding the holding time during the heat treatment, 15 minutes or more is required to sufficiently carry out the above decomposition reaction, and when it exceeds 8 hours, the residual R 2 T 14 B remains.
Since the phase is reduced, the anisotropy after dehydrogenation is lowered, which is not preferable. Therefore, the heating is kept for 15 minutes to 8 hours.

【0022】H2ガス中での昇温速度を所定範囲に保持
することはこの発明において最も重要な工程である。す
なわち、昇温速度が10℃/min.未満であると、昇
温過程で600℃〜750℃の温度域を分解反応が進行
しながら通過するために、完全に分解して母相すなわち
214B相が残存せず、脱水素処理後の磁気的及び結
晶方位的異方性がほとんど失われてしまう。また、多量
に処理を行う場合は、大きな反応熱のために局部的に最
適処理温度範囲を超える場合があり、そのために実用的
な保磁力が得られない場合がある。昇温速度を10℃/
min以上にすれば、600℃〜750℃の領域で反応
が充分に進行せず、母相を残存したまま750℃〜90
0℃の水素化温度域に達するため、脱水素処理後に磁気
的および結晶方位的に大きな異方性を持った粉末を得る
事ができる。また、750℃〜900℃の温度域におけ
る分解反応時の反応熱による温度上昇は小さく、多量処
理時でも実用的な保磁力が得易い。従って、昇温速度
は、750℃以下の温度域において、10℃/min以
上とする必要がある。また、200℃/minを越える
昇温速度は、赤外線加熱炉等を用いても実質的に実現困
難であり、また可能であっても設備費が過大となるので
好ましくない、よって、昇温速度を10℃/min〜2
00℃/minとする。
Maintaining the temperature rising rate in the H 2 gas within a predetermined range is the most important step in the present invention. That is, the heating rate is 10 ° C./min. When the temperature is less than the above value, the decomposition reaction passes through the temperature range of 600 ° C. to 750 ° C. in the temperature rising process, so that the mother phase, that is, the R 2 T 14 B phase is not completely decomposed and dehydrogenated. Most of the magnetic and crystallographic anisotropy after the treatment is lost. In addition, when a large amount of treatment is performed, the reaction heat may be locally exceeded the optimum treatment temperature range, and thus a practical coercive force may not be obtained. Temperature rising rate is 10 ° C /
When it is set to min or more, the reaction does not proceed sufficiently in the range of 600 ° C to 750 ° C and the mother phase remains 750 ° C to 90 ° C.
Since the hydrogenation temperature range of 0 ° C. is reached, it is possible to obtain a powder having a large anisotropy in magnetic and crystal orientation after the dehydrogenation treatment. Further, the temperature rise due to the reaction heat during the decomposition reaction in the temperature range of 750 ° C. to 900 ° C. is small, and it is easy to obtain a practical coercive force even in the case of a large amount of treatment. Therefore, the rate of temperature increase needs to be 10 ° C./min or higher in the temperature range of 750 ° C. or lower. Further, a heating rate exceeding 200 ° C./min is not practically feasible even if an infrared heating furnace or the like is used, and even if it is possible, the equipment cost becomes excessive, which is not preferable. 10 ℃ / min ~ 2
00 ° C./min.

【0023】この発明の脱H2処理は、Arガス又はH
eガスの減圧気流中にて行うが、これによって原料の周
囲の実質的なH2分圧をR水素化物の平衡水素解離圧、
例えばNdH2では850℃で1kPa程度となり、脱
2反応は徐々に進行する。雰囲気をArガス又はHe
ガスに限定したのは、コスト面でArガスが使いよく、
またH2ガスの置換性や温度制御の点からHeガスが使
いよいことによる。さらに、不活性ガスとして一般的な
2ガスは希土類系化合物と反応して窒化物を形成する
ため不適当であり、また他の希ガスでは性能上のメリッ
トがなくコストの面でも不利である。この発明の脱H2
処理時の雰囲気の絶対圧は、10Pa未満では脱H2
応が急激に起こり、化学反応による温度が大きく低下
し、さらに脱H2反応が急激すぎるために冷却後の磁性
粉の組織に粗大な結晶粒が混在して保磁力が大きく低下
するため好ましくなく、また50kPaを超えると脱H
2反応に時間がかかりすぎて実用上問題となるため、絶
対圧10Pa〜50kPaの範囲とする。また、脱H2
処理を減圧気流中で行うのは脱H2反応によって、原料
から放出されるH2ガスよって、炉内圧力が上昇するの
を防止するためである。実用上は、一方から不活性ガス
を導入しながら、他方から真空ポンプで排気し、圧力の
制御は、供給口、排気口のそれぞれに取り付けられた流
量調整弁を用いて行うとよい。
The H 2 removal treatment of the present invention is performed by using Ar gas or H 2
It is carried out in a reduced pressure gas flow of e gas, and by this, the substantial H 2 partial pressure around the raw material is changed to the equilibrium hydrogen dissociation pressure of R hydride,
For example, NdH 2 has a temperature of about 1 kPa at 850 ° C., and the H 2 removal reaction gradually proceeds. The atmosphere is Ar gas or He
Gas is limited to Ar gas because of its cost,
This is also because He gas can be used from the viewpoint of H 2 gas substitution property and temperature control. Further, N 2 gas, which is generally used as an inert gas, is unsuitable because it reacts with a rare earth compound to form a nitride, and other rare gases have no merit in performance and are disadvantageous in cost. . Removal of H 2 of this invention
If the absolute pressure of the atmosphere during the treatment is less than 10 Pa, the de-H 2 reaction abruptly occurs, the temperature due to the chemical reaction greatly decreases, and the de-H 2 reaction is too rapid, so that the structure of the magnetic powder after cooling is coarse. It is not preferable because the coercive force is greatly reduced due to the inclusion of crystal grains, and when the pressure exceeds 50 kPa, de-H
2 The reaction takes too much time and becomes a problem in practice, so the absolute pressure is set within the range of 10 Pa to 50 kPa. Also, de-H 2
The treatment is performed in a reduced pressure air flow in order to prevent the pressure inside the furnace from rising due to the H 2 gas released from the raw material due to the H 2 removal reaction. Practically, while introducing the inert gas from one side, the other side is evacuated by the vacuum pump, and the pressure control may be performed by using the flow rate adjusting valve attached to each of the supply port and the exhaust port.

【0024】この発明において、脱H2処理の温度が7
00℃未満では、RH2■3相からのH2の離脱が起こら
ないか、正方晶Nd2Fe14B型化合物の再結晶が充分
進行しない。また、900℃を超えると正方晶Nd2
14B型化合物は生成するが、再結晶粒が粗大に成長
し、高い保磁力が得られない。そのため、脱H2処理の
温度範囲は700℃〜900℃とする。
In the present invention, the temperature for the H 2 removal treatment is 7
If the temperature is lower than 00 ° C., H 2 is not released from the RH 2 3 phase or recrystallization of the tetragonal Nd 2 Fe 14 B type compound does not proceed sufficiently. Further, when the temperature exceeds 900 ° C., tetragonal Nd 2 F
Although the e 14 B type compound is produced, recrystallized grains grow coarsely and a high coercive force cannot be obtained. Therefore, the temperature range of the H 2 removal treatment is 700 ° C. to 900 ° C.

【0025】また、加熱処理保持時間は、処理設備の排
気能力にもよるが、上記の再結晶反応を充分に行わせる
ことも重要であり、少なくとも5分以上保持する必要が
あるが、2次的な再結晶反応によって結晶が粗大化すれ
ば保磁力の低下を招くので、できる限り短時間の方が好
ましい。そのため、5分〜8時間の加熱保持で充分であ
る。脱H2処理は、原料の酸化防止の観点から、また処
理設備の熱効率の観点で、水素化処理に引き続いて行う
のがよいが、水素化処理後、一旦原料を冷却して、再び
改めて脱H2のための熱処理を行っても良い。
Although the heat treatment holding time depends on the evacuation capacity of the treatment equipment, it is also important to sufficiently carry out the above recrystallization reaction, and it is necessary to hold the heat treatment for at least 5 minutes. If the crystal is coarsened by a general recrystallization reaction, the coercive force is lowered, so that the time is preferably as short as possible. Therefore, heating and holding for 5 minutes to 8 hours is sufficient. De H 2 treatment, from the viewpoint of preventing oxidation of the raw materials, also in terms of thermal efficiency of the process equipment, but may be carried out following the hydrogenation process, after hydrogenation treatment, then once cooling the material, again again de A heat treatment for H 2 may be performed.

【0026】脱H2処理後の正方晶Nd2Fe14B型化合
物の再結晶粒径は実質的に0.05μm以下の平均再結
晶粒径を得ることは困難であり、またたとえ得られたと
しても磁気特性上の利点がない。一方、平均再結晶粒径
が1μmを超えると、粉末の保磁力が低下するため好ま
しくない。そのため、平均再結晶粒径を0.05μm〜
1μmとした。
The recrystallized grain size of the tetragonal Nd 2 Fe 14 B type compound after the de-H 2 treatment is practically difficult to obtain, even if it is obtained. However, there is no advantage in magnetic characteristics. On the other hand, if the average recrystallized grain size exceeds 1 μm, the coercive force of the powder decreases, which is not preferable. Therefore, the average recrystallized grain size is from 0.05 μm to
It was 1 μm.

【0027】[0027]

【作用】この発明は、R−T−(M)−B系永久磁石用
希土類合金粉末を水素処理法により製造する方法におい
て、水素化時に特定の温度領域を十分、速やかに通過さ
せて、R水素化物、T−B化合物、T相、R214B化
合物の少なくとも4相の混合組織とすることにより、原
料合金そのものが本質的に有する磁気異方性を完全に達
成し、さらにArガス又はHeガスによる絶対圧100
Pa〜50kPaの減圧気流中で加熱保持する脱H2
理を行い、極微細結晶で高保磁力を発揮するR−T−
(M)−B系永久磁石用異方性希土類合金粉末を処理量
にかかわらず量産性よく得ることができる。
According to the present invention, in the method for producing the R-T- (M) -B system rare earth alloy powder for permanent magnets by the hydrotreating method, the R-T- (M) -B-based rare earth alloy powder is passed through a specific temperature region sufficiently quickly during hydrogenation. By having a mixed structure of at least four phases of hydride, T-B compound, T phase, and R 2 T 14 B compound, the magnetic anisotropy inherent in the raw material alloy itself is completely achieved, and further Ar gas is used. Or absolute pressure 100 with He gas
RT- which shows high coercive force with ultrafine crystals by performing H 2 removal treatment by heating and holding in a reduced pressure air flow of Pa to 50 kPa.
An anisotropic rare earth alloy powder for a (M) -B system permanent magnet can be obtained with good mass productivity regardless of the treatment amount.

【0028】[0028]

【実施例】【Example】

実施例1 高周波誘導溶解法によって溶製して得られた表1に示す
No.1〜12の組成の鋳塊を、1100℃、24時
間、Ar雰囲気中で焼鈍して、鋳塊中の正方晶Nd2
14B型化合物の体積比を90%以上とした。この鋳塊
を、Arガス雰囲気中(O2量0.5%以下)でスタン
プミルにて平均粒度500μmに粗粉砕した後、この粗
粉砕粉を管状炉に入れ、1Pa以下にまで真空排気し
た。真空排気には、ロータリーポンプおよび油拡散ポン
プを用いた。その後、純度99.9999%以上のH2
ガスを導入しつつ、表2に示す水素化処理条件で水素化
処理を行った。こうして得た水素化原料を、引き続き表
2に示す脱水素処理条件に従って脱水素処理を行った。
また、冷却は脱水素処理時に使用した雰囲気ガスの吹き
つけで行った。冷却後、原料温度が50℃以下となった
ところで原料を取り出した。このときの磁性粉末(N
o.1〜20)の磁気特性を表2に示す。表2におい
て、Isの値は、Hex=0.8MA/mの時の磁化を
示す。また、
Example 1 No. 1 shown in Table 1 obtained by melting by the high frequency induction melting method. The ingots having the compositions of 1 to 12 were annealed in an Ar atmosphere at 1100 ° C. for 24 hours to obtain tetragonal Nd 2 F in the ingot.
The volume ratio of the e 14 B type compound was 90% or more. This ingot was coarsely crushed in an Ar gas atmosphere (O 2 amount of 0.5% or less) by a stamp mill to an average particle size of 500 μm, and the coarsely pulverized powder was put into a tubular furnace and vacuum exhausted to 1 Pa or less. . A rotary pump and an oil diffusion pump were used for evacuation. After that, H 2 with a purity of 99.9999% or more
While introducing gas, hydrotreating was performed under the hydrotreating conditions shown in Table 2. The hydrogenated raw material thus obtained was subsequently subjected to dehydrogenation treatment under the dehydrogenation treatment conditions shown in Table 2.
The cooling was performed by blowing the atmospheric gas used in the dehydrogenation treatment. After cooling, the raw material was taken out when the raw material temperature became 50 ° C. or lower. Magnetic powder (N
o. The magnetic properties of 1 to 20) are shown in Table 2. In Table 2, the value of Is shows the magnetization when Hex = 0.8 MA / m. Also,

【0029】実施例2 実施例1で用いたNo.12の原料粉を用いて、磁気的
性質の処理量依存性を調査した。原料粒度は500μm
で、水素化処理は水素圧100kPa、昇温速度15℃
/分として850℃で2時間、脱水素処理はArガスに
よる10kPaの減圧気流中で840℃で2時間保持、
冷却条件はArガス吹付冷却に条件を固定し、処理量を
2gから2kgまで変化させ、そのときの磁性粉末の残
留磁化Br、保磁力Hc、磁化容易方向および困難方向
の磁化Isを処理量に対してグラフ化し、図1に示す。
なお、処理量の2kgは実験装置の制約によるものであ
り、この発明の適用上限を示すものではない。なお、磁
化は、外部磁界0.8MA/mでの値としてあり、磁化
容易方向と困難方向の値の差が大きいほど磁気的な異方
性が大きいことを示している。
Example 2 No. used in Example 1 was used. Using 12 raw material powders, the dependence of the magnetic properties on the throughput was investigated. Raw material particle size is 500 μm
In the hydrogenation process, the hydrogen pressure is 100 kPa and the heating rate is 15 ° C.
/ Min for 2 hours at 850 ° C., the dehydrogenation treatment is maintained at 840 ° C. for 2 hours in a reduced pressure gas stream of 10 kPa with Ar gas,
The cooling condition is fixed to Ar gas spray cooling, and the treatment amount is changed from 2 g to 2 kg. At that time, the residual magnetization Br of the magnetic powder, the coercive force Hc, and the magnetization Is in the easy magnetization direction and the difficult direction are set as the treatment amount. In contrast, it is graphed and shown in FIG.
The processing amount of 2 kg is due to the limitation of the experimental apparatus and does not indicate the upper limit of application of the present invention. The magnetization is a value at an external magnetic field of 0.8 MA / m, and the larger the difference between the values in the easy magnetization direction and the hard direction, the greater the magnetic anisotropy.

【0030】比較例 表1に示す実施例と同様の組成を有する12種類の組成
の粗粉砕粉について、この粗粉砕粉を管状炉に入れ、1
Pa以下にまで真空排気した。その後、純度99.99
99%以上のH2ガスを導入しつつ、表3に示す処理条
件で水素化処理および脱水素処理を行った。ここに示し
た脱水素処理時の水素分圧または処理温度がこの発明の
範囲外である。このときの磁性粉末(No.21〜3
7)の磁気特性を表3に示す。
Comparative Example Regarding 12 kinds of coarsely pulverized powders having the same composition as the example shown in Table 1, the coarsely pulverized powders were put in a tubular furnace and 1
It was evacuated to Pa or less. Then, the purity is 99.99
While introducing 99% or more of H 2 gas, hydrogenation treatment and dehydrogenation treatment were performed under the treatment conditions shown in Table 3. The hydrogen partial pressure or the treatment temperature during the dehydrogenation treatment shown here is outside the scope of the present invention. Magnetic powder at this time (No. 21 to 3)
Table 3 shows the magnetic characteristics of 7).

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】この発明によるR−T−(M)−B系永
久磁石用異方性希土類合金粉末の製造方法は、R−T−
(M)−B合金の粗粉砕粉を、水素ガス雰囲気中で昇温
速度10℃/min〜200℃/minの昇温速度で7
50℃以上の温度域まで昇温し、さらに750℃〜90
0℃で水素中の熱処理を行うことにより、再結晶時の結
晶方位を決める核としてのR214B相を適量残存させ
ることができ、引き続きArガス又はHeガスによる絶
対圧100Pa〜50kPaの減圧気流中にて700℃
〜900℃の脱水素熱処理を行って冷却することによ
り、高い保磁力と大きな磁気異方性を同時に有する、ボ
ンド磁石および焼鈍磁石原料として最適なR−T−
(M)−B系永久磁石用異方性希土類合金粉末を安定し
て得ることができる。
The method for producing anisotropic rare earth alloy powder for RT- (M) -B permanent magnets according to the present invention is RT-.
The coarsely pulverized powder of the (M) -B alloy is heated in a hydrogen gas atmosphere at a heating rate of 10 ° C./min to 200 ° C./min to 7
The temperature is raised to a temperature range of 50 ° C or higher, and further 750 ° C to 90 ° C.
By performing a heat treatment in hydrogen at 0 ° C., an appropriate amount of R 2 T 14 B phase as a nucleus that determines the crystal orientation during recrystallization can be left, and then the absolute pressure of Ar gas or He gas of 100 Pa to 50 kPa. 700 ℃ in depressurized air flow
By performing a dehydrogenation heat treatment at ˜900 ° C. and cooling, the RT- which is optimal as a raw material for bonded magnets and annealed magnets, having high coercive force and large magnetic anisotropy at the same time.
An anisotropic rare earth alloy powder for a (M) -B system permanent magnet can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁性粉末の保磁力、磁化容易方向および困難方
向の磁化の変化を処理量に対して表したグラフである。
FIG. 1 is a graph showing changes in coercive force of a magnetic powder and magnetization in an easy magnetization direction and a hard magnetization direction with respect to a processing amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上原 稔 大阪府三島郡島本町江川2丁目15ー17 住 友特殊金属株式会社山崎製作所内 (72)発明者 広沢 哲 大阪府三島郡島本町江川2丁目15ー17 住 友特殊金属株式会社山崎製作所内 (72)発明者 富田 俊郎 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minor Uehara Minoru Uehara 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Pref. Chome 15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Toshiro Tomita 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Sumitomo Metal Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R:10〜20at%(R:Yを含む希
土類元素の少なくとも1種で、かつPrまたはNdの1
種または2種をRのうち50at%以上含有)、T:6
7〜85at%(T:FeまたはFeの一部を50at
%以下のCoで置換)、B:4〜10at%である合金
鋳塊を粗粉砕して、平均粒度が50〜5000μmの少
なくとも80vol%以上が正方晶構造Nd2Fe14
型化合物からなる粗粉砕粉となした後、前記粗粉砕粉を
原料粉末としてこれを10〜1000kPaのH2ガス
中で、600℃〜750℃以下の温度域を昇温速度10
℃/min〜200℃/minで昇温し、さらに750
℃〜900℃に15分〜8時間加熱保持し、組織をR水
素化物、T−B化合物、T相、R214B化合物の少な
くとも4相の混合組織とした後、さらにArガス又はH
eガスによる絶対圧100Pa〜50kPaの減圧気流
中にて700℃〜900℃に5分〜8時間保持する脱H
2処理を行い、ついで冷却して平均結晶粒径が0.05
μm〜1μmである磁気的に異方性を有する合金粉末を
得ることを特徴とする永久磁石用希土類合金粉末の製造
方法。
1. R: 10 to 20 at% (R: at least one kind of rare earth element including Y, and Pr or Nd of 1
Or 2 kinds of R in 50 at% or more), T: 6
7 to 85 at% (T: Fe or a part of Fe is 50 at
% Or less Co), B: 4 to 10 at% of the alloy ingot is roughly crushed, and at least 80 vol% or more having an average particle size of 50 to 5000 μm has a tetragonal structure Nd 2 Fe 14 B.
After forming a coarsely pulverized powder of a type compound, the coarsely pulverized powder is used as a raw material powder in a H 2 gas of 10 to 1000 kPa and a temperature range of 600 ° C. to 750 ° C.
C./min to 200.degree. C./min to raise the temperature to 750
After heating and holding at 15 ° C to 900 ° C for 15 minutes to 8 hours to make the structure a mixed structure of at least four phases of R hydride, TB compound, T phase, and R 2 T 14 B compound, Ar gas or H
E-gas dehydrogenation by maintaining at 700 ° C to 900 ° C for 5 minutes to 8 hours in a reduced pressure air flow of absolute pressure 100 Pa to 50 kPa
2 treatments followed by cooling to an average crystal grain size of 0.05
A method for producing a rare earth alloy powder for a permanent magnet, characterized in that an alloy powder having a magnetic anisotropy of 1 μm to 1 μm is obtained.
【請求項2】 R:10〜20at%(R:Yを含む希
土類元素の少なくとも1種で、かつPrまたはNdの1
種または2種をRのうち50at%以上含有)、T:6
7〜85at%(T:FeまたはFeの一部を50at
%以下のCoで置換)、M:10at%以下(M:A
l、Ti、V、Cr、Ni、Ga、Zr、Nb、Mo、
In、Sn、Hf、Ta、Wのうち1種または2種以
上)、B:4〜10at%である合金鋳塊を粗粉砕して
平均粒度が50μm〜5000μmの少なくとも80v
ol%以上が正方晶構造Nd2Fe14B型化合物からな
る粗粉砕粉となした後、前記粗粉砕粉を原料粉末として
これを10〜1000kPaのH2ガス中で、600℃
〜750℃以下の温度域を昇温速度10℃/min〜2
00℃/min以上で昇温し、さらに750℃〜900
℃に15分〜8時間加熱保持し、組織をR水素化物、T
−B化合物、T相、R214B化合物の少なくとも4相
の混合組織とした後、さらにArガス又はHeガスによ
る絶対圧100Pa〜50kPaの減圧気流中にて70
0℃〜900℃に5分〜8時間保持する脱H2処理を行
い、ついで冷却して平均結晶粒径が0.05μm〜1μ
mである磁気的に異方性を有する合金粉末を得ることを
特徴とする永久磁石用希土類合金粉末の製造方法。
2. R: 10 to 20 at% (R: at least one of rare earth elements including Y, and Pr or Nd of 1
Or 2 kinds of R in 50 at% or more), T: 6
7 to 85 at% (T: Fe or a part of Fe is 50 at
% Or less Co replaced), M: 10 at% or less (M: A
l, Ti, V, Cr, Ni, Ga, Zr, Nb, Mo,
One or more of In, Sn, Hf, Ta, W), and B: 4 to 10 at% of the alloy ingot is coarsely crushed to have an average particle size of at least 80 v of 50 μm to 5000 μm.
ol% or more is made into a coarsely pulverized powder composed of a tetragonal structure Nd 2 Fe 14 B type compound, and the coarsely pulverized powder is used as a raw material powder in H 2 gas of 10 to 1000 kPa at 600 ° C.
Up to 750 ° C or lower temperature rising rate 10 ° C / min to 2
Temperature is raised at 00 ° C / min or more, and further 750 ° C to 900
The tissue is heated and kept at 15 ° C. for 15 minutes to 8 hours to make the tissue R hydride, T
-B compounds in T-phase, R 2 T 14 B was a mixed structure of at least 4 phases compound, further pressure reduction in a stream of absolute pressure 100Pa~50kPa with Ar gas or He gas 70
0 ° C. to 900 ° C. to perform de H 2 by keeping 5 minutes to 8 hours, and then an average grain size cooled to the 0.05μm~1μ
A method for producing a rare earth alloy powder for a permanent magnet, characterized in that an alloy powder having a magnetic anisotropy of m is obtained.
JP18007293A 1993-06-25 1993-06-25 Method for producing anisotropic rare earth alloy powder for permanent magnet Expired - Lifetime JP3481653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18007293A JP3481653B2 (en) 1993-06-25 1993-06-25 Method for producing anisotropic rare earth alloy powder for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18007293A JP3481653B2 (en) 1993-06-25 1993-06-25 Method for producing anisotropic rare earth alloy powder for permanent magnet

Publications (2)

Publication Number Publication Date
JPH0776754A true JPH0776754A (en) 1995-03-20
JP3481653B2 JP3481653B2 (en) 2003-12-22

Family

ID=16076974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18007293A Expired - Lifetime JP3481653B2 (en) 1993-06-25 1993-06-25 Method for producing anisotropic rare earth alloy powder for permanent magnet

Country Status (1)

Country Link
JP (1) JP3481653B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135017A (en) * 1996-10-28 1998-05-22 Aichi Steel Works Ltd Manufacturing method of anisotropic magnet powder
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135017A (en) * 1996-10-28 1998-05-22 Aichi Steel Works Ltd Manufacturing method of anisotropic magnet powder
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder

Also Published As

Publication number Publication date
JP3481653B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0768561B2 (en) Method for producing rare earth-Fe-B alloy magnet powder
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JPH09148163A (en) Manufacture of r-t-b antisotropic bonded magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP4288637B2 (en) Method for producing rare earth alloy powder for permanent magnet
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JPH10172850A (en) Production of anisotropic permanent magnet
JP2002025813A (en) Anisotropic rare earth magnet powder
JP3860372B2 (en) Rare earth magnet manufacturing method
JPH07278615A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JP3710837B2 (en) Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP2838615B2 (en) Method for producing alloy powder for rare earth permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH11106803A (en) Production of rare earth magnet powder having excellent magnetic property
JPH04246803A (en) Rare earth-fe-b anisotropic magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

EXPY Cancellation because of completion of term