JPH0774381A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH0774381A
JPH0774381A JP5217387A JP21738793A JPH0774381A JP H0774381 A JPH0774381 A JP H0774381A JP 5217387 A JP5217387 A JP 5217387A JP 21738793 A JP21738793 A JP 21738793A JP H0774381 A JPH0774381 A JP H0774381A
Authority
JP
Japan
Prior art keywords
layer
light absorption
light
absorption layer
strained superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217387A
Other languages
Japanese (ja)
Inventor
Shoichi Kakimoto
昇一 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5217387A priority Critical patent/JPH0774381A/en
Publication of JPH0774381A publication Critical patent/JPH0774381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a semiconductor photodetector with a fast response speed for irradiation with light by increasing the mobility of positive holes. CONSTITUTION:In0.53-xGa0.47+xAs distortion superlattice layer 4a is formed on n-type InP buffer layer 3, In0.53+xGa0.47-xAs distortion superlattice layer 4b is formed on it to form a pair, and a number of pair structures are laminated; thus forming a light absorption layer, where the conditions of X expressing the composition ratio of the superlattice layer is X>0. Therefore, since the effective mass of carriers generated due to incident light in a light absorption layer can be reduced, thus increasing the response speed for the irradiation with light due to increase in the mobility of carriers at the light absorption layer. Also, since mutual stresses can be canceled by alternately laminating first and second distortion superlattice layers, the damage of light absorption layer due to stress can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体受光素子に関し、
特に高速応答可能な半導体受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element,
In particular, it relates to a semiconductor light receiving element capable of high-speed response.

【0002】[0002]

【従来の技術】図7は従来のInGaAs系半導体受光
素子の構造を示す断面図である。図7において半絶縁性
InP基板1の上に、n+ InPコンタクト層2が形成
され、該層の表面には正電位を与える正電極8が形成さ
れている。n+ InPコンタクト層2の上にn型InP
バッファ層3が形成されている。n型InPバッファ層
3の上にはIn0.53Ga0.47As光吸収層4が形成さ
れ、その上にn型InP窓層5が形成されている。n型
InP窓層5の内部にはp型拡散領域6が設けられ、該
領域に接し、負電位を与えるための負電極9が絶縁膜7
を挟んで形成されている。
2. Description of the Related Art FIG. 7 is a sectional view showing the structure of a conventional InGaAs semiconductor light receiving element. In FIG. 7, an n + InP contact layer 2 is formed on a semi-insulating InP substrate 1, and a positive electrode 8 that gives a positive potential is formed on the surface of the n + InP contact layer 2. n type InP on the n + InP contact layer 2
The buffer layer 3 is formed. An In 0.53 Ga 0.47 As light absorption layer 4 is formed on the n-type InP buffer layer 3, and an n-type InP window layer 5 is formed thereon. A p-type diffusion region 6 is provided inside the n-type InP window layer 5, and a negative electrode 9 for contacting the region and applying a negative potential is provided with an insulating film 7.
It is formed sandwiching.

【0003】次に図7を用いて動作について説明する。
正電極8および負電極9に各々正電位および負電位を印
加することで、この受光素子には逆バイアス電圧が印加
されることになる。この状態で図7に示されるように、
n型InP窓層5から光(hνで表示)が入射しIn
0.53Ga0.47As光吸収層4に到達すると、ここに正孔
と電子のペアを発生させる。発生した正孔は印加された
バイアスによりp型拡散領域6に向かって走行し、電子
は逆にn型InPバッファ層3に向かって走行するの
で、正電極8および負電極9の間に光電流が流れること
になる。この電流を出力として取り出せば、光照射の有
無に対応してオン/オフする電気信号を得ることができ
る。
Next, the operation will be described with reference to FIG.
By applying a positive potential and a negative potential to the positive electrode 8 and the negative electrode 9, respectively, a reverse bias voltage is applied to this light receiving element. In this state, as shown in FIG.
Light (indicated by hν) is incident from the n-type InP window layer 5
When reaching the 0.53 Ga 0.47 As light absorption layer 4, a hole-electron pair is generated there. The generated holes travel toward the p-type diffusion region 6 due to the applied bias, and the electrons travel toward the n-type InP buffer layer 3 in reverse, so that the photocurrent flows between the positive electrode 8 and the negative electrode 9. Will flow. If this current is taken out as an output, it is possible to obtain an electric signal that is turned on / off depending on the presence or absence of light irradiation.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体受光素子
は以上のように構成されているので、光照射に対する電
気信号出力の応答速度は容量(C)とインダクタンス
(L)による遅れを除けば、In0.53Ga0.47As光吸
収層4で発生した電子と正孔の走行速度によって制限さ
れることになる。一般に電子の有効質量は軽く、正孔の
有効質量は重いので正孔の移動度が小さく、これによっ
て応答速度が制限されることになる。
Since the conventional semiconductor light receiving element is constructed as described above, the response speed of the electric signal output to the light irradiation is, except for the delay due to the capacitance (C) and the inductance (L), In 0.53 Ga 0.47 As is limited by the traveling speed of electrons and holes generated in the light absorption layer 4. Generally, since the effective mass of electrons is light and the effective mass of holes is heavy, the mobility of holes is small, which limits the response speed.

【0005】本発明は上記のような問題点を解決するた
めになされたものであり、正孔の移動度を高めて、光照
射に対する応答速度が速い半導体受光素子を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a semiconductor light receiving element having a high response speed to light irradiation by increasing the mobility of holes.

【0006】[0006]

【課題を解決するための手段】本発明に係る半導体受光
素子の第1の態様は、第1導電型の第1半導体層と、第
2導電型の第2半導体層と、前記第1半導体層および第
2半導体層との間に形成された光吸収層とを有する半導
体受光素子において、前記光吸収層が、In0.53-XGa
0.47+XAsで形成され引張り応力を有する第1歪超格子
層と、In0.53+XGa0.47-XAsで形成され圧縮応力を
有する第2歪超格子層とを交互に多数積層して形成され
たことを特徴とする。
A first aspect of a semiconductor light receiving element according to the present invention is a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and the first semiconductor layer. And a light absorption layer formed between the second light absorption layer and the second semiconductor layer, wherein the light absorption layer is In 0.53-X Ga
A first strained superlattice layer made of 0.47 + X As and having a tensile stress, and a second strained superlattice layer made of In 0.53 + X Ga 0.47-X As and having a compressive stress are alternately laminated in multiple layers. It is characterized by being done.

【0007】本発明に係る半導体受光素子の第2の態様
は、第1導電型の第1半導体層と、第2導電型の第2半
導体層と、前記第1半導体層および第2半導体層との間
に形成された光吸収層とを有する半導体受光素子におい
て、前記光吸収層が、In0.53-XGa0.47+XAsY
1-Y で形成され引張り応力を有する第1歪超格子層と、
In0.53+XGa0.47-XAsY 1-Y で形成され圧縮応力
を有する第2歪超格子層とを交互に多数積層して形成さ
れたことを特徴とする半導体受光素子。
A second aspect of the semiconductor light receiving element according to the present invention is a first conductivity type first semiconductor layer, a second conductivity type second semiconductor layer, the first semiconductor layer and the second semiconductor layer. In the semiconductor light receiving element having a light absorption layer formed between the two, the light absorption layer is In 0.53-X Ga 0.47 + X As Y P
A first strained superlattice layer formed of 1-Y and having a tensile stress;
A semiconductor light-receiving element characterized by being formed by alternately laminating a large number of second strained superlattice layers formed of In 0.53 + X Ga 0.47-X As Y P 1-Y and having a compressive stress.

【0008】[0008]

【作用】本発明に係る半導体受光素子の第1の態様によ
れば、光吸収層を引張り応力を有するIn0.53-XGa
0.47+XAsの第1歪超格子層および圧縮応力を有するI
0.53+XGa0.47-XAsの第2歪超格子層で形成するこ
とにより、各々の歪超格子層において入射光により発生
したキャリアの有効質量が軽減されるので、光吸収層で
のキャリアの移動度が大きくなり、かつ、第1、第2歪
超格子層を交互に積層することで互いの応力をキャンセ
ルすることができる。
According to the first aspect of the semiconductor light receiving element of the present invention, In 0.53-X Ga having a tensile stress in the light absorption layer is used.
0.47 + X As first strained superlattice layer and I with compressive stress
By forming the second strained superlattice layer of n 0.53 + X Ga 0.47-X As, the effective mass of carriers generated by incident light in each strained superlattice layer is reduced, so that carriers in the light absorption layer are reduced. Mobility becomes large, and mutual stress can be canceled by alternately stacking the first and second strained superlattice layers.

【0009】本発明に係る半導体受光素子の第2の態様
によれば、光吸収層を引張り応力を有するIn0.53-X
0.47+XAsY 1-Y の第1歪超格子層および圧縮応力
を有するIn0.53+XGa0.47-XAsY 1-Y の第2歪超
格子層で形成することにより、各々の歪超格子層におい
て入射光により発生したキャリアの有効質量が軽減され
るので、光吸収層でのキャリアの移動度が大きくなり、
かつ、第1、第2歪超格子層を交互に積層することで互
いの応力をキャンセルすることができ、さらに、Pを含
有することにより、より短い波長域の光に反応すること
が可能になる。
According to the second aspect of the semiconductor light receiving element of the present invention, In 0.53-X G having a tensile stress in the light absorption layer.
a 0.47 + X As Y P 1-Y first strained superlattice layer and In 0.53 + X Ga 0.47-X As Y P 1-Y second strained superlattice layer each having a compressive stress. Since the effective mass of carriers generated by incident light in the strained superlattice layer of is reduced, the mobility of carriers in the light absorption layer increases,
Moreover, mutual stress can be canceled by alternately stacking the first and second strained superlattice layers, and by containing P, it becomes possible to react with light in a shorter wavelength range. Become.

【0010】[0010]

【実施例】図1は本発明に係る半導体受光素子の第1の
実施例を示す断面図である。図1においてn型InPバ
ッファ層3の上には、In0.53-XGa0.47+XAs歪超格
子層4aが形成され、その上にはIn0.53+XGa0.47-X
As歪超格子層4bが形成されて対をなし、この対構造
が多数積層されて光吸収層が形成されている。ここで、
歪超格子層はMOCVD(Metal Organic Chemical Vap
or Deposition )法、あるいはVPE(Vapor Phase Ep
itaxy )法、あるいはMBE(Molecular Beam Epitax
y)法で形成され、歪超格子層の組成比を表すXの条件
はX>0である。その他の構成は図7で説明した従来の
半導体受光素子と同様である。また、光照射に応答して
出力信号が得られる基本動作も図7で説明した従来の半
導体受光素子と同様である。
1 is a sectional view showing a first embodiment of a semiconductor light receiving element according to the present invention. In FIG. 1, an In 0.53-X Ga 0.47 + X As strained superlattice layer 4a is formed on the n-type InP buffer layer 3, and an In 0.53 + X Ga 0.47-X is formed thereon.
As strained superlattice layers 4b are formed to form a pair, and a large number of the paired structures are stacked to form a light absorption layer. here,
The strained superlattice layer is MOCVD (Metal Organic Chemical Vap
or Deposition) method or VPE (Vapor Phase Ep)
itaxy) method or MBE (Molecular Beam Epitax)
The condition of X which is formed by the y) method and represents the composition ratio of the strained superlattice layer is X> 0. Other configurations are similar to those of the conventional semiconductor light receiving element described in FIG. The basic operation of obtaining an output signal in response to light irradiation is also the same as that of the conventional semiconductor light receiving element described in FIG.

【0011】次に図2および図3を参照してIn0.53-X
Ga0.47+XAs歪超格子層4aおよびIn0.53+XGa
0.47-XAs歪超格子層4bの動作について説明する。I
nおよびGaを原子レベルで比較すると、Inの方が原
子番号が大きいので、原子半径も近似的に原子番号の3
乗根に比例して大きくなる。図2はIn0.53-XGa
0.47+XAs歪超格子層4aの構造を、図3はIn0.53+X
Ga0.47-XAs歪超格子層4bの構造を模式的に表した
図である。図2において、原子の小さいGaがリッチで
ある場合は周囲から引張られるように力を受けるので、
層全体としては引張り応力が加わる。逆に図3に示され
るように、原子の大きいInがリッチである場合は周囲
から押しつぶされるように圧縮を受けるので、層全体と
しては圧縮応力が加わる。
Next, referring to FIGS. 2 and 3, In 0.53-X
Ga 0.47 + X As strained superlattice layer 4a and In 0.53 + X Ga
The operation of the 0.47-X As strained superlattice layer 4b will be described. I
Comparing n and Ga at the atomic level, In has a larger atomic number, so the atomic radius is approximately 3 of the atomic number.
It grows in proportion to the root. Figure 2 shows In 0.53-X Ga
The structure of 0.47 + X As strained superlattice layer 4a, FIG. 3 is an In 0.53 + X
It is the figure which represented typically the structure of Ga0.47- XAs strained superlattice layer 4b. In FIG. 2, when Ga having a small number of atoms is rich, it receives a force to be pulled from the surroundings,
Tensile stress is applied to the entire layer. On the contrary, as shown in FIG. 3, when In having a large number of atoms is rich, it is compressed so as to be crushed from the surroundings, so that a compressive stress is applied to the entire layer.

【0012】引張り応力が加わるIn0.53-XGa0.47+X
As歪超格子層4aと、圧縮応力が加わるIn0.53+X
0.47-XAs歪超格子層4bとが交互に積層されている
ので、これらで形成される光吸収層は、各々の応力がキ
ャンセルされて全体としては応力フリーの状態となる。
In 0.53-X Ga 0.47 + X under tensile stress
As strained superlattice layer 4a and In 0.53 + X G to which compressive stress is applied
Since the a 0.47-X As strained superlattice layers 4b are alternately laminated, the respective stresses are canceled in the light absorption layer formed of these layers, and the light absorption layer as a whole is in a stress-free state.

【0013】次に図4および図5を参照してGaAs歪
超格子層における正孔の移動度について説明する。な
お、以下の説明についての詳細は、「IEEE J.Qantum El
ectron., vol.25,PP171-178,1989,T.C.Chong and C.G.F
onstad,”Teoretical Gain ofStreined Layer Semicond
uctor Lasers in the Large Strein Regime”」に報告
されている。
Next, the hole mobility in the GaAs strained superlattice layer will be described with reference to FIGS. For details on the following description, see "IEEE J. Qantum El
ectron., vol.25, PP171-178,1989, TCChong and CGF
onstad, ”Teoretical Gain of Streined Layer Semicond
uctor Lasers in the Large Strein Regime ””.

【0014】正孔のエネルギーEは次式のように表され
る。
The energy E of holes is expressed by the following equation.

【0015】[0015]

【数1】 [Equation 1]

【0016】(1)式においてEvは荷電子帯頂上のエ
ネルギーを表し、m* は正孔の有効質量を表す。h’は
プランク定数hを2πで割った値(h/2π)であり、
vec は波数ベクトルである。
In the equation (1), Ev represents the energy at the top of the valence band and m * represents the effective mass of holes. h'is the Planck's constant h divided by 2π (h / 2π),
k vec is a wave vector.

【0017】(1)式から正孔の有効質量m* を求める
と次式のように表される。
When the effective mass m * of holes is calculated from the equation (1), it is expressed by the following equation.

【0018】[0018]

【数2】 [Equation 2]

【0019】図4に引張り応力による歪がある場合と歪
がない場合のE−k曲線を示す。図4において縦軸は正
孔のエネルギーEを表し、左横軸は超格子層平面内の波
数kH を表し、右横軸は超格子層の垂直方向の波数kP
を表す。図4において破線は歪がない場合の超格子層の
荷電子帯の特性を表し、実線は引張り応力による歪があ
る場合の荷電子帯の特性を表す。歪がない場合は波数の
変化に対する正孔のエネルギーEの変化は緩やかであり
左右対称な特性を示している。一方、引張り応力により
歪が発生すると荷電子帯のエネルギーがシフトし、バン
ドギャップが縮むことになる。また、特性は垂直方向よ
りも平面内での波数の変化に対する正孔のエネルギーE
の変化が急峻であり、全体としてk=0における曲率は
険しくなる。このことは(2)式において右辺分母が大
きくなることであり、左辺の有効質量m* が小さくなる
ことを意味している。
FIG. 4 shows Ek curves with and without strain due to tensile stress. 4, the vertical axis represents hole energy E, the left horizontal axis represents the wave number k H in the plane of the superlattice layer, and the right horizontal axis represents the vertical wave number k P of the superlattice layer.
Represents In FIG. 4, the broken line represents the characteristics of the valence band of the superlattice layer when there is no strain, and the solid line represents the characteristics of the valence band when there is strain due to tensile stress. When there is no distortion, the change in the energy E of the holes with respect to the change in the wave number is gradual and shows a symmetrical characteristic. On the other hand, if strain occurs due to tensile stress, the energy of the valence band shifts, and the band gap shrinks. In addition, the characteristic is that the energy E of the hole with respect to the change of the wave number in the plane rather than in the vertical direction.
Changes sharply, and the curvature at k = 0 becomes steep as a whole. This means that the denominator on the right side becomes larger in the equation (2), and the effective mass m * on the left side becomes smaller.

【0020】図5に圧縮応力による歪がある場合と歪が
ない場合のE−k曲線を示す。図5において縦軸は正孔
のエネルギーEを表し、左横軸は超格子層平面内の波数
Hを表し、右横軸は超格子層の垂直方向の波数kP
表す。図5において破線は歪がない場合の超格子層の荷
電子帯の特性を表し、実線は圧縮応力による歪がある場
合の荷電子帯の特性を表す。歪がない場合は波数の変化
に対する正孔のエネルギーEの変化は緩やかであり左右
対称な特性を示している。一方、圧縮応力により歪が発
生すると荷電子帯のエネルギーがシフトし、バンドギャ
ップが縮むことになる。また、特性は平面内よりも垂直
方向での波数の変化に対する正孔のエネルギーEの変化
が急峻であり、全体としてk=0における曲率は険しく
なる。このことは(2)式において右辺分母が大きくな
ることであり、左辺の有効質量m* が小さくなることを
意味している。また、引張り応力、圧縮応力どちらの場
合も応力が強くなるに従ってk=0における曲率は険し
くなり、有効質量m* もそれに伴って小さくなる。
FIG. 5 shows Ek curves with and without strain due to compressive stress. 5, the vertical axis represents the hole energy E, the left horizontal axis represents the wave number k H in the plane of the superlattice layer, and the right horizontal axis represents the vertical wave number k P of the superlattice layer. In FIG. 5, the broken line represents the characteristics of the valence band of the superlattice layer when there is no strain, and the solid line represents the characteristics of the valence band when there is strain due to compressive stress. When there is no distortion, the change in the energy E of the holes with respect to the change in the wave number is gradual and shows a symmetrical characteristic. On the other hand, if strain occurs due to compressive stress, the energy of the valence band shifts, and the band gap shrinks. Further, the characteristic is that the change of the hole energy E with respect to the change of the wave number in the vertical direction is steeper than that in the plane, and the curvature at k = 0 becomes steep as a whole. This means that the denominator on the right side becomes larger in the equation (2), and the effective mass m * on the left side becomes smaller. Further, in both cases of tensile stress and compressive stress, as the stress becomes stronger, the curvature at k = 0 becomes steeper, and the effective mass m * becomes smaller accordingly.

【0021】光照射に対する応答速度は正孔の移動度に
支配されることは先に示したが、正孔の移動度μh と有
効質量m* との関係は以下のように表される。
Although it has been shown above that the response speed to light irradiation is governed by the hole mobility, the relationship between the hole mobility μ h and the effective mass m * is expressed as follows.

【0022】[0022]

【数3】 [Equation 3]

【0023】(3)式においてτh は緩和時間であり、
正孔の運動量が1/eに減少するまでの時間を示してい
る。よって、有効質量m* が小さくなることで正孔の移
動度が速くなることがわかる。
In equation (3), τ h is the relaxation time,
It shows the time until the momentum of holes decreases to 1 / e. Therefore, it can be seen that the mobility of holes becomes faster as the effective mass m * becomes smaller.

【0024】本実施例では引張り応力が加わったIn
0.53-XGa0.47+XAs歪超格子層4aと、圧縮応力が加
わったIn0.53+XGa0.47-XAs歪超格子層4bによっ
て光吸収層が形成されているので、応力の加わっていな
いInGaAs層に比べていずれの層においても正孔の
有効質量m* が軽減され、正孔の移動度が速くなること
で光照射に対する応答速度が速い半導体受光素子を得る
ことができる。
In the present embodiment, the tensile stressed In
Since the light absorption layer is formed by the 0.53-X Ga 0.47 + X As strained superlattice layer 4a and the compressive stressed In 0.53 + X Ga 0.47-X As strained superlattice layer 4b, no stress is applied. In any of the layers, the effective mass m * of holes is reduced as compared with the InGaAs layer, and the mobility of holes is increased, whereby a semiconductor light receiving element having a high response speed to light irradiation can be obtained.

【0025】また、本実施例では引張り応力が加わった
In0.53-XGa0.47+XAs歪超格子層4aと、圧縮応力
が加わったIn0.53+XGa0.47-XAs歪超格子層4bを
交互に積層して光吸収層を形成するので、光吸収層全体
の厚さが例えば光を吸収するために十分な2.5μm程
度の場合でも、引張り応力と圧縮応力がキャンセルされ
て全体としては応力フリーの状態となり、光吸収層の結
晶の応力による破壊を防ぐことができる。
In this embodiment, the In 0.53-X Ga 0.47 + X As strained superlattice layer 4a to which a tensile stress was applied and the In 0.53 + X Ga 0.47-X As strained superlattice layer 4b to which a compressive stress was applied were formed. Since the light absorbing layers are alternately laminated, the tensile stress and the compressive stress are canceled even if the thickness of the entire light absorbing layer is, for example, about 2.5 μm, which is sufficient to absorb light, It becomes a stress-free state, and it is possible to prevent the crystal of the light absorption layer from being broken by the stress.

【0026】図6は本発明に係る半導体受光素子の第2
の実施例を示す断面図である。図6においてn型InP
基板11の上にn型InPバッファ層12が形成されて
いる。n型InPバッファ層12の上にはIn0.53-X
0.47+XAs歪超格子層13aが形成され、その上には
In0.53+XGa0.47-XAs歪超格子層13bが形成され
て対をなし、この対構造が多数積層されて光吸収層13
が形成されている。ここで超格子層の組成比を表すXの
条件はX>0である。これらの超格子層の上にはp型I
nPコンタクト層14が形成され、その表面には負電位
を与える負電極16が形成されている。正電極15はn
型InP基板11の下面側に形成されている。
FIG. 6 shows a second semiconductor light receiving element according to the present invention.
It is sectional drawing which shows the Example of. In FIG. 6, n-type InP
An n-type InP buffer layer 12 is formed on the substrate 11. In 0.53-X G is formed on the n-type InP buffer layer 12.
a 0.47 + X As strained superlattice layer 13a is formed, and In 0.53 + X Ga 0.47-X As strained superlattice layer 13b is formed thereon to form a pair, and a large number of these paired structures are stacked to absorb light. Layer 13
Are formed. Here, the condition of X representing the composition ratio of the superlattice layer is X> 0. On top of these superlattice layers are p-type I
An nP contact layer 14 is formed, and a negative electrode 16 that gives a negative potential is formed on the surface thereof. Positive electrode 15 is n
It is formed on the lower surface side of the type InP substrate 11.

【0027】次に図6を用いて動作について説明する。
正電極15および負電極16に各々正電位および負電位
を印加することで、この受光素子には逆バイアス電圧が
印加されることになる。この状態で図6に示されるよう
に、光吸収層13の側面から光(hνで表示)が入射す
ると、光吸収層13において正孔と電子のペアを発生さ
せる。発生した正孔は印加されたバイアスによりp型I
nPコンタクト層14に向かって走行し、電子は逆にn
型InPバッファ層12に向かって走行するので、正電
極15および負電極16の間に光電流が流れることにな
る。なお、引張り応力が加わったIn0.53-XGa0.47+X
As歪超格子層13aおよび圧縮応力が加わったIn
0.53+XGa0.47-XAs歪超格子層13bにおける正孔の
有効質量m* の軽減効果は第1の実施例と同様である。
Next, the operation will be described with reference to FIG.
By applying a positive potential and a negative potential to the positive electrode 15 and the negative electrode 16, respectively, a reverse bias voltage is applied to this light receiving element. In this state, as shown in FIG. 6, when light (indicated by hν) enters from the side surface of the light absorption layer 13, holes and electron pairs are generated in the light absorption layer 13. The generated holes are p-type I due to the applied bias.
The electrons travel toward the nP contact layer 14 and the electrons are reversed to n.
Since it travels toward the type InP buffer layer 12, a photocurrent flows between the positive electrode 15 and the negative electrode 16. In 0.53-X Ga 0.47 + X with tensile stress
As strained superlattice layer 13a and In to which compressive stress is applied
The effect of reducing the effective mass m * of holes in the 0.53 + X Ga 0.47-X As strained superlattice layer 13b is the same as that of the first embodiment.

【0028】本実施例では光吸収層13の厚さを例えば
0.1μm程度とし、電子および正孔の走行距離を短く
して光照射に対する応答速度をさらに速めている。ま
た、光吸収層13の厚みが薄いので、十分に光を吸収さ
せるために端面より光を入射させる構造となっている。
In the present embodiment, the thickness of the light absorption layer 13 is set to, for example, about 0.1 μm, the traveling distance of electrons and holes is shortened, and the response speed to light irradiation is further increased. Further, since the thickness of the light absorption layer 13 is thin, the structure is such that the light is incident from the end face in order to sufficiently absorb the light.

【0029】本実施例においても第1の実施例同様に、
引張り応力が加わったIn0.53-XGa0.47+XAs歪超格
子層13aと、圧縮応力が加わったIn0.53+XGa
0.47-XAs歪超格子層13bを交互に積層しているの
で、引張り応力と圧縮応力がキャンセルされて全体とし
ては応力フリーの状態となり、光吸収層13の結晶の応
力による破壊を防ぐことができる。
Also in this embodiment, as in the first embodiment,
In 0.53-X Ga 0.47 + X As strained superlattice layer 13a to which tensile stress was applied and In 0.53 + X Ga to which compressive stress was applied
Since the 0.47-X As strained superlattice layers 13b are alternately laminated, the tensile stress and the compressive stress are cancelled, and a stress-free state is obtained as a whole, so that the damage of the crystal of the light absorption layer 13 due to the stress can be prevented. it can.

【0030】以上説明した本発明に係る半導体受光素子
の第1および第2の実施例は共に以下に説明するような
変形が可能である。すなわち、引張り応力を有する超格
子層をIn0.53-XGa0.47+XAsY 1-Y 歪超格子層で
形成し、圧縮応力を有する超格子層をIn0.53+XGa
0.47-XAsY 1-Y 歪超格子層で形成することによって
も、第1および第2の実施例と同様の効果を得ることが
でき、かつ、前述の実施例で説明した半導体受光素子よ
りも短い波長域の光に反応する半導体受光素子を得るこ
とができる。
Both the first and second embodiments of the semiconductor light receiving element according to the present invention described above can be modified as described below. That is, the superlattice layer having tensile stress is formed of In 0.53-X Ga 0.47 + X As Y P 1-Y strained superlattice layer, and the superlattice layer having compressive stress is In 0.53 + X Ga.
The same effect as in the first and second embodiments can be obtained also by forming the 0.47-X As Y P 1-Y strained superlattice layer, and the semiconductor light receiving element described in the above-mentioned embodiments can be obtained. It is possible to obtain a semiconductor light receiving element that responds to light in a shorter wavelength range.

【0031】[0031]

【発明の効果】請求項1記載の半導体受光素子によれ
ば、光吸収層において入射光により発生したキャリアの
有効質量が軽減されるので、光吸収層でのキャリアの移
動度が大きくなって光照射に対する応答速度を速くする
ことができ、かつ、第1、第2歪超格子層を交互に積層
することで互いの応力をキャンセルすることができるの
で光吸収層の応力による破壊を防止することができる。
According to the semiconductor light receiving element of the first aspect, since the effective mass of the carriers generated by the incident light in the light absorption layer is reduced, the mobility of carriers in the light absorption layer is increased and The response speed to irradiation can be increased, and mutual stress can be canceled by alternately stacking the first and second strained superlattice layers, so that the light absorption layer is prevented from being damaged by the stress. You can

【0032】請求項2記載の半導体受光素子によれば、
光吸収層において入射光により発生したキャリアの有効
質量が軽減されるので、光吸収層でのキャリアの移動度
が大きくなって光照射に対する応答速度を速くすること
ができ、かつ、第1、第2歪超格子層を交互に積層する
ことで互いの応力をキャンセルすることができるので、
応力による光吸収層の破壊を防止することができる。ま
た、光吸収層をIn0.53-XGa0.47+XAsY 1-Y 歪超
格子層およびIn0.53+XGa0.47-XAsY 1-Y 歪超格
子層で形成するので、Pを含まない場合に比べて短い波
長域の光に反応する半導体受光素子を得ることができ
る。
According to the semiconductor light receiving element of claim 2,
Since the effective mass of the carriers generated by the incident light in the light absorption layer is reduced, the mobility of the carriers in the light absorption layer is increased, and the response speed to light irradiation can be increased, and the first and second Mutual stress can be canceled by alternately stacking the two strain superlattice layers,
It is possible to prevent destruction of the light absorption layer due to stress. Further, since the light absorption layer is formed of an In 0.53-X Ga 0.47 + X As Y P 1-Y strained superlattice layer and an In 0.53 + X Ga 0.47-X As Y P 1-Y strained superlattice layer, P is It is possible to obtain a semiconductor light receiving element that responds to light in a shorter wavelength range than when not containing it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体受光素子の第1の実施例を
示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a semiconductor light receiving element according to the present invention.

【図2】In0.53-XGa0.47+XAs歪超格子層の構造を
説明する模式図である。
FIG. 2 is a schematic diagram illustrating the structure of an In 0.53-X Ga 0.47 + X As strained superlattice layer.

【図3】In0.53+XGa0.47-XAs歪超格子層の構造を
説明する模式図である。
FIG. 3 is a schematic diagram illustrating the structure of an In 0.53 + X Ga 0.47-X As strained superlattice layer.

【図4】引張り応力による歪がある場合と歪がない場合
のE−k曲線を示す図である。
FIG. 4 is a diagram showing Ek curves with and without strain due to tensile stress.

【図5】圧縮応力による歪がある場合と歪がない場合の
E−k曲線を示す図である。
FIG. 5 is a diagram showing Ek curves with and without strain due to compressive stress.

【図6】本発明に係る半導体受光素子の第2の実施例を
示す断面図である。
FIG. 6 is a sectional view showing a second embodiment of the semiconductor light receiving element according to the present invention.

【図7】従来の半導体受光素子を示す断面図である。FIG. 7 is a sectional view showing a conventional semiconductor light receiving element.

【符号の説明】[Explanation of symbols]

4a、13a In0.53-XGa0.47+XAs歪超格子層 4b、13b In0.53+XGa0.47-XAs歪超格子層 11 n型InP基板 12 n型InPバッファ層 13 光吸収層 14 p型InPコンタクト層 15 正電極 16 負電極4a, 13a In 0.53-X Ga 0.47 + X As strained superlattice layer 4b, 13b In 0.53 + X Ga 0.47-X As strained superlattice layer 11 n-type InP substrate 12 n-type InP buffer layer 13 Optical absorption layer 14 p-type InP contact layer 15 Positive electrode 16 Negative electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月21日[Submission date] January 21, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の第1半導体層と、 第2導電型の第2半導体層と、 前記第1半導体層および第2半導体層との間に形成され
た光吸収層とを有する半導体受光素子において、 前記光吸収層が、In0.53-XGa0.47+XAsで形成され
引張り応力を有する第1歪超格子層と、In0.53+XGa
0.47-XAsで形成され圧縮応力を有する第2歪超格子層
とを交互に多数積層して形成されたことを特徴とする半
導体受光素子。
1. A first conductive type first semiconductor layer, a second conductive type second semiconductor layer, and a light absorption layer formed between the first semiconductor layer and the second semiconductor layer. In the semiconductor light receiving element, the light absorption layer includes a first strained superlattice layer formed of In 0.53-X Ga 0.47 + X As and having a tensile stress, and In 0.53 + X Ga.
A semiconductor light-receiving element characterized by being formed by alternately laminating a large number of second strained superlattice layers formed of 0.47-X As and having a compressive stress.
【請求項2】 第1導電型の第1半導体層と、 第2導電型の第2半導体層と、 前記第1半導体層および第2半導体層との間に形成され
た光吸収層とを有する半導体受光素子において、 前記光吸収層が、In0.53-XGa0.47+XAsY 1-Y
形成され引張り応力を有する第1歪超格子層と、In
0.53+XGa0.47-XAsY 1-Y で形成され圧縮応力を有
する第2歪超格子層とを交互に多数積層して形成された
ことを特徴とする半導体受光素子。
2. A first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light absorption layer formed between the first semiconductor layer and the second semiconductor layer. In the semiconductor light receiving element, the light absorption layer includes a first strained superlattice layer formed of In 0.53-X Ga 0.47 + X As Y P 1-Y and having a tensile stress, and In.
A semiconductor light receiving element characterized by being formed by alternately laminating a large number of second strained superlattice layers formed of 0.53 + X Ga 0.47-X As Y P 1-Y and having a compressive stress.
JP5217387A 1993-09-01 1993-09-01 Semiconductor photodetector Pending JPH0774381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5217387A JPH0774381A (en) 1993-09-01 1993-09-01 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5217387A JPH0774381A (en) 1993-09-01 1993-09-01 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH0774381A true JPH0774381A (en) 1995-03-17

Family

ID=16703385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217387A Pending JPH0774381A (en) 1993-09-01 1993-09-01 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH0774381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081639B2 (en) 2000-06-06 2006-07-25 Fujitsu Quantum Devices Limited Semiconductor photodetection device and fabrication process thereof
JP2012138582A (en) * 2012-01-27 2012-07-19 Fujifilm Corp Solid-state imaging device
WO2012114849A1 (en) * 2011-02-23 2012-08-30 住友電気工業株式会社 Light-receiving element and method for producing same
CN111668327A (en) * 2020-06-22 2020-09-15 三明学院 Novel capacitive photoelectric detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081639B2 (en) 2000-06-06 2006-07-25 Fujitsu Quantum Devices Limited Semiconductor photodetection device and fabrication process thereof
WO2012114849A1 (en) * 2011-02-23 2012-08-30 住友電気工業株式会社 Light-receiving element and method for producing same
JP2012174977A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Light-receiving element and manufacturing method therefor
JP2012138582A (en) * 2012-01-27 2012-07-19 Fujifilm Corp Solid-state imaging device
CN111668327A (en) * 2020-06-22 2020-09-15 三明学院 Novel capacitive photoelectric detector
CN111668327B (en) * 2020-06-22 2022-04-22 三明学院 Capacitive photoelectric detector

Similar Documents

Publication Publication Date Title
JPH0422185A (en) Semiconductor optical element
JP7224560B1 (en) Semiconductor light-receiving element and method for manufacturing semiconductor light-receiving element
US5608230A (en) Strained superlattice semiconductor photodetector having a side contact structure
US6437362B2 (en) Avalanche photodiode
JPH0774381A (en) Semiconductor photodetector
JP2590817B2 (en) Photo Detector
US5286982A (en) High contrast ratio optical modulator
JPS60247979A (en) Semiconductor optical element
JPH04234184A (en) Semiconductor laser
JPH02119274A (en) Avalanche photodiode
JPH06188449A (en) Msm type photodetector
JP2995744B2 (en) Photo detector
JPS6049681A (en) Semiconductor photodetector device
JPH06151940A (en) Semiconductor photodetector
JPH02220025A (en) Optical modulator
JP3018589B2 (en) Semiconductor light receiving element
WO2022018860A1 (en) Optical receiver
JP2666841B2 (en) Manufacturing method of avalanche type semiconductor light receiving element
JP3147133B2 (en) Horizontal light receiving element and method of forming the same
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0316276A (en) Photodetector
JP2508023B2 (en) Manufacturing method of semiconductor light receiving element
JPH07176783A (en) Semiconductor photodetector
IL303538A (en) Architecture of ingaas/gaassb superlattices on an inp substrate
JPH05218591A (en) Semiconductor laser element and semiconductor photo detector