JP2590817B2 - Photo Detector - Google Patents

Photo Detector

Info

Publication number
JP2590817B2
JP2590817B2 JP61058072A JP5807286A JP2590817B2 JP 2590817 B2 JP2590817 B2 JP 2590817B2 JP 61058072 A JP61058072 A JP 61058072A JP 5807286 A JP5807286 A JP 5807286A JP 2590817 B2 JP2590817 B2 JP 2590817B2
Authority
JP
Japan
Prior art keywords
layer
superlattice layer
superlattice
electron gas
dimensional electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61058072A
Other languages
Japanese (ja)
Other versions
JPS62216378A (en
Inventor
雄一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61058072A priority Critical patent/JP2590817B2/en
Publication of JPS62216378A publication Critical patent/JPS62216378A/en
Application granted granted Critical
Publication of JP2590817B2 publication Critical patent/JP2590817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信装置等において用いられるホトディ
テクタに関する。
Description: TECHNICAL FIELD The present invention relates to a photodetector used in an optical communication device or the like.

〔従来の技術〕[Conventional technology]

モジュレーションドープししたホトディテクタ(以
下、MDPDと略記する)は高速応答特性を有する光検出器
であり、またヘテロ接合を有する半導体装置である。
A modulation-doped photodetector (hereinafter abbreviated as MDPD) is a photodetector having a high-speed response characteristic, and is a semiconductor device having a heterojunction.

従来報告されているMDPDの例としてアプライド・フィ
ジックス・レターズ(Appl.Phys.Lett.43(1983)308)
に示されたMDPDの構造を断面図で第2図(a)に、その
主要部のエネルギー帯図を第2図(b)に示す。このMD
PD構造は、半絶縁性InP基板11の上にそれぞれIhPに格子
整合したアンドープAl0 48In0 52Asバッファ層12、ア
ンドープ(n型)Ga0 47In0 53As光吸収層13、2次元
電子ガスを形成するためのアンドープAl0 48In0 52As
スペーサ層14及びn型Al0 48In0 52As電荷供給層15、
並びに電極形成用n型Ga0 47In0 53Asコンタクト層16
を有する。ドレイン電極17及びソース電極18は、金・ゲ
ルマニウム(Au-Ge)のアロイ電極であり、破線で示す
ようにアロイは2次元電子ガスの領域まで深く進んでい
る。
Applied Physics Letters (Appl. Phys. Lett. 43 (1983) 308) is an example of a previously reported MDPD.
2 (a) is a sectional view of the structure of the MDPD shown in FIG. 2, and FIG. 2 (b) is an energy band diagram of a main part thereof. This MD
The PD structure is formed on a semi-insulating InP substrate 11 by undoped Al 0 . 48 In 0 . 52 As buffer layer 12, undoped (n-type) Ga 0 . 47 In 0 . 53 As light absorbing layer 13, undoped Al 0 . 48 In 0 . 52 As
Spacer layer 14 and n-type Al 0 . 48 In 0 . 52 As charge supply layer 15,
And n-type Ga 0 . 47 In 0 . 53 As contact layer 16
Having. The drain electrode 17 and the source electrode 18 are gold-germanium (Au-Ge) alloy electrodes. As shown by the broken lines, the alloy goes deeply into the two-dimensional electron gas region.

この構造では、入射したフォトンで励起された電子−
正孔対のうち、電子は、Ga0 47In0 53As層13とAl0
48In0 52As層14の界面にできる内部電界により2次元
電子ガス(Ga0 47In0 53As層13とAl0 48In0 52As層
14の界面で層13側にできる)領域10に走行し、ソースド
レイン間に印加された電圧によって流れる電流として外
部に取り出すことができる。このデバイスは2次元電子
ガス領域での電子の移動度が大きいから、高速に応答す
ることが期待され、事実、前述の論文でも信号の立ち上
がり時間は非常に短い。2次元電子ガス領域での電子の
移動度が大きいのは、電子がスペーサ層14によって電荷
供給層15中のイオン化された不純物から空間的に離れた
領域にあるため、これらのイオン化不純物による散乱を
受けにくいことと、電子が不純物の少ないアンドープGa
0 47In0 53As光吸収層13中に存在するためである。更
に光吸収層13を構成するGa0 47In0 53Asという物質
は、電子の有効質量が004m。と例えばGaAsの0067
m。と比べて小さく、従ってこのことだけでも大きい電
子移動度が期待できる。
In this structure, electrons excited by incident photons
Of the hole pairs, the electrons are Ga 0 . 47 In 0 . 53 As layer 13 and Al 0 .
48 In 0 . 2-dimensional electron gas by the internal electric field which can be the interface 52 As layer 14 (Ga 0. 47 In 0 . 53 As layer 13 and the Al 0. 48 In 0. 52 As layer
It travels to the region 10 (formed on the layer 13 side at the interface 14), and can be taken out as a current flowing by the voltage applied between the source and the drain. Since this device has a high electron mobility in the two-dimensional electron gas region, it is expected to respond quickly, and in fact, the rise time of the signal is very short in the above-mentioned paper. The reason why the mobility of electrons in the two-dimensional electron gas region is large is that electrons are spatially separated from ionized impurities in the charge supply layer 15 by the spacer layer 14, so that scattering due to these ionized impurities is reduced. Undoped Ga with few impurities
0 . 47 In 0 . This is because it exists in the 53 As light absorption layer 13. Further, Ga 0 . 47 In 0 . The substance 53 As has an effective electron mass of 0 . 04m. And GaAs 0 . 067
m. Therefore, a large electron mobility can be expected by this alone.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、2次元電子ガス領域10が形成されてい
るGa0 47In0 53As光吸収層13は3元混晶であるので混
晶特有のアロイ散乱を受け、充分に大きい電子移動度は
得られない。
However, Ga 0 .2 in which the two-dimensional electron gas region 10 is formed . 47 In 0 . Since the 53 As light absorption layer 13 is a ternary mixed crystal, it undergoes alloy scattering peculiar to the mixed crystal, and a sufficiently large electron mobility cannot be obtained.

また、結晶性の良い光吸収層13を得るためにはInP基
板11に厳密に格子整合していなければならないが、(G
a,In,As)からなる3元混晶ではGa0 47In0 53Asがこ
のための唯一の組成にあたる。従って、光吸収層13の基
礎吸収端としてはGa0 47In0 53Asの場合の値、即ち0
75eV(165μm,但し室温)しか選択の余地がなく、
65μmより長い波長の光に対ししては透明となって
光に応答しない。
In addition, in order to obtain a light absorption layer 13 having good crystallinity, it is necessary to strictly match the lattice with the InP substrate 11, but (G
a, In, As) in a ternary mixed crystal consisting of Ga 0 . 47 In 0 . 53 As is the only composition for this. Therefore, the basic absorption edge of the light absorption layer 13 is Ga 0 . 47 In 0 . Value for 53 As, ie 0
. 75eV (1. 65μm, but room temperature) only there is no choice,
1 . It becomes transparent and does not respond to light having a wavelength longer than 65 μm.

本発明の目的は、以上のような問題点を解決したホト
ディテクタを提供することにある。
An object of the present invention is to provide a photodetector that solves the above problems.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明のホトディテクタは、半導体基板上に少なくと
も2次元電子ガス領域を生成する超格子層と、この超格
子層の上部に接して前記超格子層より電子親和力が小さ
くかつ禁制帯幅が大きいスペーサ層と、前記超格子層よ
り電子親和力が小さくかつ禁制帯幅が大きいn型の電荷
供給層と、この電荷供給層から前記2次元電子ガスが生
成された領域までアロイ化してなる第1及び第2の電極
とを備え、前記超格子層は禁制帯幅が互いに異なる複数
の半導体層を交互に少なくとも2周期積層して成ること
を特徴としている。
A photodetector according to the present invention includes a superlattice layer for generating at least a two-dimensional electron gas region on a semiconductor substrate, and a spacer in contact with an upper portion of the superlattice layer and having a smaller electron affinity and a larger bandgap than the superlattice layer. A layer, an n-type charge supply layer having a smaller electron affinity than the superlattice layer and a larger forbidden band width, and first and second n-type charge supply layers formed by alloying from the charge supply layer to a region where the two-dimensional electron gas is generated. Wherein the superlattice layer is formed by alternately laminating a plurality of semiconductor layers having different forbidden band widths for at least two periods.

〔作用〕[Action]

光吸収層として超格子層を利用することにより、結晶
格子に規則性が生じバルクの混晶に比してアロイ散乱が
減少する。超格子層を構成する複数の半導体層として禁
制帯幅の小さい井戸層と禁制帯幅のより大きいバリア層
の2種を用いると仮定し、それぞれの厚さをlz,lbとし
たとき、バリア層厚lbが充分小さければ2次元電子ガス
は井戸層中だけでなくバリア層中へも浸み出して存在す
ることになる。バリア層厚lbが大きいと電子は各井戸層
中に閉じ込められるが、2次元電子ガスである点には変
わりがなく何れにしても大きい電子移動度が得られる。
By using the superlattice layer as the light absorbing layer, regularity is generated in the crystal lattice and alloy scattering is reduced as compared with the bulk mixed crystal. Assuming that two types of semiconductor layers constituting the superlattice layer are used, a well layer having a small forbidden band width and a barrier layer having a large forbidden band width. If the thickness lb is sufficiently small, the two-dimensional electron gas will ooze out not only in the well layer but also in the barrier layer. When the barrier layer thickness lb is large, electrons are confined in each well layer, but the point is a two-dimensional electron gas, and anyway, a large electron mobility can be obtained.

また、井戸層及びバリア層に用いる物質及び層厚lz,l
bを選択することにより、光吸収の基礎吸収端を適宜設
計することが可能である。従って従来のMDPDよりも光に
応答できる波長範囲を拡大することができる。この際、
井戸層とバリア層の格子定数が等しくなくても、層厚l
z,lbを適当に選べば結晶は半導体基板の格子定数に合わ
せて歪み、界面に格子不整合による転移のない状態で積
層されたいわゆる「歪超格子」を形成する。超格子層と
してこの「歪超格子」を採用すれば設計可能な光応答波
長範囲は飛躍的に拡がる。また、利用できる半導体基板
も、InPだけでなくGaAs等も使えるようになるのでGaAs
基板上に集積される電気−光ICにも本発明のホトディテ
クタを搭載可能となる。
In addition, the materials used for the well layers and the barrier layers and the layer thicknesses lz, l
By selecting b, it is possible to appropriately design the basic absorption edge of light absorption. Therefore, the wavelength range that can respond to light can be expanded as compared with the conventional MDPD. On this occasion,
Even if the lattice constants of the well layer and the barrier layer are not equal, the layer thickness l
If z and lb are properly selected, the crystal will be distorted in accordance with the lattice constant of the semiconductor substrate and form a so-called “strained superlattice” that is stacked without any transition at the interface due to lattice mismatch. If this “strained superlattice” is used as the superlattice layer, the designable optical response wavelength range is greatly expanded. In addition, the semiconductor substrate that can be used can use not only InP but also GaAs.
The photodetector of the present invention can also be mounted on an electro-optical IC integrated on a substrate.

〔実施例〕〔Example〕

第1図(a)は本発明の一実施例であるホトディテク
タの断面図、第1図(b)はその主要部のエネルギー帯
図である。
FIG. 1A is a sectional view of a photodetector according to an embodiment of the present invention, and FIG. 1B is an energy band diagram of a main part thereof.

分子線エピタキシ法により半絶縁性GaAs基板1上に、
アンドープGaAs(p-型)バッファ層2(厚さ10μ
m)、アンドープInAs井戸層31(厚さlz=100Å)及び
アンドープGaAsバリア層32(厚さlb=50Å)を少なくと
も2周期、本実施例では67周期積層した歪超格子層3
(厚さ1005μm)、アドープAl0 4Ga0 6Asスペー
サ層4(厚さ50Å)、n型Al0 4Ga0 6As電荷供給層5
(厚さ10μm、Siドープ5×1017cm-3)、n型GaAs
コンタクト層6(厚さ05μm、Siドープ2×1018cm
-3)を順次積層し、更に光入射部を除いてこのコンタク
ト層6を除去し、その上にAu-Geを付着しアロイ化して
ドレイン電極7、ソース電極8として形成して本発明の
ホトディテクタが得られている。
On a semi-insulating GaAs substrate 1 by molecular beam epitaxy,
An undoped GaAs. (P - -type) buffer layer 2 (thickness 1 0Myu
m), a strained superlattice layer 3 in which an undoped InAs well layer 31 (thickness lz = 100 °) and an undoped GaAs barrier layer 32 (thickness lb = 50 °) are stacked for at least two periods, in this embodiment, 67 periods.
(Thickness 1. 005μm), Adopu Al 0. 4 Ga 0 . 6 As spacer layer 4 (thickness 50 °), n-type Al 0 . 4 Ga 0 . 6 As charge supply layer 5
(Thickness 1. 0 .mu.m, Si-doped 5 × 10 17 cm -3), n -type GaAs
Contact layer 6 (thickness: 0. 5 [mu] m, Si-doped 2 × 10 18 cm
-3 ) is sequentially laminated, the contact layer 6 is further removed except for the light incident portion, Au-Ge is adhered on the contact layer 6 and alloyed to form a drain electrode 7 and a source electrode 8 to form a photo-electrode of the present invention. A detector has been obtained.

本実施例の場合には、GaAs/InAs歪超格子層3におい
ては、InAs井戸層とGaAsバリア層の格子定数はそれぞれ
058Å,5653Åで、格子定数は約7%異なっている
がInAsの格子が歪んでほぼGaAsに格子整合するため転位
等の欠陥は導入されない。
In the case of the present embodiment, in the GaAs / InAs strained superlattice layer 3, the lattice constants of the InAs well layer and the GaAs barrier layer are 6 . 058Å, 5 . Although the lattice constant differs by about 7% at 653 °, defects such as dislocations are not introduced because the lattice of InAs is distorted and almost lattice-matched to GaAs.

一方、歪超格子層3においては、量子効果のために禁
制帯幅がInAsの036eVより約017eV増大し053eV
(波長約23μm)となるものの、第2図に示した従
来のMDPDのGa0 47In0 53As光吸収層13の場合の075
eV(波長165μm)より小さく、従ってより長波長の
光に対して応答する。尚、内在する歪のために禁制帯幅
は増減するので上記の値は必ずしも正確ではないが、従
来より長波長の光が受けれるようになることには変わり
はない。また、層厚lzとlbを適切に選ぶことにより歪超
格子層3内の歪を緩和することも可能であるが、この場
合にはGaAs基板1やAl0 4Ga0 6As層と格子整合しなく
なるので必ずしも望ましいことではない。
On the other hand, in the strained superlattice layer 3, the forbidden band width of InAs is . About 0 from 36 eV . Increase by 17 eV . 53eV
Although (wavelength: about 2. 3 [mu] m) becomes, Ga conventional MDPD shown in Figure 2 0. 47 In 0 . 0 in case of 53 As light absorption layer 13 . 75
eV (wavelength 1. 65 .mu.m) smaller than, and therefore responds to longer wavelengths of light. Since the forbidden bandwidth increases and decreases due to the inherent distortion, the above value is not always accurate. However, it is still possible to receive light with a longer wavelength than before. It is also possible to moderate the strain in the strained superlattice layer 3 by appropriately selecting the layer thicknesses lz and lb. In this case, however, the GaAs substrate 1 or Al 0 . 4 Ga 0 . This is not always desirable because lattice matching with the 6As layer is lost.

上記の説明でわかるように本実施例によれば、入射光
は歪超後期層3で吸収され、2次元電子ガス領域10がア
ロイ散乱の少ない歪超格子層3内に生成されるため電子
の移動度が大きく、高速で光に応答する。
As can be seen from the above description, according to this embodiment, the incident light is absorbed by the super-strained superlattice layer 3 and the two-dimensional electron gas region 10 is generated in the strained superlattice layer 3 with little alloy scattering. It has high mobility and responds to light at high speed.

尚、以上の実施例では、スペーサ層4,電荷供給層5と
してAl0 4Ga0 6Asを用いたが、これは本発明の趣旨に
合えば他の半導体、例えばInAlAs等であっても良い。ま
た、超格子層3を構成する井戸層31,バリア層32としてG
axIn1-xAs,AlxIn1-xAs等の混晶(0<x<1)であって
も良いし、本発明の趣旨を満たす他の化合物半導体であ
っても良いのは言うまでもない。
In the above embodiment, the spacer layer 4 and the charge supply layer 5 are made of Al 0 . 4 Ga 0 . Although 6 As was used, other semiconductors, such as InAlAs, may be used as long as they conform to the purpose of the present invention. The well layer 31 and the barrier layer 32 constituting the superlattice layer 3 are G
It goes without saying that a mixed crystal (0 <x <1) such as axIn 1 -xAs and AlxIn 1 -xAs may be used, or another compound semiconductor satisfying the purpose of the present invention.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、超格子層を光吸
収層とし、同時に超格子層とスペーサ層の界面に2次元
電子ガス領域を形成することにより、従来より光応答特
性が高速で、かつ感度のある波長範囲が長波長側に拡が
ったホトディテクタが得られる。また、このような優れ
た特性を有するホトディテクタをInP以外の基板上に形
成できるのでGaAs光−電気IC等へ応用することができ
る。
As described above, according to the present invention, the superlattice layer is used as the light absorbing layer, and at the same time, the two-dimensional electron gas region is formed at the interface between the superlattice layer and the spacer layer, so that the photoresponse characteristics are faster than before. In addition, a photodetector having a sensitive wavelength range extended to a longer wavelength side can be obtained. Further, since a photodetector having such excellent characteristics can be formed on a substrate other than InP, it can be applied to a GaAs opto-electric IC or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のホトディテクタの断面図及びその主要
部のエネルギー帯図、 第2図は従来のホトディテクタの断面図及びその主要部
のエネルギー帯図である。 1,11……半導体基板 2,12……バッファ層 3,13……超格子層(光吸収層) 4,14……スペーサ層 5,15……電荷供給層 6,16……コンタクト層 7,17……ドレイン電極 8,18……ソース電極 10……2次元電子ガス領域
FIG. 1 is a sectional view of a photodetector of the present invention and an energy band diagram of a main part thereof, and FIG. 2 is a sectional view of a conventional photodetector and an energy band diagram of a main part thereof. 1,11 semiconductor substrate 2,12 buffer layer 3,13 superlattice layer (light absorbing layer) 4,14 spacer layer 5,15 charge supply layer 6,16 contact layer 7 , 17 …… Drain electrode 8,18 …… Source electrode 10 …… 2D electron gas region

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に少なくとも2次元電子ガス
領域を生成する超格子層と、この超格子層の上部に接し
て前記超格子層より電子親和力が小さくかつ禁制帯幅が
大きいスペーサ層と、前記超格子層より電子親和力が小
さくかつ禁制帯幅が大きいn型の電荷供給層と、この電
荷供給層から前記2次元電子ガスが生成された領域まで
アロイ化してなる第1及び第2の電極とを備え、前記超
格子層は禁制帯幅が互いに異なる複数の半導体層を交互
に少なくとも2周期積層して成ることを特徴とするホト
ディテクタ。
A superlattice layer for generating at least a two-dimensional electron gas region on a semiconductor substrate; and a spacer layer in contact with an upper portion of the superlattice layer and having a smaller electron affinity and a larger forbidden band width than the superlattice layer. An n-type charge supply layer having a smaller electron affinity and a larger bandgap than the superlattice layer, and first and second alloys formed by alloying from the charge supply layer to a region where the two-dimensional electron gas is generated. An electrode, wherein the superlattice layer is formed by alternately laminating a plurality of semiconductor layers having different forbidden band widths for at least two periods.
JP61058072A 1986-03-18 1986-03-18 Photo Detector Expired - Lifetime JP2590817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61058072A JP2590817B2 (en) 1986-03-18 1986-03-18 Photo Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61058072A JP2590817B2 (en) 1986-03-18 1986-03-18 Photo Detector

Publications (2)

Publication Number Publication Date
JPS62216378A JPS62216378A (en) 1987-09-22
JP2590817B2 true JP2590817B2 (en) 1997-03-12

Family

ID=13073705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058072A Expired - Lifetime JP2590817B2 (en) 1986-03-18 1986-03-18 Photo Detector

Country Status (1)

Country Link
JP (1) JP2590817B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116175A (en) * 1988-10-26 1990-04-27 Sumitomo Electric Ind Ltd Semiconductor photodetector
JPH02121370A (en) * 1988-10-29 1990-05-09 Sumitomo Electric Ind Ltd Photodetector
JP2695092B2 (en) * 1992-05-08 1997-12-24 光技術研究開発株式会社 Superlattice light receiving element
WO1994015367A1 (en) * 1992-12-21 1994-07-07 The Furukawa Electric Co., Ltd. Distorted superlattice semiconductor photodetecting element with side-contact structure
JP5270136B2 (en) * 2007-11-16 2013-08-21 日本電信電話株式会社 Photodetector
CN108470793B (en) * 2018-02-26 2023-12-08 厦门大学 Ultraviolet-infrared dual-band integrated p-i-n type photoelectric detector
CN111668327B (en) * 2020-06-22 2022-04-22 三明学院 Capacitive photoelectric detector

Also Published As

Publication number Publication date
JPS62216378A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
US6326654B1 (en) Hybrid ultraviolet detector
JP2937404B2 (en) Semiconductor light receiving element
JP2845081B2 (en) Semiconductor light receiving element
JPH06140624A (en) Schottky junction element
US5471068A (en) Semiconductor photodetector using avalanche multiplication and strained layers
US5608230A (en) Strained superlattice semiconductor photodetector having a side contact structure
JP2590817B2 (en) Photo Detector
JP2747299B2 (en) Semiconductor light receiving element
US5286982A (en) High contrast ratio optical modulator
JPH0656900B2 (en) Semiconductor optical device
JPH06188449A (en) Msm type photodetector
JP2700492B2 (en) Avalanche photodiode
JP2670557B2 (en) Avalanche photodiode
JPH06151940A (en) Semiconductor photodetector
JPH0774381A (en) Semiconductor photodetector
JPH0265279A (en) Semiconductor photodetecting element
JP3018589B2 (en) Semiconductor light receiving element
JP3001291B2 (en) Semiconductor light receiving element
JP3172996B2 (en) Semiconductor light receiving element
JP2893092B2 (en) Avalanche photodiode
JP2007149887A (en) Semiconductor-metal-semiconductor (metal-semiconductor-metal:msm) type light-receiving element
JPS6130085A (en) Photoconductivity detecting element
JPH05218591A (en) Semiconductor laser element and semiconductor photo detector
JPH0316276A (en) Photodetector
JPH0687508B2 (en) Photo detector