JPH05218591A - Semiconductor laser element and semiconductor photo detector - Google Patents

Semiconductor laser element and semiconductor photo detector

Info

Publication number
JPH05218591A
JPH05218591A JP4041878A JP4187892A JPH05218591A JP H05218591 A JPH05218591 A JP H05218591A JP 4041878 A JP4041878 A JP 4041878A JP 4187892 A JP4187892 A JP 4187892A JP H05218591 A JPH05218591 A JP H05218591A
Authority
JP
Japan
Prior art keywords
layer
plane
inp substrate
semiconductor laser
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4041878A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimizu
均 清水
Yoshiyuki Hirayama
祥之 平山
Sumio Sugata
純雄 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4041878A priority Critical patent/JPH05218591A/en
Publication of JPH05218591A publication Critical patent/JPH05218591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a 1.5mum band InGaAs/InAlAs quantum well semiconductor laser element having a low oscillation threshold current density, and a 1.5mum band semiconductor photo detector having high-sensitivity and a large SN ratio. CONSTITUTION:Concerning a semiconductor laser element having an activated layer 14 composed of an InAlAs barrier layer and an InGaAs quantum well layer formed on an InP substrate 11, the surface azimuth of the InP substrate 11 is a (111) B surface or a tilted (111) B surface in the (100) direction or (110) direction by at most 10 degrees. And concerning a semiconductor photo detector having a carrier multiplication layer and an InGaAs photo absorption layer formed in order on an InP substrate 11, the surface azimuth of the InP substrate 11 is the (111) B surface or a tilted (111) B surface in the (100) direction or in the (110) direction by at most 10 degrees.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1.5μm帯で発光す
る半導体レーザ素子と、同じ波長域で受光感度を有する
半導体受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device which emits light in the 1.5 .mu.m band and a semiconductor light receiving device having a light receiving sensitivity in the same wavelength range.

【0002】[0002]

【従来技術】長距離光通信に用いられる石英光ファイバ
は、1.55μmの波長で損失が最小になる。そこで、
1.5μm帯で発光する高性能の半導体レーザ素子と、
同じ波長域で高感度を有する半導体受光素子が必要にな
る。従来、1.3〜1.5μm帯の量子井戸半導体レー
ザ素子は、MOCVD法によりInP基板上に格子整合
するInGaAsP系の材料を積層して製作されてい
た。最近になり、MBE法によりPを含まないInGa
As/InAlAs系の材料を用いて、この波長帯の半
導体レーザ素子の開発が活発に行われている。その理由
は、この半導体レーザ素子においては、InGaAsP
井戸層/InGaAsP障壁層系量子井戸(1.3μm
帯)やInGaAs井戸層/InGaAsP障壁層系量
子井戸(1.5μm帯)よりもエネルギーバンドの伝導
帯不連続量ΔEc が大きくなるため、低発振しきい値を
もつ半導体レーザ素子が得られる可能性があるからであ
る。一方、従来の1.5μm帯の半導体受光素子として
は、光吸収層にp型にドープされたGeまたはInGa
As系を用いて、光を吸収することにより電子を発生さ
せ、pn接合を通して光電流を取り出すホトダイオード
が用いられている。Ge層はGe基板上に、InGaA
s系層は格子整合するInP基板上に形成される。最近
になり、光通信に高速、大容量が求められると、pn接
合の間に設けたノンドープ層に逆バイアス電圧をかけ、
なだれ現象によりキャリアの増幅を行い、SN比を上げ
たアバランシェホトダイオード(APD)が用いられる
ようになった。特にInGaAs系では、このノンドー
プ層にInGaAsとInAlAsとの超格子を導入
し、そのエネルギーバンドの伝導帯不連続量ΔEc が価
電子帯のそれよりも大きいことを利用し、電子のみを増
倍させ、SN比を向上させた超格子アバランシェホトダ
イオードの研究が盛んに行われている。上述の半導体レ
ーザ素子および半導体受光素子は、結晶成長しやすい
(100)面上に形成されている。
2. Description of the Related Art A quartz optical fiber used for long-distance optical communication has a minimum loss at a wavelength of 1.55 μm. Therefore,
A high-performance semiconductor laser device that emits light in the 1.5 μm band,
A semiconductor light receiving element having high sensitivity in the same wavelength range is required. Conventionally, a quantum well semiconductor laser device in the 1.3 to 1.5 μm band has been manufactured by laminating InGaAsP-based materials that are lattice-matched on an InP substrate by MOCVD. Recently, InGa containing no P by the MBE method
Development of a semiconductor laser device in this wavelength band is actively carried out using an As / InAlAs-based material. The reason is that in this semiconductor laser device, InGaAsP
Well layer / InGaAsP barrier layer system quantum well (1.3 μm
Band) and the InGaAsP well layer / InGaAsP barrier layer system quantum well (1.5 μm band), the conduction band discontinuity ΔE c in the energy band is larger, so a semiconductor laser device with a low oscillation threshold can be obtained. Because there is a nature. On the other hand, as a conventional 1.5 μm band semiconductor light receiving element, Ge or InGa in which the light absorption layer is p-type doped is used.
A photodiode is used that uses an As system to generate electrons by absorbing light and take out a photocurrent through a pn junction. The Ge layer is formed on the Ge substrate by InGaA.
The s-based layer is formed on the InP substrate that is lattice-matched. Recently, when high speed and large capacity are required for optical communication, a reverse bias voltage is applied to a non-doped layer provided between pn junctions.
Carriers are amplified by an avalanche phenomenon, and an avalanche photodiode (APD) having an improved SN ratio has come to be used. Particularly in the InGaAs system, a superlattice of InGaAs and InAlAs is introduced into this non-doped layer, and the fact that the conduction band discontinuity ΔE c in the energy band is larger than that in the valence band is used to multiply only the electrons. Therefore, research on a superlattice avalanche photodiode having an improved SN ratio has been actively conducted. The above-mentioned semiconductor laser device and semiconductor light-receiving device are formed on the (100) plane where crystals easily grow.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の半
導体レーザ素子と半導体受光素子には、それぞれ次のよ
うな問題があった。即ち、 1)InGaAs/InAlAs系量子井戸半導体レー
ザ素子では、光学的品質の高いInAlAs層をエピタ
キシャル成長させることが困難であった。そのため、発
振しきい値電流密度は0.8〜2.4KA/cm2 程度であ
り、InGaAsP系に比較しても高く、期待されてい
る低い値に到達していない。 2)Geを光吸収層に用いたAPDでは、電子と正孔と
の増倍比が小さいため、大きなSN比が得られない。ま
た、InGaAs系では、超格子により電子と正孔との
増倍比が20程度に大きくなっているが、InGaAs
の光吸収層での感度が低いため、生成される電子・正孔
対が少ない。そのため、長距離光通信では、発光強度の
強い半導体レーザ素子が必要になったり、数多くの中継
器が必要になるだけでなく、電子・正孔対の生成量のゆ
らぎに起因するショット雑音が大きくなるという問題が
あった。
However, the above-mentioned semiconductor laser device and semiconductor light-receiving device have the following problems, respectively. That is, 1) In the InGaAs / InAlAs-based quantum well semiconductor laser device, it was difficult to epitaxially grow an InAlAs layer having high optical quality. Therefore, the oscillation threshold current density is about 0.8 to 2.4 KA / cm 2 , which is higher than that of the InGaAsP system and has not reached the expected low value. 2) In the APD using Ge as the light absorption layer, a large SN ratio cannot be obtained because the multiplication ratio of electrons and holes is small. In the InGaAs system, the multiplication ratio of electrons and holes is increased to about 20 due to the superlattice.
Since the light absorption layer has low sensitivity, few electron-hole pairs are generated. Therefore, in long-distance optical communication, not only a semiconductor laser device with high emission intensity is required and many repeaters are required, but also shot noise caused by fluctuations in the amount of electron-hole pairs generated is large. There was a problem of becoming.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決した半導体レーザ素子および半導体受光素子を提供す
るもので、InP基板上に、InAlAs障壁層とIn
GaAs量子井戸層からなる活性層を形成した半導体レ
ーザ素子において、InP基板の面方位は(111)B
面、または(111)B面が(100)方向または(1
10)方向に高々10°傾いた面方位である半導体レー
ザ素子を第1発明とし、InP基板上に、キャリア増倍
層、InGaAs光吸収層を順次形成した半導体受光素
子において、InP基板の面方位は(111)B面、ま
たは(111)B面が(100)方向または(110)
方向に高々10°傾いた面方位である半導体受光素子を
第2発明とするものである。
SUMMARY OF THE INVENTION The present invention provides a semiconductor laser device and a semiconductor light receiving device that solve the above problems. An InAlAs barrier layer and an In layer are formed on an InP substrate.
In a semiconductor laser device having an active layer formed of a GaAs quantum well layer, the plane orientation of the InP substrate is (111) B.
Plane, or (111) B plane is (100) direction or (1
In the semiconductor photodetector in which the carrier multiplication layer and the InGaAs light absorption layer are sequentially formed on the InP substrate, the semiconductor laser device having the plane orientation tilted at most 10 ° in the 10) direction is the plane orientation of the InP substrate. Is the (111) B plane, or the (111) B plane is the (100) direction or (110)
A second aspect of the present invention is a semiconductor light receiving element having a plane orientation inclined by at most 10 ° in the direction.

【0005】[0005]

【作用】本発明は、InP基板上にInAlAsとIn
GaAsからなる量子井戸を形成した場合についての次
のような新しい実験事実に基づくものである。即ち、こ
の量子井戸のホトルミネッセンス(PL)強度とInP
基板面方位の関係を調べると、(100)基板面方位に
比較して、(111)B面、または(111)B面が
(100)方向または(110)方向に高々10°傾い
た面方位では、PL強度がきわめて大きくなる。この理
由としては、(111)B面およびその近くの面方位の
量子井戸では(100)面量子井戸に比較して面内有効
質量が軽いために、(100)面量子井戸よりも容易に
エネルギイバンドをキャリアで満たして利得を得ること
ができるためと考えられる。従って、これらの面方位上
にInAlAsとInGaAsからなる量子井戸を活性
層として形成すると、発振しきい値電流密度が低下する
ことが期待できる。また、これらの面方位上にInAl
AsとInGaAsからなる量子井戸を光吸収層として
形成すると、電子・正孔対が多く生成され、受光感度が
高くなる。なお、上記量子井戸層からなる活性層、光吸
収層およびキャリア増倍層を構成するInX Ga1-X
sの組成を0.3≦X≦0.7とすることが望ましい。
その理由は、InP基板上でInX Ga1-X AsはX=
0.53で基板と格子整合し、この組成からのずれが大
きくなるほど、転位を入れずにエピタキシャル成長させ
ることが困難になるからである。特に、X<0.3、お
よびX>0.7では、転位を入れずにエピタキシャル成
長できる膜厚(臨界膜厚)が数10Å程度になり、超格
子の製作が困難になる。
In the present invention, InAlAs and In are formed on the InP substrate.
This is based on the following new experimental facts regarding the case of forming a quantum well made of GaAs. That is, the photoluminescence (PL) intensity and InP of this quantum well
Examining the relationship between the substrate plane orientations, the plane orientation in which the (111) B plane or the (111) B plane is tilted at most 10 ° in the (100) direction or the (110) direction as compared with the (100) substrate plane orientation Then, the PL intensity becomes extremely large. The reason for this is that the quantum wells of the (111) B-plane and the plane orientation near the (111) B-plane have a smaller effective in-plane effective mass than the (100) -plane quantum well, so that the energy consumption is easier than that of the (100) -plane quantum well. It is considered that this is because the band can be filled with carriers to obtain a gain. Therefore, when a quantum well made of InAlAs and InGaAs is formed as an active layer on these plane orientations, it can be expected that the oscillation threshold current density is lowered. InAl on these plane orientations
When a quantum well made of As and InGaAs is formed as a light absorption layer, many electron-hole pairs are generated and the light receiving sensitivity becomes high. It should be noted that In X Ga 1-X A constituting the active layer, the light absorption layer, and the carrier multiplication layer, which are the quantum well layers, are formed.
It is desirable that the composition of s be 0.3 ≦ X ≦ 0.7.
The reason is that on the InP substrate, In X Ga 1-X As is X =
This is because it becomes more difficult to perform epitaxial growth without introducing dislocations as the lattice matching with the substrate becomes 0.53 and the deviation from this composition increases. In particular, when X <0.3 and X> 0.7, the film thickness (critical film thickness) that can be epitaxially grown without dislocations is about several tens of liters, which makes it difficult to manufacture a superlattice.

【0006】[0006]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。本発明は以下のような実験事実に基
づいている。図3は、InP基板上に形成したInGa
As/InAlAs系量子井戸のPL強度と基板面方位
の関係を示したものである。用いた試料は、図4に示し
た構造をしており、次のようにして製作した。即ち、M
BE法により、(100)面方位および(100)方向
に2°傾いた(111)B面方位を有するInP基板1
をモリブデンブロック(図示されず)にはりつけ、その
上に同時に結晶成長を行った。先ず、通常の予備加熱の
工程により表面酸化膜を除去し、次いで、0.7μmの
InAlAsバッファー層2を積層し、次いで、200
ÅのIn0.52Al0.48As障壁層3を挟んで、10、2
0、30、50、80Åの厚さのIn0.53Ga0.47As
量子井戸層4を順次積層した。これらの試料について、
77KにおいてPL強度を測定した結果を図3に示し
た。それぞれの発光ピーク波長は長波長側から、80、
50、30、20Åの厚さの量子井戸層4からの発光に
対応しており、次いで、In0.52Al0.48As障壁層
3、InP基板1に対応している。発光ピーク強度を比
較すると、例えば80Åの量子井戸層4では、(11
1)B2°オフ面の方が(100)面よりも約8倍強度
が強く、他の発光ピーク強度も(111)B2°オフ面
の方が(100)面よりも強くなっている。以下の実施
例は、上記実験事実による新しい知見に基づくものであ
る。 実施例1.図1は本発明にかかる半導体レーザ素子の一
実施例の断面図である。図中、11はn−InP基板、
12は厚さ1.5μmのn−In0.52Al0.48Asクラ
ッド層(Siドープ:1×1018cm-3)、13と15
は厚さ500ÅのノンドープIn0.5 (GaY
1-Y 0.5 AsからなるGRIN−SCH層、14は
厚さ10〜200ÅのInX Ga1-X As(0.3≦X
≦0.7)量子井戸層と厚さ30〜200ÅのIn0.52
Al0.48As障壁層からなる多重量子井戸層で構成され
た活性層、16は厚さ1.5μmのp−In0.52Al
0.48Asクラッド層(Beドープ:1×1018
-3)、17は厚さ0.5μmのp−In0.53Ga0.47
Asキャップ層(Beドープ:1×1017cm-3)、1
8はオーミック電極である。n−InP基板11の面方
位は(100)方向に2°オフした(111)B面とし
た。p−InGaAsキャップ層17およびInAlA
sクラッド層12、16はInP基板11と0.1%以
内で格子整合している。このようにして得られた半導体
レーザ素子の発振しきい値電流密度は、(100)基板
面においては1.0kA/cm2 であるのに対して、
(111)B2°オフ面においては0.5kA/cm2
と改善された。なお、本発明は上記実施例に限定される
ことはなく、(111)B基板の面方位は(100)方
向または(110)方向に高々10°オフしていてもよ
い。また、デバイス構造もブロードコンタクトだけでな
く、オキサイドストライプや埋め込み型により電流狭窄
したものでもい。さらに、活性層については、InP基
板と格子整合のとれる組成だけでなく、歪み系でもよ
く、InGaAs井戸層数は1乃至15個の範囲で製作
してもよく、光閉じ込め層もGRIN層だけでなく、I
nGaAlAsからなるSCH層やInGaAs/In
AlAs超格子SCH層を用いてもよい。 実施例2.図2は本発明にかかる半導体受光素子の一実
施例の断面図である。図中、21はSドープn−InP
基板、22はSiドープn−InGaAs層、23はノ
ンドープInGaAs/InAlAs超格子からなる電
子倍増層、24はBeドープp−InGaAs光吸収
層、25はn電極、26はp電極である。Siドープn
−InP基板21の面方位は(100)方向に2°オフ
した(111)B面とした。なお、本発明は上記実施例
に限定されることはなく、(111)B基板の面方位は
(100)方向または(110)方向に高々10°オフ
していてもよく、電子倍増層は超格子でなく、ノンドー
プInGaAs層でもよく、また、無くてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. The present invention is based on the following experimental facts. FIG. 3 shows InGa formed on an InP substrate.
4 shows the relationship between the PL intensity of an As / InAlAs-based quantum well and the substrate surface orientation. The sample used has the structure shown in FIG. 4 and was manufactured as follows. That is, M
InP substrate 1 having (100) plane orientation and (111) B plane orientation tilted by 2 ° in the (100) direction by BE method
Was attached to a molybdenum block (not shown), and crystal growth was simultaneously performed thereon. First, the surface oxide film is removed by a normal preheating process, and then a 0.7 μm InAlAs buffer layer 2 is laminated, and then 200 μm.
Å In 0.52 Al 0.48 As barrier layer 3 is sandwiched between 10, 2
In 0.53 Ga 0.47 As with thickness of 0, 30, 50, 80 Å
The quantum well layers 4 were sequentially stacked. For these samples,
The result of measuring the PL intensity at 77K is shown in FIG. The respective emission peak wavelengths are 80,
It corresponds to light emission from the quantum well layer 4 having a thickness of 50, 30, and 20Å, and then corresponds to the In 0.52 Al 0.48 As barrier layer 3 and the InP substrate 1. Comparing the emission peak intensities, for example, in the quantum well layer 4 of 80 Å, (11
1) The intensity of the B2 ° off face is about 8 times stronger than that of the (100) face, and the intensity of other emission peaks is also stronger for the (111) B2 ° off face than the (100) face. The following examples are based on new findings from the above experimental facts. Example 1. FIG. 1 is a sectional view of an embodiment of a semiconductor laser device according to the present invention. In the figure, 11 is an n-InP substrate,
12 is a 1.5 μm thick n-In 0.52 Al 0.48 As cladding layer (Si-doped: 1 × 10 18 cm −3 ), 13 and 15
Is a 500 Å-thick undoped In 0.5 (Ga Y A
The GRIN-SCH layer made of 1 1-Y ) 0.5 As, 14 is In X Ga 1-X As (0.3 ≦ X) having a thickness of 10 to 200 Å.
≦ 0.7) Quantum well layer and In 0.52 with a thickness of 30 to 200 Å
An active layer composed of multiple quantum well layers made of Al 0.48 As barrier layer, and 16 is p-In 0.52 Al having a thickness of 1.5 μm.
0.48 As clad layer (Be-doped: 1 × 10 18 c
m -3 ), 17 is p-In 0.53 Ga 0.47 having a thickness of 0.5 μm.
As cap layer (Be-doped: 1 × 10 17 cm −3 ), 1
8 is an ohmic electrode. The plane orientation of the n-InP substrate 11 was the (111) B plane which was off by 2 ° in the (100) direction. p-InGaAs cap layer 17 and InAlA
The s clad layers 12 and 16 are lattice-matched with the InP substrate 11 within 0.1%. The oscillation threshold current density of the semiconductor laser device thus obtained is 1.0 kA / cm 2 on the (100) substrate surface.
0.5 kA / cm 2 on (111) B2 ° off-plane
And improved. The present invention is not limited to the above embodiment, and the plane orientation of the (111) B substrate may be off by at most 10 ° in the (100) direction or the (110) direction. Further, the device structure is not limited to a broad contact, and may be one having a current constriction due to an oxide stripe or a buried type. Further, the active layer is not limited to having a composition that is lattice-matched with the InP substrate, but may be strained, the number of InGaAs well layers may be 1 to 15, and the optical confinement layer may be only the GRIN layer. Without I
SCH layer made of nGaAlAs and InGaAs / In
An AlAs superlattice SCH layer may be used. Example 2. FIG. 2 is a sectional view of an embodiment of the semiconductor light receiving element according to the present invention. In the figure, 21 is S-doped n-InP
A substrate, 22 is a Si-doped n-InGaAs layer, 23 is an electron multiplication layer made of non-doped InGaAs / InAlAs superlattice, 24 is a Be-doped p-InGaAs light absorption layer, 25 is an n-electrode, and 26 is a p-electrode. Si-doped n
The plane direction of the -InP substrate 21 was the (111) B plane which was off by 2 ° in the (100) direction. The present invention is not limited to the above embodiment, and the plane orientation of the (111) B substrate may be off by at most 10 ° in the (100) direction or the (110) direction, and the electron multiplication layer is super A non-doped InGaAs layer may be used instead of the lattice, or may be omitted.

【0007】[0007]

【発明の効果】以上説明したように本発明によれば、I
nP基板上に、InAlAs障壁層とInGaAs量子
井戸層からなる活性層を形成した半導体レーザ素子にお
いて、InP基板の面方位は(111)B面、または
(111)B面が(100)方向または(110)方向
に高々10°傾いた面方位であるため、発振しきい値電
流密度が低下するという優れた効果がある。また、In
P基板上に、キャリア増倍層、InGaAs光吸収層を
順次形成した半導体受光素子において、InP基板の面
方位は(111)B面、または(111)B面が(10
0)方向または(110)方向に高々10°傾いた面方
位であるため、受光感度およびSN比が向上するという
優れた効果がある。
As described above, according to the present invention, I
In a semiconductor laser device in which an active layer composed of an InAlAs barrier layer and an InGaAs quantum well layer is formed on an nP substrate, the plane orientation of the InP substrate is the (111) B plane, or the (111) B plane is the (100) direction or ( Since the plane orientation is tilted at most 10 ° in the 110) direction, there is an excellent effect that the oscillation threshold current density is lowered. Also, In
In a semiconductor light receiving element in which a carrier multiplication layer and an InGaAs light absorption layer are sequentially formed on a P substrate, the plane direction of the InP substrate is (111) B plane or (111) B plane is (10).
Since the plane orientation is tilted at most 10 ° in the 0) direction or the (110) direction, there is an excellent effect that the light receiving sensitivity and the SN ratio are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体レーザ素子の一実施例の断
面図である。
FIG. 1 is a sectional view of an embodiment of a semiconductor laser device according to the present invention.

【図2】本発明に係る半導体受光素子の一実施例の断面
図である。
FIG. 2 is a sectional view of an embodiment of a semiconductor light receiving element according to the present invention.

【図3】PL強度と基板面方位との関係についての実験
結果を示す図である。
FIG. 3 is a diagram showing experimental results on the relationship between PL intensity and substrate surface orientation.

【図4】上記実験に用いた試料断面図である。FIG. 4 is a cross-sectional view of a sample used in the above experiment.

【符号の説明】[Explanation of symbols]

1、11、21 基板 2 バッファー層 3 障壁層 4 量子井戸層 12、16 クラッド層 13、15 GIN層 14 活性層 17 キャップ層 18、25、26 電極 22 Siドープn−InGaAs
層 23 電子倍増層 24 光吸収層
1, 11, 21 Substrate 2 Buffer layer 3 Barrier layer 4 Quantum well layer 12, 16 Cladding layer 13, 15 GIN layer 14 Active layer 17 Cap layer 18, 25, 26 Electrode 22 Si-doped n-InGaAs
Layer 23 Electron multiplication layer 24 Light absorption layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 InP基板上に、InAlAs障壁層と
InGaAs量子井戸層からなる活性層を形成した半導
体レーザ素子において、InP基板の面方位は(11
1)B面、または(111)B面が(100)方向また
は(110)方向に高々10°傾いた面方位であること
を特徴とする半導体レーザ素子。
1. In a semiconductor laser device in which an active layer including an InAlAs barrier layer and an InGaAs quantum well layer is formed on an InP substrate, the plane direction of the InP substrate is (11).
1) A semiconductor laser device characterized in that the B plane or the (111) B plane has a plane orientation inclined at most 10 ° in the (100) direction or the (110) direction.
【請求項2】 InP基板上に、キャリア増倍層、In
GaAs光吸収層を順次形成した半導体受光素子におい
て、InP基板の面方位は(111)B面、または(1
11)B面が(100)方向または(110)方向に高
々10°傾いた面方位であることを特徴とする半導体受
光素子。
2. A carrier multiplication layer, In, on an InP substrate.
In a semiconductor light receiving device in which a GaAs light absorption layer is sequentially formed, the plane orientation of the InP substrate is (111) B plane or (1)
11) A semiconductor light-receiving element characterized in that the plane B has a plane orientation inclined by at most 10 ° in the (100) direction or the (110) direction.
【請求項3】 InGaAs量子井戸層はInX Ga
1-X As(0.3≦X≦0.7)からなることを特徴と
する請求項1記載の半導体レーザ素子。
3. The InGaAs quantum well layer is In x Ga.
2. The semiconductor laser device according to claim 1, which is made of 1-X As (0.3≤X≤0.7).
【請求項4】 InGaAs光吸収層はInX Ga1-X
As(0.3≦X≦0.7)からなり、キャリア増倍層
はInY Ga1-Y As(0.3≦Y≦0.7)とInZ
Al1-Z As(0.3≦Z≦0.7)からなる超格子か
らなることを特徴とする請求項2記載の半導体受光素
子。
4. The InGaAs light absorbing layer is made of In X Ga 1 -X.
As (0.3 ≦ X ≦ 0.7), and the carrier multiplication layer is composed of In Y Ga 1 -Y As (0.3 ≦ Y ≦ 0.7) and In Z.
3. The semiconductor light receiving element according to claim 2, comprising a superlattice made of Al1 - ZAs (0.3≤Z≤0.7).
JP4041878A 1992-01-31 1992-01-31 Semiconductor laser element and semiconductor photo detector Pending JPH05218591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4041878A JPH05218591A (en) 1992-01-31 1992-01-31 Semiconductor laser element and semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4041878A JPH05218591A (en) 1992-01-31 1992-01-31 Semiconductor laser element and semiconductor photo detector

Publications (1)

Publication Number Publication Date
JPH05218591A true JPH05218591A (en) 1993-08-27

Family

ID=12620533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4041878A Pending JPH05218591A (en) 1992-01-31 1992-01-31 Semiconductor laser element and semiconductor photo detector

Country Status (1)

Country Link
JP (1) JPH05218591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146408A (en) * 2002-10-21 2004-05-20 Mitsubishi Electric Corp Waveguide type photodiode and its manufacturing method
JP2006270060A (en) * 2005-02-23 2006-10-05 Sumitomo Electric Ind Ltd Light receiving element, receiving module for optical communication and measuring instrument employing it
KR100818632B1 (en) * 2005-07-26 2008-04-02 한국전자통신연구원 Intersubband transition semiconductor laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56176837U (en) * 1980-05-29 1981-12-26
JPH05146349A (en) * 1991-11-28 1993-06-15 Japan Gore Tex Inc Quilt cover

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56176837U (en) * 1980-05-29 1981-12-26
JPH05146349A (en) * 1991-11-28 1993-06-15 Japan Gore Tex Inc Quilt cover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146408A (en) * 2002-10-21 2004-05-20 Mitsubishi Electric Corp Waveguide type photodiode and its manufacturing method
JP2006270060A (en) * 2005-02-23 2006-10-05 Sumitomo Electric Ind Ltd Light receiving element, receiving module for optical communication and measuring instrument employing it
KR100818632B1 (en) * 2005-07-26 2008-04-02 한국전자통신연구원 Intersubband transition semiconductor laser

Similar Documents

Publication Publication Date Title
Watanabe et al. High-speed and low-dark-current flip-chip InAlAs/InAlGaAs quaternary well superlattice APDs with 120 GHz gain-bandwidth product
JPS6328506B2 (en)
JP2724827B2 (en) Infrared light emitting device
JPH0728047B2 (en) Phototransistor
US5338947A (en) Avalanche photodiode including a multiplication layer and a photoabsorption layer
EP0477729B1 (en) Avalanche photodiode
JP2004104085A (en) Avalanche phototransistor
US5324959A (en) Semiconductor optical device having a heterointerface therein
EP0549103B1 (en) A semiconductor laser device
JPH05218591A (en) Semiconductor laser element and semiconductor photo detector
JPH0834338B2 (en) Semiconductor laser
JPH05160504A (en) Semiconductor laser device
JPS6049681A (en) Semiconductor photodetector device
JP2962069B2 (en) Waveguide structure semiconductor photodetector
US5539762A (en) Article comprising a semiconductor laser with carrier stopper layer
JPH06188449A (en) Msm type photodetector
JP3018589B2 (en) Semiconductor light receiving element
JP2011082348A (en) Semiconductor element and semiconductor wafer
JPH0712103B2 (en) Semiconductor laser device
JPH0832105A (en) Optical semiconductor device
Das et al. Performance characteristics of InGaAs/GaAs and GaAs/InGaAlAs coherently strained superlattice photodiodes
JP2998471B2 (en) Semiconductor light receiving element
JP2661548B2 (en) Semiconductor light receiving element
JP2754652B2 (en) Avalanche photodiode
JPH09298338A (en) Quantum well crystalline body and semiconductor laser