JP2006270060A - Light receiving element, receiving module for optical communication and measuring instrument employing it - Google Patents

Light receiving element, receiving module for optical communication and measuring instrument employing it Download PDF

Info

Publication number
JP2006270060A
JP2006270060A JP2006035880A JP2006035880A JP2006270060A JP 2006270060 A JP2006270060 A JP 2006270060A JP 2006035880 A JP2006035880 A JP 2006035880A JP 2006035880 A JP2006035880 A JP 2006035880A JP 2006270060 A JP2006270060 A JP 2006270060A
Authority
JP
Japan
Prior art keywords
light receiving
inp
layer
light
inp substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006035880A
Other languages
Japanese (ja)
Other versions
JP5008874B2 (en
Inventor
Yasuhiro Inoguchi
康博 猪口
Shigenori Takagishi
成典 高岸
Yuichi Kawamura
裕一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Sumitomo Electric Industries Ltd
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Sumitomo Electric Industries Ltd
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Sumitomo Electric Industries Ltd, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2006035880A priority Critical patent/JP5008874B2/en
Publication of JP2006270060A publication Critical patent/JP2006270060A/en
Application granted granted Critical
Publication of JP5008874B2 publication Critical patent/JP5008874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-fabricate light receiving element having a small dark current in which middle infrared light in the range of 1.65-3.0 μm can be received by forming a light receiving layer of good crystallinity with little defect on an InP substrate. <P>SOLUTION: A GaInNAsP light receiving layer, a GaInNAsSb light receiving layer or a GaInNAsPSb light receiving layer having a band gap in the range of 1.65-3.0 μm is provided directly or through an InP buffer layer on an InP substrate, an InP window layer or an InAlAs window layer is provided or not provided thereon, a p-region is formed by diffusing zinc selectively while masking and a p-electrode is attached. Since lattice matching can be attained between the GaInNAsP, GaInNAsSb or GaInNAsPSb and the InP substrate (degree of mismatch is ±0.2% or less), a graded layer for varying the lattice constant gradually is not required. The InP substrate may be an n-InP or SI-InP substrate. A light receiving element of middle infrared light in the range of 1.65-3.0 μm can thereby be fabricated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、3−5族化合物半導体を用いた近赤外領域、特に1.65μm以上3.0μm以下の波長域に感度を持つ受光素子およびそれを用いた光通信用モジュールあるいは計測システムに関する。   The present invention relates to a light receiving element using a group 3-5 compound semiconductor and having sensitivity in a near infrared region, particularly a wavelength region of 1.65 μm to 3.0 μm, and an optical communication module or measurement system using the same.

石英ファイバを用いた光通信用の発光素子、受光素子は1.55μm付近で石英光ファイバの吸収が最少になるので1.55μmの波長の信号光が用いられる。また送信と受信で別の波長の信号が要るのでもう一つの波長として1.3μmの信号光が用いられる。これも石英光ファイバでの吸収が小さい。これらは光通信の信号光であって、受光素子はn−InP基板の上にn−InPバッファ層、InGaAs受光層、n−InP窓層をエピタキシャル成長させ、窓層の上にマスクを付けて亜鉛を選択拡散してp領域を形成し、n電極、p電極を付けたものが用いられる。   A light emitting element and a light receiving element for optical communication using a quartz fiber use a signal light having a wavelength of 1.55 μm because the absorption of the quartz optical fiber is minimized in the vicinity of 1.55 μm. Further, since signals with different wavelengths are required for transmission and reception, 1.3 μm signal light is used as another wavelength. This is also less absorbed by the quartz optical fiber. These are optical communication signal lights. The light receiving element is formed by epitaxially growing an n-InP buffer layer, an InGaAs light receiving layer, and an n-InP window layer on an n-InP substrate, and a mask is attached on the window layer to form zinc. Are selectively diffused to form a p region, and an n electrode and a p electrode are used.

InGaAs受光層は三元系であるからInPとの格子整合の条件で混晶比が決まる。例えばIn0.53Ga0.47Asというような組成のものが受光層に用いられる。受光層組成によってバンドギャップも決まるのであるが、光通信用InGaAs受光層で受光できるのは1μm〜1.6μmの範囲である。バンドギャップの広い従来の光通信用のInGaAs受光層では1.65μm以上の近赤外光、中赤外光を受光できない。 Since the InGaAs light receiving layer is a ternary system, the mixed crystal ratio is determined depending on the condition of lattice matching with InP. For example, a composition such as In 0.53 Ga 0.47 As is used for the light receiving layer. Although the band gap is also determined by the light receiving layer composition, the InGaAs light receiving layer for optical communication can receive light in the range of 1 μm to 1.6 μm. A conventional InGaAs light-receiving layer for optical communication having a wide band gap cannot receive near-infrared light and mid-infrared light of 1.65 μm or more.

1.65μm〜3.0μmの光は、水に対する吸収があったり食物の糖度の試験に利用できる可能性がある。図6は水の吸収率の波長依存性を示すグラフである。横軸は光の波長(nm)である。縦軸は水の吸収率を示す。1200nmまで吸収が殆どない。1400nmで40%程度の吸収が現れる。しかし1600nm〜1700nmでは再び吸収は減少する。1900nmで吸収のピークがある。2000nmで減って、2200nm〜2800nmの間では吸収が増加し続ける。2800nm〜3100nmで吸収が100%近くになる。1400nmの吸収ピークは低く不十分である。   Light from 1.65 [mu] m to 3.0 [mu] m may be absorbed in water or used to test food sugar content. FIG. 6 is a graph showing the wavelength dependence of the water absorption rate. The horizontal axis represents the wavelength (nm) of light. The vertical axis represents the water absorption rate. There is almost no absorption up to 1200 nm. Absorption of about 40% appears at 1400 nm. However, the absorption decreases again from 1600 nm to 1700 nm. There is an absorption peak at 1900 nm. It decreases at 2000 nm and the absorption continues to increase between 2200 nm and 2800 nm. The absorption is close to 100% at 2800 nm to 3100 nm. The absorption peak at 1400 nm is low and insufficient.

であるから水の濃度を測定したいというなら、1900nmか2800nm〜3100nmの中赤外光が適している。中赤外光を発光する光源と、受光する受光素子があれば中赤外光用のセンサを製造することができる筈である。   Therefore, if it is desired to measure the concentration of water, mid-infrared light of 1900 nm or 2800 nm to 3100 nm is suitable. If there is a light source that emits mid-infrared light and a light-receiving element that receives light, a sensor for mid-infrared light should be manufactured.

水分濃度を測定するセンサができれば、いろいろな用途がある。例えば土壌の水分を簡易に測定できる。あるいはゴミ処理装置において生ゴミ中の水分量を測定できる。光学的手段によるのであるから静電容量や誘電容量の変化によって水分量を測定するセンサよりも設置容易で測定簡便である。   If a sensor that measures moisture concentration can be made, it has various uses. For example, soil moisture can be easily measured. Alternatively, the amount of water in the garbage can be measured in the garbage disposal apparatus. Because it is based on optical means, it is easier to install and easier to measure than a sensor that measures the amount of water by changing capacitance or dielectric capacitance.

有機物は多数のC−H,O−H、N−Hなどの結合を持ち振動準位を作るから中赤外光の範囲に吸収のピークをいくつも持っている。そのピークに合わせた波長の光を発光して有機物にあて透過光を受光することによって有機物の濃度を求めることもできる。たとえばポリエチレンテレフタレート(PET)は図7のような吸収スペクトルを持っている。1650nm、2140nm、2300nmに強い吸収がある。これらの吸収ピークを利用してPETの濃度を測定することができる筈である。   Organic substances have many bonds such as C—H, O—H, and N—H, and create vibration levels, and thus have a number of absorption peaks in the mid-infrared range. The concentration of the organic substance can also be obtained by emitting light having a wavelength matched with the peak and receiving the transmitted light on the organic substance. For example, polyethylene terephthalate (PET) has an absorption spectrum as shown in FIG. There is strong absorption at 1650 nm, 2140 nm, and 2300 nm. The concentration of PET should be able to be measured using these absorption peaks.

特開平9−166717号JP-A-9-166717

特許文献1は光通信の送受信モジュールでレーザと受光素子(PD)を同一直線上におくようにするために受光素子にInGaAsP受光層を使ったものである。InGaAsPは4元系であるから組成を自由に変化させることができ、1μm〜1.4μmだけに感度のある受光素子を作っている。InGaAsよりもバンドギャップの大きいInGaAsP混晶を使って吸収端波長を1.4μmにしている。   Patent Document 1 uses an InGaAsP light receiving layer as a light receiving element in order to place a laser and a light receiving element (PD) on the same straight line in a transmission / reception module for optical communication. Since InGaAsP is a quaternary system, the composition can be freely changed, and a light receiving element having a sensitivity of only 1 μm to 1.4 μm is produced. The absorption edge wavelength is set to 1.4 μm using an InGaAsP mixed crystal having a larger band gap than InGaAs.

InGaAs受光層と違って感度領域が狭いので、1.55μmを発生するレーザの前においてレ−ザ光を透過させるようにできる。分波器、合波器が不要であるという利点がある。受光層が4元系であるフォトダイオードが公知であることを示すために説明した。本発明の波長範囲である、1.65μm〜3μmという範囲には入らないが、5族として砒素Asと燐Pを含むものであるからここに挙げた。   Unlike the InGaAs light receiving layer, since the sensitivity region is narrow, the laser light can be transmitted in front of the laser generating 1.55 μm. There is an advantage that a duplexer and a multiplexer are unnecessary. It has been described to show that a photodiode having a light receiving layer of a quaternary system is known. Although it does not fall within the wavelength range of 1.65 μm to 3 μm, which is the wavelength range of the present invention, it is listed here because it contains arsenic As and phosphorus P as Group 5.

T.Murakami,H.Takahasi,M.Nakayama,Y.Miura、K.Takemoto,D.Hara,“InxGa1−xAs/InAsyP1−y detector for near infrared(1−2.6μm)”、Conference Proceedings of Indium Phosphide and Related Materials”T.A. Murakami, H .; Takahasi, M .; Nakayama, Y .; Miura, K. et al. Takemoto, D.H. Hara, “InxGa1-xAs / InAsyP1-y detector for near infrared (1-2.6 μm)”, Conference Processings of Indium Phosphate and Related Materials ”

1.65μm以上の近赤外波長域で感度をもつ光検出器としてInGaAsやGaInNAsを受光層とする受光素子が提案されている。基板はInP基板か或いはGaAs基板である。   As a photodetector having sensitivity in the near-infrared wavelength region of 1.65 μm or more, a light receiving element using InGaAs or GaInNAs as a light receiving layer has been proposed. The substrate is an InP substrate or a GaAs substrate.

非特許文献1は受光層をInGaAsとした中赤外光のフォトダイオードを提案している。InGaAsといってもInP基板に整合する組成(例えば、In53%、Ga47%)だと前記のように1〜1.6μmにしか感度がない。非特許文献1が作製したのはGaの比率を下げInの比率を上げてバンドギャップをより狭くしたIn0.82Ga0.18Asである。Inの比率が高いのでバンドギャップが狭くて中赤外光を受光できる。組成を変えると2.6μmまで感度があるInGaAs系の受光素子を作る事ができると主張している。しかしInの比率を上げると基板のInPと格子整合しなくなる。 Non-Patent Document 1 proposes a photodiode for mid-infrared light in which the light receiving layer is InGaAs. Even if InGaAs is used, the composition matching the InP substrate (for example, In 53%, Ga 47%) has a sensitivity of only 1 to 1.6 μm as described above. Non-Patent Document 1 produced In 0.82 Ga 0.18 As with a lower band gap by reducing the Ga ratio and increasing the In ratio. Since the In ratio is high, the band gap is narrow and mid-infrared light can be received. It is claimed that by changing the composition, it is possible to produce an InGaAs-based light receiving element having a sensitivity of up to 2.6 μm. However, when the In ratio is increased, lattice matching with InP of the substrate is lost.

中赤外光用InGaAsの場合、例えば2.6μmまで感度を有するためにはInPとの格子不整合が大きく結晶欠陥が発生して暗電流が高くなるという問題がある。そこで非特許文献1は格子緩和のためInP基板とInGaAs受光層の間に例えば12〜20層のyを少しずつかえたInAs1−yのグレーディッド層を設けている。一つ一つの厚みは1μmである。だから12μm〜20μmの厚みのグレーディッド層が、InP基板とInGaAs受光層の間に介在して格子不整合を減縮するようにしている。そのために暗電流は十分に小さくなっていると主張している。暗電流は20μA〜35μAであると述べている。 In the case of InGaAs for mid-infrared light, for example, in order to have a sensitivity of up to 2.6 μm, there is a problem that the lattice mismatch with InP is large and crystal defects are generated, resulting in an increase in dark current. Therefore, Non-Patent Document 1 provides an InAs y P 1-y graded layer in which, for example, 12 to 20 layers of y are gradually changed between the InP substrate and the InGaAs light receiving layer for lattice relaxation. Each thickness is 1 μm. Therefore, a graded layer having a thickness of 12 μm to 20 μm is interposed between the InP substrate and the InGaAs light receiving layer so as to reduce lattice mismatch. Therefore, it is claimed that the dark current is sufficiently small. The dark current is stated to be 20 μA to 35 μA.

図8に非特許文献1が提案しているフォトダイオードの構造を示す。n―InP基板52の上に、混晶比yの少しずつ異なるグレーディッド層InAs1ーy53を12〜20層積層している。さらにその上にInAs0.60.4層54を設けている。その上に受光層である、n―In0.82Ga0.18As55を設けさらにInAs0.60.456の窓層を成長させている。InAs0.60.4窓層の上にSiNなどのマスクを付け亜鉛拡散し素子の中央部にp領域を設け、受光層の中間にpn接合を形成する。さらにp型領域にp電極58を形成している。InP基板底面にn電極60をつけている。In0.82Ga0.18As受光層と格子整合しなければならないので窓層はInPとすることができない。 FIG. 8 shows the structure of a photodiode proposed by Non-Patent Document 1. On the n + -InP substrate 52, 12 to 20 graded layers InAs y P 1-y 53 with slightly different mixed crystal ratios y are laminated. Further, an InAs 0.6 P 0.4 layer 54 is provided thereon. A light-receiving layer thereon, and by further growing a window layer of InAs 0.6 P 0.4 56 provided n-In 0.82 Ga 0.18 As55. A mask such as SiN is provided on the InAs 0.6 P 0.4 window layer and zinc is diffused to provide a p region at the center of the element, and a pn junction is formed in the middle of the light receiving layer. Further, a p-electrode 58 is formed in the p-type region. An n-electrode 60 is attached to the bottom surface of the InP substrate. Since the In 0.82 Ga 0.18 As light receiving layer must be lattice-matched, the window layer cannot be InP.

特開平9−219563「半導体光素子とそれを用いた応用システム」Japanese Patent Laid-Open No. 9-219563 “Semiconductor optical device and application system using it”

一方GaInNAsを受光層とする受光素子も提案されている。例えば特許文献2はそのような発光素子と受光素子を提案する。これは1.7μmから5μmの中赤外光を受光するために提案されたものである。3族がGaとIn、5族がNとAsよりなる四元系である。バンドギャップが0.73eV以下であるものを作ることができるので1.7μm以上の波長の光を受光できると述べている。   On the other hand, a light receiving element using GaInNAs as a light receiving layer has also been proposed. For example, Patent Document 2 proposes such a light emitting element and a light receiving element. This is proposed for receiving mid-infrared light of 1.7 μm to 5 μm. Group 3 is a quaternary system consisting of Ga and In and Group 5 is composed of N and As. It is stated that light having a wavelength of 1.7 μm or more can be received because a band gap of 0.73 eV or less can be produced.

図9は特許文献2が提案した2076nmの吸収端波長を持つ受光層を用いたフォトダイオードの断面図である。n−InP基板の上にn−InP層、ノンドープGaInNAs層、p−InP層、p−GaInAs層をエピタキシャル成長によって形成している。さらに素子の両側部をn−InP基板にいたるまでエッチング除去して凸の字型にしている。表面をSiOで覆って、さらに上頂部に穴を開けてp−GaInAsにオーミック接合するようにp電極を形成している。n−InP基板の底面にはリング状にn電極を形成している。受光層はGaInNAsである。 FIG. 9 is a cross-sectional view of a photodiode using a light receiving layer having an absorption edge wavelength of 2076 nm proposed by Patent Document 2. In FIG. An n-InP layer, a non-doped GaInNAs layer, a p-InP layer, and a p-GaInAs layer are formed on the n-InP substrate by epitaxial growth. Further, both sides of the element are etched away until reaching the n-InP substrate to form a convex shape. A p-electrode is formed so as to cover the surface with SiO 2 and further make a hole at the top to make ohmic contact with p-GaInAs. An n electrode is formed in a ring shape on the bottom surface of the n-InP substrate. The light receiving layer is GaInNAs.

非特許文献1は、多数枚のInAs1−yグレーディッド層を介在させて、InP基板と、In0.82Ga0.18Asの格子不整合を抑制している。そのような少しずつyが大きくなる多数のグレーディッド層をエピタキシャル成長させるのは難しいし高コストになり望ましくない。それに暗電流は十分に低いとはいえない。通常のInP基板とその上にエピタキシャル成長させたInGaAs受光層よりなる光通信用のフォトダイオードの暗電流より3桁多い暗電流を示している。 Non-Patent Document 1 suppresses lattice mismatch between the InP substrate and In 0.82 Ga 0.18 As by interposing a large number of InAs y P 1-y graded layers. It is difficult and expensive to epitaxially grow a large number of graded layers with y gradually increasing. In addition, the dark current is not sufficiently low. It shows a dark current three orders of magnitude greater than the dark current of a photodiode for optical communication composed of a normal InP substrate and an InGaAs light receiving layer epitaxially grown thereon.

またInPでなくて、InAsPを窓層に用いることから、その組成に対応した窓効果により1.5μm以下の短波長領域での感度が大きく低下する。さらに非常に高いストレスが結晶に内在するためにプロセス途中で割れ易く、量産性が悪いという欠点がある。   Further, since InAsP is used for the window layer instead of InP, the sensitivity in a short wavelength region of 1.5 μm or less is greatly reduced due to the window effect corresponding to the composition. Furthermore, since very high stress is inherent in the crystal, it is liable to break during the process, resulting in poor mass productivity.

特許文献2のGaInNAsを受光層とする受光素子はいまだ実現されていない。その理由はGaInNAsそのものの結晶成長が技術的に難しいためである。特に0.2μm以上のバルク結晶で良好な結晶性を実現することは難しい。特許文献2はGaInNAsがInP基板と格子整合すると言うが格子整合条件が満足されても良好なGaInNAs薄膜を成長させる事は難しい。InP基板の上にうまく薄膜結晶が成長するのに必要な条件は格子整合条件だけではないということである。たとえGaInNAs四元系がInPと整合していてもInPの上に成長させるとGaInNAsには多大の欠陥が生じて良質の単結晶薄膜にならない。   A light receiving element using GaInNAs of Patent Document 2 as a light receiving layer has not been realized yet. The reason is that crystal growth of GaInNAs itself is technically difficult. In particular, it is difficult to achieve good crystallinity with a bulk crystal of 0.2 μm or more. Patent Document 2 says that GaInNAs and the InP substrate are lattice-matched, but it is difficult to grow a good GaInNAs thin film even if the lattice-matching conditions are satisfied. The condition necessary for successful growth of the thin film crystal on the InP substrate is not only the lattice matching condition. Even if the GaInNAs quaternary system is aligned with InP, when grown on InP, a large number of defects are generated in GaInNAs and a high-quality single crystal thin film is not obtained.

つまり、中赤外域で機能する感度に優れ暗電流の小さい受光素子はいまだないということである。   In other words, there is still no light-receiving element with excellent sensitivity that functions in the mid-infrared region and a low dark current.

本発明は、GaInNAsPまたはGaInNAsSbあるいはGaInNAsPSbの組成の受光層(光吸収層)をInP基板状に形成したフォトダイオードを提案する。基板としてInP基板を用いることができ、1.67μm〜3.0μmの中赤外光を受光することができる。GaInNAsに燐PまたはアンチモンSbまたはPとSbの両方を加えた受光層(光吸収層)を形成することによってInPとの格子整合性を高め良好な結晶性を有する受光層を実現することを提案する。   The present invention proposes a photodiode in which a light-receiving layer (light absorption layer) having a composition of GaInNAsP, GaInNAsSb, or GaInNAsPSb is formed on an InP substrate. An InP substrate can be used as the substrate, and mid-infrared light of 1.67 μm to 3.0 μm can be received. Proposing to realize a light-receiving layer with improved crystal matching with InP by forming a light-receiving layer (light absorption layer) in which GaInNAs is added with phosphorus P or antimony Sb or both P and Sb. To do.

つまり特許文献2などによって提案されているGaInNAsだけでは結晶組成の不均一性や欠陥が顕著であるが、P、Sbを加えることによって結晶組成の不均一や欠陥の発生を打ち消すことができる。格子定数だけを比べると特許文献2のGaInNAsはInP基板と同じであるにしても、うまくInP基板の上にGaInNAsが厚くきれいに成長しない。本発明はPやSbを微少量加えて堅固で整合性のよい薄膜単結晶を作る。PやSbを添加することによってバンドギャップは長波長化する効果もあるし、また、これらの添加によって良質の単結晶がInP基板の上に整合性良く成長することができる。本発明の骨子はそこにある。PとSbは別々に加えるだけでも効果があるがPとSbの両方を加えても良い。   That is, nonuniformity and defects in the crystal composition are remarkable only with GaInNAs proposed by Patent Document 2 and the like, but by adding P and Sb, the nonuniformity in crystal composition and the generation of defects can be counteracted. When only the lattice constants are compared, even though the GaInNAs disclosed in Patent Document 2 is the same as the InP substrate, the GaInNAs does not grow well on the InP substrate. In the present invention, a small amount of P or Sb is added to make a thin single crystal that is firm and has good consistency. By adding P or Sb, the band gap has an effect of increasing the wavelength, and by adding these, a high-quality single crystal can be grown on the InP substrate with good consistency. The gist of the present invention is there. It is effective to add P and Sb separately, but both P and Sb may be added.

受光層組成における好ましいSbの含有量は0.1at%〜20at%である。Sb含有量が20at%を越えると格子不整合が現れて欠陥が発生する。0.1at%以下であると欠陥の発生を抑制できない。   The preferable Sb content in the light receiving layer composition is 0.1 at% to 20 at%. If the Sb content exceeds 20 at%, lattice mismatch appears and defects are generated. The occurrence of defects cannot be suppressed when the content is 0.1 at% or less.

受光層組成における好ましいPの含有量は0.01at%〜10at%である。Pの含有量が10at%を越えると発光強度が弱くなるという欠点がある。Pの含有量が0.01%以下だと欠陥が増大する。PとSbの両方を加えた場合の受光層組成におけるSbおよびPの含有量はそれぞれ0.1at%〜20at%、0.01at%〜10at%である。0.1at%以下のSb,0.01at%以下のPでは加えても効果が現れない。   The preferable P content in the light receiving layer composition is 0.01 at% to 10 at%. If the P content exceeds 10 at%, there is a drawback that the emission intensity becomes weak. If the P content is 0.01% or less, defects increase. The contents of Sb and P in the light receiving layer composition when both P and Sb are added are 0.1 at% to 20 at% and 0.01 at% to 10 at%, respectively. Even if it adds Sb of 0.1 at% or less and P of 0.01 at% or less, the effect does not appear.

GaInNAsにPまたはSbを微少量添加するだけで欠陥の発生を抑制することができる。PまたはSbを上の範囲で含むGaInNAsで形成される受光層は、InP基板との格子不整合度(|Δa/a|)は0.2%以下である。つまり図8において説明したように非特許文献1ではIn0.82Ga0.18As受光層をそのままInP基板の上に形成できないから、InP基板とIn0.82Ga0.18As受光層を整合させるためのInAs1−yグレーディッド層(12〜20層程度)をぜひとも設けなければならなかった。 The occurrence of defects can be suppressed by adding a very small amount of P or Sb to GaInNAs. The light-receiving layer formed of GaInNAs containing P or Sb in the upper range has a degree of lattice mismatch (| Δa / a |) with the InP substrate of 0.2% or less. That can not be formed on an InP substrate as the non-patent document 1, In 0.82 Ga 0.18 As absorption layer as described in FIG. 8, an InP substrate and an In 0.82 Ga 0.18 As absorption layer An InAs y P 1-y graded layer (about 12 to 20 layers) for matching had to be provided.

グレーディッド層はMBE法などで形成できるが混晶比yを正確に定量的に変化させる必要があり製造は容易でなくコスト高を招く。本発明ではそのような基板と受光層(光吸収層)を格子整合させるためのグレーディッド層が不要であるということである。それは受光層がはじめから基板と±0.2%の範囲で格子整合しているからである。グレーディッド層が要らないから製造容易になるしコストも低く歩留まりも向上する。   Although the graded layer can be formed by the MBE method or the like, it is necessary to change the mixed crystal ratio y accurately and quantitatively, so that the production is not easy and the cost is increased. In the present invention, such a graded layer for lattice matching between the substrate and the light receiving layer (light absorbing layer) is not necessary. This is because the light receiving layer is lattice-matched with the substrate in the range of ± 0.2% from the beginning. Since no graded layer is required, manufacturing is easy, cost is low, and yield is improved.

それに窓層は図8のようにInAs0.60.4にする必要はない。非特許文献1は受光層とInPが整合しないので窓層もInAs0.60.4にしなければならなかった。それは受光層がInPと整合していないからである。ところが本発明でGaInNAsPまたはGaInNAsSbあるいはGaInNAsPSb受光層がInP基板と整合しているから窓層としてもInPを使うことができる。あるいはInPと格子整合してInPよりも若干バンドギャップ波長の短いIn0.52Al0.48Asを窓層としても使うことができる。InPのバンドギャップが0.92μmであるのに対してIn0.52Al0.48Asのバンドギャップは0.86μmである。InP窓層が使えるので混晶比の制御の難しいInAs0.60.4を窓層として作る必要がなく窓層の製造が容易となる。 In addition, the window layer need not be InAs 0.6 P 0.4 as shown in FIG. In Non-Patent Document 1, since the light-receiving layer and InP do not match, the window layer must also be InAs 0.6 P 0.4 . This is because the light receiving layer is not aligned with InP. However, since the GaInNAsP, GaInNAsSb, or GaInNAsPSb light-receiving layer is aligned with the InP substrate in the present invention, InP can also be used as the window layer. Alternatively, In 0.52 Al 0.48 As that is lattice-matched with InP and has a slightly shorter band gap wavelength than InP can be used as the window layer. The band gap of In 0.52 Al 0.48 As is 0.86 μm while the band gap of InP is 0.92 μm. Since the InP window layer can be used, it is not necessary to make InAs 0.6 P 0.4, which is difficult to control the mixed crystal ratio, as the window layer, and the window layer can be easily manufactured.

それだけでなくて窓層としてInAsPを使うと吸収があるので1.5μm以下の波長で感度が低下してしまう。ところが本発明は受光層がInP基板と整合しているから窓層としてInPまたはIn0.52Al0.48Asを用いることができ1.5μm以下で吸収がなく1.5μm以下の短波長領域での感度低下は起こらない。 In addition, if InAsP is used as the window layer, there is absorption, and the sensitivity is lowered at a wavelength of 1.5 μm or less. However, in the present invention, since the light receiving layer is aligned with the InP substrate, InP or In 0.52 Al 0.48 As can be used as the window layer, and there is no absorption at 1.5 μm or less, and a short wavelength region of 1.5 μm or less. There will be no reduction in sensitivity.

本発明は、GaInNAsに、PまたはSbあるいはPとSbの両方を追加したGaInNAsPまたはGaInNAsSbあるいはGaInNAsPSbを受光層にしInP基板の上に作製したフォトダイオードを提案する。GaInNAsはたとえ格子定数が合致していても、ミクロに見れば結晶組成が不均一で欠陥が生ずるのであるが、SbまたはPまたはその両方を少し添加することによって、結晶組成を均一化させ欠陥発生を抑えることができる。基板と受光層が整合するので良好な受光層結晶が得られることを実験的に見いだしている。   The present invention proposes a photodiode fabricated on an InP substrate using GaInNAsP or GaInNAsSb or GaInNAsPSb in which P or Sb or both P and Sb are added to GaInNAs as a light-receiving layer. Even if the lattice constants match, GaInNAs has a non-uniform crystal composition and defects when viewed microscopically, but by adding a little Sb or P or both, the crystal composition becomes uniform and defects are generated. Can be suppressed. It has been experimentally found that a good light-receiving layer crystal can be obtained because the substrate and the light-receiving layer are matched.

また、傾斜基板を使うことによりNの取り込み効率が向上して結晶の均一性が良くなることも本発明者は見いだしている。通常の(100)面を表面とする(100)面InP基板ではなくて表面が(100)面から少し傾斜しているオフアングルInP基板を使うと窒素Nの取り込み効率が上がり受光層、窓層などの結晶の均一性を向上させることができる。望ましいInP基板の傾斜角(オフ角;オフアングル)は(100)から0.2゜〜20゜である。   The inventors have also found that the use of a tilted substrate improves the N incorporation efficiency and improves the crystal uniformity. If an off-angle InP substrate whose surface is slightly inclined from the (100) plane is used instead of the (100) plane InP substrate having the normal (100) plane as the surface, the nitrogen N uptake efficiency increases and the light receiving layer and window layer The crystal uniformity can be improved. A desirable inclination angle (off angle; off angle) of the InP substrate is 0.2 ° to 20 ° from (100).

図11に本発明の受光素子(GaInNAsP受光層)の一例に係る構造を示す。n−InP基板2の上に、n−InP層3、GaInNAsP受光層4、n−InP窓層5がエピタキシャル成長によって設けられる。n−InP層3はバッファ層であるがこれはn型にドープしてもよいしノンドープでもよい。ノンドープでもn型になる。n−InP窓層5もn型ドープしてもノンドープでもよい。ノンドープでもn型になる。n−InP窓層5の上に保護膜7(SiN、SiO)をつけ中央部に開口部を設けてマスクとし開口部から亜鉛を選択拡散してp領域6を形成する。pn接合9がGaInNAsP受光層4の中間にできる。p領域6の上にはp電極8を設けている。n−InP基板2の底面にはn電極10を設けている。受光層は5元系になる。複雑な層であるが、GaInNAsに少しの量のPが入っているのでInP基板と格子定数が近似しており格子整合性に優れている。受光層の混晶比を変えて1.65μm〜3μmの波長範囲に感度を持つようにする事ができる。 FIG. 11 shows a structure according to an example of the light receiving element (GaInNAsP light receiving layer) of the present invention. An n-InP layer 3, a GaInNAsP light-receiving layer 4, and an n-InP window layer 5 are provided on the n-InP substrate 2 by epitaxial growth. The n-InP layer 3 is a buffer layer, which may be doped n-type or non-doped. Even if it is not doped, it becomes n-type. The n-InP window layer 5 may also be n-type doped or non-doped. Even if it is not doped, it becomes n-type. A protective film 7 (SiN, SiO 2 ) is provided on the n-InP window layer 5, an opening is provided in the center, and a mask is formed to selectively diffuse zinc from the opening to form a p region 6. A pn junction 9 can be formed in the middle of the GaInNAsP light receiving layer 4. A p-electrode 8 is provided on the p-region 6. An n-electrode 10 is provided on the bottom surface of the n-InP substrate 2. The light receiving layer is a ternary system. Although it is a complicated layer, since a small amount of P is contained in GaInNAs, the lattice constant is approximated to the InP substrate, and the lattice matching is excellent. It is possible to change the mixed crystal ratio of the light receiving layer so as to have sensitivity in a wavelength range of 1.65 μm to 3 μm.

図12に本発明の受光素子(GaInNAsSb受光層)の他の例に係る構造を示す。n−InP基板2の上に、n−InP層3、GaInNAsSb受光層24、n−InP窓層5がエピタキシャル成長によって設けられる。n−InPバッファ層3はノンドープでもn型にドープしてもよい。ノンドープでもn型となる。図11の受光素子と同様にn−InP窓層5の上に保護膜7(SiN、SiOなど)をつけ中央部に開口部を設けてマスクとし開口部から亜鉛を選択拡散してZn拡散領域(p領域)6を形成する。pn接合9がGaInNAsSb受光層24の中間にできる。p領域6の上にはp電極8を設けている。n−InP基板2の底面にはn電極10を設けている。受光層はGaInNAsSbの5元系になる。GaInNAsに少しの量のSbが入っているのでInP基板との相性がよくなり整合性に優れている。受光層の混晶比を変えて1.65μm〜3μmの波長範囲に感度を持つようにする事ができる。 FIG. 12 shows a structure according to another example of the light receiving element (GaInNAsSb light receiving layer) of the present invention. On the n-InP substrate 2, an n-InP layer 3, a GaInNAsSb light-receiving layer 24, and an n-InP window layer 5 are provided by epitaxial growth. The n-InP buffer layer 3 may be doped undoped or n-type. Even if it is not doped, it becomes n-type. As in the light receiving element of FIG. 11, a protective film 7 (SiN, SiO 2, etc.) is provided on the n-InP window layer 5 and an opening is provided in the center to selectively diffuse zinc from the opening as a mask. Region (p region) 6 is formed. A pn junction 9 can be formed in the middle of the GaInNAsSb light receiving layer 24. A p-electrode 8 is provided on the p-region 6. An n-electrode 10 is provided on the bottom surface of the n-InP substrate 2. The light receiving layer is a GaInNAsSb ternary system. Since a small amount of Sb is contained in GaInNAs, the compatibility with the InP substrate is improved and the matching is excellent. It is possible to change the mixed crystal ratio of the light receiving layer so as to have sensitivity in a wavelength range of 1.65 μm to 3 μm.

図16に本発明の第3のタイプの受光素子(GaInNAsPSb受光層)の一例に係る構造を示す。n−InP基板2の上にノンドープInP層13、GaInNAsPSb受光層14、InAlAs窓層25、InGaAsキャップ層26がエピタキシャル成長によって設けられる。ノンドープInP層13はバッファ層である。ノンドープでもn型になる。n−InAlAs窓層25もn型ドープしてもノンドープでもよい。ノンドープでもn型になる。InGaAsキャップ層26もn型ドープしてもノンドープでもよい。ノンドープでもn型になる。InGaAsキャップ層26の上に保護膜7(SiN、SiO)をつけ中央部に開口部を設けてマスクとし開口部から亜鉛を選択拡散してp領域6を形成する。pn接合9がGaInNAsPSb受光層14の中間にできる。p領域6の上にはp電極8を設けている。n−InP基板2の底面にはn電極10を設けている。受光層は6元系になる。複雑な層であるが、GaInNAsに少しの量のPとSbが入っているのでInP基板と格子定数が近似しており格子整合性に優れている。受光層の混晶比を変えて1.65μm〜3μmの波長範囲に感度を持つようにする事ができる。 FIG. 16 shows a structure according to an example of a third type light receiving element (GaInNAsPSb light receiving layer) of the present invention. On the n-InP substrate 2, a non-doped InP layer 13, a GaInNAsPSb light-receiving layer 14, an InAlAs window layer 25, and an InGaAs cap layer 26 are provided by epitaxial growth. The non-doped InP layer 13 is a buffer layer. Even if it is not doped, it becomes n-type. The n-InAlAs window layer 25 may also be n-type doped or non-doped. Even if it is not doped, it becomes n-type. The InGaAs cap layer 26 may also be n-type doped or non-doped. Even if it is not doped, it becomes n-type. A protective film 7 (SiN, SiO 2 ) is formed on the InGaAs cap layer 26, and an opening is provided in the central portion to serve as a mask to selectively diffuse zinc from the opening to form the p region 6. A pn junction 9 is formed in the middle of the GaInNAsPSb light receiving layer 14. A p-electrode 8 is provided on the p-region 6. An n-electrode 10 is provided on the bottom surface of the n-InP substrate 2. The light receiving layer is a 6-element system. Although it is a complicated layer, since GaInNAs contains a small amount of P and Sb, the lattice constant is approximated to the InP substrate, and the lattice matching is excellent. It is possible to change the mixed crystal ratio of the light receiving layer so as to have sensitivity in a wavelength range of 1.65 μm to 3 μm.

図11、図12、図16に示すものは上面から光が入る上面入射型のフォトダイオードを例示しているが裏面入射型とすることもできる。裏面入射型の場合はn電極をリング状に形成し中央開口部をつくり開口部から基板の底面に光が入射するようにする。
本発明のInP基板はn−InP基板とは限らない。半絶縁性基板SI−InPを用いることもできる。
11, FIG. 12, and FIG. 16 exemplify top-illuminated photodiodes in which light enters from the top surface, but back-illuminated types can also be used. In the case of the back-illuminated type, the n-electrode is formed in a ring shape to form a central opening so that light enters the bottom surface of the substrate from the opening.
The InP substrate of the present invention is not necessarily an n-InP substrate. A semi-insulating substrate SI-InP can also be used.

図13は鉄(Fe)ドープSI−InP基板30の上に、n−InP層32、n−InPバッファ層33、GaInNAsP34、n−InP窓層35をエピ成長させ、保護マスク(SiN、SiO)37をつけ、亜鉛を選択拡散してZn拡散領域(p領域)36を形成している。GaInNAsP34の半ばにpn接合39ができる。InP窓層35、GaInNAsP34、n―InPバッファ層33の両側をエッチングで除去しn−InP層32を露呈する。n−InP層32にn電極40を設ける。p領域36にp電極38をつける。露出した部分は保護膜37で被覆する。SI−InP基板30の裏面から光が入射するようになっている。構造は複雑であるが、n−InP(例えばSドープ)よりも鉄ドープのSI−InPの方が透明度が高いので、感度をより高くすることができる。 In FIG. 13, an n-InP layer 32, an n-InP buffer layer 33, a GaInNAsP34, and an n-InP window layer 35 are epitaxially grown on an iron (Fe) -doped SI-InP substrate 30, and a protective mask (SiN, SiO 2 37) and zinc is selectively diffused to form a Zn diffusion region (p region) 36. A pn junction 39 is formed in the middle of GaInNAsP34. Both sides of the InP window layer 35, GaInNAsP34, and n-InP buffer layer 33 are removed by etching to expose the n-InP layer 32. An n electrode 40 is provided on the n-InP layer 32. A p electrode 38 is attached to the p region 36. The exposed part is covered with a protective film 37. Light enters from the back surface of the SI-InP substrate 30. Although the structure is complex, since the transparency of iron-doped SI-InP is higher than that of n-InP (for example, S-doped), the sensitivity can be further increased.

図14は鉄(Fe)ドープSI−InP基板30の上に、n−InP層32、n−InPバッファ層33、GaInNAsSb44、n−InP窓層35をエピ成長させ、保護マスク(SiN、SiO)37をつけ、亜鉛を選択拡散してZn拡散領域(p領域)36を形成している。GaInNAsSb44の半ばにpn接合39ができる。InP窓層35、GaInNAsSb44、n―InPバッファ層33の両側をエッチングで除去しn−InP層32を露呈する。n−InP層32にn電極40を設ける。p領域36にp電極38をつける。露出した部分は保護膜37で被覆する。SI−InP基板30の裏面から光が入射するようになっている。 FIG. 14 shows an epitaxial growth of an n-InP layer 32, an n-InP buffer layer 33, a GaInNAsSb 44, and an n-InP window layer 35 on an iron (Fe) -doped SI-InP substrate 30, and a protective mask (SiN, SiO 2 37) and zinc is selectively diffused to form a Zn diffusion region (p region) 36. A pn junction 39 is formed in the middle of GaInNAsSb44. Both sides of the InP window layer 35, GaInNAsSb 44, and n-InP buffer layer 33 are removed by etching to expose the n-InP layer 32. An n electrode 40 is provided on the n-InP layer 32. A p electrode 38 is attached to the p region 36. The exposed part is covered with a protective film 37. Light enters from the back surface of the SI-InP substrate 30.

本発明は、GaInNAsPまたはGaInNAsSbあるいはGaInNAsPSbを受光層(光吸収層)とするので、InP基板と良好に整合することができる。多少格子不整合があってもそれを±0.2%以内に抑制することができる。InP基板との不整合がないので結晶性はよくて欠陥が少ない良質の結晶となる。暗電流は少なく感度に優れた受光素子となる。Sbの好ましい濃度は0.1at%〜20at%であり、Pの好ましい濃度は0.01at%〜10at%である。at%というのは5族元素の中での比率をいう。全体の原子に対しての比率ではない。混晶比の百分比表現である。GaInNAsと本発明のGaInNAsSb、GaInNAsP、GaInNAsPSbとはエピタキシャル成長結晶の表面の面粗度の違いによっても分る。本発明の効果を調べるため、図17に示すようなエピタキシャル成長薄膜を作って表面の状態を観察した。鉄ドープInP基板の上に0.3μm厚みのInAlAsバッファ層を設け更にその上に1μm厚みのGaInNAs(従来例)とGaInNAsSb(本発明)をエピタキシャル成長させてサンプルを作製した。
具体的な組成はGa0.47In0.530.018As0.982(従来例)とGa0.47In0.530.018As0.932Sb0.05(本発明)である。これは従来例のAs原子の一部をSbによって置き換えたものである。原子間力顕微鏡(AFM)によって両方のサンプルの表面の凹凸を観察した。
図18はGa0.47In0.530.018As0.982(従来例)の表面を示す。顕微鏡写真によっても表面の荒さがよく分る。一本の直線にそった面の凹凸をグラフで示した。横軸は線分に沿った寸法であり5μmの長さを示す。縦軸は表面の微小な凹凸でありフルスケールは±25nmである。10nm〜5nm程度の凹凸が多数見られる。±15nmもの凹凸がある。表面の荒れが甚だしく面粗度は大きい。
図19はGa0.47In0.530.018As0.932Sb0.05(本発明)の表面をしめす。顕微鏡写真によっても表面の平坦度の優れていることがよく分る。一本の直線にそった面の凹凸をグラフで示した。横軸は線分に沿った寸法であり0.7μmの長さを示す。縦軸は表面の微小な凹凸でありフルスケールは±2.5nmである。図18のスケールの1/10であることに注意すべきである。0.3nm〜0.1nm程度の凹凸はあるが極めて滑らかで平坦であることが分る。面粗度は図18の従来例のものの大体1/30以下になっている。図19の試料はSbを5at%添加しただけで他の条件は同じである。だから表面状態が改善されたのはSb添加の効果である。
In the present invention, since GaInNAsP, GaInNAsSb, or GaInNAsPSb is used as a light-receiving layer (light absorption layer), it can be well aligned with the InP substrate. Even if there is some lattice mismatch, it can be suppressed to within ± 0.2%. Since there is no mismatch with the InP substrate, a crystal with good crystallinity and few defects is obtained. The light receiving element has little dark current and excellent sensitivity. A preferable concentration of Sb is 0.1 at% to 20 at%, and a preferable concentration of P is 0.01 at% to 10 at%. “at%” refers to the ratio among group 5 elements. It is not the ratio to the whole atom. It is a percentage expression of the mixed crystal ratio. GaInNAs and GaInNAsSb, GaInNAsP, and GaInNAsPSb of the present invention can also be seen by the difference in surface roughness of the epitaxially grown crystal surface. In order to investigate the effect of the present invention, an epitaxially grown thin film as shown in FIG. 17 was formed and the surface state was observed. An InAlAs buffer layer having a thickness of 0.3 μm was provided on an iron-doped InP substrate, and a sample was prepared by epitaxially growing GaInNAs (conventional example) and GaInNAsSb (present invention) having a thickness of 1 μm thereon.
Specific compositions are Ga 0.47 In 0.53 N 0.018 As 0.982 (conventional example) and Ga 0.47 In 0.53 N 0.018 As 0.932 Sb 0.05 (invention). It is. This is obtained by replacing a part of As atoms in the conventional example with Sb. Irregularities on the surface of both samples were observed with an atomic force microscope (AFM).
FIG. 18 shows the surface of Ga 0.47 In 0.53 N 0.018 As 0.982 (conventional example). The roughness of the surface can be seen well from micrographs. The unevenness of the surface along one straight line is shown in a graph. The horizontal axis is the dimension along the line segment and indicates a length of 5 μm. The vertical axis represents minute irregularities on the surface, and the full scale is ± 25 nm. Many irregularities of about 10 nm to 5 nm are observed. There are as many as ± 15 nm irregularities. The surface is extremely rough and the surface roughness is large.
FIG. 19 shows the surface of Ga 0.47 In 0.53 N 0.018 As 0.932 Sb 0.05 (invention). It can be seen well from the micrograph that the surface flatness is excellent. The unevenness of the surface along one straight line is shown in a graph. The horizontal axis is the dimension along the line segment and shows a length of 0.7 μm. The vertical axis represents minute irregularities on the surface, and the full scale is ± 2.5 nm. Note that it is 1/10 of the scale of FIG. It can be seen that although there are irregularities of about 0.3 nm to 0.1 nm, it is extremely smooth and flat. The surface roughness is about 1/30 or less of the conventional example of FIG. In the sample of FIG. 19, the other conditions are the same except that 5 at% of Sb is added. Therefore, the surface condition is improved by the effect of Sb addition.

InGaAsを受光層とする非特許文献1に述べている(図8)ような基板と受光層の格子不整合を緩和するためのInAs1−yグレーディッド層が不要である。グレーディッド層の製造は層数が20枚程度と多いので微妙な制御を必要とし時間もかかる。本発明はそのような格子整合のための機構が不要であるから非特許文献1に比べて構造簡単で製造コストを削減することができる。 The InAs y P 1-y graded layer for relaxing the lattice mismatch between the substrate and the light receiving layer as described in Non-Patent Document 1 using InGaAs as the light receiving layer (FIG. 8) is unnecessary. Since the graded layer is produced with as many as 20 layers, it requires delicate control and takes time. Since the present invention does not require such a mechanism for lattice matching, the structure can be simplified and the manufacturing cost can be reduced as compared with Non-Patent Document 1.

非特許文献1はInGaAsを受光層としInPともともと格子不整合なのでInP窓層を受光層の上に設けることができない(図8)。InAsPを窓層としているがこれは1.5μmより短い波長を吸収してしまう。本発明は窓層をInPとすることができる。InPは1.5μm以下の光を通すことができる。   Non-Patent Document 1 uses InGaAs as a light-receiving layer and lattice mismatch with InP, so that an InP window layer cannot be provided on the light-receiving layer (FIG. 8). Although InAsP is used as the window layer, it absorbs wavelengths shorter than 1.5 μm. In the present invention, the window layer can be InP. InP can pass light of 1.5 μm or less.

非特許文献1は暗電流が20μA〜30μA(@1V、300K)と言っているが、それは暗電流として小さい値でない。本発明は格子不整合がないので欠陥が少なく暗電流は2〜5nA程度にすることができる。暗電流が小さいというのはフォトダイオードにおいて重要なことである。本発明は暗電流が非特許文献1の1/1000〜1/10000程度であるから優れた受光素子である。   Non-Patent Document 1 says that the dark current is 20 μA to 30 μA (@ 1 V, 300 K), but it is not a small value as the dark current. Since there is no lattice mismatch in the present invention, there are few defects and the dark current can be about 2 to 5 nA. The low dark current is important in photodiodes. The present invention is an excellent light receiving element because the dark current is about 1/1000 to 1/10000 of Non-Patent Document 1.

特許文献2はInP基板またはGaAs基板の上にGaInNAsを受光層を設けた中赤外光用の受光素子であるが、先ほども述べたようにGaInNAsのInP基板上への結晶成長は難しく0.2μm以上の厚みを持つ良好な結晶構造を持つGaInNAsはまだ得られていない。たとえGaInNAsの理論的な格子定数がInP基板の格子定数aと同じであっても、うまくInP基板の上に厚く(0.2μm以上の厚みに)成長しない。   Patent Document 2 is a light receiving element for mid-infrared light in which a light-receiving layer of GaInNAs is provided on an InP substrate or a GaAs substrate, but as described above, it is difficult to grow a crystal of GaInNAs on an InP substrate. GaInNAs having a good crystal structure with a thickness of 2 μm or more has not been obtained yet. Even if the theoretical lattice constant of GaInNAs is the same as the lattice constant a of the InP substrate, it does not grow well on the InP substrate (to a thickness of 0.2 μm or more).

本発明はGaInNAsにPまたはSbあるいはPとSbの両方を加えてより容易に良質の結晶の成長を可能としている。格子定数の一致以外に、ミクロに見た結晶組成の均一性を向上し、欠陥発生を抑制する必要がある。それをPとSbが満たしているものと考えられる。   The present invention makes it possible to grow high-quality crystals more easily by adding P or Sb or both P and Sb to GaInNAs. In addition to the coincidence of lattice constants, it is necessary to improve the uniformity of the crystal composition seen microscopically and suppress the generation of defects. It is considered that P and Sb satisfy it.

[実施例1(GaInNAsP受光層/InP基板:ジャスト基板、オフアングル基板:MOVPE法:図1、3)] [Example 1 (GaInNAsP light-receiving layer / InP substrate: just substrate, off-angle substrate: MOVPE method: FIGS. 1 and 3)]

(1)図1に示すような構造の受光素子を製作した。
電極・層構造は上から順に、
p電極8/SiN膜7
ノンドープInP窓層5(d=1.5μm)/Zn拡散領域6
n−GaInNAsP4(Siドープ;n=3×1015cm−3、d=1μm)
ノンドープInPバッファ層3(d=2μm)
n−InP基板2(Sドープ)
n電極10
というようになっている。
(1) A light receiving element having a structure as shown in FIG. 1 was manufactured.
The electrode / layer structure is from top to bottom,
p-electrode 8 / SiN film 7
Non-doped InP window layer 5 (d = 1.5 μm) / Zn diffusion region 6
n-GaInNAsP4 (Si doped; n = 3 × 10 15 cm −3 , d = 1 μm)
Non-doped InP buffer layer 3 (d = 2 μm)
n-InP substrate 2 (S-doped)
n-electrode 10
It is like that.

2インチSドープn−InP基板2にノンドープInP3(2μm厚み)、Siを微量ドープしたGaInNAsP4(キャリヤ濃度3×1015cm−3、1μm厚み)、ノンドープInP窓層5(1.5μm厚み)をMOVPE法でエピタキシャル成長した。エピタキシャル成長温度は520℃である。 Non-doped InP3 (2 μm thickness), GaInNAsP4 (carrier concentration 3 × 10 15 cm −3 , 1 μm thickness) doped with a small amount of Si, and non-doped InP window layer 5 (1.5 μm thickness) on a 2-inch S-doped n-InP substrate 2 Epitaxial growth was performed by the MOVPE method. The epitaxial growth temperature is 520 ° C.

原料はトリメチルインジウム(TMIn)、トリエチルガリウム(TEGa)、ターシャリブチルアルシン(TBAs)、ターシャリブチルホスフィン(TBP)、ジメチルヒドラジン(DMHy)、テトラエチルシラン(TESi)である。   The raw materials are trimethylindium (TMIn), triethylgallium (TEGa), tertiarybutylarsine (TBAs), tertiarybutylphosphine (TBP), dimethylhydrazine (DMHy), and tetraethylsilane (TESi).

InP基板は、(100)ジャスト基板と、(100)から[111]方向に10゜傾斜したオフアングル基板の2種類を用いた。   Two types of InP substrates were used: a (100) just substrate and an off-angle substrate tilted 10 ° from (100) in the [111] direction.

GaInNAsP受光層とInP基板との格子不整合度は0.1%である。格子不整合は常に±0.2%以下にすることができた。InP基板の上にInPバッファ層、GaInNAsP層を成長させた段階で成長を中断しフォトルミネッセンスを調べた。   The degree of lattice mismatch between the GaInNAsP light-receiving layer and the InP substrate is 0.1%. The lattice mismatch could always be ± 0.2% or less. The growth was interrupted at the stage where an InP buffer layer and a GaInNAsP layer were grown on the InP substrate, and photoluminescence was examined.

GaInNAsP層のPL(フォトルミネッセンス)スペクトルを図3に示す。横軸は波長(μm)、縦軸はフォトルミネッセンス強度(任意目盛り)である。実線は10゜オフアングルInP基板の上にInP/GaInNAsP/InPをエピタキシャル成長させたものである。破線は(001)ジャストInP基板の上にInP/GaInNAsP/InPをエピタキシャル成長させたものである。GaInNAsPのフォトルミネッセンスは波長2.4μm以下では微弱であるが2.45μm程度で増えはじめ、波長2.6μmでピークを示した。受光層のバンドギャップが約0.48eVだということがわかる。   FIG. 3 shows a PL (photoluminescence) spectrum of the GaInNAsP layer. The horizontal axis represents wavelength (μm), and the vertical axis represents photoluminescence intensity (arbitrary scale). The solid line is obtained by epitaxially growing InP / GaInNAsP / InP on a 10 ° off-angle InP substrate. A broken line is obtained by epitaxially growing InP / GaInNAsP / InP on a (001) just InP substrate. The photoluminescence of GaInNAsP was weak at a wavelength of 2.4 μm or less, but started to increase at about 2.45 μm, and showed a peak at a wavelength of 2.6 μm. It can be seen that the band gap of the light receiving layer is about 0.48 eV.

(100)ジャスト基板の上に形成したものより、[111]方向に10度傾斜したオフアングル基板の上に形成したものの方がフォトルミネッセンス強度が強いという結果を得た。オフアングル基板の上に設けたGaInNAsPの方がジャスト基板の上に設けたGaInNAsPよりも約6倍のフォトルミネッセンス強度を示している。オフアングル基板の上に成長させた受光層の方が結晶性が優れているということである。   The result was that the photoluminescence intensity was stronger on the off-angle substrate tilted by 10 degrees in the [111] direction than on the (100) just substrate. The GaInNAsP provided on the off-angle substrate has a photoluminescence intensity about 6 times that of the GaInNAsP provided on the just substrate. This means that the light receiving layer grown on the off-angle substrate has better crystallinity.

[111]方向に10度傾斜したオフアングルInP基板上にエピタキシャル成長したウエハ(InP基板/InPバッファ層/GaInNAsP/InP窓)を用いてPIN型フォトダイオードを作製した。SiNをマスクにしてZnを選択拡散してGaInNAsP内にpn接合を形成した。   A PIN type photodiode was fabricated using a wafer (InP substrate / InP buffer layer / GaInNAsP / InP window) epitaxially grown on an off-angle InP substrate tilted by 10 degrees in the [111] direction. Zn was selectively diffused using SiN as a mask to form a pn junction in GaInNAsP.

受光径は300μmΦである。暗電流は3nA(@2V、300K)であって良好な結果を得た。これはInGaAs受光層をもつ非特許文献1の暗電流(20μA〜30μAの約1万分の1である)。それはGaInNAsPの結晶性がよく欠陥が少ないということを意味している。優れた中赤外光用nフォトダイオードである。   The light receiving diameter is 300 μmΦ. The dark current was 3 nA (@ 2 V, 300 K), and good results were obtained. This is the dark current of Non-Patent Document 1 having an InGaAs light receiving layer (about 1 / 10,000 of 20 μA to 30 μA). That means that GaInNAsP has good crystallinity and few defects. It is an excellent n-photodiode for mid-infrared light.

[実施例2(GaInNAsSb受光層/InP基板:ジャスト基板;オフアングル基板:MBE法:図2、4)]
図2に示すような構造の受光素子を製作した。電極・層構造は上から順に、
[Example 2 (GaInNAsSb light-receiving layer / InP substrate: just substrate; off-angle substrate: MBE method: FIGS. 2 and 4)]
A light receiving element having a structure as shown in FIG. 2 was manufactured. The electrode / layer structure is from top to bottom,

p電極8/SiN膜7
ノンドープInP窓層5(d=1.5μm)/Zn拡散領域6
n−GaInNAsSb24(Siドープ;n=3×1015cm−3、d=1μm)
ノンドープInPバッファ層3(d=1μm)
n−InP基板2(Sドープ)
n電極10
というようになっている。
p-electrode 8 / SiN film 7
Non-doped InP window layer 5 (d = 1.5 μm) / Zn diffusion region 6
n-GaInNAsSb24 (Si-doped; n = 3 × 10 15 cm −3 , d = 1 μm)
Non-doped InP buffer layer 3 (d = 1 μm)
n-InP substrate 2 (S-doped)
n-electrode 10
It is like that.

2インチSドープInP基板にノンドープInP(1μm厚み)、ノンドープのGaInNAsSb(キャリヤ濃度3×1015cm−3、1μm厚み)、ノンドープInP窓層(1.5μm厚み)をMBE法でエピタキシャル成長した。成長温度は490℃である。 Non-doped InP (1 μm thickness), non-doped GaInNAsSb (carrier concentration 3 × 10 15 cm −3 , 1 μm thickness), and non-doped InP window layer (1.5 μm thickness) were epitaxially grown on a 2-inch S-doped InP substrate by MBE. The growth temperature is 490 ° C.

InP基板は(100)ジャストInP基板と、(100)から[1−11]方向に15度傾斜したオフアングルInP基板を用いた。GaInNAsSb層までエピタキシャル成長した後表面のフォトルミネッセンスを測定した。その結果を図4に示す。横軸は波長(μm)である。縦軸はフォトルミネッセンス強度である(任意目盛り)。実線がオフアングル基板上に成長させたGaInNAsSbのフォトルミネッセンスで、破線が(100)ジャスト基板の上に成長させたフォトルミネッセンスである。実線は2.8μm程度まで低い値であるが、2.86μmあたりから急激に増大しはじめる。2.95μmでピークをもつ。   As the InP substrate, a (100) just InP substrate and an off-angle InP substrate inclined by 15 degrees from (100) in the [1-11] direction were used. After the epitaxial growth to the GaInNAsSb layer, the surface photoluminescence was measured. The result is shown in FIG. The horizontal axis is the wavelength (μm). The vertical axis represents photoluminescence intensity (arbitrary scale). The solid line is the photoluminescence of GaInNAsSb grown on the off-angle substrate, and the broken line is the photoluminescence grown on the (100) just substrate. The solid line is a low value up to about 2.8 μm, but starts to increase rapidly from around 2.86 μm. It has a peak at 2.95 μm.

このGaInNAsSbはバンドギャップ波長が2.95μmであるということである。バンドギャップは0.42eVである。オフアングル基板の上に設けたGaInNAsSbの方が、(100)ジャスト基板の上に成長させたGaInNAsSbよりも2.95μmのピーク高さが約9倍高い。オフアングル基板上に設けた方が結晶性が優れて良質だということである。   This GaInNAsSb has a band gap wavelength of 2.95 μm. The band gap is 0.42 eV. GaInNAsSb provided on an off-angle substrate has a peak height of 2.95 μm about 9 times higher than GaInNAsSb grown on a (100) just substrate. It is better to provide it on an off-angle substrate because it has better crystallinity.

基板のオフアングル(オフ角、傾斜角)の、GaInNAsSb受光層(光吸収層)への影響を調べるために、オフアングルの違う幾つかのInP基板を準備し、オフアングルInP基板の上に、InPバッファ層、GaInNAsSb受光層(Sb濃度は1at%と5at%)を成長させた試料を同じ条件で作製した。その結果を図5、図15に示す。横軸はInP基板のオフ角(度)であり、縦軸はフォトルミネッセンス強度(任意目盛り)である。Sb濃度1at%(黒丸印))の場合もSb濃度5at%(黒三角印)の場合もそれぞれ9つの種類の試料があり、グラフに9の点が打ってある。複数のサンプルで測定し平均したものである。   In order to investigate the influence of the off-angle (off-angle, tilt angle) of the substrate on the GaInNAsSb light-receiving layer (light absorption layer), several InP substrates with different off-angles were prepared, and on the off-angle InP substrate, A sample on which an InP buffer layer and a GaInNAsSb light-receiving layer (Sb concentrations were 1 at% and 5 at%) was produced under the same conditions. The results are shown in FIGS. The horizontal axis is the off angle (degree) of the InP substrate, and the vertical axis is the photoluminescence intensity (arbitrary scale). In the case of Sb concentration of 1 at% (black circle mark)) and in the case of Sb concentration of 5 at% (black triangle mark), there are 9 types of samples, and 9 dots are marked on the graph. Measured and averaged over multiple samples.

[1.Sb濃度が1at%の場合(図5の黒丸印)]
(100)ジャストでフォトルミネッセンス(PL)が0.1、オフ角が2度でフォトルミネッセンスが0.25である。オフ角が5度でフォトルミネッセンスは1.0に上がる。オフ角が10度で最大値1.2を取る。オフ角が13度でPLは1.0である。オフ角が15度でPLは0.9に低下する。オフ角が20度でPLは1.15となる。20度を越えるとPLは低下し始める。オフ角が25度でPLは0.3に落ちる。オフ角が33度でPLは0.05に低下する。
この測定からSb濃度が1at%の場合、望ましいInP基板のオフアングルは5度〜20度であることがわかる。この結果はGaInNAsSb受光層のものであるが、GaInNAsP受光層でも同様な結果が得られた。
[1. When Sb concentration is 1 at% (black circle in FIG. 5)]
(100) Just, the photoluminescence (PL) is 0.1, the off angle is 2 degrees, and the photoluminescence is 0.25. Photoluminescence increases to 1.0 at an off angle of 5 degrees. The off angle is 10 degrees and the maximum value is 1.2. The off angle is 13 degrees and the PL is 1.0. When the off angle is 15 degrees, the PL drops to 0.9. The off angle is 20 degrees and the PL is 1.15. When it exceeds 20 degrees, PL starts to decrease. The off angle is 25 degrees and the PL drops to 0.3. At an off angle of 33 degrees, PL decreases to 0.05.
From this measurement, it is understood that when the Sb concentration is 1 at%, the off angle of the desired InP substrate is 5 degrees to 20 degrees. This result is for the GaInNAsSb light-receiving layer, but a similar result was obtained for the GaInNAsP light-receiving layer.

[2.Sb濃度が5%の場合(図15の黒三角印)]
(100)ジャストでフォトルミネッセンス(PL)が0.1である。これはSb=1at%の場合と同じである。オフ角が0.2度でフォトルミネセンスが0.9に強くなる。オフ角が2度でフォトルミネッセンスは1.3に上がる。オフ角が5度でフォトルミネッセンスは1.0になる。オフ角が10度でフォトルミネセンスは0.9を取る。オフ角が13度でPLは1.0である。オフ角が15度でPLは0.9に低下する。オフ角が20度でPLは0.85に落ちる。20度を越えるとPLは低下し始める。オフ角が25度でPLは0.25に落ちる。オフ角が33度でPLは0.05に低下する。
この測定からSb濃度が5at%の場合、望ましいInP基板のオフアングルは0.2度〜20度であることがわかる。この結果はGaInNAsSb受光層(Sb=5at%)のものであるが、Sb濃度が20at%以下であれば同様の結果が得られた。GaInNAsP受光層(P濃度0.01at%〜10at%)でもPの濃度を2at%に増やすことによって同様な結果が得られた。
さらにGaInNAsPSb(Pの濃度0.01at%〜10at%、Sbの濃度0.1at%〜20at%)の場合でも同様の結果が得られた。
[Sb濃度およびP濃度の上限について]
Sbの濃度が20at%を越えるとフォトルミネセンスがほとんど得られなくなる。またノンドープでのキャリヤ濃度が1×1017cm−3を越えるというように結晶純度が低下して、受光素子には使えないレベルの結晶純度しか得られなかった。
Pの濃度についても10at%を越えるとエピ表面に曇りが生じ、フォトルミネセンスが殆ど得られなくなり、受光素子に用いることができない。
[2. When Sb concentration is 5% (black triangle mark in FIG. 15)]
(100) Just and photoluminescence (PL) is 0.1. This is the same as when Sb = 1 at%. The off-angle is 0.2 degree, and the photoluminescence becomes strong at 0.9. The off-angle is 2 degrees and the photoluminescence rises to 1.3. The off-angle is 5 degrees and the photoluminescence is 1.0. The off-angle is 10 degrees and the photoluminescence is 0.9. The off angle is 13 degrees and the PL is 1.0. When the off angle is 15 degrees, the PL drops to 0.9. The off angle is 20 degrees and the PL drops to 0.85. When it exceeds 20 degrees, PL starts to decrease. The off angle is 25 degrees and the PL drops to 0.25. At an off angle of 33 degrees, PL decreases to 0.05.
From this measurement, it is understood that when the Sb concentration is 5 at%, the desired off-angle of the InP substrate is 0.2 degrees to 20 degrees. This result is for a GaInNAsSb light-receiving layer (Sb = 5 at%), but the same result was obtained when the Sb concentration was 20 at% or less. In the GaInNAsP light-receiving layer (P concentration 0.01 at% to 10 at%), similar results were obtained by increasing the P concentration to 2 at%.
Furthermore, similar results were obtained even in the case of GaInNAsPSb (P concentration 0.01 at% to 10 at%, Sb concentration 0.1 at% to 20 at%).
[Upper limit of Sb concentration and P concentration]
When the Sb concentration exceeds 20 at%, photoluminescence is hardly obtained. Further, the crystal purity was lowered so that the carrier concentration in non- doping exceeded 1 × 10 17 cm −3, and only a crystal purity of a level that could not be used for the light receiving element was obtained.
If the concentration of P exceeds 10 at%, the epi surface becomes cloudy and photoluminescence is hardly obtained, and cannot be used for a light receiving element.

この実施例においてGaInNAsSb受光層とInP基板との格子不整合度は0.15%である。不整合が0.2%以下であるからグレーディッド層のようなものは不要でしかも結晶欠陥が少ないのである。   In this example, the degree of lattice mismatch between the GaInNAsSb light receiving layer and the InP substrate is 0.15%. Since the mismatch is 0.2% or less, a graded layer is unnecessary and there are few crystal defects.

オフアングル基板(オフ角15度)の上にInP/GaInNAsSb/InPをエピタキシャル成長させたエピウエハに、SiNをマスクにしてZnを選択拡散してGaInNAsSb内にpn接合を形成した。受光径は200μmΦであった。暗電流は2nA@2Vと良好な結果を得た。これは非特許文献1の1/1000程度の微少な暗電流である。優れた中赤外用フォトダイオードであることがわかる。   Zn was selectively diffused using SiN as a mask on an epitaxial wafer obtained by epitaxially growing InP / GaInNAsSb / InP on an off-angle substrate (off-angle 15 °) to form a pn junction in GaInNAsSb. The light receiving diameter was 200 μmΦ. The dark current was 2 nA @ 2V, and good results were obtained. This is a minute dark current of about 1/1000 of Non-Patent Document 1. It can be seen that this is an excellent mid-infrared photodiode.

[実施例3(GaInNAsSb受光層/InP基板:;オフアングル基板:フォトダイオード)]
実施例2で作製したGaInNAsSb/InP受光素子を用いて光通信用受信モジュールを作製した。受光径200μmである。暗電流は3nA@5Vを得た。さらに感度の波長依存性を調べた。その結果を図10に示す。横軸は波長(Wavelength:nm)である。縦軸は相対感度(Relative Sensitivity:dB)である。光通信で使われる通常のInGaAs/InP受光素子の感度の波長依存性も調べた。
[Example 3 (GaInNAsSb light-receiving layer / InP substrate :; off-angle substrate: photodiode)]
Using the GaInNAsSb / InP light-receiving element produced in Example 2, a reception module for optical communication was produced. The light receiving diameter is 200 μm. The dark current obtained was 3 nA @ 5V. Furthermore, the wavelength dependence of sensitivity was investigated. The result is shown in FIG. The horizontal axis represents the wavelength (Wavelength: nm). The vertical axis represents the relative sensitivity (Relativistic Sensitivity: dB). The wavelength dependence of the sensitivity of a normal InGaAs / InP light receiving element used in optical communication was also examined.

通常のInGaAs/InPというのは先ほど述べた非特許文献1の中赤外用のInGaAs/InPとは異なる。これまでの1.3μmバンド、1.55μmバンドを使う通常の光通信用の汎用型(グレーディッド層のない)InGaAs/InPフォトダイオードである。   Ordinary InGaAs / InP is different from InGaAs / InP for mid-infrared for Non-Patent Document 1 described above. This is a general-purpose (no graded layer) InGaAs / InP photodiode for ordinary optical communication using the conventional 1.3 μm band and 1.55 μm band.

通常の光通信で使用されているInGaAs/InPは950nmから感度を有し、1300nm、1550nmまで良好な感度を持つ。しかし通常の光通信用InGaAsフォトダイオードは1620nmを越えるあたりで感度が急激に低下する。1640nmで感度は殆どない。それはInGaAs受光層のバンドギャップが0.76eV程度で大きいからである。   InGaAs / InP used in normal optical communication has sensitivity from 950 nm, and good sensitivity from 1300 nm to 1550 nm. However, the sensitivity of an ordinary InGaAs photodiode for optical communication is drastically lowered when it exceeds 1620 nm. There is almost no sensitivity at 1640 nm. This is because the band gap of the InGaAs light receiving layer is as large as about 0.76 eV.

それに対して、本発明のGaInNAsSb/InPフォトダイオードでは1700nmまで感度が維持できている。これは1625nmまでの高い感度の維持が必要なLバンド帯の受信に適している。つまり本発明のフォトダイオードは長波長の光通信にも有用だということである。先ほど述べたように実施例2のGaInNAsSbは2.9μmに吸収端をもつから、1700nm以上2900nmまで感度をもっている。石英ファイバを用いる光通信ではそのような長い波長を使わないのでその範囲の感度については別異の応用が可能である。   In contrast, the sensitivity of the GaInNAsSb / InP photodiode of the present invention can be maintained up to 1700 nm. This is suitable for reception in the L band band that needs to maintain high sensitivity up to 1625 nm. That is, the photodiode of the present invention is also useful for long wavelength optical communication. As described above, since GaInNAsSb of Example 2 has an absorption edge at 2.9 μm, it has sensitivity from 1700 nm to 2900 nm. Since optical communication using a quartz fiber does not use such a long wavelength, different applications are possible with respect to sensitivity in that range.

[実施例4(GaInNAsSb受光層/InP基板;基板:フォトダイオード;土壌水分測定センサ)]
実施例2で作製したGaInNAsSb/InP受光素子を用いて土壌の水分量を測定した。図6に示すように水は1450nmと1950nmに吸収のピークを持つ。2900nm〜3100nmも吸収が大きい。土壌水分はこれまで静電容量の変化などで測定する技術があったが、光学的に測定する技術は未だない。優れたセンサがないからである。水分を測定するためには上のような水に特有の吸収スペクトルピークの光をあて吸収光を計測すればよい。
[Example 4 (GaInNAsSb light-receiving layer / InP substrate; substrate: photodiode; soil moisture measurement sensor)]
The moisture content of the soil was measured using the GaInNAsSb / InP light-receiving element produced in Example 2. As shown in FIG. 6, water has absorption peaks at 1450 nm and 1950 nm. Absorption is also large at 2900 nm to 3100 nm. So far, there has been a technique to measure soil moisture by changing capacitance, but there is still no technique to measure it optically. This is because there is no excellent sensor. In order to measure moisture, the absorption light may be measured by applying light having an absorption spectrum peak peculiar to water as described above.

1450nmと1950nmの2つの水の吸収スペクトルを用い本発明のGaInNAsSb/InP受光素子で透過光を受光し検量線を作製して計算した。その結果、実際に土壌を1000℃まで加熱して蒸発した水分の重量から求めた水分量との差異は0.3%以内であった。つまり0.3%以内の精度で水分量を定量できたということである。   Using the two water absorption spectra of 1450 nm and 1950 nm, the transmitted light was received by the GaInNAsSb / InP light receiving element of the present invention, and a calibration curve was prepared and calculated. As a result, the difference from the amount of water determined from the weight of water evaporated by actually heating the soil to 1000 ° C. was within 0.3%. That is, the amount of water could be quantified with an accuracy within 0.3%.

[実施例5(GaInNAsSb受光層/InP基板;オフアングル基板:フォトダイオード;PET選別センサ)]
実施例2で作製したGaInNAsSb/InP受光素子を用いてプラスチックの分別システムを作製した。ポリエチレンテレフタレート(PET)の吸収スペクトルは図7のようである。横軸は波長(nm)縦軸はスペクトル強度である。
さまざまのプラスチックからPETを選別する必要がある。一つの波長の光を測定していたのではPETと他の材料の区別がつかない。幾つかの選ばれた波長を使ってその波長の光の吸収あるいは透過を幾つかのフォトダイオードで測定する。それを、ニューラルネットワークを応用してスペクトル強度比を認識してPETを他の物質から選別できた。
[Example 5 (GaInNAsSb light-receiving layer / InP substrate; off-angle substrate: photodiode; PET sorting sensor)]
A plastic separation system was manufactured using the GaInNAsSb / InP light-receiving element manufactured in Example 2. The absorption spectrum of polyethylene terephthalate (PET) is as shown in FIG. The horizontal axis represents wavelength (nm) and the vertical axis represents spectral intensity.
There is a need to sort PET from various plastics. Measuring light of one wavelength cannot distinguish between PET and other materials. Several selected wavelengths are used to measure the absorption or transmission of light at that wavelength with several photodiodes. It was possible to select PET from other substances by applying a neural network to recognize the spectral intensity ratio.

[実施例6(GaInNAsSb受光層/InP基板;オフアングル基板:フォトダイオード;果物糖度センサ)]
実施例2で作製したGaInNAsSb/InP受光素子を用いてりんごの糖度を測定した。1〜2μmまでに見られるりんごの糖分による吸収から推定した糖度と従来の破壊検査法で測定した糖度の相関を調べた結果、糖度(10〜20%)において、±1%の精度で測定できる結果を得た。
[Example 6 (GaInNAsSb light-receiving layer / InP substrate; off-angle substrate: photodiode; fruit sugar content sensor)]
The sugar content of the apple was measured using the GaInNAsSb / InP light-receiving element produced in Example 2. As a result of investigating the correlation between sugar content estimated from absorption due to sugar content of apples observed up to 1 to 2 μm and sugar content measured by the conventional destructive inspection method, sugar content (10-20%) can be measured with accuracy of ± 1% The result was obtained.

[実施例7(GaInNAsSb受光層/InP基板:0.2度オフ基板、ジャスト基板:MOVPE法:図16)]
(1)図16に示すような構造の受光素子を製作した。
電極・層構造は上から順に、
p電極8/SiN膜7
In0.53Ga0.47Asキャップ層26(n=5×1015cm−3、d=0.02μm)
SiドープIn0.52Al0.48As窓層25(n=5×1015cm−3、d=0.6μm)/Zn拡散領域6
n−Ga0.47In0.530.018As0.93150.0005Sb0.05層14(ノンドープ;n=8×1015cm−3、d=2μm)
ノンドープInPバッファ層13(d=1μm)
n−InP基板2(Sドープ)
n電極10
というようになっている。この受光層はPが0.05at%、Sbが5at%のGaInNAsPSbである。
[Example 7 (GaInNAsSb light-receiving layer / InP substrate: 0.2 degree off substrate, just substrate: MOVPE method: FIG. 16)]
(1) A light receiving element having a structure as shown in FIG. 16 was manufactured.
The electrode / layer structure is from top to bottom,
p-electrode 8 / SiN film 7
In 0.53 Ga 0.47 As cap layer 26 (n = 5 × 10 15 cm −3 , d = 0.02 μm)
Si-doped In 0.52 Al 0.48 As window layer 25 (n = 5 × 10 15 cm −3 , d = 0.6 μm) / Zn diffusion region 6
n-Ga 0.47 In 0.53 N 0.018 As 0.9315 P 0.0005 Sb 0.05 layer 14 (non-doped; n = 8 × 10 15 cm −3 , d = 2 μm)
Non-doped InP buffer layer 13 (d = 1 μm)
n-InP substrate 2 (S-doped)
n-electrode 10
It is like that. This light receiving layer is GaInNAsPSb with 0.05 at% P and 5 at% Sb.

2インチSドープn−InP基板2((100)面から[11−1]方向に0.2度オフ)に、ノンドープInP(1μm厚み)層13、ノンドープGaInNAsPSb(キャリヤ濃度8×1015cm−3、2μm厚み)14、SiドープIn0.52Al0.48As窓層(キャリヤ濃度5×1015cm−3、0.6μm厚み)25、In0.53Ga0.47Asキャップ層(キャリヤ濃度5×1015cm−3、0.02μm厚み)26をMBE法でエピタキシャル成長した。エピタキシャル成長温度は490℃である。SiN膜を拡散マスクにしてZnを選択拡散させた。p電極はTiPt、n電極はAuGeNiを用いた。
受光径200μmφのpin型PDを作製した。逆バイアス電圧1Vでの暗電流は1nAであり十分小さい。良好なPDであった。
On a 2-inch S-doped n-InP substrate 2 (0.2 degrees off in the [11-1] direction from the (100) plane), a non-doped InP (1 μm thickness) layer 13, a non-doped GaInNAsPSb (carrier concentration 8 × 10 15 cm − 3 , 2 μm thickness) 14, Si-doped In 0.52 Al 0.48 As window layer (carrier concentration 5 × 10 15 cm −3 , 0.6 μm thickness) 25, In 0.53 Ga 0.47 As cap layer ( (Carrier concentration 5 × 10 15 cm −3 , 0.02 μm thickness) 26 was epitaxially grown by MBE. The epitaxial growth temperature is 490 ° C. Zn was selectively diffused using the SiN film as a diffusion mask. TiPt was used for the p electrode and AuGeNi was used for the n electrode.
A pin type PD having a light receiving diameter of 200 μmφ was produced. The dark current at a reverse bias voltage of 1 V is 1 nA, which is sufficiently small. The PD was good.

n−InP基板の上にGaInNAsP受光層を設けた本発明の実施例1に係る中赤外光用受光素子の断面図。Sectional drawing of the light-receiving element for mid-infrared light which concerns on Example 1 of this invention which provided the GaInNAsP light-receiving layer on the n-InP board | substrate.

n−InP基板の上にGaInNAsSb受光層を設けた本発明の実施例2に係る中赤外光用受光素子の断面図。Sectional drawing of the light receiving element for mid-infrared light based on Example 2 of this invention which provided the GaInNAsSb light-receiving layer on the n-InP substrate.

実施例1のGaInNAsP受光層のフォトルミネッセンス測定結果を示すグラフ。横軸は波長(μm)、縦軸はフォトルミネッセンス強度(任意目盛り)である。6 is a graph showing the photoluminescence measurement results of the GaInNAsP light-receiving layer of Example 1. The horizontal axis represents wavelength (μm), and the vertical axis represents photoluminescence intensity (arbitrary scale).

実施例2のGaInNAsSb受光層のフォトルミネッセンス測定結果を示すグラフ。横軸は波長(μm)、縦軸はフォトルミネッセンス強度(任意目盛り)である。The graph which shows the photoluminescence measurement result of the GaInNAsSb light receiving layer of Example 2. The horizontal axis represents wavelength (μm), and the vertical axis represents photoluminescence intensity (arbitrary scale).

(100)ジャスト基板と、(100)面から[111]方向または[11−1]方向に2度〜33度傾斜したオフアングル基板の上に、InPバッファ層を設けその上にGaInNAsSb受光層(Sb濃度1at%)を設けた試料のフォトルミネッセンス強度の測定結果を示すグラフ。An InP buffer layer is provided on an (100) just substrate and an off-angle substrate inclined by 2 to 33 degrees in the [111] direction or [11-1] direction from the (100) plane, and a GaInNAsSb light receiving layer ( The graph which shows the measurement result of the photoluminescence intensity | strength of the sample which provided Sb density | concentration 1at%.

水による光の吸収率の波長依存性を示すグラフ。横軸は波長(nm)、縦軸は吸収率である。The graph which shows the wavelength dependence of the light absorption rate by water. The horizontal axis represents wavelength (nm), and the vertical axis represents absorption rate.

ポリエチレンテレフタラートによる光の吸収率の波長依存性を示すグラフ。横軸は波長(nm)、縦軸は吸収率である。The graph which shows the wavelength dependence of the light absorption rate by a polyethylene terephthalate. The horizontal axis represents wavelength (nm), and the vertical axis represents absorption rate.

非特許文献1(T.Murakami,H.Takahasi,M.Nakayama,Y.Miura、K.Takemoto,D.Hara,“InGa1−xAs/InAs1−y detector for near infrared(1−2.6μm)”、Conference Proceedings of Indium Phosphide and Related Materials)によって提案されたInP基板の上にグレーディッド層を介してInGaAs受光層を設けた中赤外光用フォトダイオードの断面図。Non-Patent Document 1 (T.Murakami, H.Takahasi, M.Nakayama, Y.Miura, K.Takemoto, D.Hara, "In x Ga 1-x As / InAs y P 1-y detector for near infrared (1 -2.6 μm) ”, a cross-sectional view of a photodiode for mid-infrared light in which an InGaAs light receiving layer is provided on an InP substrate proposed by Conference Processings of Indium Phosphide and Related Materials) via a graded layer.

特許文献2(特開平9−219563『半導体光素子とそれを用いた応用システム』)によって提案されたInP基板上にGaInNAs受光層を設けた中赤外光用フォトダイオードの断面図。Sectional drawing of the photodiode for mid-infrared light which provided the GaInNAs light-receiving layer on the InP board | substrate proposed by patent document 2 (Unexamined-Japanese-Patent No. 9-219563 "Semiconductor optical element and its application system").

本発明のGaInNAsSb/InPフォトダイオードと、通常の光通信用InGaAs/InPフォトダイオードの感度の波長依存性を示すグラフ。横軸は波長(nm)、縦軸は相対感度(Relative Sensitivity)である。The graph which shows the wavelength dependence of the sensitivity of the GaInNAsSb / InP photodiode of this invention, and the normal InGaAs / InP photodiode for optical communications. The horizontal axis is wavelength (nm), and the vertical axis is relative sensitivity (Relativistic Sensitivity).

n−InP基板の上にInPバッファ層を介してGaInNAsP受光層を設けた本発明の中赤外光用受光素子の断面図。Sectional drawing of the light receiving element for mid-infrared light of this invention which provided the GaInNAsP light-receiving layer via the InP buffer layer on the n-InP substrate.

n−InP基板の上にInPバッファ層を介してGaInNAsSb受光層を設けた本発明の中赤外光用受光素子の断面図。Sectional drawing of the light receiving element for mid-infrared light of this invention which provided the GaInNAsSb light-receiving layer via the InP buffer layer on the n-InP substrate.

鉄ドープSI−InP基板の上にn−InP層、GaInNAsPを設けた本発明の中赤外光用受光素子の断面図。Sectional drawing of the light receiving element for mid-infrared light of this invention which provided the n-InP layer and GaInNAsP on the iron dope SI-InP board | substrate.

鉄ドープSI−InP基板の上にn−InP層、GaInNAsSbを設けた本発明の中赤外光用受光素子の断面図。Sectional drawing of the light receiving element for mid-infrared light of this invention which provided the n-InP layer and GaInNAsSb on the iron dope SI-InP board | substrate.

(100)ジャスト基板と、(100)面から[111]方向または[11−1]方向に2度〜33度傾斜したオフアングル基板の上に、InPバッファ層を設けその上にGaInNAsSb受光層(Sb濃度5at%)を設けた試料のフォトルミネッセンス強度の測定結果を示すグラフ。An InP buffer layer is provided on an (100) just substrate and an off-angle substrate inclined by 2 to 33 degrees in the [111] direction or [11-1] direction from the (100) plane, and a GaInNAsSb light receiving layer ( The graph which shows the measurement result of the photoluminescence intensity | strength of the sample which provided Sb density | concentration 5at%.

n−InP基板の上にGaInNAsPSb受光層を設けた本発明の実施例7に係る中赤外光用受光素子の断面図。Sectional drawing of the light receiving element for mid-infrared light which concerns on Example 7 of this invention which provided the GaInNAsPSb light-receiving layer on the n-InP substrate.

鉄ドープInP基板の上にInAlAs層を設けさらに、その上にエピタキシャル成長させたGaInNAs層(従来例)とGaInNAsSb層(本発明)の表面状態を比較するための試料の層構造図。FIG. 4 is a layer structure diagram of a sample for comparing the surface states of a GaInNAs layer (conventional example) and a GaInNAsSb layer (present invention) epitaxially grown on an InAlAs layer on an iron-doped InP substrate.

鉄ドープInP基板の上にInAlAs層を設けさらにその上にGaInNAs層(比較例:Ga0.47In0.530.018As0.982)をエピタキシャル成長させたものの表面の原子間力顕微鏡(AFM)写真と直線に沿った凹凸のグラフ。An atomic force microscope on the surface of an InAlAs layer provided on an iron-doped InP substrate and a GaInNAs layer (comparative example: Ga 0.47 In 0.53 N 0.018 As 0.982 ) epitaxially grown thereon ( AFM) Graph of unevenness along a photograph and a straight line.

鉄ドープInP基板の上にInAlAs層を設けさらにその上にGaInNAsSb層(本発明例:Ga0.47In0.530.018As0.932Sb0.05)をエピタキシャル成長させたものの表面の原子間顕微鏡(AFM)写真と直線に沿った凹凸のグラフ。An InAlAs layer is provided on an iron-doped InP substrate, and a GaInNAsSb layer (example of the present invention: Ga 0.47 In 0.53 N 0.018 As 0.932 Sb 0.05 ) is epitaxially grown thereon . An atomic microscope (AFM) photograph and a graph of unevenness along a straight line.

符号の説明Explanation of symbols

2 n−InP基板
3 InPバッファ層
4 GaInNAsP受光層(光吸収層)
5 n−InP窓層
6 Zn拡散領域
7 保護膜 (SiN、SiO
8 p電極
9 pn接合
10 n電極
13 ノンドープInP層
14 GaInNAsPSb受光層(光吸収層)
24 GaInNAsSb受光層 (光吸収層)
25 InAlAs窓層
26 InGaAsキャップ層
30 SI−InP基板
32 n−InP
33 n−InP
34 GaInNAsP
35 InP
36 Zn拡散領域
37 保護膜
38 p電極
39 pn接合
40 n電極
2 n-InP substrate 3 InP buffer layer
4 GaInNAsP light-receiving layer (light absorption layer)
5 n-InP window layer 6 Zn diffusion region
7 Protective film (SiN, SiO 2 )
8 p-electrode
9 pn junction
10 n electrode
13 Non-doped InP layer 14 GaInNAsPSb light receiving layer (light absorption layer)
24 GaInNAsSb absorption layer (light absorption layer)
25 InAlAs window layer 26 InGaAs cap layer 30 SI-InP substrate 32 n-InP
33 n-InP
34 GaInNAsP
35 InP
36 Zn diffusion region 37 Protective film 38 p electrode 39 pn junction 40 n electrode

Claims (16)

InP基板と、その上に設けられバンドギャップ波長が1.65μm〜3.0μmであるGaInNAsP受光層(光吸収層)とを有する事を特徴とする受光素子。 A light receiving element comprising: an InP substrate; and a GaInNAsP light receiving layer (light absorption layer) provided on the InP substrate and having a band gap wavelength of 1.65 μm to 3.0 μm. GaInNAsP受光層におけるPの濃度は0.01at%〜10at%であることを特徴とする請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein the concentration of P in the GaInNAsP light receiving layer is 0.01 at% to 10 at%. InP基板の格子定数をaとし、GaInNAsPとInPの格子定数の差をΔaとして、GaInNAsPはInP基板に対して|Δa/a|≦0.2%となるような格子整合度を有することを特徴とする請求項1に記載の受光素子。 When the lattice constant of the InP substrate is a and the difference between the lattice constants of GaInNAsP and InP is Δa, GaInNAsP has a lattice matching degree such that | Δa / a | ≦ 0.2% with respect to the InP substrate. The light receiving element according to claim 1. InP基板と、その上に設けられバンドギャップ波長が1.65μm〜3.0μmであるGaInNAsSb受光層(光吸収層)とを有する事を特徴とする受光素子。 A light receiving element comprising: an InP substrate; and a GaInNAsSb light receiving layer (light absorption layer) provided on the InP substrate and having a band gap wavelength of 1.65 μm to 3.0 μm. GaInNAsSb受光層においてSbの濃度が0.1at%〜20at%である事を特徴とする請求項4に記載の受光素子。 The light receiving element according to claim 4, wherein the GaInNAsSb light receiving layer has a Sb concentration of 0.1 at% to 20 at%. InP基板の格子定数をaとし、GaInNAsSbとInPの格子定数の差をΔaとして、GaInNAsSbはInP基板に対して|Δa/a|≦0.2%となるような格子整合度を有することを特徴とする請求項4に記載の受光素子。 When the lattice constant of the InP substrate is a, and the difference between the lattice constants of GaInNAsSb and InP is Δa, GaInNAsSb has a lattice matching degree such that | Δa / a | ≦ 0.2% with respect to the InP substrate. The light receiving element according to claim 4. InP基板と、その上に設けられバンドギャップ波長が1.65μm〜3.0μmであるGaInNAsPSb受光層(光吸収層)とを有することを特徴とする受光素子 A light receiving element comprising: an InP substrate; and a GaInNAsPSb light receiving layer (light absorption layer) provided on the InP substrate and having a band gap wavelength of 1.65 μm to 3.0 μm GaInNAsPSb受光層においてPの濃度は0.01at%〜10at%、Sbの濃度は0.1at%〜20at%であることを特徴とする請求項7に記載の受光素子。 8. The light receiving element according to claim 7, wherein in the GaInNAsPSb light receiving layer, the concentration of P is 0.01 at% to 10 at% and the concentration of Sb is 0.1 at% to 20 at%. InP基板の格子定数をaとし、GaInNAsPSbの格子定数とInPの格子定数の差をΔaとして、GaInNAsPSbはInP基板に対して|Δa/a|≦0.2%となるような格子定数を有することを特徴とする請求項7に記載の受光素子。 When the lattice constant of the InP substrate is a and the difference between the lattice constant of GaInNAsPSb and InP is Δa, GaInNAsPSb has a lattice constant such that | Δa / a | ≦ 0.2% with respect to the InP substrate. The light receiving element according to claim 7. InP基板は(100)から[111]方向または[11−1]方向に0.2度〜20度傾斜したオフアングル基板であることを特徴とする請求項1〜9の何れかに記載の受光素子。 The light receiving device according to any one of claims 1 to 9, wherein the InP substrate is an off-angle substrate inclined from 0.2 to 20 degrees in a [111] direction or a [11-1] direction from (100). element. InP基板はFeドープした半絶縁性であることを特徴とする請求項1〜10の何れかに記載の受光素子。 The light receiving element according to claim 1, wherein the InP substrate is Fe-doped semi-insulating. 受光層の上にInP窓層あるいはInAlAs窓層を備えることを特徴とする請求項1〜11の何れかに記載の受光素子。 The light receiving element according to claim 1, further comprising an InP window layer or an InAlAs window layer on the light receiving layer. 請求項1から12の何れかに記載の受光素子を含む事を特徴とする光通信用受光モジュール。 A light receiving module for optical communication, comprising the light receiving element according to claim 1. 請求項1から12の何れかに記載の受光素子を用いた事を特徴とする水分濃度計測器。 A water concentration measuring instrument using the light receiving element according to claim 1. 請求項1から12の何れかに記載の受光素子を用いた事を特徴とする糖度計測器。 A sugar content measuring instrument using the light receiving element according to any one of claims 1 to 12. 請求項1から12の何れかに記載の受光素子を用いた事を特徴とするプラスチック選別用計測器。 13. A plastic sorting measuring instrument using the light receiving element according to claim 1.
JP2006035880A 2005-02-23 2006-02-14 Receiving module for optical communication using light receiving element and light receiving element, and measuring instrument using light receiving element Expired - Fee Related JP5008874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035880A JP5008874B2 (en) 2005-02-23 2006-02-14 Receiving module for optical communication using light receiving element and light receiving element, and measuring instrument using light receiving element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005046465 2005-02-23
JP2005046465 2005-02-23
JP2006035880A JP5008874B2 (en) 2005-02-23 2006-02-14 Receiving module for optical communication using light receiving element and light receiving element, and measuring instrument using light receiving element

Publications (2)

Publication Number Publication Date
JP2006270060A true JP2006270060A (en) 2006-10-05
JP5008874B2 JP5008874B2 (en) 2012-08-22

Family

ID=37205622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035880A Expired - Fee Related JP5008874B2 (en) 2005-02-23 2006-02-14 Receiving module for optical communication using light receiving element and light receiving element, and measuring instrument using light receiving element

Country Status (1)

Country Link
JP (1) JP5008874B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084772A1 (en) * 2007-01-10 2008-07-17 Sumitomo Electric Industries, Ltd. Light receiving device
JP2008270760A (en) * 2007-03-23 2008-11-06 Sumitomo Electric Ind Ltd Semiconductor wafer and manufacturing method, and semiconductor element
WO2009014076A1 (en) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. Light-receiving device
WO2010073770A1 (en) * 2008-12-25 2010-07-01 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
WO2011027624A1 (en) * 2009-09-07 2011-03-10 住友電気工業株式会社 Group iii-v compound semiconductor light receiving element, method for manufacturing group iii-v compound semiconductor light receiving element, light receiving element, and epitaxial wafer
JP2011060855A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Light receiving element and epitaxial wafer
JP2011060853A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Group iii-v compound semiconductor light receiving element and method of manufacturing the same
JP2011100770A (en) * 2009-11-04 2011-05-19 Sumitomo Electric Ind Ltd Method for manufacturing light receiving element array and light receiving element array, and method for manufacturing epitaxial wafer and epitaxial wafer
EP2328187A1 (en) * 2008-09-11 2011-06-01 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
JP2011109146A (en) * 2011-03-01 2011-06-02 Sumitomo Electric Ind Ltd Semiconductor light-receiving element of group iii-v compound
US7999231B2 (en) 2008-08-29 2011-08-16 Sumitomo Electric Inductries, Ltd. Moisture detector, biological body moisture detector, natural product moisture detector, and product/material moisture detector
US8188559B2 (en) 2008-02-01 2012-05-29 Sumitomo Electric Industries, Ltd. Light-receiving element and light-receiving element array
US8373156B2 (en) 2008-12-22 2013-02-12 Sumitomo Electric Industries, Ltd. Biological component detection device
WO2013065639A1 (en) * 2011-11-01 2013-05-10 住友電気工業株式会社 Light receiving element, epitaxial wafer and fabrication method for same
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
JP2014064009A (en) * 2013-10-15 2014-04-10 Sumitomo Electric Ind Ltd Light-receiving element and epitaxial wafer
JP2015043466A (en) * 2014-12-01 2015-03-05 住友電気工業株式会社 Semiconductor light receiving element of group iii-v compound
JP2017181705A (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Composition, film, optical filter, laminate, solid state image sensor, image display device, and infrared sensor
US9985152B2 (en) 2010-03-29 2018-05-29 Solar Junction Corporation Lattice matchable alloy for solar cells
US10355159B2 (en) 2010-10-28 2019-07-16 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US10916675B2 (en) 2015-10-19 2021-02-09 Array Photonics, Inc. High efficiency multijunction photovoltaic cells
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
US11211514B2 (en) 2019-03-11 2021-12-28 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
US11233166B2 (en) 2014-02-05 2022-01-25 Array Photonics, Inc. Monolithic multijunction power converter
US11271122B2 (en) 2017-09-27 2022-03-08 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218591A (en) * 1992-01-31 1993-08-27 Furukawa Electric Co Ltd:The Semiconductor laser element and semiconductor photo detector
JPH10126005A (en) * 1996-08-28 1998-05-15 Ricoh Co Ltd Semiconductor light emitting device and its manufacturing method
JP2000332229A (en) * 1999-05-18 2000-11-30 Canon Inc PHOTOELECTRIC FUSION DEVICE STRUCTURE ON Si SUBSTRATE AND MANUFACTURE OF THE DEVICE
JP2003051644A (en) * 2001-08-02 2003-02-21 Furukawa Electric Co Ltd:The Semiconductor device, semiconductor light-receiving device, semiconductor light-emitting device, semiconductor laser and surface-emitting semiconductor laser
WO2005078512A1 (en) * 2004-02-17 2005-08-25 The Furukawa Electric Co., Ltd. Photonic crystal semiconductor device and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218591A (en) * 1992-01-31 1993-08-27 Furukawa Electric Co Ltd:The Semiconductor laser element and semiconductor photo detector
JPH10126005A (en) * 1996-08-28 1998-05-15 Ricoh Co Ltd Semiconductor light emitting device and its manufacturing method
JP2000332229A (en) * 1999-05-18 2000-11-30 Canon Inc PHOTOELECTRIC FUSION DEVICE STRUCTURE ON Si SUBSTRATE AND MANUFACTURE OF THE DEVICE
JP2003051644A (en) * 2001-08-02 2003-02-21 Furukawa Electric Co Ltd:The Semiconductor device, semiconductor light-receiving device, semiconductor light-emitting device, semiconductor laser and surface-emitting semiconductor laser
WO2005078512A1 (en) * 2004-02-17 2005-08-25 The Furukawa Electric Co., Ltd. Photonic crystal semiconductor device and method for manufacturing same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171912A (en) * 2007-01-10 2008-07-24 Sumitomo Electric Ind Ltd Light-receiving element
WO2008084772A1 (en) * 2007-01-10 2008-07-17 Sumitomo Electric Industries, Ltd. Light receiving device
US8120061B2 (en) 2007-01-10 2012-02-21 Sumitomo Electric Industries, Ltd. Light receiving device
JP2008270760A (en) * 2007-03-23 2008-11-06 Sumitomo Electric Ind Ltd Semiconductor wafer and manufacturing method, and semiconductor element
US8058642B2 (en) 2007-07-23 2011-11-15 Sumitomo Electric Industries, Ltd. Light-receiving device
WO2009014076A1 (en) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. Light-receiving device
JP2009027049A (en) * 2007-07-23 2009-02-05 Sumitomo Electric Ind Ltd Light-receiving device
US8729527B2 (en) 2008-02-01 2014-05-20 Sumitomo Electric Industries, Ltd. Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
US8188559B2 (en) 2008-02-01 2012-05-29 Sumitomo Electric Industries, Ltd. Light-receiving element and light-receiving element array
US7999231B2 (en) 2008-08-29 2011-08-16 Sumitomo Electric Inductries, Ltd. Moisture detector, biological body moisture detector, natural product moisture detector, and product/material moisture detector
EP2328187A4 (en) * 2008-09-11 2014-08-06 Sumitomo Electric Industries Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
EP2328187A1 (en) * 2008-09-11 2011-06-01 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US8564666B2 (en) 2008-09-11 2013-10-22 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US8243139B2 (en) 2008-09-11 2012-08-14 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
US8373156B2 (en) 2008-12-22 2013-02-12 Sumitomo Electric Industries, Ltd. Biological component detection device
WO2010073770A1 (en) * 2008-12-25 2010-07-01 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
US8624189B2 (en) 2008-12-25 2014-01-07 Sumitomo Electric Industries, Ltd. Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP2011060853A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Group iii-v compound semiconductor light receiving element and method of manufacturing the same
WO2011027624A1 (en) * 2009-09-07 2011-03-10 住友電気工業株式会社 Group iii-v compound semiconductor light receiving element, method for manufacturing group iii-v compound semiconductor light receiving element, light receiving element, and epitaxial wafer
JP2011060855A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Light receiving element and epitaxial wafer
US9159853B2 (en) 2009-09-07 2015-10-13 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
US8866199B2 (en) 2009-09-07 2014-10-21 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
JP2011100770A (en) * 2009-11-04 2011-05-19 Sumitomo Electric Ind Ltd Method for manufacturing light receiving element array and light receiving element array, and method for manufacturing epitaxial wafer and epitaxial wafer
US9985152B2 (en) 2010-03-29 2018-05-29 Solar Junction Corporation Lattice matchable alloy for solar cells
US10355159B2 (en) 2010-10-28 2019-07-16 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
JP2011109146A (en) * 2011-03-01 2011-06-02 Sumitomo Electric Ind Ltd Semiconductor light-receiving element of group iii-v compound
WO2013065639A1 (en) * 2011-11-01 2013-05-10 住友電気工業株式会社 Light receiving element, epitaxial wafer and fabrication method for same
JP2013098385A (en) * 2011-11-01 2013-05-20 Sumitomo Electric Ind Ltd Light receiving element, epitaxial wafer, and manufacturing method of the same
JP2014064009A (en) * 2013-10-15 2014-04-10 Sumitomo Electric Ind Ltd Light-receiving element and epitaxial wafer
US11233166B2 (en) 2014-02-05 2022-01-25 Array Photonics, Inc. Monolithic multijunction power converter
JP2015043466A (en) * 2014-12-01 2015-03-05 住友電気工業株式会社 Semiconductor light receiving element of group iii-v compound
US10916675B2 (en) 2015-10-19 2021-02-09 Array Photonics, Inc. High efficiency multijunction photovoltaic cells
JP2017181705A (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Composition, film, optical filter, laminate, solid state image sensor, image display device, and infrared sensor
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
US11271122B2 (en) 2017-09-27 2022-03-08 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
US11211514B2 (en) 2019-03-11 2021-12-28 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions

Also Published As

Publication number Publication date
JP5008874B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5008874B2 (en) Receiving module for optical communication using light receiving element and light receiving element, and measuring instrument using light receiving element
Campbell et al. Quantum-dot infrared photodetectors
US7875906B2 (en) Photodetector and production method thereof
US9391229B2 (en) Light receiving element, semiconductor epitaxial wafer, detecting device, and method for manufacturing light receiving element
US7915639B2 (en) InGaAsSbN photodiode arrays
US9608148B2 (en) Semiconductor element and method for producing the same
Levine et al. A new planar InGaAs–InAlAs avalanche photodiode
JP2012256826A (en) Light-receiving element, semiconductor epitaxial wafer, manufacturing method therefor and detector
JP2008288293A (en) Semiconductor photodetector
US20130043459A1 (en) Long Wavelength Infrared Superlattice
Park et al. Monolithic two-color short-wavelength InGaAs infrared photodetectors using InAsP metamorphic buffers
Boras et al. III–V ternary nanowires on Si substrates: growth, characterization and device applications
JP2012009777A (en) Semiconductor wafer and semiconductor device
US20220045230A1 (en) Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
US9276159B2 (en) Superlattice structure
Delli et al. Heteroepitaxial integration of mid-infrared InAsSb light emitting diodes on silicon
US20130043458A1 (en) Long Wavelength Infrared Superlattice
Ren et al. Epitaxially grown III-arsenide-antimonide nanowires for optoelectronic applications
US20110272672A1 (en) Long Wavelength Infrared Superlattice
CN109473496B (en) Transition layer structure of avalanche detector and preparation method
US6815792B2 (en) Epitaxially grown compound semiconductor film and compound semiconductor multi-layer structure
Tan et al. GaInNAsSb/GaAs Photodiodes for Long-Wavelength Applications
Fraser et al. Status of multi-wafer production MBE capabilities for extended SWIR III-V epi materials for IR detection
US9171978B2 (en) Epitaxial wafer, method for producing the same, photodiode, and optical sensor device
Ahmad A Study of GaAs1-xSbx Axial Nanowires and PIN Junctions by Self Catalyzed Molecular Beam Epitaxy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees