JP2666841B2 - Manufacturing method of avalanche type semiconductor light receiving element - Google Patents

Manufacturing method of avalanche type semiconductor light receiving element

Info

Publication number
JP2666841B2
JP2666841B2 JP62189841A JP18984187A JP2666841B2 JP 2666841 B2 JP2666841 B2 JP 2666841B2 JP 62189841 A JP62189841 A JP 62189841A JP 18984187 A JP18984187 A JP 18984187A JP 2666841 B2 JP2666841 B2 JP 2666841B2
Authority
JP
Japan
Prior art keywords
avalanche
receiving element
layer
semiconductor light
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62189841A
Other languages
Japanese (ja)
Other versions
JPS6432686A (en
Inventor
紀久夫 牧田
卓夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62189841A priority Critical patent/JP2666841B2/en
Publication of JPS6432686A publication Critical patent/JPS6432686A/en
Application granted granted Critical
Publication of JP2666841B2 publication Critical patent/JP2666841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体受光素子の製造方法に関し、特に1
〜0.6μm帯領域において、素子特性及び生産性に優れ
たアバランシェ型半導体受光素子の製造方法に関するも
のである。 (従来の技術) 近年、III−V族化合物半導体例えばAlxGa1-xAs,InxG
a1-xAsyP1-y等の材料を用いて種々の半導体デバイスが
作り出されている。この中でInxGa1-xAsyP1-y系の材料
は、1μm帯の長波長帯光通信用デバイスへの応用がな
されている。特にInxGa1-xAs(x=0.53)は、そのエネ
ルギーギャップが室温で0.73eVであり1.7μmまでの分
光感度を有しており、長波長帯光通信用受光素子として
開発がされている。この受光素子は例えばアイイーイー
イー・エレクトロン・デバイス・レターズ(IEEE・Elec
tron Device Lett.)1986,,PP257〜258に発表されて
いる。 (発明が解決しようとする問題点) 第1図には、InxGa1-xAs系のアバランシェ型半導体受
光素子の一例を示す。この例ではn型InP基板1上にn
型InPバッファ層2,n型InxGa1-xAs(x=0.53)光吸収層
3,n型InPアバランシェ層5,n型InPキャップ層6が形成さ
れている。ここで光吸収層とアバランシェ層の間に介在
しているn型InxGa1-xAsyP1-y層4は、価電子帯の不連
続性による正孔のトラップを緩和する効果を有してい
る。この様な構造において、受光部であるp型領域7,ガ
ードリング部であるp型領域8を図の様に形成すること
によってアバランシェ型半導体受光素子の基本構造が得
られる。 この受光素子の原理は、入射光が光吸収層3で吸収さ
れることにより電子と正孔が発生し、逆電界により正孔
がInPアバランシェ層5に注入され、さらにイオン化に
よるアバランシェ増倍により内部利得が得られることに
なる。このアバランシェ型半導体受光素子の光応答特性
を支配するものは、InPアバランシェ層5中の正孔の走
行時間である。これは単純にはInPアバランシェ層を薄
くして走行時間を短くするほど速い応答特性を有する
が、電界強度が十分に得られないので、内部利得効果が
失われる。より効果的に行うには、InPアバランシェ層
5の厚さを薄くし、かつそのキャリア濃度を高くするこ
とによって所望の電界強度が得られ、内部利得の効果を
失うことなく、高速応答が得られる(例えば、第33回応
用物理学関係連合講演会講演予稿集4P−H−7)。素子
設計論上でのInPアバランシェ層5は、キャリア濃度が
n7×1016cm-3,層厚が0.5μm程度であることが要求
される。特にその層厚は素子特性上、最適な電界強度の
領域を得る為には±0.05μm程度の制御性が要求され
る。 通常、上記に示す様な層構造を形成する為には、ハイ
ドライド気相成長法が用いられている。この場合、製造
に要する基板は、面方位が(100)でその誤差も±0.1度
以内のものを用いるのが普通である。しかしながら、結
晶成長的にはその様な基板を使用するとヒルロックが発
生しやすく、ウェーバ内で均一な層厚制御が困難になっ
てくる。この事は、前述したInPアバランシェ層厚のば
らつきの要因となり、素子特性上最適な電界強度が得ら
れないとか、生産性の上で問題となっている。 (問題点を解決するための手段) InP半導体基板上にInGaAs光吸収層、InGaAsP層、InP
アバランシェ層が積層された多層構造を有するアバラン
シェ型半導体受光素子の製造方法において、前記InP半
導体基板の面方位を(100)面から0.2〜0.5度傾いた面
方位にして前記多層構造を形成することを特徴とするア
バランシェ型半導体受光素子の製造方法。 (作用) 本発明は、上述の手段をとることにより従来技術の問
題点を解決した。本発明では(100)よりも0.2〜0.5度
傾いた面方位を有するInP基板上にアバランシェ型半導
体受光素子の基本構造を形成している。 これにより、基板表面の面方位がわずかに傾いている
ことにより表面原子の状態が多少ランダム性を有してい
る為、ヒルロックの発生が抑制されウェーハ内において
均一な層厚が得られている。この為、InPアバランシェ
層厚もウェーハ内において均一に得られており、特性の
優れたアバランシェ型半導体受光素子が生産性良く得る
ことが可能になる。 (実施例) 以下、本発明の実施例について図面を参照して詳細に
説明する。 第1図は、本発明の製造方法により得られたアバラン
シェ型半導体受光素子の断面模式図である。基板は、本
発明の特徴である(100)よりも0.2〜0.5度傾いたInP基
板1を用いており、その上にn型InPバッファ層2,n型In
xGa1-xAs(x=0.53)光吸収層,n型InxGa1-xAsyP1-y
4,n型InPアバランシェ層5,n型InPキャップ層6が形成さ
れている。この様な層構造において受光部であるp型領
域7,ガードリング部であるp型領域8を図の様に形成す
ることによってアバランシェ型半導体受光素素子の基本
構造を得ている。 第2図は、従来技術である(100)InP基板を用いて第
1図に示す様な層構造を形成した場合と、本発明である
(100)より0.2〜0.5度傾いたInP基板を用いた場合のIn
Pアバランシェ層のウェーハ内における層厚分布を示
す。これにより明らかな様に従来技術よりもヒルロック
等が減少した為に層厚の均一性は著しく改善されてい
る。 第3図には、従来技術及び本発明により製造されたア
バランシェ型半導体受光素子のウェーハ内での歩留まり
率を示す。これより従来技術では、高々10%であったも
のが、本発明によるものは40%まで向上している。これ
は、InPアバランシェ層の層厚分布が均一になった為
に、特性上のばらつきが減少したことに対応している。 (発明の効果) 以上、説明した様に本発明によれば、素子特性の優れ
た1〜1.6μm帯のアバランシェ型半導体受光素子が生
産性良く得られる事が可能となる。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor light receiving element, and more particularly to a method for manufacturing a semiconductor light receiving element.
The present invention relates to a method for manufacturing an avalanche-type semiconductor light-receiving element having excellent device characteristics and productivity in the range of about 0.6 μm. (Prior Art) In recent years, III-V compound semiconductors such as Al x Ga 1 -x As, In x G
Various semiconductor devices have been created using materials such as a 1-x As y P 1-y . In x Ga 1-x As y P 1-y based material in this, 1 [mu] m band application to long-wavelength optical communication devices have been made. In particular, In x Ga 1-x As (x = 0.53) has an energy gap of 0.73 eV at room temperature and a spectral sensitivity up to 1.7 μm, and has been developed as a light-receiving element for long-wavelength band optical communication. I have. This light receiving element is, for example, an IE / Electron Device Letters (IEEE / Elec).
tron Device Lett.) 1986, 7 , PP257-258. (The invention will to a problem to be solved) Figure 1 shows an example of a In x Ga 1-x As based avalanche semiconductor light receiving element. In this example, n-type InP substrate 1 has n
InP buffer layer 2, n-type In x Ga 1-x As (x = 0.53) light absorption layer
3, an n-type InP avalanche layer 5 and an n-type InP cap layer 6 are formed. Here, the n-type In x Ga 1-x As y P 1-y layer 4 interposed between the light absorption layer and the avalanche layer has an effect of alleviating hole traps due to valence band discontinuity. Have. In such a structure, the basic structure of the avalanche type semiconductor light receiving element is obtained by forming the p-type region 7 which is the light receiving portion and the p-type region 8 which is the guard ring portion as shown in the figure. The principle of this light-receiving element is that electrons and holes are generated by the incident light being absorbed by the light absorbing layer 3, holes are injected into the InP avalanche layer 5 by a reverse electric field, and the internal avalanche is multiplied by ionization. Gain will be obtained. What governs the optical response characteristics of this avalanche semiconductor light receiving element is the transit time of holes in the InP avalanche layer 5. This has a quick response characteristic simply as the InP avalanche layer is made thinner and the transit time is shortened, but the internal gain effect is lost because the electric field strength is not sufficiently obtained. For more effective operation, a desired electric field intensity can be obtained by reducing the thickness of the InP avalanche layer 5 and increasing the carrier concentration thereof, and a high-speed response can be obtained without losing the effect of the internal gain. (For example, Proceedings of the 33rd Federation of Applied Physics Related Lectures 4P-H-7). In the device design theory, the InP avalanche layer 5 is required to have a carrier concentration of n7 × 10 16 cm −3 and a layer thickness of about 0.5 μm. In particular, in order to obtain a region having an optimum electric field strength in terms of device characteristics, controllability of about ± 0.05 μm is required. Usually, hydride vapor phase epitaxy is used to form the above-mentioned layer structure. In this case, it is common to use a substrate having a plane orientation of (100) and an error within ± 0.1 degrees as a substrate required for manufacturing. However, in terms of crystal growth, when such a substrate is used, hilllock is likely to occur, and it becomes difficult to control the uniform layer thickness in the wafer. This causes the above-mentioned variation in the InP avalanche layer thickness, and it is not possible to obtain the optimum electric field strength in terms of device characteristics, and there is a problem in terms of productivity. (Means for solving the problems) An InGaAs light absorbing layer, InGaAsP layer, InP
In the method for manufacturing an avalanche-type semiconductor light receiving element having a multilayer structure in which avalanche layers are stacked, the multilayer structure is formed with the plane orientation of the InP semiconductor substrate inclined 0.2 to 0.5 degrees from the (100) plane. A method for manufacturing an avalanche-type semiconductor light-receiving element, comprising: (Operation) The present invention has solved the problems of the prior art by taking the above-described means. In the present invention, the basic structure of an avalanche type semiconductor light receiving element is formed on an InP substrate having a plane orientation inclined by 0.2 to 0.5 degrees with respect to (100). Thereby, since the state of the surface atoms has some randomness due to the slight inclination of the plane orientation of the substrate surface, the occurrence of hillrock is suppressed, and a uniform layer thickness is obtained in the wafer. Therefore, the InP avalanche layer thickness is also uniformly obtained within the wafer, and it becomes possible to obtain an avalanche type semiconductor light receiving element having excellent characteristics with high productivity. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an avalanche semiconductor light-receiving element obtained by the manufacturing method of the present invention. As the substrate, the InP substrate 1 tilted by 0.2 to 0.5 degrees from (100), which is the feature of the present invention, is used, on which the n-type InP buffer layer 2 and the n-type InP buffer layer 2 are formed.
x Ga 1-x As (x = 0.53) light absorption layer, n-type In x Ga 1-x As y P 1-y layer
4, an n-type InP avalanche layer 5 and an n-type InP cap layer 6 are formed. In such a layered structure, the p-type region 7 which is the light receiving portion and the p-type region 8 which is the guard ring portion are formed as shown in the figure to obtain the basic structure of the avalanche type semiconductor light receiving element. FIG. 2 shows a case where a layer structure as shown in FIG. 1 is formed using a conventional (100) InP substrate and a case where an InP substrate inclined at 0.2 to 0.5 degrees from (100) of the present invention is used. In when
3 shows a layer thickness distribution of a P avalanche layer in a wafer. As is apparent from this, the uniformity of the layer thickness is remarkably improved because the hillrock and the like are reduced as compared with the prior art. FIG. 3 shows the yield rate in a wafer of the avalanche type semiconductor light receiving device manufactured by the conventional technique and the present invention. Thus, in the prior art, the ratio was at most 10%, but that of the present invention is improved to 40%. This corresponds to a reduction in variation in characteristics due to a uniform thickness distribution of the InP avalanche layer. (Effects of the Invention) As described above, according to the present invention, an avalanche type semiconductor light receiving element in the band of 1 to 1.6 μm having excellent element characteristics can be obtained with high productivity.

【図面の簡単な説明】 第1図は、本発明による製造方法を用いて作製したアバ
ランシェ型半導体受光素子の模式図である。第2図は、
従来技術の(100)InP基板を用いた場合と、本発明によ
る(100)より0.2〜0.5度傾いたInP基板を用いた場合の
InPアバランシェ層のウェーハ内の層厚分布を示す。第
3図は、従来技術及び本発明による製造方法を用いて製
造したアバランシェ型半導体受光素子のウェーハ内での
歩留まり率を示している。 1……(100)より0.2〜0.5度傾いたInP基板、2……n
型InPバッファ層、3……n型InxGa1-xAs(x=0.53)
光吸収層、4……n型InxGa1-xAsyP1-y層、5……n型I
nPアバランシェ層、6……n型InPキャップ層、7……
p型領域(受光部)、8……p型領域(ガードリング
部)、9……SiO2膜、10……p+側電極、11……n+側電
極。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an avalanche semiconductor light-receiving element manufactured by using the manufacturing method according to the present invention. Fig. 2
The case of using the (100) InP substrate of the prior art and the case of using the InP substrate inclined by 0.2 to 0.5 degrees from the (100) according to the present invention.
3 shows a thickness distribution of an InP avalanche layer in a wafer. FIG. 3 shows a yield rate in a wafer of an avalanche type semiconductor light receiving element manufactured by using the conventional method and the manufacturing method according to the present invention. 1... InP substrate inclined by 0.2 to 0.5 degrees from (100), 2.
-Type InP buffer layer, 3... N-type In x Ga 1 -x As (x = 0.53)
Light absorbing layer, 4 ... n-type In x Ga 1-x As y P 1-y layer, 5 ... n-type I
nP avalanche layer, 6 ... n-type InP cap layer, 7 ...
p-type region (light-receiving part), 8 ... p-type region (guard ring part), 9 ... SiO 2 film, 10 ... p + side electrode, 11 ... n + side electrode.

Claims (1)

(57)【特許請求の範囲】 1.InP半導体基板上にInGaAs光吸収層、InGaAsP層、In
Pアバランシェ層が積層された多層構造を有するアバラ
ンシェ型半導体受光素子の製造方法において、前記InP
半導体基板の面方位を(100)面から0.2〜0.5度傾いた
面方位にして前記多層構造を形成することを特徴とする
アバランシェ型半導体受光素子の製造方法。
(57) [Claims] InGaAs light absorbing layer, InGaAsP layer, In
A method for manufacturing an avalanche-type semiconductor light-receiving element having a multilayer structure in which P avalanche layers are stacked, wherein the InP
A method for manufacturing an avalanche type semiconductor light receiving element, characterized in that the multilayer structure is formed by making a plane orientation of a semiconductor substrate inclined by 0.2 to 0.5 degrees from a (100) plane.
JP62189841A 1987-07-28 1987-07-28 Manufacturing method of avalanche type semiconductor light receiving element Expired - Lifetime JP2666841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62189841A JP2666841B2 (en) 1987-07-28 1987-07-28 Manufacturing method of avalanche type semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62189841A JP2666841B2 (en) 1987-07-28 1987-07-28 Manufacturing method of avalanche type semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPS6432686A JPS6432686A (en) 1989-02-02
JP2666841B2 true JP2666841B2 (en) 1997-10-22

Family

ID=16248101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62189841A Expired - Lifetime JP2666841B2 (en) 1987-07-28 1987-07-28 Manufacturing method of avalanche type semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP2666841B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159775A (en) * 1988-12-14 1990-06-19 Toshiba Corp Semiconductor photodetector and manufacture thereof
JP3129112B2 (en) * 1994-09-08 2001-01-29 住友電気工業株式会社 Compound semiconductor epitaxial growth method and InP substrate therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269689A (en) * 1985-09-24 1987-03-30 Toshiba Corp Semiconductor photodetector
JPS6284522A (en) * 1985-10-08 1987-04-18 Nec Corp Surface protective film structure of iii-v compound semiconductor

Also Published As

Publication number Publication date
JPS6432686A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
US4651187A (en) Avalanche photodiode
EP0131437B1 (en) Heterojunction avalanche photodiode
GB2132016A (en) A semiconductor device
US20100133637A1 (en) Avalanche photodiode
JP2016213362A (en) Avalanche photodiode
US5942771A (en) Semiconductor photodetector
JPH04125977A (en) Heteromultiple structure avalanche photodiode
JP7024918B1 (en) Avalanche photodiode
US4974061A (en) Planar type heterostructure avalanche photodiode
WO2018189898A1 (en) Semiconductor light-receiving element
JP2666841B2 (en) Manufacturing method of avalanche type semiconductor light receiving element
JPH11330536A (en) Semiconductor light receiving element
JPS6222546B2 (en)
JP3157509B2 (en) Semiconductor light receiving element
JP2664904B2 (en) Manufacturing method of semiconductor light receiving element
US11749773B2 (en) Avalanche photodiode and method for manufacturing same
JP2508023B2 (en) Manufacturing method of semiconductor light receiving element
KR0175441B1 (en) Method for fabricating avalanche photodiode
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JPH03116791A (en) Manufacture of semiconductor photosensitive element
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0316276A (en) Photodetector
JP2002141547A (en) Semiconductor photodetector
JP3014361B2 (en) Variable capacitance device with quantum wave interference layer
JP2854634B2 (en) Light receiving device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11