JPH0766022A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPH0766022A
JPH0766022A JP6107095A JP10709594A JPH0766022A JP H0766022 A JPH0766022 A JP H0766022A JP 6107095 A JP6107095 A JP 6107095A JP 10709594 A JP10709594 A JP 10709594A JP H0766022 A JPH0766022 A JP H0766022A
Authority
JP
Japan
Prior art keywords
permanent magnet
alloy
alloy ingot
ingot
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6107095A
Other languages
Japanese (ja)
Other versions
JP3299630B2 (en
Inventor
Kazuhiko Yamamoto
山本  和彦
Yuichi Miyake
裕一 三宅
Tsutomu Okada
力 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP10709594A priority Critical patent/JP3299630B2/en
Publication of JPH0766022A publication Critical patent/JPH0766022A/en
Application granted granted Critical
Publication of JP3299630B2 publication Critical patent/JP3299630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To improve magnet characteristics such as residual flux density, coercive force, etc., by manufacturing a permanent magnet by using an alloy ingot being prepared by controlling the degree of supercooling and cooling rate of an alloy melt and having a specific crystalline structure as an essential raw material component through specific manufacture. CONSTITUTION:An alloy melt containing a 25-31wt.% rare earth metal, 0.5-1.5wt.% boron and iron is coagulated uniformly under the cooling conditions of the degree of supercooling of 50-500 deg.C and a cooling rate from 500 deg.C/sec to 10000 deg.C/sec through a single roll method. A raw material component mainly comprising an alloy ingot containing not less than 90vol.% columnar crystals having columnar-crystal grain size of the minor axis direction of 0.1-50mum and the major axis direction from 100mum to 300mum acquired through the manufacture is ground, molded and sintered, thus manufacturing a permanent magnet. Accordingly, the permanent magnet, in which the conditions of grinding at the time of production are facilitated and which has excellent magnetic characteristics such as residual flux density, coercive force, etc., and particularly has superior anisotropic characteristics, can be acquired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属とボロンと
鉄とを必須成分として含む優れた磁石特性を有する永久
磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet having excellent magnet characteristics containing rare earth metals, boron and iron as essential components.

【0002】[0002]

【従来の技術】従来、永久磁石用合金鋳塊は、溶融した
合金を金型に鋳造する金型鋳造法により製造されている
のが一般的である。しかし該金型鋳造法により合金溶融
物を凝固させる場合、合金溶融物の抜熱過程において、
抜熱初期では鋳型伝熱律速であるが、凝固が進行する
と、鋳型−凝固相間及び凝固相における伝熱が抜熱律速
となり、金型冷却能を向上させても鋳塊内部と鋳型近傍
の鋳塊では、冷却条件が異なり、特に鋳塊厚が厚いほど
このような現象が生じる。このように鋳塊の内部と表面
付近での冷却条件の相違が大きい場合には、特に磁石組
成における高残留磁束密度側の鋳造組織に、初晶γ−F
eが多く存在し、このため鋳塊の中央部に粒径10〜3
00μmのα−Feが残存し、同時に主相を取り巻く希
土類金属に富んだ相の大きさも大きくなる。一方、磁石
製造工程における粉砕過程においては、通常鋳塊が数ミ
クロンまで微粉砕されるが、前記金型鋳造法で得られる
鋳塊の場合には、粉砕が困難な粒径の大きいα−Fe及
び希土類金属に富んだ大きい相を含有するので、粉砕後
の粉末粒度分布が不均一となり、磁性の配向性及び焼結
性に悪影響を及ぼし、最終的に得られる永久磁石の磁気
特性が低下するという欠点がある。また前記金型鋳造法
により得られる鋳塊組織中に、短軸方向0.1〜50μ
m、長軸方向0.1〜100μmの柱状結晶粒径を有す
る柱状結晶が存在することが知られているが、該結晶の
含有率は、僅かであって、磁石特性に良好な影響を及ぼ
すには至っていない。
2. Description of the Related Art Conventionally, alloy ingots for permanent magnets are generally produced by a die casting method in which a molten alloy is cast in a die. However, when solidifying the alloy melt by the die casting method, in the heat removal process of the alloy melt,
In the initial stage of heat removal, the heat transfer rate is controlled by the mold, but when solidification proceeds, heat transfer between the mold and the solidification phase and in the solidification phase becomes heat removal rate control, and even if the mold cooling capacity is improved, casting inside the ingot and near the mold In the ingot, the cooling conditions are different, and such a phenomenon occurs especially when the ingot thickness is large. When there is a large difference in the cooling conditions between the inside of the ingot and the vicinity of the surface as described above, the primary structure γ-F,
There is a large amount of e, and as a result, the grain size is 10-3 in the center of the ingot.
00 μm of α-Fe remains, and at the same time, the size of the rare earth metal-rich phase surrounding the main phase also increases. On the other hand, in the crushing process in the magnet manufacturing process, the ingot is usually finely pulverized to several microns, but in the case of the ingot obtained by the die casting method, it is difficult to pulverize α-Fe having a large particle size. And, since it contains a large phase rich in rare earth metal, the powder particle size distribution after pulverization becomes non-uniform, which adversely affects the magnetic orientation and sinterability, and finally reduces the magnetic properties of the permanent magnet obtained. There is a drawback that. In the ingot structure obtained by the mold casting method, the short axis direction is 0.1 to 50 μm.
m, columnar crystals having a grain size of 0.1 to 100 μm in the major axis direction are known to exist, but the content of the crystals is small, which has a good effect on the magnet characteristics. Has not reached.

【0003】更にまた、希土類金属元素、コバルト及び
必要に応じて、鉄、銅、ジルコニウムを添加し、ルツボ
中で溶解させた後、双ロール、単ロール、双ベルト等を
組み合わせたストリップキャスティング法等で0.01
〜5mmの厚さとなるように凝固させる希土類金属磁石
用合金の製造法が提案されている。該方法では、金型鋳
造法に比して組成の均一な鋳塊が得られるが、原料成分
が、希土類金属元素、コバルト及び必要に応じて、鉄、
銅、ジルコニウムを組み合わせた成分であるために、前
記ストリップキャスティング法による磁石性能の向上が
充分に得られない等の問題がある。
Furthermore, a rare earth metal element, cobalt and, if necessary, iron, copper and zirconium are added and dissolved in a crucible, and then a strip casting method in which twin rolls, single rolls, twin belts, etc. are combined. 0.01
A method for producing an alloy for a rare earth metal magnet, which is solidified to have a thickness of ~ 5 mm, has been proposed. In this method, an ingot having a uniform composition is obtained as compared with the die casting method, but the raw material components are rare earth metal elements, cobalt and, if necessary, iron,
Since the component is a combination of copper and zirconium, there is a problem that the improvement of the magnet performance by the strip casting method cannot be sufficiently obtained.

【0004】またイットリウムを含む希土類元素と、鉄
及び/又はコバルトと、ボロンとを主成分とする柱状結
晶粒と、希土類金属に富んだ相を主体とする結晶粒界と
を有し、前記柱状結晶粒の平均径(結晶の長軸方向の長
さ)が3〜50μmである磁石製造用合金を、粉砕し、
成形し、焼結した磁石が提案されており、前記磁石製造
用合金が、合金溶湯を単ロール、双ロールを用いて冷却
速度を制御しながら製造することが知られている。しか
しながら、従来の単ロール、双ロールを用いて冷却速度
のみを制御した磁石製造用合金の製造法では、前記柱状
結晶粒の長軸方向長さを100μmを超える長さにする
ことは困難であり、このような柱状結晶粒の長軸方向長
さが短い場合、即ち前記柱状結晶粒の平均径が3〜50
μmである場合には、異方性永久磁石とした際の性能が
劣るという欠点がある。
In addition, there are columnar crystal grains containing yttrium-containing rare earth elements, iron and / or cobalt, and boron as main components, and grain boundaries mainly containing a rare earth metal-rich phase. An alloy for magnet production having an average diameter of crystal grains (length in the major axis direction of the crystal) of 3 to 50 μm is crushed,
Shaped and sintered magnets have been proposed, and it is known that the alloy for producing magnets is produced by using a single roll or twin rolls of molten alloy while controlling the cooling rate. However, in the conventional method for producing an alloy for magnet production in which only the cooling rate is controlled by using a single roll or twin rolls, it is difficult to set the length of the columnar crystal grains in the major axis direction to a length exceeding 100 μm. When the length of such columnar crystal grains in the major axis direction is short, that is, the average diameter of the columnar crystal grains is 3 to 50.
If it is μm, there is a drawback that the performance of the anisotropic permanent magnet is inferior.

【0005】また磁石を製造する場合、一組成の磁石製
造用合金粉を磁場成型し、焼結した場合であっても、結
晶粒界に低融点物質或いは焼結助剤として働く化合物が
微細分散するような形で存在しないと、焼結が進行せ
ず、良好な焼結体が得られない場合が多い。
Further, in the case of producing a magnet, even when a magnet-forming alloy powder of one composition is magnetic field molded and sintered, a compound having a low melting point or a compound acting as a sintering aid is finely dispersed in the grain boundaries. If it does not exist in such a form, sintering does not proceed and a good sintered body cannot be obtained in many cases.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、製造
時の粉砕条件が容易で、残留磁束密度、保磁力等の磁石
特性に優れ、特に優れた異方特性を示す永久磁石を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a permanent magnet which is easy to grind at the time of manufacture, has excellent magnet characteristics such as residual magnetic flux density and coercive force, and exhibits particularly excellent anisotropic characteristics. Especially.

【0007】本発明の別の目的は、製造時の焼結が良好
で、優れた残留磁束密度、保磁力等を示す永久磁石を提
供することにある。
Another object of the present invention is to provide a permanent magnet which has good sintering during production and exhibits excellent residual magnetic flux density, coercive force and the like.

【0008】[0008]

【課題を解決するための手段】本発明によれば、希土類
金属25〜31重量%と、ボロン0.5〜1.5重量%
と、鉄とを含む合金溶融物を、単ロール法により、過冷
度50〜500℃、冷却速度500℃/秒を超え、10
000℃/秒以下の冷却条件下で均一に凝固させて得
た、短軸方向0.1〜50μm、長軸方向100μmを
超え、300μm以下の柱状結晶粒径を有する柱状結晶
を90容量%以上含有する合金鋳塊を主成分として含む
原料成分を、粉砕、成形し、焼結したことを特徴とする
永久磁石が提供される。
According to the present invention, 25 to 31% by weight of rare earth metal and 0.5 to 1.5% by weight of boron are used.
The alloy melt containing iron and iron is supercooled by a single roll method at a supercooling degree of 50 to 500 ° C. and a cooling rate of more than 500 ° C./sec.
90% by volume or more of columnar crystals having a columnar crystal grain diameter of 0.1 to 50 μm in the minor axis direction and 100 μm in the major axis direction and 300 μm or less obtained by solidifying uniformly under cooling conditions of 000 ° C./sec or less Provided is a permanent magnet characterized by crushing, shaping, and sintering a raw material component containing an alloy ingot as a main component.

【0009】以下本発明を更に詳細に説明する。本発明
の永久磁石は、特定製造法で合成した合金鋳塊を主成分
とする原料成分を、粉砕、成形し、焼結した磁石であっ
て、優れた異方性を示し、従来の冷却速度を制御した柱
状結晶を有する合金鋳塊を原料成分とする磁石に比べ
て、異方化度が高く残留磁束密度及び保磁力に優れる。
The present invention will be described in more detail below. The permanent magnet of the present invention is a magnet obtained by crushing, molding, and sintering a raw material component whose main component is an alloy ingot synthesized by a specific manufacturing method, and shows excellent anisotropy, and has a conventional cooling rate. It has a higher degree of anisotropy and a better residual magnetic flux density and coercive force than a magnet using an alloy ingot having a columnar crystal with controlled C as a raw material.

【0010】本発明において用いる必須成分の合金鋳塊
を製造する合金溶融物の組成は、希土類金属25〜31
重量%、ボロン0.5〜1.5重量%及び鉄を必須成分
として含有する。前記希土類金属としては、特に限定さ
れるものではないが、ランタン、セリウム、プラセオジ
ム、ネオジム、イットリウム、ジスプロシウム、ミッシ
ュメタル又はこれらの混合物等を好ましく挙げることが
できる。希土類金属の含有量が25重量%未満の場合に
は、得られる合金鋳塊中にα−鉄相等の鉄に富む相が析
出し、後述する粉砕工程に悪影響を及ぼす。また31重
量%を超える場合には、残留磁束密度が低下する。一方
ボロンの含有量が0.5重量%未満の場合には、高保磁
力が得られず、また1.5重量%を超えると高残留磁束
密度が得られない。前記鉄の含有量は、合金溶融物が前
記必須成分以外の成分を含有しない場合には、67.5
〜74.5重量%であるが、必須成分以外の成分を含む
場合には、少なくとも37.5重量%以上含有させるの
が好ましい。即ち、必須成分以外の成分の含有量は、3
0重量%以下、特に10重量%以下、更には6重量%以
下とするのが望ましい。該必須成分以外の成分として
は、コバルト、アルミニウム、クロム、マンガン、マグ
ネシウム、珪素、銅、炭素、錫、タングステン、バナジ
ウム、ジルコニウム、チタン、モリブデン、ニオブ、ガ
リウム又はこれらの混合物等を挙げることができ、特に
コバルトが好ましい。またこれらの成分の他に、不可避
的不純物あるいは微量成分として酸素等が含有されてい
ても良い。
The composition of the alloy melt for producing the alloy ingot of the essential component used in the present invention is rare earth metal 25-31.
% By weight, 0.5 to 1.5% by weight of boron and iron as essential components. The rare earth metal is not particularly limited, but preferred examples thereof include lanthanum, cerium, praseodymium, neodymium, yttrium, dysprosium, misch metal, and mixtures thereof. When the content of the rare earth metal is less than 25% by weight, an iron-rich phase such as α-iron phase is precipitated in the obtained alloy ingot, which adversely affects the pulverization step described later. When it exceeds 31% by weight, the residual magnetic flux density is lowered. On the other hand, when the content of boron is less than 0.5% by weight, high coercive force cannot be obtained, and when it exceeds 1.5% by weight, high residual magnetic flux density cannot be obtained. The iron content is 67.5 when the alloy melt contains no components other than the essential components.
The content is ˜74.5% by weight, but when components other than the essential components are contained, it is preferable to contain at least 37.5% by weight or more. That is, the content of the components other than the essential components is 3
It is preferably 0% by weight or less, particularly 10% by weight or less, and further preferably 6% by weight or less. Examples of components other than the essential components include cobalt, aluminum, chromium, manganese, magnesium, silicon, copper, carbon, tin, tungsten, vanadium, zirconium, titanium, molybdenum, niobium, gallium, and mixtures thereof. Particularly preferred is cobalt. In addition to these components, oxygen or the like may be contained as an unavoidable impurity or a trace component.

【0011】前記合金溶融物を調製するには、例えば真
空溶融法、高周波溶融法等により、好ましくはるつぼ等
を用いて、不活性ガス雰囲気下において得ることができ
る。
The alloy melt can be prepared by, for example, a vacuum melting method, a high frequency melting method, or the like, preferably using a crucible or the like in an inert gas atmosphere.

【0012】本発明において原料成分の主成分である合
金鋳塊は、前記合金溶融物の過冷度を50〜500℃に
制御して製造する。好ましくはその下限は、得られる柱
状結晶の長軸方向の長さと、短軸方向の長さとの比を大
きくし、異方化度を向上させ、更に希土類金属に富む相
の分散性を良好にして得られる永久磁石の磁石特性を高
くするために、100℃に制御するのが好ましく、一方
上限は、得られる柱状結晶の短軸方向の長さを0.1μ
m以上にし、得られる永久磁石の磁気特性を高くするた
めに500℃に制御する。そしてこのような特定過冷度
の合金溶融物を、単ロール法により、冷却速度500℃
/秒を超え、10000℃/秒以下、好ましくは100
0〜5000℃/秒の冷却条件下で均一に凝固させるこ
とにより目的の合金鋳塊を得ることができる。
In the present invention, the alloy ingot which is the main component of the raw material components is manufactured by controlling the supercooling degree of the alloy melt to 50 to 500 ° C. Preferably its lower limit is to increase the ratio of the length of the obtained columnar crystal in the major axis direction to the length in the minor axis direction, improve the anisotropy degree, and further improve the dispersibility of the phase rich in rare earth metals. In order to improve the magnetic properties of the permanent magnet obtained as described above, it is preferable to control the temperature to 100 ° C., while the upper limit is the length of the obtained columnar crystal in the minor axis direction of 0.1 μm.
m or more, and the temperature is controlled to 500 ° C. in order to improve the magnetic characteristics of the obtained permanent magnet. Then, the alloy melt having such a specific supercooling degree is cooled at a cooling rate of 500 ° C. by a single roll method.
/ Sec or more and 10000 ° C./sec or less, preferably 100
A target alloy ingot can be obtained by uniformly solidifying under a cooling condition of 0 to 5000 ° C./sec.

【0013】この際過冷度とは、(合金の融点)−(融
点以下の合金溶融物の実際の温度)の値である。更に詳
細には、「過冷」とは、合金溶融物が冷却されて合金の
融点に達しても凝固が実際には生ぜず、更に降下した温
度であって、核生成温度に達すると合金溶融物中に微細
な固相、即ち結晶が形成され凝固がはじめて生ずる現象
を指し、過冷度とは前述のとおり合金の融点と、融点以
下の合金溶融物の実際の温度との差の値を示し、本発明
においては、その差、即ち前記合金溶融物の過冷度を5
0〜500℃の範囲に制御すると共に冷却速度を500
℃/秒を超え、10000℃/秒以下とすることによ
り、後述の特定の範囲の結晶粒径を有する結晶が90容
量%以上含まれるこれまで全く知られていない新規な合
金鋳塊を得ることができる。前記合金溶融物の過冷度を
前述の特定温度に制御するには、例えば前述のるつぼ等
を用いて調製した合金溶融物の温度を制御すると共に、
凝固させるための単ロールに導くまでの時間及び速度等
を適宜調整することにより制御することができる。
At this time, the degree of supercooling is a value of (melting point of alloy)-(actual temperature of alloy melt below melting point). More specifically, “supercooling” is the temperature at which the alloy melt does not actually solidify even when the alloy melt is cooled to reach the melting point of the alloy, and the temperature is further lowered. A fine solid phase in a material, that is, a phenomenon in which crystals are formed and solidification occurs for the first time, and the degree of subcooling is the value of the difference between the melting point of the alloy and the actual temperature of the alloy melt below the melting point as described above. In the present invention, the difference, that is, the degree of supercooling of the alloy melt is 5
Control the cooling rate in the range of 0-500 ° C and 500
To obtain a novel alloy ingot containing at least 90% by volume of crystals having a crystal grain size in a specific range to be described later, which has not been known at all, by controlling the temperature to exceed 10 ° C / sec and 10,000 ° C / sec or less. You can To control the degree of supercooling of the alloy melt to the aforementioned specific temperature, for example, while controlling the temperature of the alloy melt prepared using the aforementioned crucible,
It can be controlled by appropriately adjusting the time, speed, etc. until it is introduced into a single roll for solidification.

【0014】前記特定の過冷度に制御した合金溶融物
を、単ロール法により、前記特定の冷却速度で凝固させ
るには、例えばロールの回転数、表面温度、雰囲気温
度、あるいは合金溶融物をロールに供給する量を調整し
て得られる合金鋳塊物の厚さを制御する方法等により行
うことができる。前記単ロール法を採用した理由は、双
ロール法、回転円板法等においては、結晶成長方向及び
冷却速度の管理等が困難であり、目的の結晶構造が得ら
れず、しかも装置自体の耐久性にも劣るためであり、更
には単ロール法によれば合金溶融物を、前記特定の過冷
度に制御し、前記特定の冷却速度で連続的に凝固させる
条件設定が容易なためである。前記合金鋳塊の厚さは、
前記冷却速度を容易に制御するために、好ましくは0.
05〜5mmの範囲とするのが望ましい。厚さが5mm
を超える場合には、後述する所望の結晶組織の合金鋳塊
を製造するのが困難となるので好ましくない。
In order to solidify the alloy melt controlled to a specific degree of supercooling by the single roll method at the specific cooling rate, for example, the rotation speed of the roll, the surface temperature, the ambient temperature, or the alloy melt is used. It can be carried out by a method of controlling the thickness of the alloy ingot obtained by adjusting the amount supplied to the roll. The reason why the single roll method is adopted is that, in the twin roll method, the rotating disk method, etc., it is difficult to control the crystal growth direction and the cooling rate, the desired crystal structure cannot be obtained, and the durability of the apparatus itself is not obtained. In addition, the alloy roll is controlled by the specific supercooling degree according to the single roll method, and it is easy to set conditions for continuously solidifying at the specific cooling rate. . The thickness of the alloy ingot is
In order to easily control the cooling rate, it is preferably 0.
It is desirable to set it in the range of 05 to 5 mm. 5mm thick
If it exceeds, it is difficult to manufacture an alloy ingot having a desired crystal structure described later, which is not preferable.

【0015】前記特定方法により得られる合金鋳塊は、
短軸方向0.1〜50μm、好ましくは1〜20μm、
長軸方向100μmを超え、好ましくは150μmを超
え、300μm以下、好ましくは250μm以下の柱状
結晶粒径を有する柱状結晶を90容量%以上、好ましく
は98容量%以上含有する。特に主相結晶粒内に包晶核
として通常含有されるα−Fe及び/又はγ−Feが全
く含有されていないのが好ましい。また該α−Fe及び
/又はγ−Feが含有される場合には、該α−Fe及び
/又はγ−Feの粒径が10μm未満であり、且つ微細
分散されているのが好ましい。このような結晶構造は、
例えば電子顕微鏡写真等により確認することができる。
前記短軸方向の長さ及び長軸方向の長さが前記範囲外の
場合には、得られる永久磁石の磁気特性が低下し、特に
長軸方向の長さが100μm以下では、柱状結晶のアス
ペクト比が低下し、柱状結晶が粒状結晶に近似し、異方
化度が低下して高磁気特性が得られない。また前記特定
の結晶粒径を有する結晶の含有割合が、90容量%未満
の場合には、得られる合金鋳塊に優れた磁石特性を付与
できない。更に該α−Fe及び/又はγ−Feの粒径が
10μm以上であり、且つ微細分散されていない場合に
は、永久磁石製造工程における粉砕の際に、粒度分布が
不均一になり、しかも優れた異方性が得られないので好
ましくない。
The alloy ingot obtained by the above-mentioned method is
Minor axis direction 0.1 to 50 μm, preferably 1 to 20 μm,
It contains 90% by volume or more, preferably 98% by volume or more of columnar crystals having a columnar crystal grain size of more than 100 μm in the major axis direction, preferably more than 150 μm and 300 μm or less, preferably 250 μm or less. In particular, it is preferable that α-Fe and / or γ-Fe which are usually contained as peritectic nuclei in the main phase crystal grains are not contained at all. When the α-Fe and / or γ-Fe is contained, it is preferable that the particle size of the α-Fe and / or γ-Fe is less than 10 μm and that the α-Fe and / or γ-Fe be finely dispersed. Such a crystal structure is
For example, it can be confirmed by an electron microscope photograph or the like.
When the length in the short axis direction and the length in the long axis direction are out of the above ranges, the magnetic properties of the obtained permanent magnet are deteriorated, and particularly when the length in the long axis direction is 100 μm or less, the aspect ratio of the columnar crystal is reduced. The ratio is reduced, the columnar crystals are similar to the granular crystals, the degree of anisotropy is reduced, and high magnetic characteristics cannot be obtained. Further, when the content ratio of the crystals having the specific crystal grain size is less than 90% by volume, excellent alloy properties cannot be imparted to the obtained alloy ingot. Furthermore, when the particle size of the α-Fe and / or γ-Fe is 10 μm or more and the particles are not finely dispersed, the particle size distribution becomes non-uniform during pulverization in the permanent magnet manufacturing process, and excellent. It is not preferable because the anisotropy cannot be obtained.

【0016】前記合金鋳塊の原料成分中の含有量は、主
成分となる量であれば特に限定されないが、目的の永久
磁石の磁石特性をより向上させるために、原料成分全量
に対して70〜99.9容量%が好ましい。
The content of the alloy ingot in the raw material components is not particularly limited as long as it is the main component, but in order to further improve the magnetic properties of the target permanent magnet, it is 70% with respect to the total amount of the raw material components. It is preferably 99.9% by volume.

【0017】前記合金鋳塊以外の原料成分としては、例
えばランタン、セリウム、プラセオジム、ネオジム、イ
ットリウム、ジスプロシウム、ミッシュメタル又はこれ
らの混合物等の希土類金属31〜100重量%を含む金
属鋳塊等を挙げることができる。該金属鋳塊は、希土類
金属の他に、例えば鉄、コバルト、ニッケル又はこれら
の混合物等を69重量%以下含有する合金であっても良
い。このような金属鋳塊は、例えば前記主成分としての
合金鋳塊と同様な方法で調製することができる他、公知
の双ロール法、回転円板法等の金属鋳造法等により調製
されたものを使用することもできる。該金属鋳塊の含有
量は、原料成分として前記合金鋳塊単独の使用の場合よ
り得られる永久磁石の磁石特性を向上させるために、原
料成分全量に対して0.1〜30重量%が好ましい。3
0重量%を超える場合には、磁石特性が低下するので好
ましくない。
Examples of raw material components other than the alloy ingots include metal ingots containing 31 to 100% by weight of a rare earth metal such as lanthanum, cerium, praseodymium, neodymium, yttrium, dysprosium, misch metal or a mixture thereof. be able to. The metal ingot may be an alloy containing 69 wt% or less of iron, cobalt, nickel, or a mixture thereof, in addition to the rare earth metal. Such a metal ingot can be prepared by, for example, a method similar to that of the alloy ingot as the main component, or by a known twin roll method, a metal casting method such as a rotating disk method, or the like. Can also be used. The content of the metal ingot is preferably 0.1 to 30% by weight based on the total amount of the raw material components in order to improve the magnetic properties of the permanent magnet obtained as compared with the case where the alloy ingot is used alone as the raw material component. . Three
When it exceeds 0% by weight, the magnet characteristics are deteriorated, which is not preferable.

【0018】本発明の永久磁石は、前記合金鋳塊を含む
原料成分を、通常の粉砕、成形、焼結により得られたも
のである。前記粉砕は、前記原料成分を、公知の機械的
粉砕法等により行うことができ、好ましくはまず250
〜24メッシュに粉砕後、更に10μm以下、特に2〜
3μmに微粉砕するのが望ましく、また別々に微粉砕し
た後混合し、次工程の成形に供することもできる。原料
成分として、前記金属鋳塊を含有する場合には、必須成
分である前記合金鋳塊と別々に粉砕した後混合し、更に
前記範囲に微粉砕するのが望ましい。この際前記合金鋳
塊が特定の多結晶構造を有しており、包晶核を有してい
ないか、若しくは微細分散されているので、略均質な粒
径を有する合金粉末を短時間で容易に得ることができ、
粉砕時の酸素混入量を抑制することができる。またこの
ような微粉砕により、得られる永久磁石の磁石特性を向
上させることができる。
The permanent magnet of the present invention is obtained by subjecting the raw material components including the alloy ingot to ordinary grinding, molding and sintering. The pulverization can be carried out by a known mechanical pulverization method or the like for the raw material components, preferably 250
After crushing to -24 mesh, further 10 μm or less, especially 2 to
It is desirable to finely pulverize to 3 μm, and it is also possible to separately finely pulverize and then mix and use for molding in the next step. When the metal ingot is contained as a raw material component, it is desirable that the alloy ingot, which is an essential component, be separately pulverized, then mixed, and further finely pulverized to the above range. At this time, since the alloy ingot has a specific polycrystalline structure and does not have peritectic nuclei or is finely dispersed, an alloy powder having a substantially uniform grain size can be easily prepared in a short time. Can get to
The amount of oxygen mixed during pulverization can be suppressed. Further, such fine pulverization can improve the magnet characteristics of the obtained permanent magnet.

【0019】前記成形は、通常の磁場中における圧縮成
形等により行うことができる。この際磁場強度は、12
00KAm~1以上、特に1500KAm~1以上が好まし
く、また成形圧力は、100〜200MPaが好まし
い。
The molding can be carried out by compression molding or the like in a usual magnetic field. At this time, the magnetic field strength is 12
The pressure is preferably 00 KAm to 1 or more, particularly 1500 KAm to 1 or more, and the molding pressure is preferably 100 to 200 MPa.

【0020】前記焼結は、特に限定されず公知の方法で
行うことができるが、好ましくは1000〜1200
℃、0.5〜5時間の条件下、不活性ガス雰囲気下又は
真空中で行うことができる。この際焼結は、前述の合金
粉末が略均質に微粉砕されているので、良好に進行させ
ることができ、焼結後の結晶粒径の揃いも極めて良好で
ある。また焼結後、磁気特性を更に向上させるために公
知の方法により熱処理することもできる。該熱処理は、
好ましくは400〜600℃において、0.5〜5時間
の条件下行なうことができる。
The sintering is not particularly limited and can be carried out by a known method, but preferably 1000 to 1200.
It can be carried out under an inert gas atmosphere or in a vacuum at 0.5 ° C. for 0.5 to 5 hours. At this time, the sintering can be satisfactorily progressed because the above-mentioned alloy powder is pulverized substantially uniformly, and the uniformity of the crystal grain size after sintering is also very good. Further, after sintering, heat treatment can be performed by a known method in order to further improve the magnetic characteristics. The heat treatment is
It can be preferably carried out at 400 to 600 ° C. for 0.5 to 5 hours.

【0021】[0021]

【発明の効果】本発明の永久磁石は、特定の製造法、特
に単ロール法により、合金溶融物の過冷度と冷却速度と
を制御して調製した、新規な結晶組織を有する合金鋳塊
を必須原料成分として使用して製造されたものであり、
製造時の粉砕工程が容易で、しかも焼結の進行も十分に
行なうことができるので、残留磁束密度、保磁力等の磁
石特性に優れ、特に優れた異方性を示す。また原料成分
として、前記合金鋳塊の他に、他の金属鋳塊を使用する
ことにより、永久磁石自体に、更に優れた磁気特性が付
与される。従って従来の永久磁石に比べ、より優れた磁
石特性が要望されている分野への利用が期待される。
INDUSTRIAL APPLICABILITY The permanent magnet of the present invention is an alloy ingot having a novel crystal structure, which is prepared by controlling the degree of supercooling and the cooling rate of the alloy melt by a specific manufacturing method, particularly a single roll method. Is manufactured by using as an essential raw material ingredient,
Since the crushing step during manufacturing is easy and the progress of sintering can be sufficiently carried out, the magnet characteristics such as the residual magnetic flux density and the coercive force are excellent, and particularly excellent anisotropy is exhibited. Further, by using other metal ingots as the raw material component in addition to the alloy ingot, the permanent magnet itself is provided with further excellent magnetic characteristics. Therefore, it is expected to be used in fields where superior magnetic properties are required as compared with conventional permanent magnets.

【0022】[0022]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0023】[0023]

【実施例1】ネオジム30.8重量%、ボロン1.0重
量%、鉄68.2重量%の組成からなる金属元素を配合
した金属混合物を、アルゴンガス雰囲気中で、アルミナ
るつぼを使用して高周波溶融法により溶融物とした。次
いで、得られた溶融物の温度を1350℃に保持した
後、図1に示す装置を用いて以下の方法に従って永久磁
石用合金鋳塊を得た。原料組成を表1に示す。図1は、
単ロールを用いたストリップキャスト法により永久磁石
用合金鋳塊を製造するための概略図であって、1は前記
高周波溶融法により溶融した溶融物の入ったるつぼであ
る。1350℃に保持された溶融物2を、タンディッシ
ュ3上に連続的に流し込み、過冷度を200℃に調整し
ながら、続いて約3m/sの周速度で回転するロール4
上に供給し、冷却速度1000℃/秒の冷却条件となる
ように凝固させ、ロール4の回転方向に連続的に溶融物
2を落下させて、厚さ0.2〜0.5mmの合金鋳塊5
を製造した。合金鋳塊製造時の過冷度、冷却速度及び電
子顕微鏡で測定した合金鋳塊の結晶構造の粒径を表2
に、電子顕微鏡で観察した結晶構造の組織的特徴を表3
に示す。尚、得られた合金鋳塊が、短軸方向0.1〜5
0μm、長軸方向100μmを超え、300μm以下の
柱状結晶粒径を有する柱状結晶を90容量%以上含有す
ることは、表2の結晶構造の平均径と標準偏差の値から
確認できる。次に得られた永久磁石用合金鋳塊を、25
0〜24メッシュに粉砕し、アルコール中において、更
に3μm程度まで微粉砕した。次いで得られた微粉末
を、150MPa、2400KAm~1の条件下、磁場プ
レスした後、1040℃にて2時間焼結し、10×10
×15mmの永久磁石を得た。得られた永久磁石の磁石
特性を表4に示す。
Example 1 A metal mixture containing a metal element having a composition of neodymium 30.8% by weight, boron 1.0% by weight, and iron 68.2% by weight was used in an argon gas atmosphere using an alumina crucible. It was made into a melt by the high frequency melting method. Then, after the temperature of the obtained melt was maintained at 1350 ° C., an alloy ingot for permanent magnet was obtained by the following method using the apparatus shown in FIG. The raw material composition is shown in Table 1. Figure 1
FIG. 1 is a schematic view for producing an alloy ingot for a permanent magnet by a strip casting method using a single roll, and 1 is a crucible containing a melt melted by the high frequency melting method. The melt 2 held at 1350 ° C. is continuously poured onto the tundish 3, and the roll 4 is rotated at a peripheral speed of about 3 m / s while adjusting the degree of supercooling to 200 ° C.
It is supplied above and solidified under cooling conditions of a cooling rate of 1000 ° C./second, and the melt 2 is continuously dropped in the rotation direction of the roll 4 to cast an alloy having a thickness of 0.2 to 0.5 mm. Chunk 5
Was manufactured. Table 2 shows the supercooling degree at the time of manufacturing the alloy ingot, the cooling rate, and the grain size of the crystal structure of the alloy ingot measured by an electron microscope.
Table 3 shows the structural features of the crystal structure observed with an electron microscope.
Shown in. In addition, the obtained alloy ingot has a minor axis direction of 0.1 to 5
The inclusion of 90% by volume or more of columnar crystals having a columnar crystal grain size of 0 μm, 100 μm in the major axis direction and 300 μm or less can be confirmed from the average diameter and standard deviation of the crystal structure in Table 2. Next, the obtained alloy ingot for permanent magnet was
It was ground to 0 to 24 mesh and further ground in alcohol to a size of about 3 μm. Next, the obtained fine powder was subjected to magnetic field pressing under the conditions of 150 MPa and 2400 KAm to 1 and then sintered at 1040 ° C. for 2 hours to obtain 10 × 10 5.
A × 15 mm permanent magnet was obtained. Table 4 shows the magnetic properties of the obtained permanent magnets.

【0024】[0024]

【実施例2及び3】表1に示す原料組成を用い、表2に
示す過冷度及び冷却速度とした以外は、実施例1と同様
に永久磁石を調製した。合金鋳塊の結晶粒径を表2に、
結晶構造の組織的特徴を表3に、また得られた永久磁石
の磁石特性を表4に示す。尚、得られた合金鋳塊が、短
軸方向0.1〜50μm、長軸方向100μmを超え、
300μm以下の柱状結晶粒径を有する柱状結晶を90
容量%以上含有することは、表2の結晶構造の平均径と
標準偏差の値から確認できる。
Examples 2 and 3 A permanent magnet was prepared in the same manner as in Example 1 except that the raw material compositions shown in Table 1 were used and the supercooling degree and cooling rate shown in Table 2 were used. The crystal grain size of the alloy ingot is shown in Table 2,
Table 3 shows the structural characteristics of the crystal structure, and Table 4 shows the magnetic characteristics of the obtained permanent magnet. In addition, the obtained alloy ingot exceeds 0.1 to 50 μm in the minor axis direction and 100 μm in the major axis direction,
90 columnar crystals having a columnar grain size of 300 μm or less
It can be confirmed from the values of the average diameter and standard deviation of the crystal structure in Table 2 that the content is at least vol%.

【0025】[0025]

【比較例1】実施例1と同一組成の金属混合物を、高周
波溶融法により溶解し、金型鋳造法により厚さ25mm
の永久磁石用合金鋳塊を得た。得られた合金鋳塊を実施
例1と同様に分析し、更に永久磁石を製造した。合金鋳
塊の組成を表1に、過冷度、冷却速度及び合金鋳塊の結
晶粒径を表2に、結晶構造の組織的特徴を表3に、また
得られた永久磁石の磁石特性を表4に示す。
[Comparative Example 1] A metal mixture having the same composition as in Example 1 was melted by a high frequency melting method, and a thickness was 25 mm by a die casting method.
To obtain an alloy ingot for permanent magnet. The obtained alloy ingot was analyzed in the same manner as in Example 1 to manufacture a permanent magnet. The composition of the alloy ingot is shown in Table 1, the supercooling degree, the cooling rate and the crystal grain size of the alloy ingot are shown in Table 2, the structural characteristics of the crystal structure are shown in Table 3, and the magnetic properties of the obtained permanent magnet are shown. It shows in Table 4.

【0026】[0026]

【比較例2】表1に示す原料組成を用い、溶融物温度を
1200℃、ロール周速度を0.01m/sとし、表2
に示す過冷度及び冷却速度とした以外は、実施例1と同
様に永久磁石を調製した。合金鋳塊の結晶粒径を表2
に、結晶構造の組織的特徴を表3に、また得られた永久
磁石の磁石特性を表4に示す。
Comparative Example 2 Using the raw material composition shown in Table 1, the melt temperature was 1200 ° C., and the roll peripheral speed was 0.01 m / s.
A permanent magnet was prepared in the same manner as in Example 1 except that the supercooling degree and the cooling rate shown in 1 were used. Table 2 shows the grain size of the alloy ingot.
Table 3 shows the structural characteristics of the crystal structure, and Table 4 shows the magnetic properties of the obtained permanent magnet.

【0027】[0027]

【比較例3】表1に示す原料組成を用い、溶融物温度を
1600℃、ロール周速度を50m/sとし、表2に示
す過冷度及び冷却速度とした以外は、実施例1と同様に
永久磁石を調製した。合金鋳塊の結晶粒径を表2に、結
晶構造の組織的特徴を表3に、また得られた永久磁石の
磁石特性を表4に示す。
Comparative Example 3 Same as Example 1 except that the raw material composition shown in Table 1 was used, the melt temperature was 1600 ° C., the roll peripheral speed was 50 m / s, and the supercooling degree and cooling rate shown in Table 2 were used. A permanent magnet was prepared. Table 2 shows the crystal grain size of the alloy ingot, Table 3 shows the structural features of the crystal structure, and Table 4 shows the magnetic properties of the obtained permanent magnet.

【0028】[0028]

【比較例4】表1に示す原料組成を用いた以外は比較例
1と同様に永久磁石用合金鋳塊を得、更に永久磁石を製
造した。合金鋳塊の組成を表1に、過冷度、冷却速度及
び合金鋳塊の結晶粒径を表2に、結晶構造の組織的特徴
を表3に、また得られた永久磁石の磁石特性を表4に示
す。
Comparative Example 4 An alloy ingot for permanent magnet was obtained in the same manner as in Comparative Example 1 except that the raw material composition shown in Table 1 was used, and further a permanent magnet was manufactured. The composition of the alloy ingot is shown in Table 1, the supercooling degree, the cooling rate and the crystal grain size of the alloy ingot are shown in Table 2, the structural characteristics of the crystal structure are shown in Table 3, and the magnetic properties of the obtained permanent magnet are shown. It shows in Table 4.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【実施例4】ネオジム28.0重量%、ボロン0.95
重量%、鉄71.05重量%の組成からなる金属元素を
配合した金属混合物を、アルゴンガス雰囲気中で、アル
ミナるつぼを使用して高周波溶融法により溶融物とし
た。次いで、得られた溶融物を実施例1と同様に単ロー
ル法で、表5に示す過冷度及び冷却速度により永久磁石
主相用合金鋳塊を得た。またネオジム40.0重量%、
ボロン1.5重量%、鉄58.5重量%の組成からなる
金属元素を配合した金属混合物を、アルゴンガス雰囲気
中で、アルミナるつぼを使用して高周波溶融法により溶
融物とした。次いで、得られた溶融物を実施例1と同様
に単ロール法で、表6に示す過冷度及び冷却速度により
永久磁石焼結助剤用合金鋳塊を得た。前記永久磁石主相
用合金鋳塊の組成を表5の各実施例の欄の上段に、永久
磁石焼結助剤用合金鋳塊の組成を下段にそれぞれ示す。
次に得られた永久磁石主相用合金鋳塊及び永久磁石焼結
助剤用合金鋳塊を、それぞれ別々に250〜24メッシ
ュに粉砕し、永久磁石主相用合金鋳塊83重量%及び永
久磁石焼結助剤用合金鋳塊17重量%になるように秤取
した後混合し、更にアルコール中において、3μm程度
まで微粉砕した。次いで得られた微粉末を、150MP
a、2400KAm~1の条件下、磁場プレスした後、1
040℃にて2時間焼結し、10×10×15mmの永
久磁石を得た。合金鋳塊製造時の過冷度、冷却速度及び
得られた合金鋳塊の結晶粒径を表6に、合金鋳塊の組織
的特徴及び永久磁石主相用合金鋳塊及び永久磁石焼結助
剤用合金鋳塊の混合比を表7に、永久磁石の磁石特性を
表8に示す。尚、得られた合金鋳塊が、短軸方向0.1
〜50μm、長軸方向100μmを超え、300μm以
下の柱状結晶粒径を有する柱状結晶を90容量%以上含
有することは、表6の結晶構造の平均径と標準偏差の値
から確認できる。
Example 4 Neodymium 28.0% by weight, boron 0.95
A metal mixture containing a metal element having a composition of 70% by weight of iron and 71.05% by weight of iron was melted by an induction melting method using an alumina crucible in an argon gas atmosphere. Then, the obtained melt was subjected to the single roll method in the same manner as in Example 1 to obtain an alloy ingot for a permanent magnet main phase with the supercooling degree and the cooling rate shown in Table 5. Neodymium 40.0% by weight,
A metal mixture containing a metal element having a composition of 1.5 wt% boron and 58.5 wt% iron was melted by an induction melting method using an alumina crucible in an argon gas atmosphere. Then, the obtained melt was subjected to the single roll method in the same manner as in Example 1 to obtain alloy ingots for permanent magnet sintering aids at the supercooling degrees and cooling rates shown in Table 6. The composition of the alloy ingot for permanent magnet main phase is shown in the upper part of the column of each example in Table 5, and the composition of the alloy ingot for permanent magnet sintering aid is shown in the lower part.
Next, the obtained alloy ingot for permanent magnet main phase and alloy ingot for permanent magnet sintering aid were separately pulverized to 250 to 24 mesh, and 83% by weight of permanent alloy main phase ingot and permanent alloy The alloy ingot for magnet sintering aid was weighed so as to be 17% by weight, mixed, and further pulverized in alcohol to about 3 μm. Then, the fine powder obtained was treated with 150MP
a, after magnetic field pressing under the condition of 2400 KAm ~ 1 , 1
Sintering was performed at 040 ° C. for 2 hours to obtain a 10 × 10 × 15 mm permanent magnet. Table 6 shows the degree of supercooling at the time of producing the alloy ingot, the cooling rate, and the crystal grain size of the obtained alloy ingot, the structural features of the alloy ingot, the alloy ingot for the permanent magnet main phase, and the permanent magnet sintering aid. Table 7 shows the mixing ratio of the alloy ingot for chemicals, and Table 8 shows the magnetic properties of the permanent magnets. The obtained alloy ingot had a minor axis direction of 0.1.
The inclusion of 90% by volume or more of columnar crystals having a columnar crystal grain size of ˜50 μm, 100 μm in the major axis direction and 300 μm or less can be confirmed from the average diameter and standard deviation of the crystal structure in Table 6.

【0034】[0034]

【実施例5】表5に示す永久磁石主相用合金鋳塊及び永
久磁石焼結助剤用合金鋳塊の組成を用い、表6に示す過
冷度及び冷却速度、並びに表7に示す永久磁石主相用合
金鋳塊及び永久磁石焼結助剤用合金鋳塊の混合比とした
以外は、実施例4と同様に永久磁石を調製した。合金鋳
塊製造時の過冷度、冷却速度及び得られた合金鋳塊の結
晶粒径を表6に、合金鋳塊の組織的特徴及び永久磁石主
相用合金鋳塊及び永久磁石焼結助剤用合金鋳塊の混合比
を表7に、永久磁石の磁石特性を表8に示す。尚、得ら
れた合金鋳塊が、短軸方向0.1〜50μm、長軸方向
100μmを超え、300μm以下の柱状結晶粒径を有
する柱状結晶を90容量%以上含有することは、表6の
結晶構造の平均径と標準偏差の値から確認できる。
Example 5 Using the compositions of the alloy ingot for permanent magnet main phase and the alloy ingot for permanent magnet sintering aid shown in Table 5, the supercooling degree and cooling rate shown in Table 6 and the permanent set shown in Table 7 were used. A permanent magnet was prepared in the same manner as in Example 4, except that the alloy ingot for the main magnetic phase and the alloy ingot for the permanent magnet sintering aid were used in the mixing ratio. Table 6 shows the degree of supercooling at the time of producing the alloy ingot, the cooling rate, and the crystal grain size of the obtained alloy ingot, the structural characteristics of the alloy ingot, the alloy ingot for the permanent magnet main phase, and the permanent magnet sintering aid. Table 7 shows the mixing ratio of the alloy ingot for chemicals, and Table 8 shows the magnetic properties of the permanent magnets. It should be noted that the obtained alloy ingot contains 90% by volume or more of columnar crystals having a columnar crystal grain size of 300 μm or less and exceeding 0.1 to 50 μm in the minor axis direction and 100 μm in the major axis direction. It can be confirmed from the average diameter of the crystal structure and the value of standard deviation.

【0035】[0035]

【実施例6〜22】表5に示す永久磁石主相用合金鋳塊
及び永久磁石焼結助剤用合金鋳塊の組成を用い、表6に
示す過冷度及び冷却速度、並びに永久磁石主相用合金鋳
塊及び永久磁石焼結助剤用合金鋳塊の微粉砕を別々に行
なった後に表7に示す永久磁石主相用合金鋳塊及び永久
磁石焼結助剤用合金鋳塊の混合比で混合し、磁場成形し
た以外は、実施例4と同様に永久磁石を調製した。合金
鋳塊製造時の過冷度、冷却速度及び得られた合金鋳塊の
結晶粒径を表6に、合金鋳塊の組織的特徴及び永久磁石
主相用合金鋳塊及び永久磁石焼結助剤用合金鋳塊の混合
比を表7に、永久磁石の磁石特性を表8に示す。尚、得
られた合金鋳塊が、短軸方向0.1〜50μm、長軸方
向100μmを超え、300μm以下の柱状結晶粒径を
有する柱状結晶を90容量%以上含有することは、表6
の結晶構造の平均径と標準偏差の値から確認できる。
Examples 6 to 22 Using the composition of the alloy ingot for permanent magnet main phase and the alloy ingot for permanent magnet sintering aid shown in Table 5, the supercooling degree and cooling rate shown in Table 6 and the permanent magnet main Mixing of the alloy ingot for main phase and alloy ingot for permanent magnet sintering aid shown in Table 7 after separately pulverizing the alloy ingot for phase and the alloy ingot for permanent magnet sintering aid separately A permanent magnet was prepared in the same manner as in Example 4 except that the ratios were mixed and the magnetic field was formed. Table 6 shows the degree of supercooling at the time of producing the alloy ingot, the cooling rate, and the crystal grain size of the obtained alloy ingot, the structural characteristics of the alloy ingot, the alloy ingot for the permanent magnet main phase, and the permanent magnet sintering aid. Table 7 shows the mixing ratio of the alloy ingot for chemicals, and Table 8 shows the magnetic properties of the permanent magnets. The obtained alloy ingot contains 90% by volume or more of columnar crystals having a columnar crystal grain size of 300 μm or less and 0.1 μm to 50 μm in the minor axis direction and 100 μm in the major axis direction.
It can be confirmed from the average diameter and standard deviation of the crystal structure of.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】[0039]

【表8】 [Table 8]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例で用いた単ロールによるストリ
ップキャスト法によって永久磁石用合金鋳塊を製造する
際の概略図である。
FIG. 1 is a schematic view of manufacturing an alloy ingot for a permanent magnet by a strip casting method using a single roll used in Examples.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月24日[Submission date] May 24, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】前記合金鋳塊以外の原料成分としては、例
えばランタン、セリウム、プラセオジム、ネオジム、イ
ットリウム、ジスプロシウム、ミッシュメタル又はこれ
らの混合物等の希土類金属31〜100重量%を含む金
属鋳塊等を挙げることができる。該金属鋳塊は、希土類
金属の他に、例えば鉄、コバルト、ニッケル又はこれら
の混合物等を69重量%以下含有する合金であっても良
い。このような金属鋳塊は、例えば前記主成分としての
合金鋳塊と同様な方法で調製することができる他、公知
の双ロール法、回転円板法等の金属鋳造法等により調製
されたものを使用することもできる。該金属鋳塊の含有
量は、原料成分として前記合金鋳塊単独の使用の場合よ
り得られる永久磁石の磁石特性を向上させるために、原
料成分全量に対して0.1〜30容量%が好ましい。3
容量%を超える場合には、磁石特性が低下するので好
ましくない。
Examples of raw material components other than the alloy ingots include metal ingots containing 31 to 100% by weight of a rare earth metal such as lanthanum, cerium, praseodymium, neodymium, yttrium, dysprosium, misch metal or a mixture thereof. be able to. The metal ingot may be an alloy containing 69 wt% or less of iron, cobalt, nickel, or a mixture thereof, in addition to the rare earth metal. Such a metal ingot can be prepared by, for example, a method similar to that of the alloy ingot as the main component, or by a known twin roll method, a metal casting method such as a rotating disk method, or the like. Can also be used. The content of the metal ingot is preferably 0.1 to 30 % by volume with respect to the total amount of the raw material components in order to improve the magnetic properties of the permanent magnet obtained as compared with the case where the alloy ingot is used alone as the raw material component. . Three
If it exceeds 0 % by volume , the magnet characteristics are deteriorated, which is not preferable.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 1/053

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属25〜31重量%と、ボロン
0.5〜1.5重量%と、鉄とを含む合金溶融物を、単
ロール法により、過冷度50〜500℃、冷却速度50
0℃/秒を超え、10000℃/秒以下の冷却条件下で
均一に凝固させて得た、短軸方向0.1〜50μm、長
軸方向100μmを超え、300μm以下の柱状結晶粒
径を有する柱状結晶を90容量%以上含有する合金鋳塊
を主成分として含む原料成分を、粉砕、成形し、焼結し
たことを特徴とする永久磁石。
1. An alloy melt containing 25 to 31% by weight of a rare earth metal, 0.5 to 1.5% by weight of boron, and iron is cooled by a single roll method at a supercooling degree of 50 to 500 ° C. and a cooling rate. Fifty
It has a columnar crystal grain size of 0.1 to 50 μm in the minor axis direction, 100 μm in the major axis direction, and 300 μm or less in the major axis direction obtained by uniformly solidifying under cooling conditions of more than 0 ° C./second and 10,000 ° C./second or less. A permanent magnet characterized in that a raw material component containing, as a main component, an alloy ingot containing 90% by volume or more of columnar crystals is crushed, molded and sintered.
【請求項2】 前記合金鋳塊の主相結晶粒内に、粒径1
0μm未満のα−Fe、γ−Fe及びこれらの混合物か
らなる群より選択される包晶核が、微細分散されている
請求項1記載の永久磁石。
2. A grain size of 1 in the main phase crystal grains of the alloy ingot.
The permanent magnet according to claim 1, wherein peritectic nuclei of less than 0 µm selected from the group consisting of α-Fe, γ-Fe, and a mixture thereof are finely dispersed.
【請求項3】 前記原料成分中の合金鋳塊の含有割合
が、70〜99.9容量%である請求項1記載の永久磁
石。
3. The permanent magnet according to claim 1, wherein the content of the alloy ingot in the raw material components is 70 to 99.9% by volume.
【請求項4】 希土類金属31〜100重量%を含む金
属鋳塊を、前記原料成分が更に含む請求項1記載の永久
磁石。
4. The permanent magnet according to claim 1, wherein the raw material component further contains a metal ingot containing 31 to 100% by weight of a rare earth metal.
【請求項5】 前記金属鋳塊が、鉄、コバルト、ニッケ
ル及びこれらの混合物からなる群より選択される遷移金
属を含む請求項4記載の永久磁石。
5. The permanent magnet according to claim 4, wherein the metal ingot contains a transition metal selected from the group consisting of iron, cobalt, nickel and mixtures thereof.
【請求項6】 前記金属鋳塊の含有量が、原料成分全量
に対して0.1〜30容量%である請求項4記載の永久
磁石。
6. The permanent magnet according to claim 4, wherein the content of the metal ingot is 0.1 to 30% by volume with respect to the total amount of raw material components.
JP10709594A 1993-06-14 1994-05-20 Manufacturing method of permanent magnet Expired - Lifetime JP3299630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10709594A JP3299630B2 (en) 1993-06-14 1994-05-20 Manufacturing method of permanent magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-142156 1993-06-14
JP14215693 1993-06-14
JP10709594A JP3299630B2 (en) 1993-06-14 1994-05-20 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH0766022A true JPH0766022A (en) 1995-03-10
JP3299630B2 JP3299630B2 (en) 2002-07-08

Family

ID=26447161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10709594A Expired - Lifetime JP3299630B2 (en) 1993-06-14 1994-05-20 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3299630B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320249B1 (en) * 1997-08-22 2002-02-19 가타오카 마사타카 Hard magnetic alloy with supercooled liquid region, sintered body and casting article thereof, and stepping motor and speaker using the same
JP2002175931A (en) * 2000-09-28 2002-06-21 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2016184737A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184736A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184735A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320249B1 (en) * 1997-08-22 2002-02-19 가타오카 마사타카 Hard magnetic alloy with supercooled liquid region, sintered body and casting article thereof, and stepping motor and speaker using the same
JP2002175931A (en) * 2000-09-28 2002-06-21 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2016184737A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184736A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184735A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet

Also Published As

Publication number Publication date
JP3299630B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
KR0131333B1 (en) Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
KR0151244B1 (en) Permanent magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3299630B2 (en) Manufacturing method of permanent magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH01706A (en) Rare earth magnet manufacturing method
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPH0812815B2 (en) Rare earth magnet manufacturing method
JPS62290807A (en) Production of rare earth containing magnet alloy
JPH0533076A (en) Rare earth permanent magnet alloy and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term