JPH0765848A - Cooling water exhaust heat recovery method and its device for fuel cell thermoelectric supply facility - Google Patents

Cooling water exhaust heat recovery method and its device for fuel cell thermoelectric supply facility

Info

Publication number
JPH0765848A
JPH0765848A JP5208086A JP20808693A JPH0765848A JP H0765848 A JPH0765848 A JP H0765848A JP 5208086 A JP5208086 A JP 5208086A JP 20808693 A JP20808693 A JP 20808693A JP H0765848 A JPH0765848 A JP H0765848A
Authority
JP
Japan
Prior art keywords
steam
cooling water
fuel cell
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5208086A
Other languages
Japanese (ja)
Other versions
JP3350164B2 (en
Inventor
Masaru Ogawa
賢 小川
Hideo Nishigaki
英雄 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP20808693A priority Critical patent/JP3350164B2/en
Publication of JPH0765848A publication Critical patent/JPH0765848A/en
Application granted granted Critical
Publication of JP3350164B2 publication Critical patent/JP3350164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a means to recover the exhaust heat of cooling water effectively in addition to means to separate the cooling water from which heat produced at generation of fuel cell is removed into steam and cooling water and feed the steam other than that fed to a fuel reforming device to an exhaust gas turbine generator. CONSTITUTION:The steam in a steam separator 12 is fed to a fuel reforming device 6 after controlling the required amount of flow by a flow control valve 27, and the remaining excess steam is fed to an exhaust gas turbine 22 after controlling the pressure in the steam separator 12 by a pressure control valve 31 to obtain power by a generator 21. In addition, an absorbing type refrigerator 40 is provided. The steam flow-controlled by a flow control valve 44 is fed to the absorption refrigerator 40 to obtain cool water of a specified temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の発電時生じ
る反応熱を除熱する冷却水の排熱を回収して排ガスター
ビンにより動力、並びに吸収式冷凍機により冷水を得る
燃料電池熱電併給設備の冷却水排熱回収方法及びその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to combined heat and power supply for a fuel cell, in which exhaust heat of cooling water for removing reaction heat generated during power generation of a fuel cell is recovered to obtain power by an exhaust gas turbine and cold water by an absorption refrigerator. The present invention relates to a method for recovering waste heat of cooling water of equipment and an apparatus thereof.

【0002】[0002]

【従来の技術】燃料電池の発電時生じる反応熱を除熱し
た冷却水は水蒸気分離器に導かれて水蒸気と冷却水とに
分離され、冷却水は再び反応熱の除熱に使用されるが、
水蒸気は燃料改質装置にて水蒸気改質のために供給され
る天然ガス,LPG,メタノールのような炭化水素系や
アルコール系の原燃料に付加されるとともに、残りの余
剰の水蒸気は発電機を駆動する排ガスタービンや燃料電
池に反応ガスの空気を供給するコンプレッサを駆動する
排ガスタービンに供給されて冷却水の排熱を回収してい
る。
2. Description of the Related Art Cooling water from which heat of reaction generated during power generation of a fuel cell is removed is introduced into a steam separator and separated into steam and cooling water, which is used again to remove heat of reaction. ,
The steam is added to the hydrocarbon-based or alcohol-based raw fuel such as natural gas, LPG, and methanol supplied for steam reforming in the fuel reformer, and the remaining excess steam is generated by the generator. The exhaust heat of the cooling water is recovered by being supplied to the exhaust gas turbine that drives the exhaust gas turbine that drives and the compressor that supplies the reaction gas air to the fuel cell.

【0003】以下従来技術について図面を用いて説明す
る。図4は冷却水の排熱を回収する燃料電池熱電併給設
備の系統図である。図4において燃料電池1は図示しな
い電解質層と、この電解質層を挟持する燃料極2及び空
気極3と、伝熱管4を有する冷却板5とを備えている。
燃料改質装置6は原燃料を水蒸気改質する触媒が充填さ
れた反応部7と、この反応部7を加熱するための燃焼ガ
スを発生させるバーナ8とを備えている。
The prior art will be described below with reference to the drawings. FIG. 4 is a system diagram of a fuel cell combined heat and power supply facility for recovering exhaust heat of cooling water. In FIG. 4, the fuel cell 1 includes an electrolyte layer (not shown), a fuel electrode 2 and an air electrode 3 that sandwich the electrolyte layer, and a cooling plate 5 having a heat transfer tube 4.
The fuel reformer 6 includes a reaction part 7 filled with a catalyst for steam reforming raw fuel, and a burner 8 for generating combustion gas for heating the reaction part 7.

【0004】水蒸気分離器12は燃料電池1の発電時生
じる反応熱を除熱した冷却水を水蒸気と冷却水とに分離
し、冷却水循環系10は循環ポンプ11を備えて燃料電
池1の伝熱管4と水蒸気分離器12との間に接続して設
けられている。改質ガス供給系13は燃料改質装置6の
反応部7と燃料電池1の燃料極2とに接続し、また燃料
オフガス排出系14は燃料極2と燃料改質装置6のバー
ナ8とに接続して設けられている。
The steam separator 12 separates the cooling water from which the reaction heat generated during power generation of the fuel cell 1 is removed into steam and cooling water, and the cooling water circulation system 10 has a circulation pump 11 and a heat transfer tube of the fuel cell 1. 4 and the water vapor separator 12 are connected and provided. The reformed gas supply system 13 is connected to the reaction section 7 of the fuel reformer 6 and the fuel electrode 2 of the fuel cell 1, and the fuel off-gas discharge system 14 is connected to the fuel electrode 2 and the burner 8 of the fuel reformer 6. It is provided by connecting.

【0005】空気供給系15は電動機16で駆動される
コンプレッサ17と燃料電池1の空気極3とに接続し、
さらにこれより分岐して燃焼空気供給系18が燃料改質
装置6のバーナ8に接続して設けられている。空気オフ
ガス排出系20は燃料電池1の空気極3に接続され、燃
料改質装置6のバーナ8での燃焼により生じた燃焼ガス
の燃焼排ガスの出口と発電機21を駆動する排ガスター
ビン22とに接続する燃焼排ガス排出系23に合流され
ている。
The air supply system 15 is connected to the compressor 17 driven by the electric motor 16 and the air electrode 3 of the fuel cell 1.
Further branching from this, a combustion air supply system 18 is connected to the burner 8 of the fuel reformer 6. The air off-gas discharge system 20 is connected to the air electrode 3 of the fuel cell 1, and is connected to the outlet of the combustion exhaust gas of the combustion gas generated by the combustion in the burner 8 of the fuel reformer 6 and the exhaust gas turbine 22 that drives the generator 21. It is joined to the connected combustion exhaust gas discharge system 23.

【0006】原燃料供給系25は燃料改質装置6の反応
部7に接続して設けられ、またこの系に合流する改質用
水蒸気供給系28が水蒸気分離器12の水蒸気部に接続
し、流量検出器26と流量制御弁27とを備えて設けら
れている。水蒸気供給系30は水蒸気分離器12の水蒸
気部に圧力制御弁31を備えて接続し、燃焼排ガス排出
系23に合流している。なお圧力検出器32は水蒸気分
離器12内の圧力を検出する。
The raw fuel supply system 25 is provided so as to be connected to the reaction section 7 of the fuel reformer 6, and a reforming steam supply system 28 which joins this system is connected to the steam section of the steam separator 12. It is provided with a flow rate detector 26 and a flow rate control valve 27. The steam supply system 30 is connected to the steam part of the steam separator 12 with a pressure control valve 31 and joined to the combustion exhaust gas discharge system 23. The pressure detector 32 detects the pressure inside the water vapor separator 12.

【0007】このような構成により原燃料を原燃料供給
系25を経て燃料改質装置6の反応部7に供給する。こ
の際、水蒸気分離器12で分離された水蒸気が流量制御
されて改質用水蒸気供給系28を経て原燃料に付加され
る。この場合の流量制御は改質用水蒸気供給系28を流
れる水蒸気の流量を流量検出器26で検出し、この検出
流量と原燃料流量に対応する所定流量の目標値との偏差
から調節器33により流量制御弁27を制御して行なわ
れる。
With this structure, the raw fuel is supplied to the reaction section 7 of the fuel reformer 6 through the raw fuel supply system 25. At this time, the flow rate of the steam separated by the steam separator 12 is controlled and added to the raw fuel through the reforming steam supply system 28. In the flow rate control in this case, the flow rate detector 26 detects the flow rate of the steam flowing through the reforming steam supply system 28, and the controller 33 determines the deviation between the detected flow rate and the target value of the predetermined flow rate corresponding to the raw fuel flow rate. This is performed by controlling the flow rate control valve 27.

【0008】一方、燃料電池1の発電時燃料極2から排
出される燃料オフガスは燃料オフガス排出系14を経て
燃料改質装置6のバーナ8に供給され、一方電動機16
により駆動されるコンプレッサ17から吐出される空気
が燃焼空気供給系18を経てバーナ8に供給され、燃料
オフガスはこの空気により燃焼する。この燃焼による燃
焼熱により反応部7を加熱し、反応部7を流れる水蒸気
が付加された原燃料を水素に富む改質ガスに水蒸気改質
する。
On the other hand, the fuel off-gas discharged from the fuel electrode 2 during power generation of the fuel cell 1 is supplied to the burner 8 of the fuel reformer 6 through the fuel off-gas discharge system 14, while the electric motor 16
Air discharged from the compressor 17 driven by is supplied to the burner 8 via the combustion air supply system 18, and the fuel off gas is combusted by this air. The combustion heat from this combustion heats the reaction section 7, and the raw fuel added with steam flowing through the reaction section 7 is steam-reformed into a reformed gas rich in hydrogen.

【0009】上記の改質ガスは改質ガス供給系13を経
て燃料電池1の燃料極2に、一方コンプレッサ17から
吐出される空気は空気供給系15を経て空気極3に供給
され、燃料電池1は供給される改質ガスと空気とにより
電池反応を起こして発電する。なお発電時、水蒸気分離
器12内の冷却水が循環ポンプ11より冷却水循環系1
0を流れて燃料電池1の伝熱管4に通流し、発電時生じ
る反応熱はこの冷却水により除熱されて運転温度が保持
される。
The above reformed gas is supplied to the fuel electrode 2 of the fuel cell 1 via the reformed gas supply system 13, and the air discharged from the compressor 17 is supplied to the air electrode 3 via the air supply system 15 to supply the fuel cell. 1 generates a power by causing a cell reaction with the supplied reformed gas and air. During power generation, the cooling water in the steam separator 12 is supplied from the circulation pump 11 to the cooling water circulation system 1.
Flowing through the heat transfer tube 4 of the fuel cell 1 and the reaction heat generated during power generation is removed by this cooling water to maintain the operating temperature.

【0010】燃料電池1の伝熱管4から排出され、反応
熱により水蒸気が発生した冷却水は水蒸気分離器12に
流入して水蒸気と冷却水とに分離され、水蒸気は前述の
ように原燃料に付加されるとともに、残りの水蒸気は発
電機21を駆動する排ガスタービン22に供給される。
この際空気極3から排出され、空気オフガス排出系20
を減る空気オフガス及び燃料改質装置6から排出され、
燃焼排ガス排出系23を経る燃焼排ガスも前記残りの水
蒸気とともに排ガスタービン22に供給されて発電機2
1を駆動して電力を得る。
The cooling water discharged from the heat transfer tube 4 of the fuel cell 1 and having steam generated by the reaction heat flows into the steam separator 12 and is separated into steam and cooling water. While being added, the remaining steam is supplied to the exhaust gas turbine 22 that drives the generator 21.
At this time, the air off gas exhaust system 20
Air off-gas and fuel reformer 6 exhausted,
The combustion exhaust gas passing through the combustion exhaust gas discharge system 23 is also supplied to the exhaust gas turbine 22 together with the remaining steam, and the generator 2
Drive 1 to get power.

【0011】なお、水蒸気分離器12内の圧力は、圧力
検出器32により検出した検出圧力と所定圧力の目標値
との偏差から調節器34により圧力制御弁31を制御し
て所定圧力に制御されるとともに、この制御の際に流れ
る流量の水蒸気が水蒸気供給系30を流れて排ガスター
ビン22に供給される。この際、水蒸気分離器12内の
圧力は所定圧力に保持されるように発生蒸気量が制御さ
れ、水蒸気分離器12内の冷却水は所定圧力に対応する
一定の飽和温度に保たれ、この冷却水により燃料電池の
反応熱を除熱して運転温度が保持される。
The pressure inside the water vapor separator 12 is controlled to a predetermined pressure by controlling the pressure control valve 31 by the controller 34 from the deviation between the detected pressure detected by the pressure detector 32 and the target value of the predetermined pressure. At the same time, the flow rate of steam flowing during this control flows through the steam supply system 30 and is supplied to the exhaust gas turbine 22. At this time, the amount of generated steam is controlled so that the pressure in the steam separator 12 is maintained at a predetermined pressure, the cooling water in the steam separator 12 is maintained at a constant saturation temperature corresponding to the predetermined pressure, and this cooling is performed. The reaction heat of the fuel cell is removed by water to maintain the operating temperature.

【0012】図5は従来例の異なる燃料電池熱電併給設
備の系統図である。図5において図4に示す排ガスター
ビン22と、これに接続する発電機21とを取除き、コ
ンプレッサ17を駆動する電動機16を排ガスタービン
35にし、空気オフガス排出系20と水蒸気供給系30
とが合流する燃焼排ガス排出系23を排ガスタービン3
5に接続した他は図4と同じである。
FIG. 5 is a system diagram of a conventional fuel cell combined heat and power supply facility of a different example. In FIG. 5, the exhaust gas turbine 22 shown in FIG. 4 and the generator 21 connected thereto are removed, and the electric motor 16 that drives the compressor 17 is replaced by the exhaust gas turbine 35, and the air off gas exhaust system 20 and the steam supply system 30 are provided.
And the flue gas exhaust system 23 that joins the exhaust gas turbine 3
5 is the same as FIG. 4 except that it is connected to FIG.

【0013】このような構成により、燃料電池1の空気
極3及び燃料改質装置6のバーナ8に供給する空気は、
水蒸気分離器12からの水蒸気と燃料改質装置6からの
燃焼排ガスと燃料電池1の空気極3からの空気オフガス
とが供給される排ガスタービン35により駆動されるコ
ンプレッサ17により供給される。図6は従来例の他の
異なる燃料電池熱電併給設備の系統図である。図6にお
いて燃料電池1の伝熱管4を通流する冷却媒体を冷却空
気にして循環ブロワ36と熱交換器37とを備えた冷却
空気循環系38と、水蒸気分離器12を経由する冷却水
循環系10を熱交換器37にて冷却水循環系10を流れ
る冷却水が前記冷却空気と熱交換するように設けた他は
図4と同じである。
With this structure, the air supplied to the air electrode 3 of the fuel cell 1 and the burner 8 of the fuel reformer 6 is
The steam from the steam separator 12, the combustion exhaust gas from the fuel reformer 6, and the air off gas from the air electrode 3 of the fuel cell 1 are supplied by a compressor 17 driven by an exhaust gas turbine 35. FIG. 6 is a system diagram of another conventional fuel cell combined heat and power supply facility of the conventional example. In FIG. 6, a cooling medium circulating through the heat transfer tube 4 of the fuel cell 1 is used as cooling air, and a cooling air circulation system 38 including a circulation blower 36 and a heat exchanger 37 and a cooling water circulation system passing through the steam separator 12 are provided. It is the same as FIG. 4 except that 10 is provided in the heat exchanger 37 so that the cooling water flowing through the cooling water circulation system 10 exchanges heat with the cooling air.

【0014】このような構成により、燃料電池1の発電
時生じる反応熱を、冷却空気循環系38を循環ブロワ3
6により循環する冷却空気により除熱し、除熱して高温
になった冷却空気と熱交換器37により熱交換して冷却
水循環系10を循環する冷却水を加熱して水蒸気分離器
12に供給することにより、前述のように冷却水の排熱
が回収される。
With such a configuration, the reaction heat generated during power generation of the fuel cell 1 is circulated through the cooling air circulation system 38 and the blower 3
Heat is removed by the cooling air circulated by 6 and heat is removed by the heat exchanger 37 to remove heat from the cooling air and the cooling water circulating in the cooling water circulation system 10 is heated and supplied to the steam separator 12. Thereby, the exhaust heat of the cooling water is recovered as described above.

【0015】[0015]

【発明が解決しようとする課題】上記のように燃料電池
1の発電時生じる反応熱を除熱した冷却水を貯留する水
蒸気分離器12内の圧力を所定圧力にして、冷却水と分
離した水蒸気により排ガスタービン22や35を駆動す
るのは、水蒸気のエネルギーを回転エネルギーに変換
し、さらに発電機21により電力エネルギーに、またコ
ンプレッサ17により空気エネルギーに変換するのはエ
ネルギー変換効率がそれ程高くないという欠点がある。
As described above, the pressure inside the steam separator 12 for storing the cooling water from which the reaction heat generated during power generation of the fuel cell 1 is removed is set to a predetermined pressure to separate the steam from the cooling water. Driving the exhaust gas turbines 22 and 35 by means of converting the energy of water vapor into rotational energy, further converting into electric energy by the generator 21 and air energy by the compressor 17 is not so high in energy conversion efficiency. There are drawbacks.

【0016】また、本出願人は水蒸気分離器内の水蒸気
を他の手段により有効に利用することについて検討を加
えて、冷却水の排熱を十分に回収することについて検討
を行なった。本発明の目的は、水蒸気分離器内の水蒸気
を排ガスタービンに使用するばかりでなく、他の手段に
より使用してプラントの総合エネルギー効率を高くする
ことのできる燃料電池熱電併給設備の冷却水排熱回収方
法及びその装置を提供することである。
Further, the present applicant has studied how to effectively use the water vapor in the water vapor separator by other means, and also studied how to sufficiently recover the exhaust heat of the cooling water. The object of the present invention is not only to use the steam in the steam separator for the exhaust gas turbine, but also to use it by other means to increase the overall energy efficiency of the plant. A recovery method and an apparatus therefor are provided.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば燃料電池の発電時生じる熱を除熱し
た冷却水、又は冷却空気と熱交換した冷却水を水蒸気分
離器で水蒸気と冷却水とに分離し、前記水蒸気を流量制
御して燃料改質装置に供給して水蒸気改質する原燃料に
付加し、さらに前記水蒸気を、水蒸気分離器内の圧力が
所定圧力になるように圧力制御して発電機を駆動する排
ガスタービン、又は燃料電池に反応ガスの空気を送気す
るコンプレッサを駆動する排ガスタービンに供給して冷
却水の排熱を回収する燃料電池熱電併給設備の冷却水排
熱回収方法において、水蒸気分離気内の水蒸気を流量制
御して吸収式冷凍機に供給し、この冷凍機に供給される
水を冷却して所定温度の冷水にするものとする。
In order to solve the above problems, according to the present invention, cooling water from which heat generated during power generation of a fuel cell is removed or cooling water that has exchanged heat with cooling air is used in a steam separator. The steam is separated into steam and cooling water, the flow rate of the steam is controlled, and the steam is supplied to the fuel reformer to be added to the raw fuel to be steam-reformed. Further, the steam has a predetermined pressure in the steam separator. Of the fuel cell cogeneration system that recovers the exhaust heat of the cooling water by supplying it to the exhaust gas turbine that drives the generator by pressure control as described above or the exhaust gas turbine that drives the compressor that supplies the reaction gas air to the fuel cell. In the cooling water exhaust heat recovery method, the flow rate of water vapor in the water vapor separation gas is controlled and supplied to an absorption refrigerator, and the water supplied to this refrigerator is cooled to be cold water at a predetermined temperature.

【0018】また、上記の冷却水排熱回収方法を採用す
る装置として燃料電池と、この燃料電池の発電時生じる
熱を除熱した冷却水、又は冷却空気と熱交換器にて熱交
換した冷却水を水蒸気と冷却水とに分離する水蒸気分離
器と、水蒸気分離器からの水蒸気を流量制御して付加し
た原燃料を供給して水蒸気改質する燃料改質装置と、水
蒸気分離器からの水蒸気を、この分離器内の圧力が所定
圧力になるように圧力制御して供給する発電機に接続さ
れる排ガスタービン、又は燃料電池に反応ガスの空気を
送気するコンプレッサに接続される排ガスタービンとを
備え、燃料電池の冷却水排熱を回収する燃料電池熱電併
給設備の冷却水排熱回収装置において、水蒸気分離器か
らの水蒸気を供給し、供給される水を冷却して冷水にす
る吸収式冷凍機と、この吸収式冷凍機に供給する水蒸気
の流量を冷水の温度が所定温度になるように制御する流
量制御手段とを設けるものとする。
Further, a fuel cell as an apparatus adopting the above-mentioned cooling water exhaust heat recovery method, cooling water from which heat generated during power generation of this fuel cell is removed, or cooling by heat exchange with cooling air in a heat exchanger A steam separator for separating water into steam and cooling water, a fuel reformer for steam reforming by supplying the added raw fuel by controlling the flow rate of steam from the steam separator, and steam from the steam separator And an exhaust gas turbine connected to a generator that supplies pressure-controlled so that the pressure in the separator becomes a predetermined pressure, or an exhaust gas turbine connected to a compressor that supplies reaction gas air to a fuel cell. In a cooling water exhaust heat recovery device of a fuel cell combined heat and power supply facility that recovers the cooling water exhaust heat of a fuel cell, an absorption type that supplies steam from a steam separator and cools the supplied water to cold water With refrigerator Temperature flow of cold water in the steam supplied to the absorption chiller is assumed to provide a flow control means for controlling to a predetermined temperature.

【0019】上記の流量制御手段は、水蒸気分離器から
吸収式冷凍機に供給する水蒸気の流量を制御する流量制
御弁と、吸収式冷凍機から得られる冷水の温度を検出す
る温度検出器と、この検出器での検出温度と冷水の所定
温度の目標値との偏差から流量制御弁を制御する制御手
段とを設けるものとする。
The above flow rate control means comprises a flow rate control valve for controlling the flow rate of steam supplied from the steam separator to the absorption refrigerator, a temperature detector for detecting the temperature of cold water obtained from the absorption refrigerator, Control means for controlling the flow control valve based on the deviation between the temperature detected by this detector and the target value of the predetermined temperature of the cold water is provided.

【0020】[0020]

【作用】燃料電池の発電時生じる熱は冷却水、又は冷却
空気により除熱されて運転温度に保持される。ところ
で、除熱した冷却水、又は冷却空気と熱交換した冷却水
は除熱により水蒸気を発生しており、この水蒸気を含む
冷却水は水蒸気分離器に導かれて水蒸気と冷却水とに分
離される。この際、水蒸気分離器内の水蒸気は従来のよ
うに燃料改質装置に供給する原燃料に付加し、その残り
の水蒸気を発電機やコンプレッサに接続される排ガスタ
ービンに供給する他に、吸収式冷凍機に供給し、この冷
凍機に供給される水を冷却して冷水にする。この際、温
度検出器で検出した冷水の検出温度と冷水の所定温度の
目標値との偏差から制御手段により流量制御弁を制御し
て吸収式冷凍機に供給する水蒸気の流量を制御し、冷水
の温度を所定温度にする。
The heat generated during the power generation of the fuel cell is removed by the cooling water or the cooling air and kept at the operating temperature. By the way, the heat-removed cooling water or the cooling water that has exchanged heat with the cooling air generates steam by heat removal, and the cooling water containing this steam is guided to a steam separator to be separated into steam and cooling water. It At this time, the steam in the steam separator is added to the raw fuel to be supplied to the fuel reformer as in the conventional case, and the remaining steam is supplied to the exhaust gas turbine connected to the generator and the compressor. It is supplied to a refrigerator and the water supplied to this refrigerator is cooled to chilled water. At this time, the flow rate control valve is controlled by the control means from the deviation between the detected temperature of the cold water detected by the temperature detector and the target value of the predetermined temperature of the cold water to control the flow rate of the steam supplied to the absorption refrigerator, thereby controlling the cold water. To the specified temperature.

【0021】このようにして冷水を製造する吸収式冷凍
機を設けることにより、燃料改質装置に供給する原燃料
に付加する水蒸気量は原燃料の組成や流量により定まる
ので、これ以外の水蒸気は従来の排ガスタービンの他に
吸収式冷凍機に駆動熱源として供給することができ、こ
のため夏季冷水を必要とするときには吸収式冷凍機によ
り冷水を製造し、冬季冷水が不要のときは余剰の水蒸気
を排ガスタービンに全量を供給して電力を得ることがで
きる。したがって冷却水の排熱を有効に利用でき、総合
エネルギー効率が向上する。
By providing the absorption refrigerator for producing cold water in this way, the amount of water vapor added to the raw fuel supplied to the fuel reformer is determined by the composition and flow rate of the raw fuel. In addition to the conventional exhaust gas turbine, it can be supplied to an absorption chiller as a driving heat source.Therefore, when the summer cold water is needed, cold water is produced by the absorption chiller, and when the winter cold water is unnecessary, excess steam is generated. Can be supplied to the exhaust gas turbine to obtain electric power. Therefore, the exhaust heat of the cooling water can be effectively used, and the overall energy efficiency is improved.

【0022】[0022]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による燃料電池の冷却
水排熱回収方法を採用する燃料電池熱電併給設備の系統
図である。図1において図4の従来例と異なるのは、吸
収式冷凍機40と、水蒸気供給系30から分岐して吸収
式冷凍機40の冷媒を吸収した吸収液を加熱して冷媒蒸
気を生じさせる発生器の伝熱管41に接続し、流量計4
2を備える冷凍機用水蒸気供給系43と、水蒸気の流量
を制御する流量制御弁44と、凝縮した冷媒を蒸発させ
る蒸発器の伝熱管45に接続し、冷水需要先から供給さ
れる水が通流する配管46と、冷水需要先に供給する冷
水が通流する冷水配管47と、冷水の温度を検出する温
度検出器48と、温度検出器48での冷水の検出温度と
冷水の所定温度の目標値との偏差から流量制御弁44を
制御する調節器49とを設けた他は図4と同じである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a fuel cell combined heat and power supply facility adopting a method for recovering cooling water exhaust heat of a fuel cell according to an embodiment of the present invention. 1 differs from the conventional example of FIG. 4 in that an absorption refrigerator 40 and an absorption liquid that branches from the steam supply system 30 and absorbs the refrigerant of the absorption refrigerator 40 are heated to generate refrigerant vapor. Flow meter 4 connected to the heat transfer tube 41
2, which is connected to a refrigerator steam supply system 43, a flow control valve 44 that controls the flow rate of steam, and a heat transfer tube 45 of an evaporator that evaporates the condensed refrigerant, so that water supplied from a cold water customer can pass through. The flowing pipe 46, the cold water pipe 47 through which the cold water supplied to the cold water demand flows, the temperature detector 48 for detecting the temperature of the cold water, the detected temperature of the cold water at the temperature detector 48 and the predetermined temperature of the cold water. It is the same as FIG. 4 except that a controller 49 for controlling the flow control valve 44 based on the deviation from the target value is provided.

【0023】このような構成により、水蒸気分離器12
からの水蒸気は冷凍機用水蒸気供給系43を経て吸収式
冷凍機40の発生器の伝熱管41に流れ、発生器内の吸
収液を水蒸気の顕熱及び潜熱により加熱し、冷媒蒸気を
発生させる。この冷媒蒸気は凝縮器で凝縮された後、蒸
発器で蒸発するので、伝熱管45を流れる需要先から供
給される水を冷却して冷水にして需要先に供給する。
With such a structure, the water vapor separator 12
Through the steam supply system 43 for the refrigerator, flows into the heat transfer tube 41 of the generator of the absorption refrigerator 40, heats the absorbing liquid in the generator by sensible heat and latent heat of the steam, and generates refrigerant vapor. . Since this refrigerant vapor is condensed in the condenser and then evaporated in the evaporator, the water supplied from the demand destination flowing through the heat transfer tube 45 is cooled to be cold water and supplied to the demand destination.

【0024】この際、温度検出器48で検出した冷水の
検出温度と需要先が必要とする冷水の所定温度の目標値
との偏差から調節器49により流量制御弁44を制御し
て吸収式冷凍機40に供給する水蒸気の流量を制御する
ことにより、冷水の温度は所定温度に制御される。つぎ
に上記の実施例における効果について具体的に説明す
る。燃料電池熱電併給設備において燃料電池の発電出力
5000kWとしたときの水蒸気分離器における発生蒸気
量は4370kg/hである。その内、燃料改質装置に供給
する蒸気量は2910kg/hであり、したがって余剰蒸気
量は1460kg/h=(4370−2910)kg/hであ
る。
At this time, the flow rate control valve 44 is controlled by the controller 49 from the deviation between the detected temperature of the cold water detected by the temperature detector 48 and the target value of the predetermined temperature of the cold water required by the customer, and the absorption refrigeration is performed. By controlling the flow rate of steam supplied to the machine 40, the temperature of the cold water is controlled to a predetermined temperature. Next, the effect of the above embodiment will be specifically described. The amount of steam generated in the steam separator when the power generation output of the fuel cell is 5000 kW in the fuel cell combined heat and power supply facility is 4370 kg / h. Among them, the amount of steam supplied to the fuel reformer is 2910 kg / h, and therefore the amount of surplus steam is 1460 kg / h = (4370-2910) kg / h.

【0025】この余剰蒸気を下記のように利用する場
合、すなわち 上記余剰蒸気量を全量排気ガスタービンに供給する
場合 余剰蒸気1460kg/hを排ガスタービンに供給すること
で、排ガスタービンにより駆動される発電機の電気出力
として1190kWが得られる。これによって燃料電池及
び排ガスタービンにより駆動される発電機のトータル電
気出力で評価した発電効率は42.1%である。
When the surplus steam is used as follows, that is, when the entire amount of the surplus steam is supplied to the exhaust gas turbine, by supplying the surplus steam of 1460 kg / h to the exhaust gas turbine, power generation driven by the exhaust gas turbine The electric output of the machine is 1190kW. As a result, the power generation efficiency evaluated by the total electric output of the generator driven by the fuel cell and the exhaust gas turbine is 42.1%.

【0026】 余剰蒸気を吸収式冷凍機にも供給する
場合 余剰蒸気1460kg/hの内、1170kg/hを吸収式冷凍
機の駆動熱源として利用し、残りの290kg/hを水蒸気
分離器内の圧力を所定圧力に制御しつつ排ガスタービン
に供給する場合には、排ガスタービンにより駆動される
発電機の電気出力として1050kWが得られる。一方、
吸収式冷凍機から得られる冷熱量は730Mcal/hであ
る。ここで、燃料電池及び上記発電機のトータル電気出
力で評価した発電効率は40.9%であるが、冷熱の回
収効率は7.8%であるので、前記トータル発電効率と
冷熱の回収効率をトータルすると48.7%となり、前
記の場合より総合エネルギー効率は増加する。
When surplus steam is also supplied to the absorption refrigerator, 1170 kg / h of the surplus steam of 1460 kg / h is used as a driving heat source of the absorption refrigerator, and the remaining 290 kg / h is the pressure in the steam separator. Is supplied to the exhaust gas turbine while being controlled to a predetermined pressure, 1050 kW is obtained as the electric output of the generator driven by the exhaust gas turbine. on the other hand,
The amount of cold heat obtained from the absorption refrigerator is 730 Mcal / h. Here, the power generation efficiency evaluated by the total electric output of the fuel cell and the generator is 40.9%, but the cold heat recovery efficiency is 7.8%, so the total power generation efficiency and the cold heat recovery efficiency are The total is 48.7%, which is higher than the above case.

【0027】なお、夏季において水蒸気を吸収式冷凍機
に導入する場合、燃料電池の負荷が小さいため、吸収式
冷凍機を運転するのに充分な蒸気量が確保できない場
合、あるいは冷水の需要が小さく、発生した余剰蒸気を
吸収式冷凍機に導入できない場合、その水蒸気を全量排
ガスタービンに導入する。また、冷水需要に対して余剰
蒸気量が過剰な場合は、過剰な水蒸気は排ガスタービン
に導入するとともに吸収式冷凍機を運転することがで
き、この際、排ガスタービンの運転により前述のように
水蒸気分離器内の圧力は所定圧力に制御されるので、燃
料電池の冷却水温度を飽和温度の一定温度に保たれ、燃
料電池熱電併給設備の運用性が非常に向上する。
When water vapor is introduced into the absorption refrigerator in the summer, the load on the fuel cell is small, so that a sufficient amount of steam to operate the absorption refrigerator cannot be secured, or the demand for cold water is small. When the generated excess steam cannot be introduced into the absorption refrigerator, the entire amount of the steam is introduced into the exhaust gas turbine. Further, when the amount of excess steam is excessive with respect to the demand for cold water, the excess steam can be introduced into the exhaust gas turbine and the absorption chiller can be operated. Since the pressure in the separator is controlled to a predetermined pressure, the cooling water temperature of the fuel cell is maintained at a constant saturation temperature, and the operability of the fuel cell combined heat and power facility is greatly improved.

【0028】図2は本発明の異なる実施例による燃料電
池の冷却水排熱回収装置を備えた燃料電池熱電併給設備
の系統図である。図2においては図5の従来例に吸収式
冷凍機40,冷凍機用水蒸気供給系43,流量制御弁4
4,温度検出器48,調節器49等を設けており、その
作用及び効果は図1のものと同じである。図3は本発明
の他の異なる実施例による燃料電池の冷却水排熱回収装
置を備えた燃料電池熱電併給設備の系統図である。図3
においては図6の従来例に吸収式冷凍機40,冷凍機用
水蒸気供給系43,流量制御弁44,温度検出器48,
調節器49等を設けており、その作用及び効果は図1の
ものと同じである。
FIG. 2 is a system diagram of a fuel cell combined heat and power supply facility equipped with a cooling water exhaust heat recovery device for a fuel cell according to another embodiment of the present invention. 2, the absorption type refrigerator 40, the steam supply system 43 for the refrigerator, and the flow control valve 4 are added to the conventional example of FIG.
4, a temperature detector 48, a controller 49, etc. are provided, and the operation and effect thereof are the same as those in FIG. FIG. 3 is a system diagram of a fuel cell combined heat and power supply facility including a fuel cell cooling water exhaust heat recovery device according to another embodiment of the present invention. Figure 3
In the conventional example shown in FIG. 6, an absorption refrigerator 40, a steam supply system 43 for the refrigerator, a flow control valve 44, a temperature detector 48,
An adjuster 49 and the like are provided, and the operation and effect thereof are the same as those in FIG.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
によれば前述の方法及び構成により、水蒸気分離器内の
水蒸気を燃料改質装置に必要な量を供給した残りの余剰
の水蒸気を排ガスタービンに供給して発電機からの電
力、又はコンプレッサから反応ガスの空気を得る他に吸
収式冷凍機に供給して冷水を得ることができるので、ト
ータルの総合エネルギー効率が増加するという効果があ
る。
As is apparent from the above description, according to the present invention, by the method and configuration described above, the excess steam remaining in the steam separator in the required amount is supplied to the fuel reformer. In addition to supplying electric power from the generator to the exhaust gas turbine or air of the reaction gas from the compressor, it can be supplied to the absorption refrigerator to obtain cold water, which has the effect of increasing the total energy efficiency. is there.

【0030】また、燃料改質装置に必要とする水蒸気量
以外の余剰蒸気量の多少及び夏季や冬季の冷水の需要の
有無により、余剰蒸気の全量を排ガスタービンに供給し
たり、またその一部を吸収式冷凍機にも供給することが
できるので、プラントの運用性が非常に向上するという
効果もある。
Further, depending on the amount of excess steam other than the amount of steam required for the fuel reformer and the presence / absence of demand for cold water in summer and winter, the entire amount of excess steam may be supplied to the exhaust gas turbine or a part thereof. Can also be supplied to the absorption chiller, which has the effect of greatly improving the operability of the plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による燃料電池の冷却水排熱回
収装置を備えた燃料電池熱電併給設備の系統図
FIG. 1 is a system diagram of a fuel cell combined heat and power supply facility including a cooling water exhaust heat recovery device for a fuel cell according to an embodiment of the present invention.

【図2】本発明の異なる実施例による燃料電池の冷却水
排熱回収装置を備えた燃料電池熱電併給設備の系統図
FIG. 2 is a system diagram of a fuel cell combined heat and power supply facility including a cooling water exhaust heat recovery device for a fuel cell according to a different embodiment of the present invention.

【図3】本発明の他の異なる実施例による燃料電池の冷
却水排熱回収装置を備えた燃料電池熱電併給設備の系統
FIG. 3 is a system diagram of a fuel cell combined heat and power supply facility including a cooling water exhaust heat recovery device for a fuel cell according to another embodiment of the present invention.

【図4】従来の燃料電池熱電併給設備の系統図FIG. 4 is a system diagram of a conventional fuel cell combined heat and power supply facility.

【図5】従来の異なる燃料電池熱電併給設備の系統図FIG. 5: System diagram of different conventional fuel cell combined heat and power equipment

【図6】従来の他の異なる燃料電池熱電併給設備の系統
FIG. 6 is a system diagram of another conventional fuel cell combined heat and power facility.

【符号の説明】[Explanation of symbols]

1 燃料電池 6 燃料改質装置 12 水蒸気分離器 17 コンプレッサ 21 発電機 22 排ガスタービン 35 排ガスタービン 40 吸収式冷凍機 44 流量制御弁 48 温度検出器 49 調節器 1 Fuel Cell 6 Fuel Reforming Device 12 Steam Separator 17 Compressor 21 Generator 22 Exhaust Gas Turbine 35 Exhaust Gas Turbine 40 Absorption Refrigerator 44 Flow Control Valve 48 Temperature Detector 49 Regulator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃料電池の発電時生じる熱を除熱した冷却
水、又は冷却空気と熱交換した冷却水を水蒸気分離器で
水蒸気と冷却水とに分離し、前記水蒸気を流量制御して
燃料改質装置に供給して水蒸気改質する原燃料に付加
し、さらに前記水蒸気を、水蒸気分離器内の圧力が所定
圧力になるように圧力制御して発電機を駆動する排ガス
タービン、又は燃料電池に反応ガスの空気を送気するコ
ンプレッサを駆動する排ガスタービンに供給して冷却水
の排熱を回収する燃料電池熱電併給設備の冷却水排熱回
収方法において、水蒸気分離器内の水蒸気を流量制御し
て吸収式冷凍機に供給し、この冷凍機に供給される水を
冷却して所定温度の冷水にすることを特徴とする燃料電
池熱電併給設備の冷却水排熱回収方法。
1. A fuel for which cooling water from which heat generated during power generation of a fuel cell is removed or cooling water that has exchanged heat with cooling air is separated into steam and cooling water by a steam separator and the flow rate of the steam is controlled. An exhaust gas turbine that feeds a reformer and adds the raw fuel to be steam-reformed, and further controls the pressure of the steam so that the pressure in the steam separator is a predetermined pressure to drive a generator, or a fuel cell In the cooling water exhaust heat recovery method of the fuel cell combined heat and power supply facility that supplies the exhaust gas turbine that drives the compressor that sends the reaction gas air to the exhaust gas turbine to recover the exhaust heat of the cooling water, the flow rate of the steam in the steam separator is controlled. A cooling water exhaust heat recovery method for a fuel cell combined heat and power supply facility, characterized in that the water supplied to the absorption chiller is cooled and the water supplied to the chiller is cooled to chilled water of a predetermined temperature.
【請求項2】燃料電池と、この燃料電池の発電時生じる
熱を除熱した冷却水、又は冷却空気と熱交換器にて熱交
換した冷却水を水蒸気と冷却水とに分離する水蒸気分離
器と、水蒸気分離器からの水蒸気を流量制御して付加し
た原燃料を供給して水蒸気改質する燃料改質装置と、水
蒸気分離器からの水蒸気を、この分離器内の圧力が所定
圧力になるように圧力制御して供給する発電機に接続さ
れる排ガスタービン、又は燃料電池に反応ガスの空気を
送気するコンプレッサに接続される排ガスタービンとを
備え、燃料電池の冷却水の排熱を回収する燃料電池熱電
併給設備の冷却水排熱回収装置において、水蒸気分離器
からの水蒸気を供給し、供給される水を冷却して冷水に
する吸収式冷凍機と、この吸収式冷凍機に供給する水蒸
気の流量を冷水の温度が所定温度になるように制御する
流量制御手段とを設けたことを特徴とする燃料電池熱電
併給設備の冷却水排熱回収装置。
2. A fuel cell and a steam separator for separating cooling water from which heat generated during power generation of the fuel cell is removed, or cooling water which has undergone heat exchange with cooling air in a heat exchanger into steam and cooling water. A fuel reformer for steam reforming by supplying the added raw fuel by controlling the flow rate of steam from the steam separator, and the steam from the steam separator, the pressure inside this separator becomes a predetermined pressure Exhaust gas turbine connected to a generator that supplies pressure-controlled gas or an exhaust gas turbine connected to a compressor that supplies reaction gas air to the fuel cell, and recovers exhaust heat of the cooling water of the fuel cell In a cooling water exhaust heat recovery device of a fuel cell combined heat and power supply facility, an absorption chiller that supplies steam from a steam separator and cools the supplied water into chilled water, and supplies this absorption chiller The flow rate of steam is cold water Degrees cooling water exhaust heat recovery apparatus of a fuel cell cogeneration facility which is characterized in that a flow control means for controlling to a predetermined temperature.
【請求項3】請求項2記載のものにおいて、流量制御手
段は、水蒸気分離器から吸収式冷凍機に供給する水蒸気
の流量を制御する流量制御弁と、吸収式冷凍機から得ら
れる冷水の温度検出器と、この検出器での検出温度と冷
水の所定温度の目標値との偏差から流量制御弁を制御す
る制御手段とからなることを特徴とする燃料電池熱電併
給設備の冷却水排熱回収装置。
3. The flow rate control means according to claim 2, wherein the flow rate control means controls a flow rate of steam supplied from the steam separator to the absorption refrigerator, and the temperature of cold water obtained from the absorption refrigerator. Cooling water exhaust heat recovery of a fuel cell combined heat and power supply facility characterized by comprising a detector and control means for controlling the flow control valve based on a deviation between a temperature detected by the detector and a target value of a predetermined temperature of cold water apparatus.
JP20808693A 1993-08-24 1993-08-24 Fuel cell cogeneration system and cooling water waste heat recovery method Expired - Fee Related JP3350164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20808693A JP3350164B2 (en) 1993-08-24 1993-08-24 Fuel cell cogeneration system and cooling water waste heat recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20808693A JP3350164B2 (en) 1993-08-24 1993-08-24 Fuel cell cogeneration system and cooling water waste heat recovery method

Publications (2)

Publication Number Publication Date
JPH0765848A true JPH0765848A (en) 1995-03-10
JP3350164B2 JP3350164B2 (en) 2002-11-25

Family

ID=16550412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20808693A Expired - Fee Related JP3350164B2 (en) 1993-08-24 1993-08-24 Fuel cell cogeneration system and cooling water waste heat recovery method

Country Status (1)

Country Link
JP (1) JP3350164B2 (en)

Also Published As

Publication number Publication date
JP3350164B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP2010071091A (en) Composite power generation system
JP5593948B2 (en) Fuel cell power generator
JPH1155860A (en) Energy supply system
JP4358338B2 (en) Fuel cell combined power plant system
JPS5828176A (en) Fuel-cell generation system
JPH05299107A (en) System for utilizing exhaust heat of fuel battery and control method therefor
CN117293349A (en) Hydrogen-heat integrated power generation system and method based on PEMFC and organic Rankine cycle
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP2920018B2 (en) Fuel cell power generator
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JP4192023B2 (en) Thermoelectric supply system
JP3350164B2 (en) Fuel cell cogeneration system and cooling water waste heat recovery method
JP4470329B2 (en) Fuel cell power generator and method of operating the same
JPH0945350A (en) Fuel cell power generation plant
JPH085190A (en) Fuel battery-driven air conditioner
JP2002100382A (en) Fuel cell power generator
JPS5828177A (en) Fuel-cell generation plant
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPH062981A (en) Fuel cell refrigerator integral system
KR100317347B1 (en) Method and apparatus for controlling a feul cell power generation system
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JP3796887B2 (en) Fuel cell power generation system
JPH04345766A (en) Heat supplying power generating system for fuel cell power generating plant
JP5083195B2 (en) Waste heat utilization method and apparatus for fuel cell power generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees