JPH05299107A - System for utilizing exhaust heat of fuel battery and control method therefor - Google Patents

System for utilizing exhaust heat of fuel battery and control method therefor

Info

Publication number
JPH05299107A
JPH05299107A JP4104127A JP10412792A JPH05299107A JP H05299107 A JPH05299107 A JP H05299107A JP 4104127 A JP4104127 A JP 4104127A JP 10412792 A JP10412792 A JP 10412792A JP H05299107 A JPH05299107 A JP H05299107A
Authority
JP
Japan
Prior art keywords
fuel cell
condensed water
heat
exhaust heat
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4104127A
Other languages
Japanese (ja)
Other versions
JP3215489B2 (en
Inventor
Shisei Waratani
至誠 藁谷
Masaki Nakao
正喜 中尾
Kazuo Oshima
一夫 大島
Tsuneo Uekusa
常雄 植草
Kenji Machizawa
健司 町沢
Kimiharu Yamamoto
公治 山本
Kyoji Kono
恭二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP10412792A priority Critical patent/JP3215489B2/en
Publication of JPH05299107A publication Critical patent/JPH05299107A/en
Application granted granted Critical
Publication of JP3215489B2 publication Critical patent/JP3215489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To avoid the redundant installation of cooling equipment and at the same time improve controllability of a refrigeration capacity in a system for utilizing the exhaust heat of a fuel battery in a single and double utility combined absorption type refrigerator. CONSTITUTION:A coolant guided into an evaporator 11 from the condenser 9 of an absorption type refrigerator 101 is controlled by bypassing to an absorber 10 on the basis of the temperature of water returned from a load to the evaporator 11. Thereby, when the load is smaller than the refrigeration ability, the refrigeration ability is controlled on quick response without controlling the heat of a driving heat source which is collected from a steam separator 2 in the cooling water system of a fuel battery body 1 and then brought into a high-temperature regenerator 7. The collection of condensed water required by a fuel battery 100 is performed by a low-temperature side exhaust heat collection heat exchanger 6 for collecting the low- temperature side exhaust heat from the fuel battery exhaust gas system to drive a low- temperature regenerator 8 and at the same time a condensed water collection heat exchanger 5 is provided in the exhaust gas system so as to obtain the necessary and sufficient amount of condensed water, and the cooling water to flow therethrough branches from the absorption type refrigerator cooling water circuit, so that the redundant installation of cooling equipment can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池から放出され
る排熱を回収することにより、吸収式冷凍機を駆動して
冷熱を得る、燃料電池排熱利用システムとその制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell exhaust heat utilization system and its control method for recovering exhaust heat emitted from a fuel cell to drive an absorption refrigerator to obtain cold heat. is there.

【0002】[0002]

【従来の技術】一般に、燃料電池から放出される排熱を
利用して冷熱を得るためには、燃料電池の電池本体を冷
却している冷却水系より回収された熱(高温側排熱)に
より二重効用吸収式冷凍機を駆動している。図4は、こ
のような二重効用吸収式冷凍機を用いた燃料電池排熱利
用システムを示す第一の従来例の構成図である。
2. Description of the Related Art Generally, in order to obtain cold heat by utilizing exhaust heat emitted from a fuel cell, heat recovered from a cooling water system cooling the cell body of the fuel cell (exhaust heat on the high temperature side) is used. It drives a double-effect absorption refrigerator. FIG. 4 is a configuration diagram of a first conventional example showing a fuel cell exhaust heat utilization system using such a double-effect absorption refrigerator.

【0003】燃料電池100′は、燃料電池本体1,水
蒸気分離器2,燃料改質装置3を有し、都市ガス等を燃
料改質装置3で改質して燃料電池本体1に供給される水
素と空気中の酸素とを電気化学的に反応させ、発電を行
っている。この発電は熱を発生するので、燃料電池冷却
水系が設けられ、これに排熱を水蒸気として取り出すた
め水蒸気分離器2が接続されている。この水蒸気は、吸
収式冷凍機101′へ供給されるとともに、都市ガス等
の改質用として燃料改質装置3へ供給されている。ま
た、燃料電池100′の排ガス系には凝縮水回収用熱交
換器5が設けられ、排ガスから凝縮水を回収して凝縮水
タンク4を介し水蒸気分離器2へ補給している。この凝
縮水回収用熱交換器5に冷却水を通すために、室外熱交
換器26が設けられている。
A fuel cell 100 'has a fuel cell body 1, a water vapor separator 2 and a fuel reformer 3, and city gas or the like is reformed by the fuel reformer 3 and supplied to the fuel cell body 1. Electricity is generated by electrochemically reacting hydrogen with oxygen in the air. Since this power generation generates heat, a fuel cell cooling water system is provided, and a steam separator 2 is connected to this for extracting exhaust heat as steam. This steam is supplied to the absorption refrigerating machine 101 'and also to the fuel reforming device 3 for reforming city gas and the like. Further, a heat exchanger 5 for collecting condensed water is provided in the exhaust gas system of the fuel cell 100 ′, and the condensed water is recovered from the exhaust gas and supplied to the steam separator 2 via the condensed water tank 4. An outdoor heat exchanger 26 is provided to pass cooling water through the condensed water recovery heat exchanger 5.

【0004】吸収式冷凍機101′は、高温再生器7,
低温再生器8,凝縮器9,吸収器10,蒸発器11,溶
液熱交換器12,13を有し、室外熱交換器20により
冷却された冷却水が凝縮器9,吸収器10に循環されて
熱交換を行う吸収冷凍サイクルにより、蒸発器11を通
して冷熱を得るものである。この冷熱は図略の室内機な
どへ冷水として搬送される。上記燃料電池の水蒸気分離
器2から水蒸気として回収された燃料電池100′から
の高温側排熱は、吸収式冷凍機101′の高温再生器7
に供給されている。
The absorption type refrigerator 101 'includes a high temperature regenerator 7,
It has a low temperature regenerator 8, a condenser 9, an absorber 10, an evaporator 11, and solution heat exchangers 12 and 13, and the cooling water cooled by the outdoor heat exchanger 20 is circulated to the condenser 9 and the absorber 10. Cold heat is obtained through the evaporator 11 by an absorption refrigeration cycle in which heat is exchanged. This cold heat is conveyed as cold water to an indoor unit (not shown). The high temperature side exhaust heat from the fuel cell 100 ', which is recovered as water vapor from the water vapor separator 2 of the fuel cell, is used as the high temperature regenerator 7 of the absorption refrigerator 101'.
Is being supplied to.

【0005】図5は、図4の従来システムに比べ、燃料
電池100′の排ガス系より回収される低温側排熱も低
温側排熱回収回路を用いて吸収式冷凍機101′に供給
し、一重二重効用併用運転を行なう燃料電池排熱利用シ
ステムを示す第二の従来例である。この従来例では、上
記第一の従来例の構成に加えて燃料電池排ガス系におい
ては、低温側排熱回収回路を構成する低温側排熱回収用
熱交換器6が設けられ、排ガス中に含まれる水蒸気を冷
却し、凝縮させ、燃料電池冷却水系の水蒸気分離器2に
供給することにより、燃料改質装置3で必要とされる水
蒸気の補給を行い、この際に回収される排ガス系の排熱
を吸収式冷凍機101′の低温再生器8に供給してい
る。この構成により、単効用吸収式サイクルを同時に駆
動するものである。
5, the low temperature side exhaust heat recovered from the exhaust gas system of the fuel cell 100 'is also supplied to the absorption refrigerator 101' by using the low temperature side exhaust heat recovery circuit as compared with the conventional system of FIG. It is the second prior art example which shows the fuel cell exhaust heat utilization system which performs single and double effect combined operation. In this conventional example, in addition to the configuration of the first conventional example, in the fuel cell exhaust gas system, a low temperature side exhaust heat recovery heat exchanger 6 that constitutes a low temperature side exhaust heat recovery circuit is provided and included in the exhaust gas. By cooling the condensed steam, condensing it and supplying it to the steam separator 2 of the fuel cell cooling water system, the steam required for the fuel reformer 3 is replenished, and the exhaust gas system exhaust collected at this time is exhausted. The heat is supplied to the low temperature regenerator 8 of the absorption refrigerator 101 '. With this configuration, the single-effect absorption cycle is driven simultaneously.

【0006】図4,図5のいずれの従来システムでも、
吸収式冷凍機101′の負荷が変動した場合における冷
凍能力制御は、高温再生器7に供給される水蒸気を流量
調節三方弁24で分流し、排熱回収熱交換器21を介し
て室外熱交換器23から放熱する熱量を、駆動用蒸気制
御装置36が温度センサー33で検出した蒸発器11へ
の冷水の戻り温度をもとに流量調節三方弁24を制御し
て、燃料電池100′から回収され吸収式冷凍機10
1′に供給される熱量を制御すること(入熱制御)によ
り行っている。
In any of the conventional systems shown in FIGS. 4 and 5,
When the load of the absorption chiller 101 ′ is changed, the refrigerating capacity is controlled by dividing the steam supplied to the high temperature regenerator 7 by the flow rate control three-way valve 24 and exchanging the outdoor heat through the heat recovery heat exchanger 21. The heat quantity radiated from the device 23 is recovered from the fuel cell 100 'by controlling the flow rate adjusting three-way valve 24 based on the return temperature of the cold water to the evaporator 11 detected by the driving steam control device 36 by the temperature sensor 33. Absorption refrigerator 10
This is performed by controlling the amount of heat supplied to 1 '(heat input control).

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
の技術による燃料電池排熱利用システムにおいては、冷
熱が供給される室内機の負荷状態、すなわち吸収式冷凍
機101′の負荷状態に応じた吸収式冷凍機101′の
能力制御を、高温再生器7での蒸気消費量あるいは、低
温再生器8への投入熱量を調節する入熱制御で行い、吸
収式冷凍機101′の運転を部分負荷運転とすることに
より行っている。
As described above, in the conventional fuel cell exhaust heat utilization system according to the prior art, the load condition of the indoor unit to which the cold heat is supplied, that is, the load condition of the absorption chiller 101 'is changed. The capacity control of the absorption chiller 101 'is performed by heat input control that adjusts the steam consumption in the high temperature regenerator 7 or the heat input to the low temperature regenerator 8 to partially operate the absorption chiller 101'. The operation is performed under load.

【0008】一方、燃料電池100′の運転は、吸収式
冷凍機101′の運転とは関係なく、電力需要により制
御されるため、吸収式冷凍機101′の駆動用熱源とし
ての消費熱量とは関係なく、燃料電池100′の運転状
態に応じて燃料電池100′から発生する排熱を外部に
放出する必要がある。このため、燃料電池本体1から放
出される排熱の全てを吸収式冷凍機101′で消費しき
れない場合に、回収不可能な余剰排熱を処理するため、
吸収式冷凍機101′の再生器へ導かれる排熱回収回路
とは別に外部に排熱を放出する冷却回路が必要となる。
燃料電池冷却水系から排熱を回収する高温側排熱回収回
路においては、燃料電池本体1の冷却水が純水であり、
不純物混入を避けるため閉循環回路を構成しており、外
部に放熱するために排熱回収熱交換器21を介した室外
熱交換器23による放熱回路を設置する必要があった。
On the other hand, since the operation of the fuel cell 100 'is controlled by the power demand regardless of the operation of the absorption refrigerator 101', what is the heat consumption amount as a heat source for driving the absorption refrigerator 101 '? Regardless, it is necessary to release the exhaust heat generated from the fuel cell 100 'to the outside according to the operating state of the fuel cell 100'. For this reason, when all of the exhaust heat released from the fuel cell main body 1 cannot be completely consumed by the absorption chiller 101 ', excess waste heat that cannot be recovered is processed.
In addition to the exhaust heat recovery circuit guided to the regenerator of the absorption refrigerator 101 ', a cooling circuit for discharging exhaust heat to the outside is required.
In the high temperature side exhaust heat recovery circuit for recovering exhaust heat from the fuel cell cooling water system, the cooling water of the fuel cell body 1 is pure water,
A closed circulation circuit is configured to avoid mixing of impurities, and it is necessary to install a heat radiation circuit by the outdoor heat exchanger 23 via the exhaust heat recovery heat exchanger 21 in order to radiate heat to the outside.

【0009】また、燃料電池排ガス系から排熱を回収す
る低温側排熱回収回路において、排ガス中に含まれる水
蒸気を冷却し、凝縮させて回収した後、燃料電池冷却水
として用い、燃料電池本体1を冷却した後、再び水蒸気
として燃料改質装置3に供給するため、必要十分な量の
凝縮水が回収できるように凝縮水回収用熱交換器5を設
けて冷却水を通し、室外熱交換器26より外部に放熱す
る必要があった。このように、従来システムでは、室外
熱交換器等の冷却設備が冗長設置となる問題があった。
Further, in a low temperature side exhaust heat recovery circuit for recovering exhaust heat from the fuel cell exhaust gas system, water vapor contained in the exhaust gas is cooled, condensed and recovered, and then used as fuel cell cooling water to be used as a fuel cell main body. After cooling 1, the steam is supplied again to the fuel reformer 3 as steam, so that a condensed water recovery heat exchanger 5 is provided so that a necessary and sufficient amount of condensed water can be recovered, and the cooling water is passed through to perform outdoor heat exchange. It was necessary to radiate heat from the container 26 to the outside. As described above, the conventional system has a problem that the cooling equipment such as the outdoor heat exchanger is redundantly installed.

【0010】また、負荷変動に応じた吸収式冷凍機の能
力制御を、高温再生器7,低温再生器8に投入する駆動
用熱量を調節して熱容量の大きな高温再生器7,低温再
生器8における冷媒再生能力を制御することにより行っ
ているため、冷熱発生側である蒸発器11の能力制御は
非常に緩慢となる問題があった。
Further, by controlling the capacity of the absorption refrigerator according to load fluctuations, the high-temperature regenerator 7 and the low-temperature regenerator 8 having a large heat capacity are adjusted by adjusting the amount of heat for driving supplied to the high-temperature regenerator 7 and the low-temperature regenerator 8. Since it is performed by controlling the refrigerant regeneration capacity in the above, there is a problem that the capacity control of the evaporator 11 on the cold heat generation side becomes very slow.

【0011】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、吸収式冷凍機の運転状
態に関係なく燃料電池の冷却水系で放出される排熱を全
て回収し、得られた回収熱量に対応する冷凍能力より負
荷が小さいときには、駆動用排熱の入熱制限を行なうこ
となく冷凍能力の制御を行なうシステムにすること、お
よび、燃料電池排ガス系については吸収式冷凍機で利用
できる排熱を回収した後、必要に応じて凝縮水回収用熱
交換器を作用させ、吸収式冷凍機の室外熱交換器との共
用を図ることにより、室外熱交換器等の冗長設置を避け
ることができ、かつ吸収式冷凍機の能力制御性の向上が
期待できる燃料電池排熱利用システムとその制御方法を
提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to recover all the exhaust heat released in the cooling water system of the fuel cell regardless of the operating state of the absorption refrigerator. , When the load is smaller than the refrigerating capacity corresponding to the obtained amount of recovered heat, the system should be such that the refrigerating capacity is controlled without limiting the heat input of the driving exhaust heat, and the absorption type for the fuel cell exhaust gas system After recovering the exhaust heat that can be used in the refrigerator, by operating the condensed water recovery heat exchanger as necessary and sharing it with the outdoor heat exchanger of the absorption refrigerator, It is an object of the present invention to provide a fuel cell exhaust heat utilization system and a control method thereof which can avoid redundant installation and can be expected to improve the capability controllability of an absorption refrigerator.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の燃料電池排熱利用システムにおいては、燃
料電池本体の冷却水系に設けた水蒸気分離器から該燃料
電池本体で発生した高温側排熱を水蒸気として回収して
吸収式冷凍機の高温再生器に供給し、さらに燃料電池の
排ガス系に設けた低温側排熱回収用熱交換器により排ガ
スから低温側排熱を回収して該吸収式冷凍機の低温再生
器に供給し、該高温側排熱,該低温側排熱により該高温
再生器,該低温再生器,凝縮器,蒸発器,吸収器および
該凝縮器,該吸収器を冷却する吸収式冷凍機冷却回路で
構成される前記吸収式冷凍機の吸収冷凍サイクルを駆動
して冷熱を得る燃料電池排燃料利用システムにおいて、
前記凝縮器で凝縮し前記蒸発器に送られる冷媒の一部を
前記吸収器または前記高温再生器または前記低温再生器
のいずれかにバイパスする冷媒バイパス回路と、この冷
媒バイパス回路へ分流される該冷媒流量を調節する冷媒
流量調節手段と、前記蒸発器へ導かれる熱搬送媒体の入
口温度を測定する温度センサーと、この温度センサーで
検出した温度をもとに前記冷媒流量調節手段に冷凍能力
を制御するための操作信号を送信する制御装置とを具備
するとともに、前記燃料電池の排ガス中に含まれる水蒸
気を凝縮させる凝縮水回収用熱交換器と、この凝縮水回
収用熱交換器への冷却媒体を前記吸収式冷凍機冷却回路
より分岐しその冷却媒体量を調節する冷却媒体流量調節
手段と、前記低温側排熱回収用熱交換器の凝縮水および
前記凝縮水回収用熱交換器の凝縮水を溜め必要な箇所へ
供給する凝縮水タンクと、該凝縮水タンク内の液面高さ
を検出する液面センサーと、この液面センサーからの検
出信号を受けて該冷却媒体流量調節手段に該凝縮水流量
を所定量に保つための操作信号を送信する制御装置とを
具備することを特徴としている。
To achieve the above object, in the fuel cell exhaust heat utilization system of the present invention, the high temperature side generated in the fuel cell main body from the steam separator provided in the cooling water system of the fuel cell main body. The exhaust heat is recovered as water vapor and supplied to the high temperature regenerator of the absorption refrigerator, and the low temperature side exhaust heat is recovered from the exhaust gas by the low temperature side exhaust heat recovery heat exchanger provided in the exhaust gas system of the fuel cell. The high temperature regenerator, the low temperature regenerator, the condenser, the evaporator, the absorber and the condenser, the absorber are supplied to the low temperature regenerator of the absorption refrigerator by the high temperature side exhaust heat and the low temperature side exhaust heat. In a fuel cell exhaust fuel utilization system for driving an absorption refrigeration cycle of the absorption refrigerating machine configured to be an absorption refrigerating machine cooling circuit for cooling to obtain cold heat,
A refrigerant bypass circuit that bypasses a part of the refrigerant condensed in the condenser and sent to the evaporator to either the absorber, the high temperature regenerator, or the low temperature regenerator, and the refrigerant bypass circuit that divides the refrigerant bypass circuit. Refrigerant flow rate adjusting means for adjusting the refrigerant flow rate, a temperature sensor for measuring the inlet temperature of the heat carrier medium guided to the evaporator, and a refrigerating capacity for the refrigerant flow rate adjusting means based on the temperature detected by this temperature sensor. A condensate water recovery heat exchanger for condensing water vapor contained in the exhaust gas of the fuel cell, and a cooling device for controlling the condensate water recovery heat exchanger, the control device transmitting an operation signal for control. Cooling medium flow rate adjusting means for branching the medium from the absorption refrigerating machine cooling circuit and adjusting the amount of the cooling medium, condensed water of the low temperature side exhaust heat recovery heat exchanger and the condensed water recovery A condensed water tank for storing condensed water of an exchanger and supplying it to a necessary place, a liquid level sensor for detecting a liquid level height in the condensed water tank, and a cooling medium which receives a detection signal from the liquid level sensor A control device for transmitting an operation signal for maintaining the condensed water flow rate to a predetermined amount is provided to the flow rate control means.

【0013】また、同じく本発明の燃料電池排熱利用シ
ステムの制御方法においては、燃料電池本体の冷却水系
に設けた水蒸気分離器から該燃料電池本体で発生した高
温側排熱を水蒸気として回収して吸収式冷凍機の高温再
生器に供給し、さらに燃料電池の排ガス系に設けた低温
側排熱回収用熱交換器により排ガスから低温側排熱を回
収して該吸収式冷凍機の低温再生器に供給し、該高温側
排熱,該低温側排熱により該高温再生器,該低温再生
器,凝縮器,蒸発器,吸収器および該凝縮器,該吸収器
を冷却する吸収式冷凍機冷却回路で構成される前記吸収
式冷凍機の吸収冷凍サイクルを駆動して冷熱を得る燃料
電池排燃料利用システムにおいて、前記吸収式冷凍機の
冷凍能力制御については、まず負荷と前記蒸発器の間の
熱搬送媒体についての該負荷に応じて変化する戻り温度
を検出し、次に該戻り温度と設定値とを比較することに
より該負荷に対して該吸収式冷凍機の冷凍能力が過剰に
なったかを判断し、次に該吸収式冷凍機の冷凍能力が過
剰になった場合に前記凝縮器から該蒸発器に送られる冷
媒の一部を前記吸収器または前記高温再生器または前記
低温再生器のいずれかにバイパスさせて行い、前記燃料
電池の冷却水系から回収される高温側排熱量の制御につ
いては、まず該燃料電池を冷却した冷却水の前記水蒸気
分離器内での飽和水蒸気圧力を検知し、次に前記吸収式
冷凍機の冷凍能力制御とは独立して該燃料電池の温度を
発電反応に適した値に維持するために該冷却水の温度が
一定となるように該水蒸気分離器内の飽和水蒸気圧力を
維持するよう該吸収式冷凍機へ供給される前記水蒸気の
排蒸気量を制御して行い、前記燃料電池の排ガス系の排
熱処理制御については、まず、前記低温側排熱回収用熱
交換器からの凝縮水および該燃料電池の排ガス系に設け
た凝縮水回収用熱交換器からの凝縮水を溜め必要な箇所
へ供給する凝縮水タンクの液面が所定の高さに達してい
るかを検出し、次に該液面が所定の高さに達していない
場合に該凝縮水量が足りないと判断し、次にこの凝縮水
量が足りない場合のみ該凝縮水回収用熱交換器が作用す
るように前記吸収式冷凍機冷却回路より分岐して流す冷
却媒体量を制御し該凝縮水タンク内の凝縮水量を一定値
以上に保つように行うことを特徴としている。
Also, in the method of controlling the fuel cell exhaust heat utilization system of the present invention, the high temperature side exhaust heat generated in the fuel cell main body is recovered as steam from the steam separator provided in the cooling water system of the fuel cell main body. Is supplied to the high temperature regenerator of the absorption chiller, and the low temperature side exhaust heat is recovered from the exhaust gas by the heat exchanger for low temperature side exhaust heat recovery provided in the exhaust gas system of the fuel cell, and the low temperature regeneration of the absorption chiller is performed. And a high temperature side exhaust heat and a low temperature side exhaust heat to cool the high temperature regenerator, the low temperature regenerator, the condenser, the evaporator, the absorber and the condenser, and the absorption refrigerator. In a fuel cell exhaust fuel utilization system for obtaining cold heat by driving an absorption refrigeration cycle of the absorption refrigerating machine configured by a cooling circuit, first, regarding the refrigerating capacity control of the absorption refrigerating machine, first, between the load and the evaporator. About heat carrier medium Detecting a return temperature that changes according to the load, and then comparing the return temperature with a set value to determine whether the refrigerating capacity of the absorption chiller has become excessive with respect to the load. In the case where the refrigerating capacity of the absorption refrigerator is excessive, a part of the refrigerant sent from the condenser to the evaporator is bypassed to either the absorber, the high temperature regenerator or the low temperature regenerator. The control of the amount of exhaust heat on the high temperature side recovered from the cooling water system of the fuel cell is performed by first detecting the saturated steam pressure in the steam separator of the cooling water that has cooled the fuel cell, and then detecting the absorption. In order to maintain the temperature of the fuel cell at a value suitable for the power generation reaction, the saturated steam pressure in the steam separator is set to be constant independently of the refrigeration capacity control of the automatic refrigerator. Supply to the absorption chiller to maintain The exhaust gas amount of the water vapor is controlled to control the exhaust heat treatment of the exhaust gas system of the fuel cell.First, in the condensed water from the low temperature side exhaust heat recovery heat exchanger and the exhaust gas system of the fuel cell. It is detected whether the liquid level of the condensed water tank that collects the condensed water from the provided condensed water recovery heat exchanger and supplies it to the required place reaches a predetermined height, and then the liquid level reaches the predetermined height. If the condensed water amount is not sufficient, then it is branched from the absorption refrigerating machine cooling circuit so that the condensed water recovery heat exchanger operates only when the condensed water amount is insufficient. It is characterized in that the amount of the cooling medium to be flown is controlled so that the amount of the condensed water in the condensed water tank is maintained at a certain value or more.

【0014】[0014]

【作用】本発明の燃料電池排熱利用システムとその制御
方法では、吸収式冷凍機の能力制御を冷媒のバイパス制
御により行なうことにより、負荷が吸収式冷凍機の冷凍
能力より小さい場合に、駆動熱源としての蒸気消費量を
絞る入熱制御を行なうことなく冷凍能力を低下させるこ
とを可能にし、蒸発器内の冷媒の凍結を防止している。
In the fuel cell exhaust heat utilization system and the control method thereof according to the present invention, the capacity control of the absorption refrigerator is performed by the bypass control of the refrigerant so that the drive is performed when the load is smaller than the refrigeration capacity of the absorption refrigerator. It is possible to reduce the refrigerating capacity without performing heat input control for limiting the steam consumption as a heat source, and to prevent the refrigerant in the evaporator from freezing.

【0015】また、燃料電池の冷却水系の高温側排熱量
については、燃料電池本体の冷却を行なう冷却水温度を
一定にし、電池セルにおける発電反応に適した温度を維
持するため、吸収式冷凍機の運転に関係なく燃料電池冷
却水系の水蒸気分離器における水蒸気圧力を常に一定に
保つように制御される。従って、本発明の燃料電池排熱
利用システムにおける排熱利用形態としては、電力需要
に応じた燃料電池の運転制御が最優先され、そこで放出
される排熱を吸収式冷凍機に取り込み、回収された熱量
で駆動できる範囲内で吸収式冷凍機の能力制御を行うこ
とが可能となる。
Regarding the high temperature side exhaust heat amount of the cooling water system of the fuel cell, in order to keep the temperature of the cooling water for cooling the fuel cell main body constant and maintain the temperature suitable for the power generation reaction in the battery cell, the absorption refrigerator Regardless of the operation, the steam pressure in the steam separator of the fuel cell cooling water system is controlled to always be kept constant. Therefore, as the exhaust heat utilization form in the fuel cell exhaust heat utilization system of the present invention, the operation control of the fuel cell according to the power demand is given the highest priority, and the exhaust heat released there is taken into the absorption refrigerator and recovered. It is possible to control the capacity of the absorption chiller within a range that can be driven with a large amount of heat.

【0016】また、燃料電池排ガス系からの低温側排熱
回収する場合、吸収式冷凍機の一重二重効用併用運転が
行える範囲内で排ガスより排熱を回収している。それと
同時に、燃料電池冷却水系の冷却水や燃料改質装置の水
蒸気生成などに必要な凝縮水を回収している。この凝縮
水量の変動に備え排ガス中から必要十分な凝縮水量が得
られるよう、排ガス系には凝縮水回収用熱交換器が設け
られるが、それに通す冷却媒体を吸収式冷凍機冷却水回
路より分流する。これらにより、本発明では、燃料電池
の排熱を処理するために従来のシステムでは冗長設置が
必要とされていた高温側排熱回収回路における排熱回収
用熱交換器、室外熱交換器を含む放熱回路、および凝縮
水回収用熱交換器に冷却水を供給する室外熱交換器等の
冷却設備を省くことを可能にしている。
In the case of recovering low temperature side exhaust heat from the fuel cell exhaust gas system, the exhaust heat is recovered from the exhaust gas within the range in which the single-dual effect combined operation of the absorption refrigerator is possible. At the same time, it collects the cooling water for the fuel cell cooling water system and the condensed water necessary for steam generation in the fuel reformer. The exhaust gas system is equipped with a heat exchanger for recovering condensed water so that a necessary and sufficient amount of condensed water can be obtained from the exhaust gas in preparation for this fluctuation in the amount of condensed water, but the cooling medium passing through it is diverted from the absorption refrigerator cooling water circuit. To do. As a result, the present invention includes an exhaust heat recovery heat exchanger and an outdoor heat exchanger in the high temperature side exhaust heat recovery circuit, which were required to be redundantly installed in the conventional system in order to process the exhaust heat of the fuel cell. It is possible to omit the cooling equipment such as the heat radiation circuit and the outdoor heat exchanger that supplies the cooling water to the condensed water recovery heat exchanger.

【0017】また、吸収式冷凍機においては、その能力
制御を冷媒のバイパス制御によって行うことにより、従
来の駆動用投入熱量を調節する入熱制御法に比べ、蒸発
器における冷凍能力制御の応答性を良くし、制御性の向
上を図っている。
Further, in the absorption refrigerator, by controlling the capacity thereof by bypass control of the refrigerant, the responsiveness of the refrigerating capacity control in the evaporator is higher than that in the conventional heat input control method of adjusting the input heat amount for driving. To improve controllability.

【0018】[0018]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】図1に、本発明における第一の実施例を示
す。図において、1は燃料電池本体、2は燃料電池冷却
水系の水蒸気分離器、3は燃料改質装置、4は凝縮水タ
ンク、5は凝縮水回収用熱交換器、6は排ガス系からの
低温側排熱回収用熱交換器、27は圧力センサー、28
は流量調節二方弁、29は排蒸気流量制御装置、30は
液面センサー、37は燃料電池冷却水循環用ポンプであ
り、以上の機器は燃料電池100を構成する主な要素で
ある。また、7は高温再生器、8は低温再生器、9は凝
縮器、10は吸収器、11は蒸発器、12は高温側溶液
熱交換器、13は低温側溶液熱交換器、14は溶液ポン
プ、15は冷媒ポンプ、33は温度センサー、34は冷
媒流量調節三方弁、35は冷媒流量制御装置であり、以
上の機器は吸収式冷凍機101を構成する。さらに、1
6は高温側排熱回収ポンプ、17は気水分離器、18は
低温側排熱回収ポンプ、19は冷却水ポンプ、20は室
外熱交換器、31は冷却水流量調節三方弁、32は冷却
水流量制御装置を示す。この図に従って本実施例を説明
する。
FIG. 1 shows a first embodiment of the present invention. In the figure, 1 is a fuel cell main body, 2 is a fuel cell cooling water vapor separator, 3 is a fuel reformer, 4 is a condensed water tank, 5 is a condensed water recovery heat exchanger, and 6 is a low temperature from the exhaust gas system. Side exhaust heat recovery heat exchanger, 27 is a pressure sensor, 28
Is a flow rate control two-way valve, 29 is an exhaust steam flow rate control device, 30 is a liquid level sensor, 37 is a fuel cell cooling water circulation pump, and the above devices are the main elements constituting the fuel cell 100. Further, 7 is a high temperature regenerator, 8 is a low temperature regenerator, 9 is a condenser, 10 is an absorber, 11 is an evaporator, 12 is a high temperature side solution heat exchanger, 13 is a low temperature side solution heat exchanger, and 14 is a solution. A pump, 15 is a refrigerant pump, 33 is a temperature sensor, 34 is a refrigerant flow rate adjusting three-way valve, 35 is a refrigerant flow rate control device, and the above-mentioned devices constitute the absorption refrigerator 101. Furthermore, 1
6 is a high temperature side exhaust heat recovery pump, 17 is a steam separator, 18 is a low temperature side exhaust heat recovery pump, 19 is a cooling water pump, 20 is an outdoor heat exchanger, 31 is a cooling water flow rate control three-way valve, and 32 is cooling. 1 shows a water flow controller. This embodiment will be described with reference to this figure.

【0020】まず、燃料電池100側の構成において、
燃料電池本体1は、水素と酸素を燃料として入力するこ
とにより発電を行い、それとともに熱を発生する。燃料
改質装置3は、水素を都市ガスの改質により製造し、燃
料電池本体1に供給する。燃料電池本体1には発生熱を
冷却する冷却水系配管が設けられ、その配管の途中に、
燃料電池冷却水循環用ポンプ37と、燃料電池冷却水循
環用ポンプ37に液を供給するために設けた水蒸気分離
器2とを配置する。この水蒸気分離器2には、燃料電池
本体で発生した熱を水蒸気として回収し吸収式冷凍機1
01の高温再生器7に供給するための高温側排熱回収回
路が接続される。この高温側排熱回収回路には、水蒸気
分離器2から燃料改質装置3に送られる水蒸気圧力を制
御するため流量調節二方弁28が設けられ、排蒸気流量
制御装置29が制御水蒸気分離器2内の圧力を計測する
圧力センサー27からの信号を受けて、流量調節二方弁
28に操作信号を送信し、その水蒸気圧力を一定に制御
する。燃料電池本体1および燃料改質装置3からの排ガ
ス系には、それらの排ガスより排熱を回収し吸収式冷凍
機101の低温再生器8に供給するための低温側排熱回
収回路を構成する低温側排熱回収用熱交換器6と、凝縮
水回収用熱交換器5が設けられる。これらの熱交換器
5,6で回収される凝縮水は、凝縮水タンク4を経由し
て水蒸気分離器2に補給される。
First, in the structure of the fuel cell 100 side,
The fuel cell main body 1 generates electric power by inputting hydrogen and oxygen as fuel, and generates heat at the same time. The fuel reformer 3 produces hydrogen by reforming city gas and supplies it to the fuel cell body 1. The fuel cell body 1 is provided with a cooling water system pipe for cooling generated heat, and in the middle of the pipe,
A fuel cell cooling water circulation pump 37 and a water vapor separator 2 provided to supply liquid to the fuel cell cooling water circulation pump 37 are arranged. The water vapor separator 2 recovers heat generated in the fuel cell body as water vapor and absorbs the heat.
The high temperature side exhaust heat recovery circuit for supplying to the high temperature regenerator 7 of No. 01 is connected. The high temperature side exhaust heat recovery circuit is provided with a flow rate adjusting two-way valve 28 for controlling the steam pressure sent from the steam separator 2 to the fuel reformer 3, and the exhaust steam flow rate controller 29 controls the steam separator. Upon receiving a signal from the pressure sensor 27 for measuring the pressure inside 2, the operation signal is transmitted to the flow rate control two-way valve 28, and the steam pressure is controlled to be constant. The exhaust gas system from the fuel cell main body 1 and the fuel reformer 3 comprises a low temperature side exhaust heat recovery circuit for recovering exhaust heat from the exhaust gas and supplying it to the low temperature regenerator 8 of the absorption refrigerator 101. A low temperature side exhaust heat recovery heat exchanger 6 and a condensed water recovery heat exchanger 5 are provided. Condensed water collected in these heat exchangers 5 and 6 is supplied to the steam separator 2 via the condensed water tank 4.

【0021】吸収式冷凍機101は、燃料電池100に
接続された高温側排熱回収回路,低温側排熱回収回路か
ら供給される熱により一重二重効用併用の吸収冷凍サイ
クルを駆動して冷水をつくる。この吸収式冷凍機101
の構成において、凝縮器9および吸収器10を冷却する
ために吸収式冷凍機冷却回路が設けられ、その冷却で受
け取った熱を大気に放出するために、吸収式冷凍機冷却
回路には室外熱交換器20が冷却水ポンプ19を介して
接続される。本実施例の吸収式冷凍機101自体の構成
は、基本的には図5の従来例と同様であるが、本実施例
では、凝縮器9内で凝縮した冷媒を蒸発器11に送る回
路の途中に、その冷媒の一部を吸収器10にバイパスす
る冷媒バイパス回路を設けている点が異なる。この冷媒
バイパス回路の接続には冷媒バイパス回路へ分流される
冷媒流量を調節する冷媒流量調節三方弁34を用い、冷
媒流量制御装置35を用いて、蒸発器11へ図略の室内
機から導かれる冷水の入口温度を測定する温度センサー
33により検出した温度をもとに、冷媒流量調節三方弁
34に冷凍能力を制御するための操作信号を送信し、負
荷状態による蒸発器11の凍結を防止する。
The absorption refrigerating machine 101 drives the absorption refrigeration cycle for single and double effect use by the heat supplied from the high temperature side exhaust heat recovery circuit and the low temperature side exhaust heat recovery circuit connected to the fuel cell 100 to cool water. To make. This absorption refrigerator 101
In the above configuration, an absorption refrigerating machine cooling circuit is provided for cooling the condenser 9 and the absorber 10, and in order to release the heat received by the cooling to the atmosphere, the absorption refrigerating machine cooling circuit has outdoor heat. The exchanger 20 is connected via the cooling water pump 19. The structure of the absorption chiller 101 itself of this embodiment is basically the same as that of the conventional example of FIG. 5, but in this embodiment, a circuit for sending the refrigerant condensed in the condenser 9 to the evaporator 11 is used. A difference is that a refrigerant bypass circuit that bypasses a part of the refrigerant to the absorber 10 is provided on the way. A refrigerant flow rate control three-way valve 34 for adjusting the refrigerant flow rate branched to the refrigerant bypass circuit is used for connection of this refrigerant bypass circuit, and a refrigerant flow rate control device 35 is used to guide the evaporator 11 from an indoor unit (not shown). Based on the temperature detected by the temperature sensor 33 that measures the inlet temperature of the cold water, an operation signal for controlling the refrigerating capacity is transmitted to the refrigerant flow rate control three-way valve 34 to prevent the evaporator 11 from freezing due to the load state. ..

【0022】高温側排熱回収回路においては、吸収式冷
凍機101の高温再生器7からの駆動蒸気ドレンを燃料
電池冷却水系の水蒸気分離器2に戻す高温側排熱回収ポ
ンプ16と、このポンプ16の手前に気水分離器17と
が設けられる。低温側排熱回収回路においては、燃料電
池排ガス系から排熱を回収するために設けられた低温側
排熱回収熱交換器6で回収された低温側排熱を吸収式冷
凍機101の低温再生器8に温水として供給する温水循
環用の低温側排熱回収ポンプ18が設けられる。燃料電
池排ガス中に含まれる水を凝縮させる凝縮水回収熱交換
器5への冷却水の通水は、吸収式冷凍機冷却回路に冷却
水流量三方弁31を設けて冷却水量を調節して分流す
る。冷却水調節三方弁31の調節は、冷却水流量制御装
置32が、凝縮水を貯蔵する凝縮水タンク4内の液面高
さを検出する液面センサー30からの検出信号を受け
て、凝縮水量を所定量に保つための操作信号を冷却水流
量調節三方弁31に送信して行う。
In the high temperature side exhaust heat recovery circuit, a high temperature side exhaust heat recovery pump 16 for returning the driving steam drain from the high temperature regenerator 7 of the absorption chiller 101 to the steam separator 2 of the fuel cell cooling water system, and this pump A steam separator 17 is provided in front of 16. In the low temperature side exhaust heat recovery circuit, the low temperature side exhaust heat recovered by the low temperature side exhaust heat recovery heat exchanger 6 provided for recovering the exhaust heat from the fuel cell exhaust gas system is subjected to low temperature regeneration of the absorption refrigerator 101. A low temperature side exhaust heat recovery pump 18 for circulating hot water supplied to the vessel 8 as hot water is provided. The cooling water flow to the condensed water recovery heat exchanger 5 for condensing the water contained in the fuel cell exhaust gas is divided by adjusting the cooling water flow rate by providing the cooling water flow rate three-way valve 31 in the absorption refrigerator cooling circuit. To do. The cooling water flow control device 32 receives the detection signal from the liquid level sensor 30 which detects the liquid level in the condensed water tank 4 which stores the condensed water, and adjusts the cooling water control three-way valve 31. Is transmitted to the cooling water flow rate control three-way valve 31 to maintain a predetermined amount.

【0023】以上の構成において、本実施例における燃
料電池100から回収される排熱の利用方法について説
明する。燃料電池冷却水系より回収された高温側排熱は
水蒸気分離器2を通って吸収式冷凍機101の駆動用熱
源として高温再生器7に蒸気の状態で送られる。高温再
生器7には、吸収器10において冷媒を吸収して濃度の
低くなったLiBr希溶液が溶液ポンプ14により送ら
れ、前記の燃料電池100から回収された蒸気により加
熱され、冷媒が蒸発する。発生した冷媒蒸気は低温再生
器8内において、高温再生器7と同様に吸収器10より
送られたLiBr希溶液に熱を与え、凝縮した後、凝縮
器9へと導かれる。また、低温再生器8には、高温再生
器7より送られる冷媒蒸気とともに、燃料電池排ガス系
からの低温側排熱回収用熱交換器6により回収される低
温側排熱としての温水が導かれ、これらと吸収器10か
ら送られるLiBr希溶液とが熱交換することで冷媒が
蒸発する。蒸発した冷媒は、凝縮器9に送られ、吸収式
冷凍機冷却回路の冷却水により冷却され、凝縮する。凝
縮器9において凝縮した冷媒は蒸発器11に送られ、こ
こで伝熱管表面に散布され、管内を流れる水より熱を奪
って再び蒸発する。熱を奪われ、冷却された水は冷水と
して蒸発器11より室内機などへ搬送される。
A method of utilizing the exhaust heat recovered from the fuel cell 100 in the present embodiment having the above configuration will be described. The high temperature side exhaust heat recovered from the fuel cell cooling water system is sent through the steam separator 2 to the high temperature regenerator 7 as a heat source for driving the absorption refrigerator 101 in a vapor state. To the high temperature regenerator 7, the LiBr diluted solution having a low concentration due to the absorption of the refrigerant in the absorber 10 is sent by the solution pump 14, heated by the vapor recovered from the fuel cell 100, and the refrigerant evaporates. .. The generated refrigerant vapor gives heat to the diluted LiBr solution sent from the absorber 10 in the low temperature regenerator 8 similarly to the high temperature regenerator 7, and is condensed and then guided to the condenser 9. Further, to the low temperature regenerator 8, hot water as low temperature side exhaust heat recovered by the low temperature side exhaust heat recovery heat exchanger 6 from the fuel cell exhaust gas system is introduced together with the refrigerant vapor sent from the high temperature regenerator 7. The refrigerant is evaporated by heat exchange between these and the diluted LiBr solution sent from the absorber 10. The evaporated refrigerant is sent to the condenser 9, cooled by the cooling water of the absorption refrigerator cooling circuit, and condensed. The refrigerant condensed in the condenser 9 is sent to the evaporator 11, where it is sprayed on the surface of the heat transfer tube and takes heat from the water flowing in the tube to evaporate again. The water that has been deprived of heat and cooled is transported as cold water from the evaporator 11 to an indoor unit or the like.

【0024】一方、高温再生器7,低温再生器8におい
て加熱され、濃縮したLiBr濃溶液は、吸収器10よ
り送り出されるLiBr希溶液と溶液熱交換器12,1
3において熱交換した後、吸収器10に導かれ、ここで
蒸発器11において再度蒸発した冷媒を吸収し、吸収熱
を吸収式冷凍機冷却水回路に放出する。冷媒を吸収して
濃度の低くなったLiBr希溶液は、溶液熱交換器1
2,13でLiBr濃溶液と熱交換した後、再び、高温
再生器7,低温再生器8にそれぞれ分配されて送られ
る。
On the other hand, the concentrated LiBr solution heated and concentrated in the high-temperature regenerator 7 and the low-temperature regenerator 8 is diluted with the LiBr solution delivered from the absorber 10 and the solution heat exchangers 12, 1.
After exchanging heat in 3, the refrigerant introduced into the absorber 10 and evaporated again in the evaporator 11 is absorbed there, and the absorbed heat is released to the absorption refrigerator cooling water circuit. The diluted LiBr solution that has absorbed the refrigerant and becomes low in concentration is used as the solution heat exchanger 1.
After heat exchange with the concentrated LiBr solution at 2 and 13, it is again distributed and sent to the high temperature regenerator 7 and the low temperature regenerator 8.

【0025】以上のサイクルを繰り返すことにより、燃
料電池100の排熱を、冷却水系からは高温側排熱であ
る蒸気として、排ガス系からは低温側排熱である温水と
して回収し、これらを熱源として吸収冷凍サイクルを駆
動し、冷熱の供給を行なう。
By repeating the above cycle, the exhaust heat of the fuel cell 100 is recovered from the cooling water system as steam which is exhaust heat on the high temperature side and from the exhaust gas system as hot water which is exhaust heat on the low temperature side, and these are collected as the heat source. The absorption refrigeration cycle is driven to supply cold heat.

【0026】次に、吸収式冷凍機101の能力制御につ
いて説明する。吸収式冷凍機101にかかる負荷が、吸
収式冷凍機101の冷凍能力より小さくなった場合に
は、室内機より蒸発器11にもどる冷水の温度が低くな
る。これにともなって、蒸発器11内での冷媒蒸発温度
も次第に低下してくるため、下限値を設けて蒸発器11
の能力を制御し、蒸発器11内での冷媒の凍結を防止す
る必要がある。この下限値を、冷水の戻り温度を温度セ
ンサー33により検出し、冷媒流量調節三方弁34を操
作して凝縮器9より蒸発器11に供給される冷媒の一部
を、例えば吸収器10にバイパスする。これにより、蒸
発器11には、外部負荷に応じて冷媒量のみが供給さ
れ、その結果、冷却能力が制御され、蒸発温度を異常に
低下させることなく運転を継続させることが可能とな
る。一方、冷媒流量調節三方弁34によりバイパスされ
た冷媒は、吸収器10においてLiBr溶液と混合した
後、溶液ポンプ14により溶液熱交換器12,13を経
て高温再生器7,低温再生器8に分配される。従って、
高温再生器7,低温再生器8におけるLiBr希溶液の
濃度,冷媒循環量等については、定格運転時の場合とな
んら変わるところがなく、冷媒再生に必要とされる蒸気
消費量,温水消費量については、定格値を維持したまま
である。
Next, the capacity control of the absorption refrigerator 101 will be described. When the load on the absorption refrigerator 101 becomes smaller than the refrigerating capacity of the absorption refrigerator 101, the temperature of cold water returning to the evaporator 11 becomes lower than that of the indoor unit. Along with this, the refrigerant evaporation temperature in the evaporator 11 also gradually decreases.
It is necessary to prevent the freezing of the refrigerant in the evaporator 11 by controlling the capacity of the evaporator. With this lower limit value, the return temperature of cold water is detected by the temperature sensor 33, and the refrigerant flow rate adjusting three-way valve 34 is operated to bypass a part of the refrigerant supplied from the condenser 9 to the evaporator 11 to, for example, the absorber 10. To do. As a result, only the amount of the refrigerant is supplied to the evaporator 11 according to the external load, and as a result, the cooling capacity is controlled, and the operation can be continued without abnormally lowering the evaporation temperature. On the other hand, the refrigerant bypassed by the refrigerant flow rate control three-way valve 34 is mixed with the LiBr solution in the absorber 10 and then distributed by the solution pump 14 to the high temperature regenerator 7 and the low temperature regenerator 8 via the solution heat exchangers 12 and 13. To be done. Therefore,
The concentration of the diluted LiBr solution, the refrigerant circulation amount, etc. in the high temperature regenerator 7 and the low temperature regenerator 8 are the same as those in the rated operation, and the steam consumption and hot water consumption required for the refrigerant regeneration are the same. , The rated value is maintained.

【0027】燃料電池冷却水系においては、燃料電池1
00の運転が部分負荷運転となった場合には燃料電池本
体1からの発熱量が変動するが、電池セルを発電反応に
適した温度に維持するよう冷却水温度を一定にするた
め、部分負荷運転時にも水蒸気分離器2での圧力を一定
に保つよう、流量調節二方弁28により燃料電池外部に
放出される蒸気量を制御する。
In the fuel cell cooling water system, the fuel cell 1
When the operation of No. 00 is a partial load operation, the calorific value from the fuel cell body 1 fluctuates, but the cooling water temperature is kept constant so as to maintain the battery cells at a temperature suitable for the power generation reaction. The amount of vapor discharged to the outside of the fuel cell is controlled by the flow rate control two-way valve 28 so that the pressure in the water vapor separator 2 is kept constant during operation.

【0028】燃料電池排ガス系においても、燃料電池1
00の運転状態にともない、必要凝縮水量確保のための
必要放熱量は変動する。また、吸収式冷凍機101の低
温再生器8で、単効用サイクルでの再生器として機能さ
せるための排熱取り込み温度は、吸収式冷凍機101の
吸収器10,凝縮器9を冷却している冷却水の温度、即
ち外気温度の影響を受けて変化する。このため、燃料電
池排ガス系より排熱を回収し、吸収式冷凍機101に温
水として回収熱を供給する低温側排熱回収用熱交換器6
において、吸収式冷凍機101の冷却水温度が上昇し、
低温再生器8への供給温水温度が上昇した場合には必要
十分な冷却水が確保できなくなる。この場合には、凝縮
水タンク4に設置された液面センサー30により、凝縮
水量を検知して、冷却水量調節三方弁31を調節して凝
縮水回収用熱交換器5で不足分の凝縮水量を確保する制
御を行なう。
In the fuel cell exhaust gas system as well, the fuel cell 1
The required heat radiation amount for securing the necessary condensed water amount varies with the operating state of 00. Further, the exhaust heat uptake temperature for causing the low temperature regenerator 8 of the absorption refrigerator 101 to function as a regenerator in a single-effect cycle cools the absorber 10 and the condenser 9 of the absorption refrigerator 101. It changes under the influence of the temperature of the cooling water, that is, the outside air temperature. Therefore, the heat exchanger 6 for recovering exhaust heat on the low temperature side, which recovers the exhaust heat from the exhaust gas system of the fuel cell and supplies the recovered heat as hot water to the absorption refrigerator 101.
At, the temperature of the cooling water of the absorption refrigerator 101 rises,
When the temperature of the hot water supplied to the low temperature regenerator 8 rises, it becomes impossible to secure necessary and sufficient cooling water. In this case, the amount of condensed water is detected by the liquid level sensor 30 installed in the condensed water tank 4, and the cooling water amount adjusting three-way valve 31 is adjusted so that the condensed water amount in the condensed water recovery heat exchanger 5 is insufficient. Control to secure.

【0029】以上の、冷媒バイパスによる吸収式冷凍機
能力制御、燃料電池冷却水系放熱蒸気量制御、凝縮水回
収用の冷却水量制御を実施することにより、燃料電池の
運転を最優先したうえで発電と同時に発生し、放熱する
必要のある排熱を全て吸収式冷凍機に取り込み、その得
られた熱量で駆動できる吸収式冷凍機の能力の範囲内で
能力制御を行なうとともに燃料電池から回収された余剰
排熱については、吸収式冷凍機冷却回路を利用して大気
に放出することが可能となり、外部放熱用の室外熱交換
器、排熱回収熱交換器の冗長設置が不要となる。
By carrying out the above-described absorption refrigeration functional force control by refrigerant bypass, fuel cell cooling water system radiating steam amount control, and cooling water amount control for condensate water recovery, power generation is performed with top priority given to the operation of the fuel cell. At the same time, all the exhaust heat that needs to be radiated is taken into the absorption refrigerator, and the capacity is controlled within the range of the capacity of the absorption refrigerator that can be driven by the obtained heat amount, and it is recovered from the fuel cell. The excess exhaust heat can be released to the atmosphere by using the absorption refrigerator cooling circuit, and the redundant installation of the outdoor heat exchanger for external heat dissipation and the exhaust heat recovery heat exchanger is unnecessary.

【0030】また、吸収式冷凍機の冷凍能力制御を、冷
媒バイパス制御により行うことで、これまでの再生器へ
の入熱量制御に比べ、負荷変動に対する蒸発器能力の応
答性が良く、従来の吸収式冷凍機により構成される場合
よりも制御性の高いシステムを構築することが可能とな
る。
Further, by controlling the refrigerating capacity of the absorption refrigerating machine by the refrigerant bypass control, the responsiveness of the evaporator capacity to the load variation is better than that of the conventional heat input control to the regenerator, and the conventional It is possible to construct a system having higher controllability than that of the absorption refrigerator.

【0031】図2に本発明の第二の実施例を示す。本実
施例では、第一の実施例における冷媒バイパス回路に代
えて、高温再生器7において蒸発し、さらに低温再生器
8において熱をLiBr希溶液に与えて凝縮した後、凝
縮器9に戻る冷媒の一部をバイパスし、高温再生器7に
再び戻す冷媒バイパス回路を設けることで、蒸発器11
に送られる冷媒量を制御し、吸収式冷凍機101の能力
制御を行っている。冷媒をバイパスするのが吸収器10
ではなく、高温再生器7であることが第一の実施例と異
なる点であり、その他の構成およびシステムの作用は第
一の実施例と共通である。
FIG. 2 shows a second embodiment of the present invention. In the present embodiment, instead of the refrigerant bypass circuit in the first embodiment, the refrigerant that evaporates in the high temperature regenerator 7 and further gives heat to the LiBr dilute solution in the low temperature regenerator 8 to be condensed and then returns to the condenser 9. By providing a refrigerant bypass circuit that bypasses a part of the refrigerant and returns it to the high temperature regenerator 7,
The capacity of the absorption refrigerator 101 is controlled by controlling the amount of refrigerant sent to. It is the absorber 10 that bypasses the refrigerant.
However, it is different from the first embodiment in that it is a high temperature regenerator 7, and the other configurations and operations of the system are common to the first embodiment.

【0032】図3に本発明の第三の実施例を示す。本実
施例では、第一の実施例における冷媒バイパス回路に代
えて、凝縮器9から蒸発器11に導かれる冷媒の一部を
低温再生器8にバイパスする冷媒バイパス回路を設ける
ことで、蒸発器11に送られる冷媒量を制御し、吸収式
冷凍機101の能力制御を行っている。冷媒をバイパス
するのが吸収器10ではなく、低温再生器8であること
が第一の実施例と異なる点であり、その他の構成および
システムの作用は第一の実施例と共通である。
FIG. 3 shows a third embodiment of the present invention. In the present embodiment, instead of the refrigerant bypass circuit in the first embodiment, by providing a refrigerant bypass circuit that bypasses a part of the refrigerant guided from the condenser 9 to the evaporator 11 to the low temperature regenerator 8, the evaporator is provided. The amount of the refrigerant sent to 11 is controlled to control the capacity of the absorption refrigerator 101. The refrigerant is bypassed not by the absorber 10 but by the low temperature regenerator 8, which is a difference from the first embodiment, and the other configurations and operations of the system are the same as those of the first embodiment.

【0033】[0033]

【発明の効果】以上の説明で明らかなように、本発明の
燃料電池排熱利用システムとその制御方法によれば、電
力需要に応じた燃料電池の運転を最優先したうえで、発
電とともに発生する排熱のうち、冷却水系での蒸気量に
おいては必要放出熱量総量を吸収式冷凍機に取り込むよ
う吸収式冷凍機を制御し、排ガス系においては吸収式冷
凍機で回収できる分以外に排ガス中より凝縮水を回収す
る必要がある場合のみ専用の凝縮水回収用熱交換器を使
用するよう制御することで、燃料電池の冷却水系および
排ガス系での放熱用熱交換器が不要となり、システム全
体の排熱を外部に放出する室外熱交換器の冗長設置を避
け、吸収式冷凍機の室外熱交換器を兼用することが可能
となる。
As is apparent from the above description, according to the fuel cell exhaust heat utilization system and the control method thereof of the present invention, the fuel cell operation according to the power demand is given the highest priority, and the fuel cell is generated together with the power generation. In the exhaust heat, the absorption refrigerating machine is controlled so that the total amount of heat released required for the amount of steam in the cooling water system is taken into the absorption refrigerating machine. By controlling to use a dedicated heat exchanger for collecting condensed water only when it is necessary to collect more condensed water, the heat exchanger for radiating heat in the cooling water system and exhaust gas system of the fuel cell becomes unnecessary, and the entire system is eliminated. It is possible to avoid the redundant installation of the outdoor heat exchanger that releases the exhaust heat of the outside, and can also serve as the outdoor heat exchanger of the absorption chiller.

【0034】また、吸収式冷凍機の冷凍能力制御を冷媒
バイパス制御により行うことで、これまでの再生器への
駆動用熱量投入量を制御する入熱制御に比べ、負荷に対
する応答性がよく、制御性の高いシステムを構築するこ
とが可能となる。
By controlling the refrigerating capacity of the absorption chiller by the refrigerant bypass control, the responsiveness to the load is better than that of the heat input control which controls the amount of driving heat input to the regenerator. It is possible to build a system with high controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第二の実施例を示す構成図FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第三の実施例を示す構成図FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】第一の従来例を示す構成図FIG. 4 is a configuration diagram showing a first conventional example.

【図5】第二の従来例を示す構成図FIG. 5 is a configuration diagram showing a second conventional example.

【符号の説明】[Explanation of symbols]

1…燃料電池本体、2…水蒸気分離器、3…燃料改質装
置、4…凝縮水タンク、5…凝縮水回収用熱交換器、6
…低温側排熱回収用熱交換器、7…高温再生器、8…低
温再生器、9…凝縮器、10…吸収器、11…蒸発器、
12…高温側溶液熱交換器、13…低温側溶液熱交換
器、14…溶液ポンプ、15…冷媒ポンプ、16…高温
側排熱回収ポンプ、17…気水分離器、18…低温側排
熱回収ポンプ、19…冷却水ポンプ、20…室外熱交換
器、27…圧力センサー、28…流量調節二方弁、29
…排蒸気流量制御装置、30…液面センサー、31…冷
却水流量調節三方弁、32…冷却水流量制御装置、33
…温度センサー、34…冷媒流量調節三方弁、35…冷
媒流量制御装置、37…燃料電池冷却水循環用ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body, 2 ... Steam separator, 3 ... Fuel reformer, 4 ... Condensed water tank, 5 ... Condensed water recovery heat exchanger, 6
... Heat exchanger for low temperature side exhaust heat recovery, 7 ... High temperature regenerator, 8 ... Low temperature regenerator, 9 ... Condenser, 10 ... Absorber, 11 ... Evaporator,
12 ... High temperature side solution heat exchanger, 13 ... Low temperature side solution heat exchanger, 14 ... Solution pump, 15 ... Refrigerant pump, 16 ... High temperature side exhaust heat recovery pump, 17 ... Steam separator, 18 ... Low temperature side exhaust heat Recovery pump, 19 ... Cooling water pump, 20 ... Outdoor heat exchanger, 27 ... Pressure sensor, 28 ... Flow control two-way valve, 29
... Exhaust steam flow rate control device, 30 ... Liquid level sensor, 31 ... Cooling water flow rate control three-way valve, 32 ... Cooling water flow rate control device, 33
... Temperature sensor, 34 ... Refrigerant flow rate adjusting three-way valve, 35 ... Refrigerant flow rate control device, 37 ... Fuel cell cooling water circulation pump.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 一夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 植草 常雄 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 町沢 健司 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 山本 公治 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 河野 恭二 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Oshima 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inoue Tsuneo Uekusa 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihonhon Telegraph and Telephone Co., Ltd. (72) Kenji Machizawa, Inventor Kenjicho, Tsuchiura-shi, Ibaraki Prefecture, 603 Kuchitate Factory, Hitachi Co., Ltd. Inside the Tsuchiura Plant of the Works (72) Inventor Kyoji Kono 4-6, Surugadai Kanda, Chiyoda-ku, Tokyo Inside Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池本体の冷却水系に設けた水蒸気
分離器から該燃料電池本体で発生した高温側排熱を水蒸
気として回収して吸収式冷凍機の高温再生器に供給し、
さらに燃料電池の排ガス系に設けた低温側排熱回収用熱
交換器により排ガスから低温側排熱を回収して該吸収式
冷凍機の低温再生器に供給し、該高温側排熱,該低温側
排熱により該高温再生器,該低温再生器,凝縮器,蒸発
器,吸収器および該凝縮器,該吸収器を冷却する吸収式
冷凍機冷却回路で構成される前記吸収式冷凍機の吸収冷
凍サイクルを駆動して冷熱を得る燃料電池排熱利用シス
テムにおいて、 前記凝縮器で凝縮し前記蒸発器に送られる冷媒の一部を
前記吸収器または前記高温再生器または前記低温再生器
のいずれかにバイパスする冷媒バイパス回路と、この冷
媒バイパス回路へ分流される該冷媒流量を調節する冷媒
流量調節手段と、前記蒸発器へ導かれる熱搬送媒体の入
口温度を測定する温度センサーと、この温度センサーで
検出した温度をもとに前記冷媒流量調節手段に冷凍能力
を制御するための操作信号を送信する制御装置とを具備
するとともに、 前記燃料電池の排ガス中に含まれる水蒸気を凝縮させる
凝縮水回収用熱交換器と、この凝縮水回収用熱交換器へ
の冷却媒体を前記吸収式冷凍機冷却回路より分岐しその
冷却媒体量を調節する冷却媒体流量調節手段と、前記低
温側排熱回収用熱交換器の凝縮水および前記凝縮水回収
用熱交換器の凝縮水を溜め必要な箇所へ供給する凝縮水
タンクと、該凝縮水タンク内の液面高さを検出する液面
センサーと、この液面センサーからの検出信号を受けて
該冷却媒体流量調節手段に該凝縮水量を所定量に保つた
めの操作信号を送信する制御装置とを具備することを特
徴とする燃料電池排熱利用システム。
1. A high temperature side exhaust heat generated in the fuel cell main body is recovered as steam from a steam separator provided in a cooling water system of the fuel cell main body and supplied to a high temperature regenerator of an absorption refrigerator.
Further, the low temperature side exhaust heat recovery heat exchanger provided in the exhaust gas system of the fuel cell recovers the low temperature side exhaust heat from the exhaust gas and supplies it to the low temperature regenerator of the absorption refrigerating machine. Absorption of the absorption chiller constituted by the high temperature regenerator, the low temperature regenerator, the condenser, the evaporator, the absorber and the absorption chiller cooling circuit for cooling the absorber by the side exhaust heat. In a fuel cell exhaust heat utilization system for driving a refrigeration cycle to obtain cold heat, a part of the refrigerant condensed in the condenser and sent to the evaporator is either the absorber, the high temperature regenerator or the low temperature regenerator. A refrigerant bypass circuit for bypassing the refrigerant, a refrigerant flow rate adjusting means for adjusting the flow rate of the refrigerant branched to the refrigerant bypass circuit, a temperature sensor for measuring an inlet temperature of a heat carrier medium guided to the evaporator, and this temperature sensor. Inspected And a control device for transmitting an operation signal for controlling the refrigerating capacity to the refrigerant flow rate control means based on the temperature output, and for collecting condensed water for condensing water vapor contained in the exhaust gas of the fuel cell. A heat exchanger, cooling medium flow rate adjusting means for branching the cooling medium to the condensed water recovery heat exchanger from the absorption refrigerating machine cooling circuit to adjust the amount of the cooling medium, and the low temperature side exhaust heat recovery heat A condensed water tank that stores condensed water of an exchanger and condensed water of the condensed water recovery heat exchanger and supplies the condensed water to a necessary place, a liquid level sensor that detects a liquid level in the condensed water tank, and this liquid A fuel cell exhaust heat utilization system comprising: a control device that receives a detection signal from a surface sensor and transmits an operation signal for maintaining the amount of condensed water at a predetermined amount to the cooling medium flow rate adjusting means.
【請求項2】 燃料電池本体の冷却水系に設けた水蒸気
分離器から該燃料電池本体で発生した高温側排熱を水蒸
気として回収して吸収式冷凍機の高温再生器に供給し、
さらに燃料電池の排ガス系に設けた低温側排熱回収用熱
交換器により排ガスから低温側排熱を回収して該吸収式
冷凍機の低温再生器に供給し、該高温側排熱,該低温側
排熱により該高温再生器,該低温再生器,凝縮器,蒸発
器,吸収器および該凝縮器,該吸収器を冷却する吸収式
冷凍機冷却回路で構成される前記吸収式冷凍機の吸収冷
凍サイクルを駆動して冷熱を得る燃料電池排熱利用シス
テムにおいて、 前記吸収式冷凍機の冷凍能力制御については、まず負荷
と前記蒸発器の間の熱搬送媒体についての該負荷に応じ
て変化する戻り温度を検出し、次に該戻り温度と設定値
とを比較することにより該負荷に対して該吸収式冷凍機
の冷凍能力が過剰になったかを判断し、次に該吸収式冷
凍機の冷凍能力が過剰になった場合に前記凝縮器から該
蒸発器に送られる冷媒の一部を前記吸収器または前記高
温再生器または前記低温再生器のいずれかにバイパスさ
せて行い、 前記燃料電池の冷却水系から回収される高温側排熱量の
制御については、まず該燃料電池を冷却した冷却水の前
記水蒸気分離器内での飽和水蒸気圧力を検知し、次に前
記吸収式冷凍機の冷凍能力制御とは独立して該燃料電池
の温度を発電反応に適した値に維持するために該冷却水
の温度が一定となるように該水蒸気分離器内の飽和水蒸
気圧力を維持するよう該吸収式冷凍機へ供給される前記
水蒸気の排蒸気量を制御して行い、 前記燃料電池の排ガス系の排熱処理制御については、ま
ず、前記低温側排熱回収用熱交換器からの凝縮水および
該燃料電池の排ガス系に設けた凝縮水回収用熱交換器か
らの凝縮水を溜め必要な箇所へ供給する凝縮水タンクの
液面が所定の高さに達しているかを検出し、次に該液面
が所定の高さに達していない場合に該凝縮水量が足りな
いと判断し、次にこの凝縮水量が足りない場合のみ該凝
縮水回収用熱交換器が作用するように前記吸収式冷凍機
冷却回路より分岐して流す冷却媒体量を制御し該凝縮水
タンク内の凝縮水量を一定値以上に保つように行うこと
を特徴とする燃料電池排熱利用システムの制御方法。
2. A high temperature side exhaust heat generated in the fuel cell main body is recovered as steam from a steam separator provided in a cooling water system of the fuel cell main body and supplied to a high temperature regenerator of an absorption refrigerator.
Further, the low temperature side exhaust heat recovery heat exchanger provided in the exhaust gas system of the fuel cell recovers the low temperature side exhaust heat from the exhaust gas and supplies it to the low temperature regenerator of the absorption refrigerating machine. Absorption of the absorption chiller constituted by the high temperature regenerator, the low temperature regenerator, the condenser, the evaporator, the absorber and the absorption chiller cooling circuit for cooling the absorber by the side exhaust heat. In a fuel cell exhaust heat utilization system that drives a refrigeration cycle to obtain cold heat, the refrigerating capacity control of the absorption refrigerating machine first changes according to the load of a heat carrier medium between the load and the evaporator. The return temperature is detected, and then the return temperature is compared with a set value to determine whether the refrigeration capacity of the absorption refrigerator is excessive with respect to the load. If the refrigeration capacity becomes excessive, the steam is removed from the condenser. By controlling a part of the refrigerant sent to the generator by bypassing the absorber, the high temperature regenerator or the low temperature regenerator, and controlling the amount of high temperature side exhaust heat recovered from the cooling water system of the fuel cell. First, the saturated water vapor pressure in the water vapor separator of the cooling water that has cooled the fuel cell is detected, and then the temperature of the fuel cell is used for power generation reaction independently of the refrigerating capacity control of the absorption refrigerator. The amount of exhaust steam of the steam supplied to the absorption refrigerator is controlled so as to maintain the saturated steam pressure in the steam separator so that the temperature of the cooling water becomes constant in order to maintain a suitable value. For exhaust heat treatment control of the exhaust gas system of the fuel cell, first, from the condensed water from the low temperature side exhaust heat recovery heat exchanger and the condensed water recovery heat exchanger provided in the exhaust gas system of the fuel cell Collect the condensed water of It is detected whether the liquid level of the condensed water tank to be supplied to has reached a predetermined height, then if the liquid level has not reached the predetermined height, it is determined that the amount of condensed water is insufficient, and then The amount of the condensed water in the condensed water tank is controlled to a constant value by controlling the amount of the cooling medium branched from the absorption refrigerating machine cooling circuit so that the condensed water recovery heat exchanger operates only when the amount of the condensed water is insufficient. A method for controlling a fuel cell exhaust heat utilization system, characterized in that the above method is performed.
JP10412792A 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof Expired - Fee Related JP3215489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10412792A JP3215489B2 (en) 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10412792A JP3215489B2 (en) 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof

Publications (2)

Publication Number Publication Date
JPH05299107A true JPH05299107A (en) 1993-11-12
JP3215489B2 JP3215489B2 (en) 2001-10-09

Family

ID=14372457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10412792A Expired - Fee Related JP3215489B2 (en) 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof

Country Status (1)

Country Link
JP (1) JP3215489B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004011A3 (en) * 1996-07-19 1998-04-23 Ztek Corp Fuel cell system for electric generation, heating, cooling and ventilation
JP2002147890A (en) * 2000-11-14 2002-05-22 Ishikawajima Harima Heavy Ind Co Ltd Air-conditioning method and air conditioner
JP2009105055A (en) * 2008-12-19 2009-05-14 Fuji Electric Holdings Co Ltd Exhaust heat utilization method and device for fuel cell power generation system
JP2010218882A (en) * 2009-03-17 2010-09-30 Fuji Electric Systems Co Ltd Fuel cell generator
JP2011153758A (en) * 2010-01-27 2011-08-11 Denso Corp Refrigerator combined type fuel cell system
JP2013245902A (en) * 2012-05-29 2013-12-09 Aisin Seiki Co Ltd Composite absorption heat pump device
CN105423616A (en) * 2015-12-22 2016-03-23 上海汉钟精机股份有限公司 Energy management internet managed waste heat driven power generation, heating, cooling, vapor generation, water generation, material manufacturing and sewage treatment cogeneration system
JP2017161199A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
JP2017161201A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cooling water manufacturing system
JP2017161200A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
CN109301285A (en) * 2018-10-26 2019-02-01 中国华能集团清洁能源技术研究院有限公司 A kind of multipotency stream comprehensive energy rerouting station based on fuel cell
CN113720040A (en) * 2021-09-14 2021-11-30 哈尔滨工程大学 Combined cooling, heating and power system with waste heat grading recovery and absorption type refrigerating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69717160T2 (en) * 1996-09-13 2003-05-08 Mitsubishi Pharma Corp THIENOTRIAZOLODIAZEPINE COMPOUNDS AND THEIR MEDICAL APPLICATIONS
KR101699905B1 (en) * 2016-05-31 2017-01-25 주식회사 성지테크 Absorption chiller system having fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004011A3 (en) * 1996-07-19 1998-04-23 Ztek Corp Fuel cell system for electric generation, heating, cooling and ventilation
JP2002147890A (en) * 2000-11-14 2002-05-22 Ishikawajima Harima Heavy Ind Co Ltd Air-conditioning method and air conditioner
JP2009105055A (en) * 2008-12-19 2009-05-14 Fuji Electric Holdings Co Ltd Exhaust heat utilization method and device for fuel cell power generation system
JP2010218882A (en) * 2009-03-17 2010-09-30 Fuji Electric Systems Co Ltd Fuel cell generator
JP2011153758A (en) * 2010-01-27 2011-08-11 Denso Corp Refrigerator combined type fuel cell system
CN103453684A (en) * 2012-05-29 2013-12-18 爱信精机株式会社 Composite absorption type heat pump device
JP2013245902A (en) * 2012-05-29 2013-12-09 Aisin Seiki Co Ltd Composite absorption heat pump device
CN105423616A (en) * 2015-12-22 2016-03-23 上海汉钟精机股份有限公司 Energy management internet managed waste heat driven power generation, heating, cooling, vapor generation, water generation, material manufacturing and sewage treatment cogeneration system
CN105423616B (en) * 2015-12-22 2023-10-17 上海汉钟精机股份有限公司 Electric heating cold steam-water-material-sewage combined supply system capable of being driven by waste heat in networking management
JP2017161199A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
JP2017161201A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cooling water manufacturing system
JP2017161200A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
CN109301285A (en) * 2018-10-26 2019-02-01 中国华能集团清洁能源技术研究院有限公司 A kind of multipotency stream comprehensive energy rerouting station based on fuel cell
CN113720040A (en) * 2021-09-14 2021-11-30 哈尔滨工程大学 Combined cooling, heating and power system with waste heat grading recovery and absorption type refrigerating device
CN113720040B (en) * 2021-09-14 2022-12-13 哈尔滨工程大学 Combined cooling, heating and power system with waste heat grading recovery and absorption type refrigerating device

Also Published As

Publication number Publication date
JP3215489B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US5345786A (en) Absorption heat pump and cogeneration system utilizing exhaust heat
US4178989A (en) Solar heating and cooling system
US4475361A (en) Multi-effect heat-pump for heating and cooling
JP3215489B2 (en) Fuel cell waste heat utilization system and control method thereof
CN101493270A (en) Absorption heat pump system and heat-production method
KR100732228B1 (en) Hybrid absorption chiller
WO2013035312A1 (en) Cogeneration system
JP2015081730A (en) Absorption type refrigeration system
JP2004211979A (en) Absorption refrigerating system
US20120122002A1 (en) Phosphoric acid fuel cell with integrated absorption cycle refrigeration system
JPH05225993A (en) Phosphoric acid type fuel cell
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JP3426620B2 (en) Fuel cell waste heat utilization system
JP2002061983A (en) Absorption refrigerating machine
JPS5815705B2 (en) Heat recovery method in power generation equipment
KR102396955B1 (en) Hybrid absorption chiller system for gas engine generator and method for driving the same
JPH0554903A (en) Fuel cell power generation system
JPH062981A (en) Fuel cell refrigerator integral system
JPH11337214A (en) Absorption cold/hot water device and operation thereof
KR100317347B1 (en) Method and apparatus for controlling a feul cell power generation system
JP2000082478A (en) Phospholic acid type fuel cell generation plant
CN116857846A (en) System and method for refrigerating by adopting hydrogen fuel cell stack waste heat
JPH0989407A (en) Absorption refrigerator
JP3400699B2 (en) Absorption chiller / heater using engine exhaust heat
JP3744689B2 (en) Co-generation system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees