JP2010071091A - Composite power generation system - Google Patents

Composite power generation system Download PDF

Info

Publication number
JP2010071091A
JP2010071091A JP2008236140A JP2008236140A JP2010071091A JP 2010071091 A JP2010071091 A JP 2010071091A JP 2008236140 A JP2008236140 A JP 2008236140A JP 2008236140 A JP2008236140 A JP 2008236140A JP 2010071091 A JP2010071091 A JP 2010071091A
Authority
JP
Japan
Prior art keywords
power generation
heat
fuel cell
working fluid
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008236140A
Other languages
Japanese (ja)
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008236140A priority Critical patent/JP2010071091A/en
Publication of JP2010071091A publication Critical patent/JP2010071091A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance thermal energy utilization efficiency of the whole composite power generation system by efficiently distributing to power generation and heat demand destination the exhaust heat supplied to a binary power generation device from a fuel cell power generation device. <P>SOLUTION: In a composite power generation system which generates power by transmitting discharge heat of a fuel cell power generating device to a binary power generation device 11 by combining a phosphate type fuel cell power generating device 1 and a binary power generation device 11, the binary power generation device keeps a heat exchanger 18 between an outlet in a turbine 12 and a condenser 17 at a rear stage to utilize heat recovered from working fluid through the heat exchanger in the heat demand destination by a water heater or the like, and includes two outlets having different steam pressure and a flow rate adjusting valve 19 connected thereto as a means for adjusting turbine outlet pressure. When the heat demand supplying heat to the heat demand destination through the heat exchanger 18 is small, the turbine outlet pressure is set lower to enhance power generating output. When the heat demand is large, the turbine outlet pressure is set higher to lower the power generating output. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、リン酸形燃料電池発電装置とペンタン,イソペンタン,ヘキサン,アンモニア等の低沸点媒体を作動流体とするバイナリ発電装置とを組み合わせ、燃料電池発電装置の排熱をバイナリ発電装置に投入してタービンを駆動する複合発電システムに関する。   This invention combines a phosphoric acid fuel cell power generator with a binary power generator that uses a low-boiling point medium such as pentane, isopentane, hexane, and ammonia as a working fluid, and inputs the exhaust heat of the fuel cell power generator to the binary power generator. The present invention relates to a combined power generation system that drives a turbine.

頭記のリン酸形燃料電池は、オンサイト型コージェネレーションシステムとしての実用化が進められている。   The phosphoric acid fuel cell mentioned above is being put to practical use as an on-site type cogeneration system.

周知のように、リン酸形燃料電池は、都市ガス,LPガスなどの原燃料を改質装置により水素リッチな燃料ガスに改質した上で、この燃料ガスと空気を燃料電池本体の燃料極,空気極にそれぞれ供給することで発電を行うものである。このリン酸形燃料電池の運転温度は200℃前後であり、燃料電池発電装置の排熱回収により熱出力として90℃前後の温水(以下、「高温水」と称する)と、50℃程度の温水(以下、「低温水」と称する)が得られることから、燃料電池発電装置の排熱回収で得た「高温水」を暖房,給湯、および吸収式冷凍機を用いた冷房などに利用し、また「低温水」は給湯用に利用するコージェネレーションシステムが既に実用化されている(例えば、非特許文献1参照)。   As is well known, in a phosphoric acid fuel cell, a raw fuel such as city gas or LP gas is reformed into a hydrogen-rich fuel gas by a reformer, and the fuel gas and air are converted into a fuel electrode of the fuel cell body. , Electricity is generated by supplying each to the air electrode. The operating temperature of this phosphoric acid fuel cell is around 200 ° C., and hot water at around 90 ° C. (hereinafter referred to as “hot water”) as heat output by exhaust heat recovery of the fuel cell power generator and hot water at around 50 ° C. (Hereinafter referred to as “low temperature water”), the “high temperature water” obtained by exhaust heat recovery of the fuel cell power generation device is used for heating, hot water supply, cooling using an absorption refrigerator, and the like. Moreover, the cogeneration system utilized for hot water supply has already been put into practical use for “low temperature water” (for example, see Non-Patent Document 1).

ところで、暖房、冷房用として利用する熱需要には季節によって大幅な変動がある。また、需要家によっては必要な熱需要量が小さく、燃料電池発電装置からの熱供給量が常に熱需要を上回って過剰になる場合がある。こうした熱需要と熱供給のアンバランスは燃料電池発電装置のエネルギー利用効率を低下させ、コージェネレーションシステムとしての経済性を損なうことにつながる。   By the way, the heat demand used for heating and cooling varies greatly depending on the season. In addition, depending on the customer, the amount of heat required is small, and the amount of heat supplied from the fuel cell power generator may always exceed the heat demand and become excessive. Such an imbalance between heat demand and heat supply reduces the energy utilization efficiency of the fuel cell power generation device and leads to a loss of economic efficiency as a cogeneration system.

一方、電気は熱と比べて利用性の高いエネルギーであることから、燃料電池発電装置の排熱を利用して発電を行えば、燃料電池発電装置のエネルギー効率,経済性はさらに向上する。かかる点、炭化水素やアンモニアなどの低沸点媒体を作動流体とするバイナリ発電は低温熱源を用いて蒸気化させた作動流体でタービンを駆動して発電が行えることから、これまでにも燃料電池の排熱を熱源としてバイナリ発電を行う複合発電技術が提案されている(例えば、特許文献1,特許文献2参照)。   On the other hand, since electricity is energy that is highly usable compared to heat, the energy efficiency and economic efficiency of the fuel cell power generator can be further improved by generating power using the exhaust heat of the fuel cell power generator. In this respect, binary power generation using a low-boiling point medium such as hydrocarbon or ammonia as a working fluid can generate power by driving a turbine with a working fluid vaporized using a low-temperature heat source. A combined power generation technique that performs binary power generation using exhaust heat as a heat source has been proposed (see, for example, Patent Document 1 and Patent Document 2).

次に、現在実用化されているリン酸形燃料電池のコージェネレーションシステムのフローシートを図4に示す。図4において、1はリン酸形燃料電池発電装置、2は燃料改質器、2aはバーナー、3は燃料電池スタック、3a,3b,3cはそれぞれ燃料極,空気極,水冷式の冷却板である。なお、燃料改質器2,燃料電池スタックの構造,機能に付いては周知であり、ここでは詳細な説明は省略する。   Next, FIG. 4 shows a flow sheet of a phosphoric acid fuel cell cogeneration system that is currently in practical use. In FIG. 4, 1 is a phosphoric acid fuel cell power generator, 2 is a fuel reformer, 2a is a burner, 3 is a fuel cell stack, 3a, 3b, and 3c are a fuel electrode, an air electrode, and a water-cooled cooling plate, respectively. is there. The structure and function of the fuel reformer 2 and the fuel cell stack are well known, and detailed description thereof is omitted here.

また、前記燃料電池発電装置1の排熱を回収して熱利用するために、図示のコージェネレーションシステムでは、前記冷却板3cの冷却水循環回路に熱交換器4を設け、冷却板3cを通過した高温の冷却排水Aとの熱交換により昇温した水を熱交換器4の二次側管路4aより熱需要先(熱利用設備)に供給し、暖房,給湯、あるいは吸収式冷凍機を用いた冷房などに利用するようにしている。   In the illustrated cogeneration system, the heat exchanger 4 is provided in the cooling water circulation circuit of the cooling plate 3c and passes through the cooling plate 3c in order to recover and use the exhaust heat of the fuel cell power generation device 1 Water heated by heat exchange with the high-temperature cooling waste water A is supplied to the heat demand destination (heat utilization equipment) from the secondary side pipe 4a of the heat exchanger 4, and heating, hot water supply, or an absorption refrigerator is used. It is used for air conditioning.

また、燃料電池スタック3の空気極を通過した空気極排ガスB、および燃料改質器2のバーナー2aの燃焼排ガスCは水回収器(気液分離器)5に導いて気液分離した上で排ガスは系外に排出し、ここで回収した水は流量調整弁7を介して前記燃料電池スタック冷却板3cの冷却水循環回路に介挿した熱交換器8,および熱回収用の熱交換器9に送流し、熱交換器9で熱交換した低温水を二次側管路9aより熱需要先に給湯して熱利用するようにしている。なお、図中で6は水回収器5に付設した放熱器、10は燃料改質器2のバーナー2aに付設して燃焼空気,バーナー燃料を予熱する熱交換器である。   The air electrode exhaust gas B that has passed through the air electrode of the fuel cell stack 3 and the combustion exhaust gas C of the burner 2a of the fuel reformer 2 are guided to a water recovery device (gas-liquid separator) 5 for gas-liquid separation. The exhaust gas is discharged out of the system, and the water collected here is a heat exchanger 8 inserted into the cooling water circulation circuit of the fuel cell stack cooling plate 3c through the flow rate adjusting valve 7, and a heat exchanger 9 for heat recovery. The low-temperature water that is sent to the heat exchanger 9 and heat-exchanged by the heat exchanger 9 is supplied to the heat demand destination from the secondary side pipe 9a and used for heat. In the figure, reference numeral 6 denotes a heat radiator attached to the water recovery unit 5, and 10 denotes a heat exchanger attached to the burner 2a of the fuel reformer 2 to preheat combustion air and burner fuel.

上記の燃料電池・コージェネレーションシステムでは、リン酸形燃料電池発電装置1の発電出力を100kWとして、燃料電池スタック3の冷却板3cを通過した冷却排水Aは、熱交換器4,8,9を通じて熱交換器4,9の二次側にそれぞれ40kW,90kWの熱量を受け渡し、この熱交換器で熱回収した「高温水」,「低温水」を熱需要先に供給して利用する。また、空気極排ガスBおよび燃焼排ガスCは水回収器5で水分を除去した後、放熱器6を通じて排熱82kWが系外(大気側)に放出される。なお、熱需要が減少して熱交換器4,9からの熱回収量が殆どゼロの運転状態では、冷却排水Aの保有熱量90kWを排熱処理するために、放熱器6を通じて系外に放出する放熱量は最大で172kW(82kW+90kW)となる。
製品カタログ“燃料電池発電システム”、[online]、2004年3月、富士電機システムズ株式会社、[平成20年6月13日検索]、インターネット<URL: HYPERLINK "http://www.fesys.co.jp/sougou/seihin/p27/pdf/K106b.pdf" www.fesys.co.jp/sougou/seihin/p27/pdf/K106b.pdf> 実開平5-12603号公報(図2) 特開2005-133702号公報
In the fuel cell cogeneration system described above, the cooling drainage A that has passed through the cooling plate 3c of the fuel cell stack 3 passes through the heat exchangers 4, 8, and 9, assuming that the power generation output of the phosphoric acid fuel cell power generation device 1 is 100 kW. Heat amounts of 40 kW and 90 kW are transferred to the secondary sides of the heat exchangers 4 and 9, respectively, and "high temperature water" and "low temperature water" recovered by the heat exchanger are supplied to the heat demand destination and used. Further, after removing moisture from the air electrode exhaust gas B and the combustion exhaust gas C by the water recovery device 5, exhaust heat 82 kW is released to the outside (atmosphere side) through the radiator 6. In the operation state in which the heat demand is reduced and the heat recovery amount from the heat exchangers 4 and 9 is almost zero, the retained heat amount 90 kW of the cooling waste water A is discharged out of the system through the radiator 6 in order to perform heat treatment. The maximum amount of heat radiation is 172 kW (82 kW + 90 kW).
Product catalog "Fuel cell power generation system", [online], March 2004, Fuji Electric Systems Co., Ltd. [Search June 13, 2008], Internet <URL: HYPERLINK "http://www.fesys.co .jp / sougou / seihin / p27 / pdf / K106b.pdf "www.fesys.co.jp/sougou/seihin/p27/pdf/K106b.pdf> Japanese Utility Model Publication No. 5-12603 (FIG. 2) JP 2005-133702 A

前記の特許文献1,特許文献2では燃料電池の排熱を利用してバイナリ発電を行う複合発電システムの基本構成について開示されているものの、システムの排熱を回収して給湯などに利用するコージェネレーションについての開示はなく、燃料電池発電装置の排熱を熱源として発電を行うバイナリ発電装置で電力に変換されなかった熱エネルギーは、全てバイナリ発電装置の凝縮器より系外に放出するようにしている。   Although Patent Document 1 and Patent Document 2 disclose the basic configuration of a combined power generation system that performs binary power generation using the exhaust heat of the fuel cell, the waste heat of the system is recovered and used for hot water supply or the like. There is no disclosure about generation, and all the thermal energy that was not converted into electric power by the binary power generator that generates electricity using the exhaust heat of the fuel cell power generator as the heat source is released from the condenser of the binary power generator to the outside of the system. Yes.

一方、図4で述べた燃料電池発電装置のコージェネレーションシステムに特許文献1,2に開示されているバイナリ発電装置を組み合わせて複合発電システム構成し、燃料電池発電装置の排熱の一部を回収して熱需要先で消費しつつ、排熱の残りをバイナリ発電装置に供給して発電を行う場合、バイナリ発電装置の発電出力は少なくなり、しかもバイナリ発電装置で電力に変換されなかった熱エネルギーはそのまま凝縮器より系外に放出されるので熱エネルギーの利用効率が低下してしまい、このままでは複合発電システムのメリットが充分に活かされない。   On the other hand, a combined power generation system is configured by combining the binary power generation device disclosed in Patent Documents 1 and 2 with the cogeneration system of the fuel cell power generation device described in FIG. 4, and a part of the exhaust heat of the fuel cell power generation device is recovered. In the case of generating electricity by supplying the remainder of the exhaust heat to the binary power generation device while consuming it at the heat demand destination, the power generation output of the binary power generation device is reduced, and the heat energy that has not been converted into electric power by the binary power generation device Is discharged out of the system as it is from the condenser, so the utilization efficiency of the heat energy is lowered, and the merit of the combined power generation system cannot be fully utilized as it is.

かかる点、燃料電池発電装置の排熱を全てバイナリ発電装置に供給して発電するようにし、かつバイナリ発電装置で電力に変換されなかった熱エネルギーは系外に捨てずに、例えば凝縮器などから回収して熱需要先に供給するようにコージェネレーションシステムを組めば、複合発電システムの総合的な熱エネルギー利用効率がさらに向上することは容易に推測される。   In this respect, all the exhaust heat of the fuel cell power generator is supplied to the binary power generator to generate power, and the heat energy that has not been converted into electric power by the binary power generator is not thrown out of the system, for example, from a condenser If the cogeneration system is assembled so that it can be recovered and supplied to the heat demand destination, it can be easily estimated that the combined heat energy utilization efficiency of the combined power generation system will be further improved.

しかしながら、リン酸形燃料電池発電装置を特定してその排熱をバイナリ発電装置に供給して発電するには、燃料電池からの排熱の供給処理面で次記のような配慮が必要となる。すなわち、リン酸形燃料電池発電装置からの排熱には、燃料電池スタックを運転温度に冷却する冷却排水,空気極での電極反応に伴う空気極からの排ガス、および燃料改質器バーナーからの燃焼排ガスがあり、しかも冷却排水,空気極排ガス,燃焼排ガスはそれぞれ温度や熱量が異なる。   However, in order to specify a phosphoric acid fuel cell power generation device and supply the exhaust heat to the binary power generation device to generate power, the following considerations are necessary in terms of the supply processing of exhaust heat from the fuel cell. . That is, the exhaust heat from the phosphoric acid fuel cell power generator includes cooling drainage that cools the fuel cell stack to the operating temperature, exhaust gas from the air electrode accompanying the electrode reaction at the air electrode, and fuel reformer burner. There are combustion exhaust gases, and the cooling waste water, the air electrode exhaust gas, and the combustion exhaust gas have different temperatures and heat amounts.

この点について、具体的な数値を基に補足説明すると、リン酸形燃料電池の排熱で最も熱量が大きいのは電池冷却水である。燃料電池スタックの冷却板を通過した冷却水は温度が約150℃であり、かつこの冷却排水は他の排ガスと比べて熱容量が大きいことから、バイナリ発電装置の作動流体(低沸点媒質)を蒸発させる蒸発器の熱源に向いている。なお、発電出力が100kWのリン酸形燃料電池を供試モデルとすると、燃料電池スタックを冷却した冷却排水の保有熱量は約90kWであり、この熱量(90kW)を熱源としてバイナリ発電装置の蒸発器の熱源として作動流体(イソペンタン)を蒸気に変えてタービンに送り込むには、蒸発器の前段に設けた予熱器で作動流体を予熱するのに約50kWの熱量が必要で、この作動流体の予熱に必要な熱量はリン酸形燃料電池発電装置の空気極排ガスないし燃料改質器バーナーの燃焼排ガスより得ることになる。   This will be supplementarily explained based on specific numerical values. The battery heat is the largest amount of heat in the exhaust heat of the phosphoric acid fuel cell. The cooling water that has passed through the cooling plate of the fuel cell stack has a temperature of about 150 ° C., and this cooling wastewater has a larger heat capacity than other exhaust gases, so the working fluid (low boiling point medium) of the binary power generator is evaporated. It is suitable for the heat source of the evaporator. When a phosphoric acid fuel cell with a power generation output of 100 kW is used as a test model, the amount of heat held in the cooling wastewater that cools the fuel cell stack is about 90 kW, and this heat amount (90 kW) is used as a heat source for the evaporator of the binary power generator In order to convert the working fluid (isopentane) into steam as a heat source for the engine, it is necessary to preheat the working fluid with the preheater provided at the front stage of the evaporator, and the preheating of the working fluid is required for preheating the working fluid. The necessary amount of heat is obtained from the air electrode exhaust gas of the phosphoric acid fuel cell power generator or the combustion exhaust gas of the fuel reformer burner.

この場合に、燃料改質器バーナーの燃焼排ガス温度は約200℃の高温であるが気体であることから熱容量が小さく、またこの燃焼排ガスを200℃から100℃まで温度変化した場合の熱量変化は23kW程度である。したがって、この燃焼排ガス単独では作動流体の予熱に必要な熱量が足らない。なお、排ガスの温度変化を大きくすれば予熱器に与える熱量を増やすことも可能であるが,気体の熱伝達率は液体より低いために予熱器の伝熱面積を大きくしなければならず、予熱器が大型化して設備コストが増加してしまう。   In this case, the combustion exhaust gas temperature of the fuel reformer burner is a high temperature of about 200 ° C. but it is a gas, so the heat capacity is small, and when the temperature of this combustion exhaust gas changes from 200 ° C. to 100 ° C. It is about 23 kW. Therefore, this combustion exhaust gas alone does not have enough heat for preheating the working fluid. It is possible to increase the amount of heat given to the preheater by increasing the temperature change of the exhaust gas. However, since the heat transfer coefficient of gas is lower than that of liquid, the heat transfer area of the preheater must be increased. The equipment becomes larger and the equipment cost increases.

また、リン酸形燃料電池の空気極を通過した空気極排ガスは、窒素と水蒸気に未反応の酸素が含まれる150℃程度の混合ガスであり、この排ガスを温度100℃まで温度を下げた場合の熱量変化は23kW程度であることから、前記した改質器のバーナー燃焼排ガスと同様に、空気極排ガスも単独では作動流体の予熱に必要な熱量を確保できない。このような条件から、燃料電池発電装置にバイナリ発電装置を組み合わせてシステム全体の発電出力を高めるには、前記した燃料電池発電装置からの排熱(冷却排水,空気極排ガス,燃焼排ガスの保有熱)を適切に組み合わせて作動流体の蒸発器,予熱器に供給する必要がある。   Moreover, the air electrode exhaust gas that has passed through the air electrode of the phosphoric acid fuel cell is a mixed gas of about 150 ° C. in which unreacted oxygen is contained in nitrogen and water vapor, and the temperature of this exhaust gas is lowered to a temperature of 100 ° C. Since the change in the amount of heat is about 23 kW, similarly to the burner combustion exhaust gas of the reformer described above, the air electrode exhaust gas alone cannot secure the amount of heat necessary for preheating the working fluid. Under these conditions, in order to increase the power generation output of the entire system by combining the fuel cell power generation device with the binary power generation device, the exhaust heat from the fuel cell power generation device (cooling drainage, air electrode exhaust gas, combustion exhaust gas retained heat) ) Must be combined appropriately and supplied to the working fluid evaporator and preheater.

一方、燃料電池発電装置の排熱を全てバイナリ発電装置に投入して発電し、バイナリ発電装置で電力に変換されなかった熱を例えば凝縮器から回収して熱需要先の給湯などに利用するようにすれば、バイナリ発電装置の発電量は増加するが、この発電の過程でタービンから出た作動流体の温度,熱量は低下することから、燃料電池発電装置単独のコージェネレーションシステム(非特許文献1参照)と比べて給湯,冷暖房などに利用できる熱量が少なくなる。そのほか、このままでは熱需要の増減にも充分に対応できず、特に熱利用設備の熱需要が減少した場合には系外に放出する放熱量が増加するために、システム全体での総合的な熱エネルギー利用効率が低下する問題がある。   On the other hand, all the exhaust heat of the fuel cell power generation device is input to the binary power generation device to generate power, and the heat that has not been converted into electric power by the binary power generation device is recovered from, for example, a condenser and used for hot water supply at a heat demand destination. In this case, the power generation amount of the binary power generation device increases, but the temperature and heat amount of the working fluid discharged from the turbine in the process of power generation decreases, so the cogeneration system of the fuel cell power generation device alone (Non-Patent Document 1) The amount of heat that can be used for hot water supply, air conditioning, etc. is reduced compared to (see). In addition, if the current demand remains unchanged, it will not be possible to sufficiently respond to the increase or decrease in heat demand. In particular, if the heat demand of heat-use equipment decreases, the amount of heat released outside the system will increase. There is a problem that energy utilization efficiency is lowered.

この発明は上記の点に鑑みなされたものであり、リン酸形燃料電池発電装置にバイナリ発電装置を組み合わせた複合発電システムを対象に、その第1の目的は燃料電池発電装置よりバイナリ発電装置に投入した排熱の熱エネルギーを発電とコージェネレーションとして熱利用する熱需要とに効率よく振り分けてシステム全体の総合的な熱エネルギー利用効率の向上化が図れるようにし、また第2の目的はリン酸形燃料電池発電装置から排熱される燃料電池の冷却排水,空気極排ガス,および改質器バーナーの燃焼排ガスをバイナリ発電装置の蒸発器,予熱器に適切に振り分け供給して作動流体を効率よく予熱,蒸発できるようにした複合発電システムを提供することにある。   The present invention has been made in view of the above points, and is directed to a combined power generation system in which a binary power generation device is combined with a phosphoric acid fuel cell power generation device. A first object of the invention is a binary power generation device rather than a fuel cell power generation device. Efficiently distributes the waste heat energy input to power generation and heat demand for heat generation as cogeneration so that overall heat energy utilization efficiency of the entire system can be improved, and the second purpose is phosphoric acid Efficiently preheats the working fluid by appropriately distributing and supplying the cooling drainage of the fuel cell, the exhaust gas from the cathode, and the combustion exhaust gas from the reformer burner to the evaporator and preheater of the binary power generator. It is to provide a combined power generation system that can evaporate.

上記目的を達成するために、この発明によれば、リン酸形燃料電池発電装置とバイナリ発電装置とを組み合わせ、燃料電池発電装置の排熱をバイナリ発電装置に投入して発電する複合発電システムにおいて、
(1)前記バイナリ発電装置にはタービンの出口と後段の凝縮器との間に熱交換器を設け、該熱交換器を介してバイナリ発電装置の作動流体から回収した熱を熱需要先に供給するようにする(請求項1)。
(2)前項(1)の複合発電システムにおいて、バイナリ発電装置にタービンの出口圧力を調整する制御手段を備え、熱交換器を介して熱需要先に給熱する熱需要が少ない場合には、タービンの出口圧力を低く設定してバイナリ発電装置の発電出力を高め、熱需要が多い場合には、タービンの出口圧力を高く設定して発電出力を低めるように運転制御する(請求項2)。
(3)前項(2)の複合発電システムにおいて、バイナリ発電装置のタービンに出口圧力が異なる二つの作動流体出口を設け、かつこの作動流体出口に流量調整弁を接続してタ-ビンの出口圧力制御手段を構成する(請求項3)。
(4)前記(1)〜(3)の複合発電システムにおいて、バイナリ発電装置は、3流体熱交換器として構成されて作動流体を予熱する予熱器と、予熱器で予熱された作動流体を蒸発させる蒸発器とを有し、リン酸形燃料電池発電装置の燃料改質器バーナーを通過した燃焼排ガス,および燃料電池スタックの空気極を通過した空気極排ガスを、作動流体に対向送流して熱交換するようにバイナリ発電装置の予熱器に通流させて作動流体を予熱し、リン酸形燃料電池発電装置の燃料電池スタックの水冷冷却板を通過した冷却水をバイナリ発電装置の蒸発器に通流させて作動流体を蒸発させるようにする(請求項4)。
(5)前記(1)〜(3)の複合発電システムにおいて、バイナリ発電装置は、作動流体を予熱する並列接続された第1、第2の予熱器と、第1、第2の予熱器で予熱された作動流体を蒸発させる蒸発器とを有し、リン酸形燃料電池発電装置の燃料改質器バーナーを通過した燃焼排ガスを第1の予熱器に、また、燃料電池スタックの空気極を通過した空気極排ガスを第2の予熱器に、それぞれ作動流体に対向送流して熱交換するように通流させて作動流体を予熱し、リン酸形燃料電池発電装置の燃料電池スタックの水冷冷却板を通過した冷却水をバイナリ発電装置の蒸発器に通流させて作動流体を蒸発させるようにする(請求項5)。
In order to achieve the above object, according to the present invention, in a combined power generation system that combines a phosphoric acid fuel cell power generator and a binary power generator, and inputs the exhaust heat of the fuel cell power generator into the binary power generator to generate power. ,
(1) The binary power generation device is provided with a heat exchanger between the turbine outlet and the subsequent condenser, and the heat recovered from the working fluid of the binary power generation device is supplied to the heat demand destination via the heat exchanger. (Claim 1).
(2) In the combined power generation system of (1), when the binary power generation device includes a control unit that adjusts the outlet pressure of the turbine, and the heat demand for supplying heat to the heat demand destination via the heat exchanger is small, When the turbine outlet pressure is set low to increase the power generation output of the binary power generator, and the heat demand is high, the turbine outlet pressure is set high to control the operation so as to reduce the power generation output (Claim 2).
(3) In the combined power generation system according to (2), the turbine of the binary power generator is provided with two working fluid outlets having different outlet pressures, and a flow rate adjusting valve is connected to the working fluid outlet to connect the outlet pressure of the turbine. The control means is configured (claim 3).
(4) In the combined power generation system according to (1) to (3), the binary power generation apparatus is configured as a three-fluid heat exchanger to preheat the working fluid, and evaporates the working fluid preheated by the preheater. The combustion exhaust gas that has passed through the fuel reformer burner of the phosphoric acid fuel cell power generator and the air electrode exhaust gas that has passed through the air electrode of the fuel cell stack are sent to the working fluid and heated. The working fluid is preheated by passing it through the preheater of the binary power generator to be replaced, and the cooling water that has passed through the water cooling plate of the fuel cell stack of the phosphoric acid fuel cell power generator is passed to the evaporator of the binary power generator. The working fluid is evaporated to flow (Claim 4).
(5) In the combined power generation system according to the above (1) to (3), the binary power generation device includes first and second preheaters connected in parallel and first and second preheaters for preheating the working fluid. An evaporator for evaporating the preheated working fluid, and the flue gas that has passed through the fuel reformer burner of the phosphoric acid fuel cell power generator is used as the first preheater and the air electrode of the fuel cell stack The air electrode exhaust gas that has passed through the second preheater is sent to the working fluid so as to face the working fluid so as to exchange heat, and the working fluid is preheated to cool the water cooling of the fuel cell stack of the phosphoric acid fuel cell power generator. The cooling water that has passed through the plate is caused to flow through the evaporator of the binary power generation apparatus so that the working fluid is evaporated (Claim 5).

上記構成になる複合発電システムでは、次記の効果を奏することができる。
(1)バイナリ発電装置にはタービンの出口と後段の凝縮器との間に熱交換器を設け、該熱交換器を介してバイナリ発電装置の作動流体から回収した熱を熱需要先に供給して熱利用することにより、発電システム全体での総合的な熱エネルギー利用効率を高めることができる。
(2)また、バイナリ発電装置には、タービンの出口圧力を調整する制御手段を設けて作動流体の凝縮量を熱回収用の熱交換器と凝縮器との間で制御できるようにし、ここで前記熱交換器より熱回収して給湯などに利用する熱需要が少ない場合には、タービンの出口圧力を低く設定することでタービンの入口/出口の圧力差を増加させてバイナリ発電装置より高い発電出力が得られる。また、前記熱交換器より回収して給湯などに利用する熱需要が増加した場合にはタービンの出口圧力を高く設定することにより、バイナリ発電装置の発電出力は減少するが、タービンから出た圧力の高い作動流体は熱回収用の熱交換器で凝縮するため、この熱交換器からの熱回収量が増加し総合的な熱エネルギー利用効率が向上する。
(3)一方、リン酸形燃料電池発電装置からバイナリ発電装置に投入する排熱については、燃料改質器バーナーを通過した燃焼排ガス,および電池スタックの空気極を通過した空気極排ガスをバイナリ発電装置の予熱器に通流して作動流体を予熱し、燃料電池スタックの水冷冷却板を通過した冷却水をバイナリ発電装置の蒸発器に通流して作動流体を蒸発させるようにし、ここで作動流体の予熱器を、燃焼排ガスと空気極排ガスを作動流体に対向送流して熱交換する3流体熱交換器で構成することにより、各排ガスの保有熱を合わせて作動流体の予熱に必要な熱量を効率よく供給することができる。
(4)また、バイナリ発電装置の予熱器を、並列接続された2つの予熱器にて構成し、リン酸形燃料電池発電装置の燃料改質器バーナーを通過した燃焼排ガス,および電池スタックの空気極を通過した空気極排ガスを異なる予熱器に通流して作動流体を予熱することにより、燃焼排ガスと空気極排ガスの温度が異なる場合でも、各排ガスの保有熱を合わせて作動流体の予熱に必要な熱量を効率よく供給することができる。
The combined power generation system configured as described above can achieve the following effects.
(1) The binary power generator is provided with a heat exchanger between the turbine outlet and the subsequent condenser, and the heat recovered from the working fluid of the binary power generator is supplied to the heat demand destination via the heat exchanger. By using heat, the overall heat energy utilization efficiency of the entire power generation system can be improved.
(2) Further, the binary power generator is provided with a control means for adjusting the outlet pressure of the turbine so that the amount of condensation of the working fluid can be controlled between the heat exchanger for heat recovery and the condenser. When there is little demand for heat recovered from the heat exchanger and used for hot water supply etc., the turbine outlet pressure is set low to increase the pressure difference between the turbine inlet / outlet and generate higher power than the binary power generator. Output is obtained. In addition, when the heat demand recovered from the heat exchanger and used for hot water supply or the like increases, the power generation output of the binary power generator decreases by setting the turbine outlet pressure high, but the pressure output from the turbine Since a high working fluid is condensed in a heat exchanger for heat recovery, the amount of heat recovered from the heat exchanger is increased, and the overall utilization efficiency of heat energy is improved.
(3) On the other hand, with regard to the exhaust heat input from the phosphoric acid fuel cell power generator to the binary power generator, the binary exhaust power is generated from the combustion exhaust gas that has passed through the fuel reformer burner and the air exhaust gas that has passed through the air electrode of the battery stack. The working fluid is preheated through the device preheater, and the cooling water that has passed through the water-cooled cooling plate of the fuel cell stack is passed through the binary power generator evaporator to evaporate the working fluid. By configuring the preheater with a three-fluid heat exchanger that exchanges heat by sending combustion exhaust gas and air electrode exhaust gas to the working fluid opposite to each other, the amount of heat required for preheating the working fluid is efficiently combined with the heat retained by each exhaust gas. Can be supplied well.
(4) Further, the preheater of the binary power generator is configured by two preheaters connected in parallel, and the combustion exhaust gas that has passed through the fuel reformer burner of the phosphoric acid fuel cell power generator and the air of the battery stack Even if the temperature of the combustion exhaust gas and that of the air electrode exhaust gas are different by passing the air electrode exhaust gas that has passed through the poles through different preheaters to preheat the working fluid, it is necessary to preheat the working fluid by combining the retained heat of each exhaust gas Can be supplied efficiently.

以下、この発明による複合発電システムの実施の形態を図1〜図3に示す実施例に基づいて説明する。なお、図1はリン酸形燃料電池発電装置と組み合わせた第1実施例のバイナリ発電装置のフローシート、図2はバイナリ発電装置と組み合わせたリン酸形燃料電池発電装置のフローシート、図3は図1に対応する第2実施例のバイナリ発電装置のフローシートであり、各図には図4と対応する部材に同じ符号を付している。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a combined power generation system according to the present invention will be described below based on the examples shown in FIGS. 1 is a flow chart of the binary power generation apparatus of the first embodiment combined with the phosphoric acid fuel cell power generation apparatus, FIG. 2 is a flow sheet of the phosphoric acid fuel cell power generation apparatus combined with the binary power generation apparatus, and FIG. It is a flow sheet of the binary power generator of the 2nd example corresponding to Drawing 1, and the same numerals are given to the member corresponding to Drawing 4 in each figure.

図1,図2により第1の実施例のシステム構成を説明する。なお、以下に述べる説明文中に表した数値は、発電出力100kWのリン酸形燃料電池発電装置とこの燃料電池発電装置の排熱を熱源とするバイナリ発電装置を組み合わせた複合発電システムを供試モデルとして試算した排熱,作動流体の熱量,温度,圧力の数値を表している。   The system configuration of the first embodiment will be described with reference to FIGS. The numerical values shown in the description below are a model model of a combined power generation system that combines a phosphoric acid fuel cell power generation device with a power generation output of 100 kW and a binary power generation device that uses exhaust heat from the fuel cell power generation device as a heat source. The numerical values of exhaust heat, calorific value of the working fluid, temperature, and pressure are calculated.

まず、図1に示すバイナリ発電装置11は、低沸点媒質のイソペンタンを作動流体として、作動流体をタービン12,蒸発器14,予熱器15,作動流体の昇圧用ポンプ16,凝縮器17,熱回収用の熱交換器18,熱回収器20に循環送流してタービンサイクル(ランキンサイクル)を構成している。なお、13は発電機、16aはポンプ16の駆動モータ、19は後記するタービン出口圧力制御手段に用いる流量調整弁である。   First, the binary power generation apparatus 11 shown in FIG. 1 uses isopentane as a low boiling point medium as a working fluid, the working fluid as a turbine 12, an evaporator 14, a preheater 15, a working fluid pressurizing pump 16, a condenser 17, and heat recovery. The turbine cycle (Rankine cycle) is constituted by circulating and feeding to the heat exchanger 18 and the heat recovery unit 20. In addition, 13 is a generator, 16a is a drive motor for the pump 16, and 19 is a flow rate adjusting valve used for turbine outlet pressure control means described later.

このバイナリ発電装置11では、上記のタービンサイクルを循環する作動流体の流量は0.32kg/secであり、ポンプ16で1100kPaに昇圧された後、予熱器15を経由して蒸発器14に送られ、蒸発器14で蒸発した作動流体の蒸気がタービン12を駆動して発電機13より発電出力を得る。また、タービン12から出た作動流体の蒸気は、熱回収器20で予熱器15に向かう作動流体と熱交換して熱エネルギーの一部を回収した後に、熱交換器18,凝縮器17を通流して凝縮,液化して再びポンプ16に戻る。また、前記の熱交換器18では二次管路18aに外部から給水し、作動流体との熱交換により昇温した温水を熱需要先に給湯して熱利用する。   In this binary power generator 11, the flow rate of the working fluid circulating in the turbine cycle is 0.32 kg / sec. After the pressure is increased to 1100 kPa by the pump 16, the pressure is sent to the evaporator 14 via the preheater 15. The vapor of the working fluid evaporated in the evaporator 14 drives the turbine 12 to obtain a power generation output from the generator 13. The steam of the working fluid that has exited from the turbine 12 exchanges heat with the working fluid that is directed to the preheater 15 by the heat recovery device 20 to recover a part of the heat energy, and then passes through the heat exchanger 18 and the condenser 17. Flowed, condensed, liquefied and returned to the pump 16 again. In the heat exchanger 18, water is supplied from the outside to the secondary pipe 18 a, and hot water heated by heat exchange with the working fluid is supplied to a heat demand destination for heat utilization.

ここで、前記の蒸発器14にはリン酸形燃料電池発電装置1の燃料電池スタック3で水冷冷却板を通過した高温の冷却排水Aを供給して予熱器15を通過した作動流体を蒸発させる。また、予熱器15には、リン酸形燃料電池発電装置1から排熱する空気極排ガスB,および燃料改質器2のバーナー燃焼排ガスCを通流して作動流体を予熱するようにし、この実施例では予熱器15に次記構成になるプレート積層型の3流体熱交換器を採用している。   Here, the evaporator 14 is supplied with the high-temperature cooling waste water A that has passed through the water-cooled cooling plate in the fuel cell stack 3 of the phosphoric acid fuel cell power generator 1 to evaporate the working fluid that has passed through the preheater 15. . The preheater 15 is preheated by flowing the cathode exhaust gas B exhausted from the phosphoric acid fuel cell power generator 1 and the burner combustion exhaust gas C of the fuel reformer 2 to preheat the working fluid. In the example, a plate stack type three-fluid heat exchanger having the following configuration is adopted as the preheater 15.

すなわち、予熱器15はシェル(外殻ケース)の中に2枚の薄鋼板を接合した流路板を積層して構成した熱交換ブロック15a,15bを内蔵し、それぞれに空気極排ガスB,燃焼排ガスCを通流して作動流体と熱交換させる。これにより、作動流体は、空気極排ガスB,燃焼排ガスCからそれぞれ23kWずつ合計46kWの熱量を受けて67℃から115℃まで昇温する。   That is, the preheater 15 incorporates heat exchange blocks 15a and 15b configured by laminating a flow path plate in which two thin steel plates are joined in a shell (outer shell case), and the air electrode exhaust gas B and the combustion are respectively built into the shell. The exhaust gas C is passed through to exchange heat with the working fluid. As a result, the working fluid is heated from 67 ° C. to 115 ° C. by receiving a total of 46 kW of heat from each of the air electrode exhaust gas B and the combustion exhaust gas C by 23 kW.

また、蒸発器14では、作動流体が燃料電池スタック3の冷却板を通過した150℃の冷却排水Aと熱交換し、ここで冷却排水Aより90kWの熱量を受けた作動流体は125℃の蒸気となってタービン12に送られる。   In the evaporator 14, the working fluid exchanges heat with the cooling water A at 150 ° C. that has passed through the cooling plate of the fuel cell stack 3, and the working fluid that receives 90 kW of heat from the cooling water A is 125 ° C. vapor. And sent to the turbine 12.

一方、タービン12は小形容量のラジアルタービンであり、該タービン12には最終段の排気口(出口圧力:150kPa)と、タービンの中圧段に抽気口12a(出口圧力:250kPa)を備えた二つの出口を備えている。また、この二つのタービン出口の間には流量調整弁(三方弁)19を接続しており、この構成でタービン12の各出口を通過する作動流体の流量を変えてタービン12の出口圧力を可変制御するようにしている。なお、流量調整弁19はON/OFFの切換制御を行うもの,あるいは連続的に流量比率を調整するものでもよい。   On the other hand, the turbine 12 is a small-capacity radial turbine, and the turbine 12 includes a final stage exhaust port (outlet pressure: 150 kPa) and a bleed port 12a (outlet pressure: 250 kPa) at the intermediate pressure stage of the turbine. Has two outlets. Further, a flow rate adjusting valve (three-way valve) 19 is connected between the two turbine outlets. With this configuration, the outlet pressure of the turbine 12 can be varied by changing the flow rate of the working fluid passing through each outlet of the turbine 12. I try to control it. The flow rate adjusting valve 19 may be one that performs ON / OFF switching control or that continuously adjusts the flow rate ratio.

次に前記構成のバイナリ発電装置11に組み合わせて複合発電システムを構成するリン酸形燃料電池1のフローシートを図2に示す。このリン酸形燃料電池発電装置1は図4で述べた構成と基本的に同じであり、燃料電池スタック3の冷却板3cを通過した高温の冷却排水Aを図1に示した蒸発器14に循環送水して作動流体を蒸発させる。一方、空気極3bを通過した空気極排ガスB,および燃料改質器2のバーナー燃焼排ガスCは図1における予熱器15に供給して作動流体を予熱する。   Next, a flow sheet of the phosphoric acid fuel cell 1 constituting the combined power generation system in combination with the binary power generation device 11 having the above-described configuration is shown in FIG. The phosphoric acid fuel cell power generator 1 is basically the same as the configuration described in FIG. 4, and the high-temperature cooling waste water A that has passed through the cooling plate 3 c of the fuel cell stack 3 is transferred to the evaporator 14 shown in FIG. 1. Circulating water is used to evaporate the working fluid. On the other hand, the air electrode exhaust gas B that has passed through the air electrode 3b and the burner combustion exhaust gas C of the fuel reformer 2 are supplied to the preheater 15 in FIG. 1 to preheat the working fluid.

また、バイナリ発電装置11の予熱器15を通過した水蒸気を含む空気極排ガスBと燃焼排ガスCは図4の燃料電池発電装置と同様に水回収器(気液分離器)5に送られ、ここで水との直接接触式熱交換により冷却されて水分を分離除去した後に、排気としてシステム系外(大気側)に放出される。   Further, the air electrode exhaust gas B and the combustion exhaust gas C containing water vapor that has passed through the preheater 15 of the binary power generator 11 are sent to the water recovery device (gas-liquid separator) 5 in the same manner as the fuel cell power generator of FIG. After being cooled by direct contact heat exchange with water to separate and remove moisture, it is discharged outside the system (atmosphere side) as exhaust.

上記の構成で、流量調整弁19がタービン12の抽気口12aを閉じてタービン出口圧力を150kPaに設定した場合には、発電機13の発電出力が10kWである。一方、流量調整弁19がタービン12の抽気口12aを全開(排気口を全閉)してタービンの出口圧力を250kPaに設定した場合には、タービン12の入口/出口間の熱落差が減少して発電機13の発電出力は7.3kWとなる。これにより、リン酸形燃料電池の発電出力は100kWであるので、バイナリ発電装置11の発電出力(10kW,あるいは7.3kW)を加えた複合発電システムの発電出力は、リン酸形燃料電池発電装置の単独に比べて発電出力が7〜10%増加することになる。   With the above configuration, when the flow rate adjustment valve 19 closes the extraction port 12a of the turbine 12 and sets the turbine outlet pressure to 150 kPa, the power generation output of the generator 13 is 10 kW. On the other hand, when the flow regulating valve 19 fully opens the bleed port 12a of the turbine 12 (fully closes the exhaust port) and sets the outlet pressure of the turbine to 250 kPa, the heat drop between the inlet and the outlet of the turbine 12 decreases. Thus, the power generation output of the generator 13 is 7.3 kW. Accordingly, since the power generation output of the phosphoric acid fuel cell is 100 kW, the power generation output of the combined power generation system including the power generation output (10 kW or 7.3 kW) of the binary power generation device 11 is the phosphoric acid fuel cell power generation device. The power generation output is increased by 7 to 10% as compared with the case of the above alone.

また、タービン12を通過した作動流体の蒸気温度は約95℃であり、その熱エネルギーの一部は熱回収器20(図1参照)で予熱器15に向かう作動流体との熱交換により消費された後に作動流体は後段の熱交換器18に送られ、該熱交換器18で回収した熱が熱需要先に給熱される。   The steam temperature of the working fluid that has passed through the turbine 12 is about 95 ° C., and a part of the heat energy is consumed by heat exchange with the working fluid toward the preheater 15 in the heat recovery unit 20 (see FIG. 1). After that, the working fluid is sent to the heat exchanger 18 at the subsequent stage, and the heat recovered by the heat exchanger 18 is supplied to the heat demand destination.

ここで、熱需要の増加に合わせてタービン12の出口圧力を250kPaに設定した場合には、作動流体は熱交換器18を通過する過程でその二次側管路18aを流れる水に放熱して蒸気の大半が凝縮する(蒸気は性質上、圧力が高くなると液化する凝縮温度が高くなる)。これにより、熱交換器18では最大で約100kWの熱回収が可能となる。また、作動流体は熱交換器18で凝縮することから、後段の凝縮器17で系外に放熱処理される熱量は最小で約29kWに減少する。なお、この運転状態では、タービン12の出口圧力を150kPaから250kPaに高めたことで、バイナリ発電装置11の発電出力は、先記のように10kWから7.3kWに低下する。   Here, when the outlet pressure of the turbine 12 is set to 250 kPa in accordance with the increase in heat demand, the working fluid dissipates heat to the water flowing through the secondary side pipe 18a in the process of passing through the heat exchanger 18. Most of the steam condenses (steam has a nature that the condensation temperature at which it liquefies increases as the pressure increases). As a result, the heat exchanger 18 can recover heat of up to about 100 kW. Further, since the working fluid is condensed in the heat exchanger 18, the amount of heat that is radiated outside the system in the latter-stage condenser 17 is reduced to about 29 kW at the minimum. In this operation state, by increasing the outlet pressure of the turbine 12 from 150 kPa to 250 kPa, the power generation output of the binary power generator 11 decreases from 10 kW to 7.3 kW as described above.

一方、熱需要が減少し、これに合わせて流量調整弁19がタービン12の抽気口12aを閉じてタービン出口圧力を150kPaに設定すると、この場合には作動流体の凝縮処理が凝縮器6で行われるために系外に排出する放熱量は最大で126kWとなるが、バイナリ発電装置11の発電出力は7.3kWから10kWに増加する。   On the other hand, when the heat demand decreases and the flow rate adjusting valve 19 closes the extraction port 12a of the turbine 12 and sets the turbine outlet pressure to 150 kPa in accordance with this, the working fluid is condensed in the condenser 6 in this case. Therefore, the maximum amount of heat released to the outside of the system is 126 kW, but the power generation output of the binary power generator 11 increases from 7.3 kW to 10 kW.

以上述べたように、リン酸形燃料電池発電装置1からの排熱を熱源とするバイナリ発電装置11に熱交換器18を設け、該熱交換器18を介して回収した熱を熱需要先で給湯などに利用するようにコージェネレーションシステムを組み、かつその熱需要の増減変動に合わせてタービン12の出口圧力を調整することにより、複合発電システム全体で高い熱エネルギー利用効率を維持しつつ、発電出力を増加させることができる。   As described above, the heat exchanger 18 is provided in the binary power generator 11 that uses the exhaust heat from the phosphoric acid fuel cell power generator 1 as a heat source, and the heat recovered through the heat exchanger 18 is received at the heat demand destination. By constructing a cogeneration system to be used for hot water supply etc. and adjusting the outlet pressure of the turbine 12 according to fluctuations in the heat demand, while maintaining high thermal energy utilization efficiency in the entire combined power generation system, The output can be increased.

次に、先記した実施例1とは異なる実施例として、バイナリ発電装置11の予熱器を変更した第2実施例のバイナリ発電装置のフローシートを図3に示す。すなわち、先記の実施例1では予熱器15を3流体熱交換器で構成しているが、この実施例では予熱器として2台のシェルアンドチューブ形の予熱器15−1,15−2を並列に接続し、予熱器15−1には燃料電池スタック3の空気極排ガスBを、他方の予熱器15−2には燃料改質器2のバーナー燃焼排ガスCを通流して作動流体を予熱するようにしており、その他の構成は図1と同様である。この実施例は、例えば空気極排ガスBと燃焼排ガスCのガス温度が異なる場合に適用され、予熱器15−1,15−2を通過した作動流体を合流して蒸発器14に送り込む。   Next, FIG. 3 shows a flow sheet of the binary power generation apparatus of the second embodiment in which the preheater of the binary power generation apparatus 11 is changed as an embodiment different from the first embodiment. That is, in the first embodiment, the preheater 15 is constituted by a three-fluid heat exchanger. In this embodiment, two shell and tube preheaters 15-1 and 15-2 are used as preheaters. Connected in parallel, the preheater 15-1 passes through the cathode exhaust gas B of the fuel cell stack 3, and the other preheater 15-2 passes through the burner combustion exhaust gas C of the fuel reformer 2 to preheat the working fluid. Other configurations are the same as those in FIG. This embodiment is applied when, for example, the gas temperatures of the air electrode exhaust gas B and the combustion exhaust gas C are different, and the working fluids that have passed through the preheaters 15-1 and 15-2 are merged and sent to the evaporator 14.

本発明の燃料電池発電システムにおける第1実施例のバイナリ発電装置のフローシートFlow sheet of binary power generation apparatus of first embodiment in fuel cell power generation system of the present invention 図1のバイナリ発電装置と組み合わせたリン酸形燃料電池発電装置のフローシートFlow sheet of a phosphoric acid fuel cell power generator combined with the binary power generator of FIG. 図1に対応する第2実施例のバイナリ発電装置のフローシートFlow sheet of the binary power generator of the second embodiment corresponding to FIG. 従来実施されている燃料電池・コージェネレーションシステムのフローシートFlow sheet of a conventional fuel cell cogeneration system

符号の説明Explanation of symbols

1 燃料電池発電装置
2 燃料改質器
2a バーナー
3 燃料電池スタック
3b 空気極
3c 冷却板
5 水回収器
6 放熱器
10 熱交換器
11 バイナリ発電装置
12 タービン
12a 抽気口
13 発電機
14 蒸発器
15,15−1,15−2 予熱器
16 ポンプ
17 凝縮器
19 流量調整弁
A 冷却排水
B 空気極排ガス
C バーナー燃焼排ガス
DESCRIPTION OF SYMBOLS 1 Fuel cell power generation device 2 Fuel reformer 2a Burner 3 Fuel cell stack 3b Air electrode 3c Cooling plate 5 Water recovery device 6 Radiator 10 Heat exchanger 11 Binary power generation device 12 Turbine 12a Extraction port 13 Generator 14 Evaporator 15, 15-1, 15-2 Preheater 16 Pump 17 Condenser 19 Flow rate adjusting valve A Cooling drain B Air electrode exhaust gas C Burner combustion exhaust gas

Claims (5)

リン酸形燃料電池発電装置とバイナリ発電装置とを組み合わせ、燃料電池発電装置の排熱をバイナリ発電装置に投入して発電する複合発電システムにおいて、
バイナリ発電装置にはタービンの出口と凝縮器との間に熱交換器を設け、該熱交換器を介してバイナリ発電装置の作動流体から回収した熱を熱需要先に供給するようにしたことを特徴とする複合発電システム。
In a combined power generation system that combines a phosphoric acid fuel cell power generator and a binary power generator, and inputs the exhaust heat of the fuel cell power generator into the binary power generator to generate power,
The binary power generator is provided with a heat exchanger between the turbine outlet and the condenser, and heat recovered from the working fluid of the binary power generator is supplied to the heat demand destination via the heat exchanger. A featured combined power generation system.
請求項1に記載の複合発電システムにおいて、バイナリ発電装置にタービンの出口圧力を調整する制御手段を備え、熱交換器を介して熱需要先に給熱する熱需要が少ない場合には、タービンの出口圧力を低く設定してバイナリ発電装置の発電出力を高め、熱需要が多い場合にはタービンの出口圧力を高く設定して発電出力を低めるように運転制御することを特徴とする複合発電システム。   The combined power generation system according to claim 1, wherein the binary power generation device includes a control unit that adjusts the outlet pressure of the turbine, and when there is little heat demand to supply heat to the heat demand destination via the heat exchanger, A combined power generation system characterized in that the outlet pressure is set low to increase the power generation output of the binary power generator, and that operation control is performed so as to reduce the power generation output by setting the turbine outlet pressure high when heat demand is high. 請求項2に記載の複合発電システムにおいて、バイナリ発電装置のタービンに出口圧力が異なる二つの作動流体出口を設け、かつこの作動流体出口に流量調整弁を接続してタービンの出口圧力制御手段を構成したことを特徴とする複合発電システム。 3. The combined power generation system according to claim 2, wherein two working fluid outlets having different outlet pressures are provided in a turbine of the binary power generator, and a flow rate adjusting valve is connected to the working fluid outlet to constitute an outlet pressure control means of the turbine. Combined power generation system characterized by that. 請求項1ないし3の何れか1項に記載の複合発電システムにおいて、バイナリ発電装置は、3流体熱交換器として構成されて作動流体を予熱する予熱器と、予熱器で予熱された作動流体を蒸発させる蒸発器とを有し、リン酸形燃料電池発電装置の燃料改質器バーナーを通過した燃焼排ガス,および燃料電池スタックの空気極を通過した空気極排ガスを、作動流体に対向送流して熱交換するようにバイナリ発電装置の予熱器に通流させて作動流体を予熱し、リン酸形燃料電池発電装置の燃料電池スタックの水冷冷却板を通過した冷却水をバイナリ発電装置の蒸発器に通流させて作動流体を蒸発させる、ことを特徴とする複合発電システム。   The combined power generation system according to any one of claims 1 to 3, wherein the binary power generation device includes a preheater configured as a three-fluid heat exchanger to preheat the working fluid, and the working fluid preheated by the preheater. A vaporizer that evaporates, and the combustion exhaust gas that has passed through the fuel reformer burner of the phosphoric acid fuel cell power generator and the air electrode exhaust gas that has passed through the air electrode of the fuel cell stack are sent oppositely to the working fluid. The working fluid is preheated by flowing through the preheater of the binary power generator so as to exchange heat, and the cooling water that has passed through the water-cooled cooling plate of the fuel cell stack of the phosphoric acid fuel cell power generator is supplied to the evaporator of the binary power generator. A combined power generation system characterized by evaporating a working fluid through a flow. 請求項1ないし3の何れか1項に記載の複合発電システムにおいて、バイナリ発電装置は、作動流体を予熱する並列接続された第1、第2の予熱器と、第1、第2の予熱器で予熱された作動流体を蒸発させる蒸発器とを有し、リン酸形燃料電池発電装置の燃料改質器バーナーを通過した燃焼排ガスを第1の予熱器に、また、燃料電池スタックの空気極を通過した空気極排ガスを第2の予熱器に、それぞれ作動流体に対向送流して熱交換するように通流させて作動流体を予熱し、リン酸形燃料電池発電装置の燃料電池スタックの水冷冷却板を通過した冷却水をバイナリ発電装置の蒸発器に通流させて作動流体を蒸発させる、ことを特徴とする複合発電システム。   4. The combined power generation system according to claim 1, wherein the binary power generation device includes first and second preheaters connected in parallel and first and second preheaters for preheating the working fluid. 5. And an evaporator for evaporating the preheated working fluid, and the combustion exhaust gas that has passed through the fuel reformer burner of the phosphoric acid fuel cell power generator is used as the first preheater and the air electrode of the fuel cell stack. The air electrode exhaust gas that has passed through the second preheater is sent to the second preheater so as to be opposed to the working fluid and exchanged heat to preheat the working fluid, and the water cooling of the fuel cell stack of the phosphoric acid fuel cell power generator A combined power generation system, characterized in that the working fluid is evaporated by flowing cooling water that has passed through a cooling plate to an evaporator of a binary power generation device.
JP2008236140A 2008-09-16 2008-09-16 Composite power generation system Pending JP2010071091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236140A JP2010071091A (en) 2008-09-16 2008-09-16 Composite power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236140A JP2010071091A (en) 2008-09-16 2008-09-16 Composite power generation system

Publications (1)

Publication Number Publication Date
JP2010071091A true JP2010071091A (en) 2010-04-02

Family

ID=42203123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236140A Pending JP2010071091A (en) 2008-09-16 2008-09-16 Composite power generation system

Country Status (1)

Country Link
JP (1) JP2010071091A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128829B1 (en) * 2011-10-07 2012-03-23 주식회사 서브원 Heat recovery type cogeneration system of fuel cell and generating method thereof
JP2013122239A (en) * 2011-11-07 2013-06-20 Osaka Gas Co Ltd Cogeneration system
JP2013181508A (en) * 2012-03-02 2013-09-12 Yanmar Co Ltd Exhaust heat recovery rankine cycle system
CN103380285A (en) * 2011-02-25 2013-10-30 斯堪尼亚商用车有限公司 System for converting thermal energy to mechanical energy in a vehicle
CN103573313A (en) * 2012-07-20 2014-02-12 株式会社东芝 Power generating system
JP2014511012A (en) * 2011-03-31 2014-05-01 ゼネラル・エレクトリック・カンパニイ Recirculation facility for increasing yield from fuel cells using CO2 capture
CN104153834A (en) * 2014-07-15 2014-11-19 天津大学 Power generation and cooling hybrid system based on Kalina cycle
CN104170139A (en) * 2011-12-27 2014-11-26 Posco能源公司 Fuel cell hybrid system
KR101496726B1 (en) * 2013-08-28 2015-03-04 이성민 energy extractor with resistance of wire
JP2015528083A (en) * 2012-08-03 2015-09-24 テーエルイー−オー−ヘン・グループ・ベスローテン・フェンノートシャップTri−O−Gen Group B.V. System for recovering energy from multiple heat sources through organic Rankine cycle (ORC)
CN109519302A (en) * 2017-09-19 2019-03-26 上海汽车集团股份有限公司 A kind of exhaust gas heat recovery method and device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508327B1 (en) 2011-02-25 2015-04-07 스카니아 씨브이 악티에볼라그 System for converting thermal energy to mechanical energy in a vehicle
CN103380285A (en) * 2011-02-25 2013-10-30 斯堪尼亚商用车有限公司 System for converting thermal energy to mechanical energy in a vehicle
JP2014509367A (en) * 2011-02-25 2014-04-17 スカニア シーブイ アクチボラグ System for converting thermal energy into mechanical energy in a vehicle
JP2014511012A (en) * 2011-03-31 2014-05-01 ゼネラル・エレクトリック・カンパニイ Recirculation facility for increasing yield from fuel cells using CO2 capture
KR101128829B1 (en) * 2011-10-07 2012-03-23 주식회사 서브원 Heat recovery type cogeneration system of fuel cell and generating method thereof
JP2013122239A (en) * 2011-11-07 2013-06-20 Osaka Gas Co Ltd Cogeneration system
US9435230B2 (en) 2011-12-27 2016-09-06 Posco Energy Co., Ltd. Fuel cell hybrid system
CN104170139A (en) * 2011-12-27 2014-11-26 Posco能源公司 Fuel cell hybrid system
JP2013181508A (en) * 2012-03-02 2013-09-12 Yanmar Co Ltd Exhaust heat recovery rankine cycle system
CN103573313A (en) * 2012-07-20 2014-02-12 株式会社东芝 Power generating system
US9382815B2 (en) 2012-07-20 2016-07-05 Kabushiki Kaisha Toshiba Power generating system
JP2015528083A (en) * 2012-08-03 2015-09-24 テーエルイー−オー−ヘン・グループ・ベスローテン・フェンノートシャップTri−O−Gen Group B.V. System for recovering energy from multiple heat sources through organic Rankine cycle (ORC)
KR101496726B1 (en) * 2013-08-28 2015-03-04 이성민 energy extractor with resistance of wire
CN104153834B (en) * 2014-07-15 2015-08-19 天津大学 A kind of generating based on the circulation of card Linne, cooling association system
CN104153834A (en) * 2014-07-15 2014-11-19 天津大学 Power generation and cooling hybrid system based on Kalina cycle
CN109519302A (en) * 2017-09-19 2019-03-26 上海汽车集团股份有限公司 A kind of exhaust gas heat recovery method and device

Similar Documents

Publication Publication Date Title
JP2010071091A (en) Composite power generation system
Wang et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell
JP5616064B2 (en) Fuel cell heat exchange system and method
JP5339193B2 (en) Exhaust gas heat recovery device
JP2004532507A5 (en)
JP2000515305A (en) Systems for power generation and electric heating, cooling and ventilation
CN110171553B (en) Comprehensive utilization system for waste heat of hydrogen fuel cell power ship
AU2020232743B2 (en) Reversible water electrolysis system and operation method thereof
CN105576269A (en) Thermal control system of fixed mini-type fuel cell cogeneration device
JP2017190925A (en) Waste heat recovery system for fuel battery
US10147989B2 (en) System for generating power from fuel cell waste heat
KR101413388B1 (en) Fuel cell system
KR20130085839A (en) Heating and cooling system using heat from fuel cell
JP2013058337A (en) Fuel cell system
JP2004111397A (en) Humidification of reactant stream in fuel cell
KR101397622B1 (en) Waste heat recovery system for cooling tower of power plant by using feul cell
JP2012038688A (en) Fuel cell power generation device
CN117293349A (en) Hydrogen-heat integrated power generation system and method based on PEMFC and organic Rankine cycle
JP4486391B2 (en) Equipment for effective use of surplus steam
WO2020217509A1 (en) High-temperature exhaust gas generation device combined cycle power generation system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
US10084194B2 (en) Electrical installation having a cooled fuel cell comprising an absorption heat engine
JP7190079B2 (en) Fuel cell system with combined fuel vaporization and cathode gas heater unit and method of use and operation
JP2009097389A (en) Decompression installation provided with energy recovery function
GB2458112A (en) Heat and Process Water Recovery System